JenTab Meets SemTab 2021’s New Challenges

Nora Abdelmageed, Sirko Schindler

Friedrich Schiller University Jena, Germany

ISWC 2021
Semantic Table Annotation Tasks

<table>
<thead>
<tr>
<th>Country</th>
<th>Area</th>
<th>Capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egypt</td>
<td>1,010,408</td>
<td>Cairo</td>
</tr>
<tr>
<td>Germany</td>
<td>357,386</td>
<td>Berlin</td>
</tr>
</tbody>
</table>

- https://www.wikidata.org/wiki/Q79
- https://www.wikidata.org/wiki/Q183

<table>
<thead>
<tr>
<th>Country</th>
<th>Area</th>
<th>Capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egypt</td>
<td>1,010,408</td>
<td>Cairo</td>
</tr>
<tr>
<td>Germany</td>
<td>357,386</td>
<td>Berlin</td>
</tr>
</tbody>
</table>

- https://www.wikidata.org/wiki/Q6256

<table>
<thead>
<tr>
<th>Country</th>
<th>Area</th>
<th>Capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egypt</td>
<td>1,010,408</td>
<td>Cairo</td>
</tr>
<tr>
<td>Germany</td>
<td>357,386</td>
<td>Berlin</td>
</tr>
</tbody>
</table>

- https://www.wikidata.org/wiki/Q5119

(a) CEA
(b) CTA
(c) CPA
Background

- JenTab uses **only** the public available **lookup API** and **SPARQL query endpoints** of the target knowledge graph

- Follows (CFS Pattern):
 - **C**reate as many as candidates per task
 - **F**ilter these candidates by using semantic context
 - **S**elect the most appropriate candidate from the remaining

- Uses 4 contexts:
Background – Default Pipeline

- Abstract View of pipeline_full
Outlook

1. Semantic Table Annotation Tasks
2. Background
3. New Design
 • System Architecture
 • Various Pipelines
4. Evolution
5. Experiences & Results
6. Conclusions & Future work
System Architecture

- **Manager**
 - Work load balance

- **Solver**
 - Performs pre-processing
 - Executes the actual pipeline

- **Runner**
 - Mediator between Manager & Solver

- **Wikidata & DBpedia Proxies**
 - Encapsulate the publicly available API and SPARQL endpoint for Wikidata and DBpedia

- **Generic Lookup**
 - Holds a precomputed mapping for the unique cell-values of the entire dataset using Jaro Winkler distance*

- **Caching Server**
 - Central caching server for the last three services

* W. E. Winkler, String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter Model of Record Linkage, 1990
Highlighting New Changes

Solver + Clean Cells + Type Prediction
- Less data transfers
- Faster execution

DBpedia Proxy
- New requirement by SemTab 2021

Caching Server
- Reduced the redundancy made by individual caches

Generic Lookup
- Optimized, it is our primary auto-correction strategy
Various Pipelines

- **pipeline_essential**
 - Core parts of the pipeline_full (no re-executions, faster)

- **pipeline_no_cpa**
 - Omits the CPA components (Create, Filter and Select)

- **pipeline_keyTables**
 - Key-value pair grouping of the dataset
 - Key → clean table, without artificial noise
 - Value → noisy tables derived from that clean
 - Keys are solved by pipeline_full
 - Values obtain their solutions via broadcasting
Various Pipelines

- **pipeline_numeric**
 - Designed for tables with single object column (the subject) with a rest of numerical columns
 - Emphasizes the Row Context
 - Highest priority goes to candidates with the most support by their row

- **pipeline_conditional**
 - Combines `pipeline_numeric` and `pipeline_full`
 - If the table structure meets (like above)
 - Solve using `pipeline_numeric`
 - If coverage >= 80%, return solutions
 - Otherwise, Solve using `pipeline_full`
JenTab Evolution – SemTab 2021 Round 1

- **Givens:**
 - 180 tables, KG: Wikidata, Tasks: CEA & CTA
 - 180 tables, KG: DBpedia, Tasks: CEA & CTA

- **Configuration:**
 - DBpedia Proxy \rightarrow Lookup = Lookup1 + spotlight2
 - `pipeline_no_cpa` \rightarrow No CPA required
 - `pipeline_keyTables` \rightarrow Massive amount of noise, manual clean up and grouping data

- **Findings:**
 - DBpedia spotlight \rightarrow False positives
 - CTA might not be enough semantic context to filter candidates
 - CPA increases scores, precision.

