
CSV2KG: Transforming Tabular Data into
Semantic Knowledge

Bram Steenwinckel?, Gilles Vandewiele?, Filip De Turck, and Femke Ongenae

IDLab, Ghent University – imec, Technologiepark-Zwijnaarde 126, Ghent, Belgium
{firstname}.{lastname}@ugent.be

Abstract. A large portion of structured data does not yet reap the ben-
efits of the Semantic Web, or Web 2.0, as it is not semantically annotated.
In this paper, we propose a system to generates semantic knowledge,
available on DBPedia, from common CSV files. The “Tabular Data to
Knowledge Graph Matching” competition, consisting of three different
subchallenges, was used to evaluate the proposed methodology.

Keywords: Tabular Data · Semantic Annotation · Entity Recognition
· Type Recognition · Property Recognition.

1 Introduction & Challenge Description

A large portion of both existing and newly produced structured data is not se-
mantically annotated. While solutions exist that allow enriching raw structured
data semantically, they have to be explicitly tailored to the format of the data [4].
Alternatively, systems can be developed that automatically annotate raw data,
albeit less accurately [7,3,5,9,2,8]

In this perspective, The “Tabular Data to Knowledge Graph Matching” com-
petition was hosted at the International Semantic Web Conference (ISWC), in
2019 [6]. Given a Comma-Separated Values (CSV) file, three different challenges
had to be tackled: (i) a type from the DBPedia ontology [1] had to be assigned
to the columns (Column-Type Annotation (CTA)), (ii) a DBPedia entity had
to be assigned to the different cells (Cell-Entity Annotation (CEA)), and (iii)
relations between different column had to be inferred, when possible (Columns-
Property Annotation (CPA)). These challenges are illustrated in Figure 1. The
competition consisted of four different rounds. In each round, a collection of CSV
files were provided which had to be annotated. Moreover, the cells, columns and
column pairs that had to be annotated were provided as well. This avoids the
need to create a pre-processing step that identifies elements in the CSV for which
it is possible to create an annotation (e.g. removing cells with numbers). None

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

? Both authors contributed equally to this work

B. Steenwinckel, G. Vandewiele et al.

of the files contained a corresponding ground truth of annotations, allowing only
for unsupervised learning approaches to be applied.

1946 Roussillon Grand Prix Maserati 4CL France H. Louveau

1946 Nice Grand Prix Alfa Romeo 308 France R. Sommer

CPA

1946 Marseille Grand Prix Maserati France E. Platé

1937 San Remo Grand Prix Maserati in motorsport Italy P. Dusio

1935 Italian Grand Prix Alfa romeo in motorsport Italy R. Dreyfus

CTA

CEA

Fig. 1. The three different subchallenges of the competition.

2 System Description

We designed a system to solve these three challenges directly. Our system consists
of six phases as visualised in Figure 2. First, crude annotations are made for
each cell in the table by generating multiple candidates and disambiguating
them by using string similarities on the cell values and the rdf:label of each
candidate. Afterwards, the column types and properties between columns are
inferred using these cell annotations. In a fourth step, the inferred column types
and properties are used to create more accurate head cell annotations (the cells
in the first column of a table). Phase five uses the new head cells to correct the
other cells in the table, using the property annotations. Finally, in phase six, new
column types were inferred using all the available corrected cells. The code for
this system is written in Python and is made available online1. In the following
section, detailed information of each phase is provided.

2.1 Initial Cell Entity Annotation (cell lookup)

The pipeline used to annotate single cells, during an initial phase, is depicted in
Figure 3. For each of the cell values, we first clean them by retaining only the
part that comes before a ‘(’ or ‘[’ and by removing all ‘%’, ‘”’, and ‘\’ characters

1 https://github.com/IBCNServices/CSV2KG

https://github.com/IBCNServices/CSV2KG

CSV2KG: Transforming Tabular Data into Semantic Knowledge

Fig. 2. Overview of each phase in our designed system. The blue phases are used to
make cell annotations. The yellow phases provide the column types and the red phase
gives property annotations.

(clean cell). Then, we check whether http://dbpedia.org/resource/<X> ex-
ists where <X> is simply the cleaned cell value with spaces replaced by under-
scores (try url). Parallel with this, the cell value is provided to the DBPedia
lookup API to generate more candidates (DBPedia lookup). As no column type
annotations are available yet during this initial phase, we do not provide this
additional information. If both the DBPedia lookup and the try url step did
not result in any candidates, the DBPedia Spotlight API is applied. In the end, a
large pool of possible candidates remain. On this pool, we apply disambiguation
by selecting the candidate of which its rdf:label has the lowest Levenshtein
distance to the actual cell value.

Fig. 3. Cell lookup pipeline: annotations based on the cell value .

