

A Simple Approach to Accurately Convert Tabular
Data into Semantic Knowledge

 prof. dr. Femke Ongenae
(assistant professor, promotor)

Bram Steenwinckel
(PhD student)

Gilles Vandewiele
(PhD student)

prof. dr. Filip De Turck
(professor, promotor)

Problem statement

High-level overview

Phase 1: using lookups to create initial annotations

→ disambiguation is done with
Levenshtein distance for non-names
& whoswho library for person names

https://github.com/rliebz/whoswho

→ detect names & only use family names
REGEX: "^(\w\.)+([\w\-']+)$"

https://github.com/rliebz/whoswho

Phase 2: infer columns based on cell annotations

col0

x0,0

...

x0,n-1

SELECT ?t WHERE {
 <x0,0> a ?t .
}

Phase 3: infer properties based on cell annotations
and disambiguate with column annotations

Disambiguation:
Look for domain & range in column types

col0 col1

x0,0 x1,0

...

x0,n-1 x1,n-1

SELECT ?p WHERE {
 <x0,0> ?p <x1,0> .
}

SELECT ?domain ?range WHERE {
 <pred> rdfs:domain ?domain .
 <pred> rdfs:range ?range .
}

Phase 4: annotate the head cells with the properties

SELECT ?s WHERE {
 ?s <pred> <x1,0> .
}

col0 col1 ... coln-1

x0,0 x1,0 ... xn-1,0

... ...

x0,n-1 x1,n-1 ... xn-1,n-1

→ Take ?s with highest counts. In case
of ex aequo, use Levenshtein.

Phase 5: annotate all other cells

SELECT ?o WHERE {
 <x0,0> <pred> ?o .
}

col0 col1 ... coln-1

x0,0 x1,0 ... xn-1,0

... ...

x0,n-1 x1,n-1 ... xn-1,n-1

→ Disambiguate with Levenshtein

Phase 6: final column annotation

col0

x0,0

...

x0,n-1

SELECT ?t WHERE {
 <x0,0> a ?t .
}

Higher quality cell annotations

Some sly tricks to boost our score

- Many names (e.g. G. Vandewiele, B. Steenwinckel)
→ custom code for these

- CTA score is not bounded by 1! Add all the parents to the column
annotation
→ Max score per row if perfect type is on depth d:
 1 + (d - 1) * 0.5

- Reasoning to find equivalent classes and add these as well
- Find tables that are very similar (in earlier rounds the CSV headers

often matched) and apply majority voting

Things we tried, but didn’t work well

Clustering of
lookup candidates
using jaccard
distances between
their rdf types.

Things we tried, but didn’t work well

Playing around (outlier
removal, clustering, …)
with pre-made RDF2Vec
embeddings for DBPedia

https://github.com/IBCNServices/pyRDF2Vec

https://github.com/IBCNServices/pyRDF2Vec

Results: Round 1

CTA

Results: Round 2

CEA

CTA

CPA

Results: Round 3

CEA

CTA

CPA

Results: Round 4

CEA

CTA

CPA

Conclusion & future work

- We first tried more sophisticated approaches, they were all subpar
→ KISS

- Simple approach performs really well (second place overall)

- The iterative approach can easily be replaced by a better approach
that jointly learns to annotate properties, column types and cells
(keeping track of all possible candidates)

Thank you!

Paper:
http://www.cs.ox.ac.uk/isg/challenges/sem-tab/papers/IDLab.pdf
Code (WIP):
https://github.com/IBCNServices/CSV2KG

gilles.vandewiele@ugent.be

www.gillesvandewiele.com

https://twitter.com/Gillesvdwiele

https://www.linkedin.com/in/gillesvandewiele/

http://www.cs.ox.ac.uk/isg/challenges/sem-tab/papers/IDLab.pdf
https://github.com/IBCNServices/CSV2KG