1 http://lookup.dbpedia.org/api/search/PrefixSearch
JenTab Evolution – SemTab 2021 Round 2

- **Givens:**
 - HardTables, 1750 tables, KG: Wikidata, Tasks: CEA, CTA, CPA
 - BioTables, 110 tables, KG: Wikidata, Tasks: CEA, CTA, CPA

- **Configuration:**
 - `pipeline_essential` -> BioTables, wide tables with long strings, timeouts.
 - `pipeline_full` -> HardTables, ambiguity.

- **Findings:**
 - `pipeline_full` is optimized and managed to run over BioTables
 - Best Results for both datasets
JenTab Evolution – SemTab 2021 Round 3

• Givens:
 • HardTables, 7207 tables. KG: Wikidata. Tasks: CEA, CTA, CPA
 • BiodivTab, 50 tables. KG: Wikidata. Tasks: CEA, CTA
 • GitTables, 1101 tables. KG: DBpedia & schema.org. Tasks: CTA

• Configuration:
 • pipeline_numeric & pipeline_conditional

• Findings:
 • Most of the given tables follows
 • Subject_col & [num1, num2, num3]
JenTab Evolution – SemTab 2021 Round 3

• Givens:
 • HardTables, 7207 tables. KG: Wikidata. Tasks: CEA, CTA, CPA
 • BiodivTab, 50 tables. KG: Wikidata. Tasks: CEA, CTA
 • GitTables, 1101 tables. KG: DBpedia & schema.org. Tasks: CTA

• Configuration:
 • pipeline_no_cpa → We couldn’t relate the given object column to properties.
 • Dictionary based lookup for taxons, to solve abbreviations
 • Canna glauca → (C.gluca , ca.gluca)
 • Split nested entities and solve the first part only
 • David Eichenberg (University of Halle-Wittenberg) → David Eichenberg (University of Halle-Wittenberg)

• Findings:
 • Our nested entity solution is not optimal
 • The first entity may not be the target entity
 • Abbreviated taxons are ambiguous
 • C.gluca matches 48 plant species in Wikidata 14 Oct 2021
JenTab Evolution – SemTab 2021 Round 3

• Givens:
 • HardTables, 7207 tables. KG: Wikidata. Tasks: CEA, CTA, CPA
 • BiodivTab, 50 tables. KG: Wikidata. Tasks: CEA, CTA
 • GitTables, 1101 tables. KG: DBpedia & schema.org. Tasks: CTA

• Configuration:
 • GitTables CTA targets structure mixes between column types (CTA) and properties (CPA)
 • We have split that into normal CTA and CPA targets
 • CTA/CPA depends on CEA
 • For our generated CTA, CEA is created.
 • Ontology is changed from dbpedia.org to schema.org in DBpedia Proxy
 • pipeline_essential.

• Findings:
 • pipeline_full suffers from timeout here
 • DBpedia Proxy managed to retrieve schema.org types but failed for properties.
Experiences and Results

- SemTab2021 datasets. KGs: DBpedia (DPB), Wikidata (WD), and schema.org (SCH).

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2T DBP</td>
<td>2T WD</td>
<td>BioTables WD</td>
</tr>
<tr>
<td>Tables</td>
<td>180</td>
<td>180</td>
<td>110</td>
</tr>
<tr>
<td>Avg. Rows # (± Std Dev.)</td>
<td>1,080 ± 2,798</td>
<td>1,080 ± 2,798</td>
<td>2,448 ± 193</td>
</tr>
<tr>
<td>Avg. Cols # (± Std Dev.)</td>
<td>5 ± 2</td>
<td>4 ± 2</td>
<td>6 ± 1</td>
</tr>
<tr>
<td>Avg. Cells # (± Std Dev.)</td>
<td>4125 ± 10947</td>
<td>3952 ± 10129</td>
<td>14605 ± 2338</td>
</tr>
<tr>
<td>CEA #</td>
<td>663,655</td>
<td>636,185</td>
<td>1,391,324</td>
</tr>
<tr>
<td>CTA #</td>
<td>539</td>
<td>535</td>
<td>656</td>
</tr>
<tr>
<td>CPA #</td>
<td>359*</td>
<td>355*</td>
<td>546</td>
</tr>
</tbody>
</table>
Experiences and Results

- Generic Lookup: Unique labels and ratio of resolved labels per round.

