

Semantic Web Challenge on Tabular Data to KG Matching

Kavitha Srinivas, IBM Research, USA Ernesto Jiménez-Ruiz, City, University of London, UK Oktie Hassanzadeh, IBM Research, USA Jiaoyan Chen, University of Oxford, UK Vasilis Efthymiou, IBM Research, USA

26/10/2019

Introduction

- Special OAEI track / ISWC challenge
- Tabular data in the form of CSV files is the common input format in a data analytics pipeline.
- Tables on the Web may also be the source of highly valuable data for web searches, question answering, and knowledge base (KB) construction.

Motivation

- The lack of semantics and context in datasets hinders their application.
- Gaining semantic understanding will be very valuable for data integration, data cleaning, data mining, machine learning and knowledge discovery tasks.
- Understanding what the data is can help assess what sorts of transformation are appropriate on the data.

Adding Semantics to Tabular Data: Challenge Tasks

- Assigning a semantic type (e.g., a KG class) to an (entity) column (CTA task)
- Matching a cell to a KG entity (CEA task)
- Assigning a KG property to the relationship between two columns (CPA task)

(*) We assume the existence of a (possibly incomplete) **Knowledge Graph (KG)** relevant to the domain.

(**) We relied on DBpedia KG.

Adding Semantics to Tabular Data: Example

	Countries	has population	Cities			
1	China	1,377,516,162	Beijing	09-22-2016		
2	India	1,291,999,508	New Delhi	09-22-2016		
3	United States	323,990,000	Washington, D.C.	09-22-2016		
4	Indonesia	258,705,000	Jakarta	07-01-2016		
5	Brazil	206,162,929	Brasilia	09-22-2016		
16	Congo	82,310,000	Kinshasa	07-01-2016		
	\square					
26	Burma	54,363,426	Naypyidaw	07-01-2016		
122	Congo	4,741,000	Brazzaville	07-01-2016		
194	Falkland Islands	2,563	Stanley	04-15-2012		
Repub	Republic of the Congo Democratic Republic of the Congo					

(*) Adapted from Efthymiou et al. Matching Web Tables with Knowledge Base Entities: From Entity Lookups to Entity Embeddings. ISWC 2017

Challenge Dates and Evaluation Rounds

- Round 1

- April 15: opens / June 30: closes.
- Best participants are invited to present during ISWC and OM.

– Round 2

- July 17: opens / September 22: closes.
- Round 3
 - September 23: opens / October 14: closes.

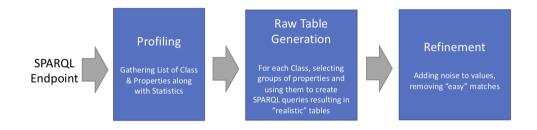
– Round 4

- October 15: opens / October 21: closes.

Evaluation Platform: AlCrowd

The challenge run with the support of the **AICrowd platform**. (Why not SEALS or HOBBIT?)

- ✓ Testing new platform
- ✓ Registration of participants
- ✓ Flexibility in the submission process
- ✓ Online leaderboards
- \times Communication with participants
- $\times\,$ Deployment and problem-solving required AICrowd support


Datasets

- Round 1 (sandbox): extended T2Dv2 dataset
- Round 2 (fine-tuning): Wikipedia tables dataset + automatically generated dataset
- Round 3 (limited tests): automatically generated dataset
- Round 4 (limited tests): automatically generated dataset with only hard cases

Tables and ground truth for all rounds are made publicly available at:

https://doi.org/10.5281/zenodo.3518539

Automatic Dataset Generator

Automatic Dataset Generator - Issues

- Profiling

- Detailed statistics can help create a more diverse corpus (e.g., fair coverage of classes with various levels of popularity)
- Profiling within SPARQL could be hard to scale

- Raw Table Generation

- The goal is creating SPARQL queries that produce "realistic" looking tables.
- There needs to be restrictions on the number of columns, number of rows, number of tables for a given class/property, etc.