2.2 Column Type Annotation (infer columns)

After annotating the different cells, we can query the different types for each of
these annotations in the same column and count these. Based on these counts,
the goal is to find now the most specific class that matches the entities in the
cell. It is important to note that the entities on DBPedia are not guaranteed
to be complete or are annotated correctly (e.g. Barack Obama, and not Donald
Trump, is still the president of the U.S.A according to DBPedia at the time of
writing in August 20192) and Shaquille O’Neal his musical endeavours, such as
being a rapper and DJ, are not entirely in there3). This makes the inference step
far from trivial. Merely taking the type with the highest count, where ties are

2 http://dbpedia.org/page/President_of_the_United_States
3 http://dbpedia.org/page/Shaquille_O’Neal

http://dbpedia.org/page/President_of_the_United_States
http://dbpedia.org/page/Shaquille_O'Neal

B. Steenwinckel, G. Vandewiele et al.

broken by the type that has the highest depth in the hierarchy, would mostly
result in a very generic annotation such as Thing.

Since the classes of the DBPedia ontology form a hierarchy, they can be repre-
sented in a tree. We can now traverse this tree and apply majority voting (i.e.
taking the child with the highest count) on each level of this tree. We continue
recursively until the entropy of the two highest counts of its children is lower
than a specified threshold. The entropy is thus defined as:

H(t) = H(sort({count(c) | c ∈ children(t)})[−2 :]) (1)

With t the type of which we want to calculate its entropy, H(.) the Shannon
entropy, count(.) a function to get the number of remaining cell annotations
of a certain type, sort(.) a function to sort a collection in an ascending fashion
and children(.) a function to obtain the subclasses of a type in the DBPedia
ontology. The reason for only looking at the two highest counts of its children
is that else it can be susceptible to outliers (i.e. types with very low counts),
which can cause the entropy to decrease quickly. This approach is exemplified
in Figure 4.

Thing

PopeSaint

Cleric

Person

ArtistAthlete

Place Agent

5 397

48 49

105

1056

111

H = 0.21

...

... ...

H = 0.20

H = 0.69

Fig. 4. An example of the column inference heuristic. Majority voting is applied three
times until it reaches Cleric. There, the normalized entropy of the two highest counts
of its children is too high to continue.

As the maximum score that could be achieved per target column was not bounded
by one, we boosted our score by adding all parents in the hierarchy to each col-
umn annotation, excluding Thing and Agent. Moreover, classes that were equiv-
alent according to the DBPedia ontology (e.g. Location and Place) were added

CSV2KG: Transforming Tabular Data into Semantic Knowledge

to the collection of annotations per target as well. Column type information can
influence the DBPedia cell lookup as visualised in Figure 3. Therefore, the initial
cell lookup was executed again with newly available column information.

2.3 Column Property Annotation (infer props)

The cell annotations are used to annotate the properties or relations between
pairs of columns. To do this, we iterate over cell pairs from two target columns
between which we want to infer the relation. Then, for each of these cell pairs
(s, o), we query for all predicates p from the DBPedia ontology that exists be-
tween these two entities: {p | (s, p, o) ∈ DBPedia}. Finally, the predicate that
can be found the most between the cell pairs is chosen. To break possible ties,
the domain and range of all inferred column types were taken into account from
the using a simple query:

SELECT ?domain ?range WHERE {

<pred> rdfs:domain ?domain .

<pred> rdfs:range ?range .

}

with <pred> a possible predicate between the two target columns. So in the
case of relationships with equal highest counts, we check the range and domain
using the column types. When the range and domain of multiple relationships
are valid possibilities, we take the relationships with the most specific range and
domain column type (using depth(domain) + depth(range)).

2.4 Cell Annotation for the first columns (head annotation)

After obtaining the column type and property annotations, we can create more
accurate cell annotations. All properties giving information about the head cells
(the cell in the first column of a table) are updated by using the following query:

SELECT ?s WHERE {

?s <pred> <value> .

}

with <pred> the predicates found in Section 2.3 between the head and non-
head columns and <value> the cell value of the non-head column as inferred in
Section 2.1. For each row in our table, these queries will result in several possible
head annotations, and the annotation with the highest count was returned. In
the case of an ex aequo, the Levenshtein distance on the rdf:label was used.

2.5 Non-head Cell Annotations (infer other cells)

With the corrected head cell annotations, a similar query can be used to correct
all the other cells in the table row by row:

B. Steenwinckel, G. Vandewiele et al.

SELECT ?o WHERE {

<head> <pred> ?o .

}

with <pred> the predicates found in Section 2.3 between the head and non-head
columns and <head> the cell value of the head column as inferred in Section 2.4.
Multiple answers are possible when more than one values are annotated with a
corresponding property. Levenshtein distances between the rdf:label and raw
cell value were used to disambiguate the results.

2.6 Final column types (infer columns)

The method from section 2.2 was executed again, but with all new information
of the cells.

3 Additional remarks

Some additional elements were provided to boost both the execution and accu-
racy of our annotation system:

– When names such as G. Vandewiele, B. Steenwinckel were detected, DBPedia
lookup was performed given the Person class type, and only the last name
was given to the API as a search key. Code was used to check the distance
between the cell value and the candidate persons.

– The CTA challenge score was not bounded to 1, so all the parent column
annotations were added as well.

– Reasoning was used to find equivalent classes, and these were also added as
possible results for the column types.