<table>
<thead>
<tr>
<th>Rounds</th>
<th>Dataset</th>
<th>Target</th>
<th>Unique Labels</th>
<th>Unmatched</th>
<th>Matched</th>
<th>Matched (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>2T</td>
<td>Wikidata</td>
<td>69,980</td>
<td>7,072</td>
<td>62,908</td>
<td>89.89%</td>
</tr>
<tr>
<td>R1</td>
<td>2T</td>
<td>DBpedia</td>
<td>66,340</td>
<td>7,172</td>
<td>59,168</td>
<td>89.19%</td>
</tr>
<tr>
<td>R2</td>
<td>HardTables</td>
<td>Wikidata</td>
<td>249,625</td>
<td>600</td>
<td>249,025</td>
<td>99.76%</td>
</tr>
<tr>
<td>R3</td>
<td>HardTables</td>
<td>Wikidata</td>
<td>47,809</td>
<td>944</td>
<td>46,865</td>
<td>98.03%</td>
</tr>
<tr>
<td>R3</td>
<td>GitTables</td>
<td>DBpedia</td>
<td>37,780</td>
<td>21,253</td>
<td>16,527</td>
<td>43.75%</td>
</tr>
</tbody>
</table>
Experiences and Results

- Primary, secondary scores, and Ranks for JenTab.

<table>
<thead>
<tr>
<th>Rounds</th>
<th>Dataset</th>
<th>Target</th>
<th>CEA</th>
<th></th>
<th>CTA</th>
<th></th>
<th>CPA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>F1</td>
<td>Pr</td>
<td>Rank</td>
<td>AF1</td>
<td>APr</td>
<td>Rank</td>
</tr>
<tr>
<td>Round 1</td>
<td>2T</td>
<td>DBpedia</td>
<td>0.607</td>
<td>0.669</td>
<td>3rd</td>
<td>0.460</td>
<td>0.468</td>
<td>1st</td>
</tr>
<tr>
<td>Round 1</td>
<td>2T</td>
<td>Wikidata</td>
<td>0.457</td>
<td>0.520</td>
<td>3rd</td>
<td>0.697</td>
<td>0.697</td>
<td>2nd</td>
</tr>
<tr>
<td>Round 2</td>
<td>HardTables</td>
<td>Wikidata</td>
<td>0.966</td>
<td>0.967</td>
<td>4th</td>
<td>0.914</td>
<td>0.917</td>
<td>4th</td>
</tr>
<tr>
<td>Round 2</td>
<td>BioTables</td>
<td>Wikidata</td>
<td>0.857</td>
<td>0.858</td>
<td>4th</td>
<td>0.835</td>
<td>0.843</td>
<td>5th</td>
</tr>
</tbody>
</table>

F1 - F1 Score, Pr - Precision, AF1 - Average F1 Score, and APr - Average Precision.
Conclusions

• JenTab matches table components to Wikidata/DBpedia KGs
• Updates of JenTab as a participant of SemTab2021
 • System redesign
 • A variety of pipelines based on dataset characteristics
• Our code, generic lookup & solution files are publicly available*

* https://github.com/fusion-jena/JenTab
Future Work

• Change binary decision keep/remove candidate to a scoring mechanism
• Address is the lack of targets for specific tasks
 • GitTables
• Continuously improve the performance
 • Timeouts received from the public endpoints
Acknowledgement

Sarah Böning
Muhammad Abbady

Prof. Dr. Birgitta König-Ries

The support is from the Carl Zeiss Foundation
Thank You!

Nora Abdelmageed
nora.abdelmageed@uni-jena.de
@NoraYoussef

Sirko Schindler
sirko.schindler@uni-jena.de