– Refinement

- Some instance values can be replaced in a rule-based fashion. E.g., first names
 of person entities can be abbreviated, synonyms can be used, the precision of
 numerical values can be adjusted, full dates can be replaced with months/years
- Tables or rows/columns too "easy" for annotation (e.g., through exact match) can be dropped

Automatic Dataset Generator - Details

- Profiling

 So far only getting a list of classes, properties, and the number of instances for each. Properties with a small number of instances are dropped

Raw Table Generation

- Each table has between 3-7 columns and 10-200 rows
- There won't be more than 5 tables with the same set of properties
- Header row is (col1, ..., coln) i.e., property labels are not used as headers

- Refinement

- Value refinement: only person name labels are adjusted
- For Round 4: Subset of the dataset for which the simple lookup method of [1] returned low F-1 scores for the CEA task.
- RDF Dataset for OM/OAEI: Generated by [2] with an additional look-up extension
- 1. Efthymiou, Hassanzadeh, Rodriquez-Muro, Christophides. Matching Web Tables with Knowledge Base Entities: From Entity Lookups to Entity Embeddings. ISWC 2017
- 2. Efthymiou, Hassanzadeh, Sadoghi, Rodriquez-Muro. Annotating Web tables through ontology matching. OM 2016

Participation

- 7 systems stable across tasks and rounds
- Good starting to create community

#	Round 1	Round 2	Round 3	Round 4
Participants	17	11	9	8
СТА	13	9	8	7
CEA	11	10	8	8
СРА	5	7	7	7

Results Overview: Max Scores

- Standard **F1-score** for CEA, CPA and CTA (Round 1).
- CTA (Rounds 2-4) uses a score to take into account **approximate hits** of the (perfect) semantic type.

#	Round 1	Round 2	Round 3	Round 4
СТА	1.0	1.4	1.96	2.01
CEA	1.0	0.91	0.97	0.98
СРА	0.99	0.88	0.84	0.83

ISWC Challenge Presentation and Prizes

- ISWC challenge presentation on Wednesday (11:40-12:40)
- Prizes sponsored by IBM
 Research and SIRIUS
 (Norwegian Center for Scalable Data Access):

http://www.sirius-labs.no/

IBM Research

Proceedings

- **CEUR-WS**: ISWC Post-event proceedings.
- November 10: Final system paper submissions
- Papers:
 - Daniela Oliveira and Mathieu d'Aquin. ADOG Anotating Data with Ontologies and Graphs.
 - Phuc Nguyen et al. MTab: Matching Tabular Data to Knowledge Graph using Probability Models.
 - Marco Cremaschi et al. MantisTable: an automatic approach for the Semantic Table Interpretation. (Team STI)
 - Avijit Thawani et al. Entity Linking to Knowledge Graphs to Infer Column Types and Properties. (Tabularisi)
 - Gilles Vandewiele et al. ISWC Challenge: Transforming Tabular Data into Semantic Knowledge. (IDLab)
 - Yoan Chabot et al. DAGOBAH: An End-to-End Context-Free Tabular Data Semantic Annotation System.
 - Hiroaki Morikawa et al. Semantic Table Interpretation using LOD4ALL.

Challenge Talks

Challenge Presentation at ISWC:

- MTab
- Tabularisi
- Team STI
- Team DAGOBAH

Challenge Presentations at OM:

- Tabularisi
- IDLab

Problems, Feedback and Next Steps

- To be discussed during OM panel session
- Problems with dbpedia wikiredirects
- Encoding problems
- Errors in datasets (e.g., unexpected relationships, geonames)
- Maximum number of submissions per day
- Availability of GT
- AlCrowd as platform
- RDF datasets

Acknowledgements

- All participants
- Challenge organisers and their institutions
- AlCrowd and Arjun Nemani
- Our sponsors: IBM Research and SIRIUS
- ISWC and OM organisers