– Some tales were very similar, and majority voting was used on possible
similar tables to correct some of the column types.

– Each phase of the pipeline in figure 2 was parallelized, making it possible to
evaluate large amounts of CSV files in a limited amount of time.

4 Evaluation results

In total, four different metrics were used to evaluate the system. On the one
hand, we had the F1-score, which is a harmonic mean of the precision and recall
of our system:

precision =
#correct annotations

#annotations made

recall =
#correct annotations

|target cells|

F1 =
2 ∗ precision ∗ recall

precision + recall

(2)

CSV2KG: Transforming Tabular Data into Semantic Knowledge

During the second round, a new metric was introduced for the CTA challenge. An
annotation was regarded as perfect if it was the most specific class to which all the
cells in the column complied to. An annotation was okay if it was an ancestor
of the actual perfect annotations in the DBPedia hierarchy of classes. Based
on these two concepts, the primary average hierarchical (AH) and secondary
average perfect (AP) score were defined:

AH =
#perfect + 0.5 ∗#okay−#wrong

|target cells|

AP =
#perfect

#annotations

(3)

The results of our approach are summarized in Table 1, 2, 3, 4 respectively.
It should be noted that we mostly focused on the CTA challenge during the
first round. No submissions were made for the CPA challenge, and we did not
annotate all cells for the CEA challenge. Our leaderboard position is, therefore,
rather low in comparison to our ranking during the other rounds.

Challenge Primary score Secondary score Leaderboard position

CEA F1 = 0.448 prec = 0.627 13 / 14

CTA F1 = 0.833 prec = 0.833 6 / 15

CPA / / /
Table 1. The results obtained by our system in the three challenges of round 1.

Challenge Primary score Secondary score Leaderboard position

CEA F1 = 0.883 prec = 0.893 2 / 13

CTA AH = 1.376 AP = 0.257 2 / 13

CPA F1 = 0.877 prec = 0.926 2 / 10
Table 2. The results obtained by our system in the three challenges of round 2.

Challenge Primary score Secondary score Leaderboard position

CEA F1 = 0.962 prec = 0.964 2 / 8

CTA AH = 1.864 AP = 0.247 2 / 8

CPA F1 = 0.841 prec = 0.843 2 / 7
Table 3. The results obtained by our system in the three challenges of round 3.

Challenge Primary score Secondary score Leaderboard position

CEA F1 = 0.907 prec = 0.912 3 / 8

CTA AH = 1.846 AP = 0.274 2 / 7

CPA F1 = 0.830 prec = 0.835 2 / 7
Table 4. The results obtained by our system in the three challenges of round 4.

B. Steenwinckel, G. Vandewiele et al.

5 Conclusion & Future Work

In this paper, a system to convert a CSV file of raw, structured data to semantic
knowledge. The system consists of six phases: three initial annotation phases
for all target cells, the types of columns and the properties between columns.
A fourth and fifth phase over the target cells utilises the newly inferred proper-
ties to create more accurate annotations and a sixth phase which uses all new
cell information to improve the column types. The proposed system is rather
straight-forward while already achieving promising results. As future work, we
would like to improve the system by taking additional resources into account,
such as other data sources or embedded values of the occurring triples. More-
over, machine learning systems could be interesting as well but would require a
ground truth.

References

1. Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. Dbpedia: A nucleus for a web of open data. In The semantic
web, pages 722–735. Springer, 2007.

2. Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. Tabel: entity
linking in web tables. In International Semantic Web Conference, pages 425–441.
Springer, 2015.

3. Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and Charles Sutton. Colnet:
Embedding the semantics of web tables for column type prediction. AAAI, 2019.

4. Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Erik Man-
nens, and Rik Van de Walle. Rml: A generic language for integrated rdf mappings
of heterogeneous data. Ldow, 1184, 2014.

5. Vasilis Efthymiou, Oktie Hassanzadeh, Mariano Rodriguez-Muro, and Vassilis
Christophides. Matching web tables with knowledge base entities: from entity
lookups to entity embeddings. In International Semantic Web Conference, pages
260–277. Springer, 2017.

6. Jiaoyan Chen Ernesto Jimenez-Ruiz Oktie Hassanzadeh, Vasilis Efthymiou and
Kavitha Srinivas. Semtab2019: Semantic web challenge on tabular data to knowl-
edge graph matching - 2019 data sets. Zenodo. Version 2019.

7. Dominique Ritze, Oliver Lehmberg, and Christian Bizer. Matching html tables to
dbpedia. In Proceedings of the 5th International Conference on Web Intelligence,
Mining and Semantics, page 10. ACM, 2015.

8. Ziqi Zhang. Effective and efficient semantic table interpretation using tableminer+.
Semantic Web, 8(6):921–957, 2017.

9. Stefan Zwicklbauer, Christoph Einsiedler, Michael Granitzer, and Christin Seifert.
Towards disambiguating web tables. In International Semantic Web Conference
(Posters & Demos), pages 205–208, 2013.

	CSV2KG: Transforming Tabular Data into Semantic Knowledge

