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Abstract

Deep neural networks (DNNSs) have good overall performance in medical imaging, but they are susceptible
to obvious mistakes that violate common sense concepts. Unexplained errors have reduced trust and
prevented widespread adoption in real-world clinical practice. We introduce SimpleMind, an open-source
Cognitive Al software environment for medical image understanding. It uses a hybrid Neurosymbolic Al
approach that integrates both DNNs and machine reasoning from a knowledge base. We demonstrate its use
in building trustworthy Al for checking endotracheal tube (ETT) placement on chest X-rays (CXRs). The
Al wasintegrated into clinical practice and the correctness of the ETT misplacement alerts were compared
with radiology reports as the reference. 214 CXRswere ordered by ICU physiciansto check ETT placement
with Al assistance. ETT alert messages had a positive predictive value (PPV) of 42% and a negative
predictive value (NPV) of 98%. Physicians indicated that they agreed with the Al outputs, had increased
confidence in their decisions, and were more effective with Al assistance.
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1. Introduction

Deep neural networks (DNNSs) detect patterns in data and have shown versatility and strong
performance in many computer vision applications. However, despite many research publications there
has not been broad adoption of artificia intelligence (Al) in crucial tasks such as medical imaging.
While DNNs have good overall performance metrics in medical imaging, they are susceptible to
obvious mistakes that violate simple, common sense concepts and are limited in their ability to use
explicit knowledge to guide their search and decision making. Obvious, unexplained errors have
reduced trust and prevented widespread adoption in real-world clinical practice [1] and motivated
research into trustworthy Al [2, 3].

To improve computer vision accuracy and reliability we embed deep neural networks within a
Cognitive Al environment. Cognitive Al includes not only the learning of patterns in data, but also
learning through teaching and concepts (declared knowledge) as well as reasoning to apply this
knowledge to guide the interpretation of a specific image. It uses a hybrid Neurosymbolic Al approach
that integrates both DNNs and machine reasoning from a knowledge base. We demonstrate its use and
benefits in building reliable, trustworthy Al for checking endotracheal tube (ETT) placement on chest
X- rays (CXRs) that has been adopted and evaluated in clinical practice.

Chest radiographs (CXRs) are used in theintensive care unit (ICU) to examine and monitor critically
ill patients on life-supporting devices. Endotracheal tubes (ETTS) are used to maintain airway patency
and lung ventilation. The desired ETT tip position is within the mid trachea, approximately 5+2 cm
above the carina [4]. There is arisk of inefficient ventilation and vocal cord injury if the ETT is too
high, and lung collapse, pneumothorax, and even death if the ETT tip istoo low. Given the urgent need
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for intervention if the ETT is misplaced, ICU physicians often take a preliminary look at the CXR at
the bedside and immediately adjust a misplaced tube. However, assessment of tube placement can be
challenging, especially for non-radiologists.

In this paper we introduce SimpleMind, an open-source Cognitive Al software environment for
medical image understanding [5]. We demonstrate its use to build trustworthy Al to assist in checking
ETT placement on CXRs in clinical practice and evaluate its real-world performance and physician
acceptance.

2. Methods

A SimpleMind application was developed to automatically identify the ETT, trachea, and carina in
CXRs. In SimpleMind, an application is built by specifying a knowledge base that describes expected
characteristics and relationships between image objects. To check the ETT tip placement, a “safe zone”
is defined in the knowledge base as the region inside the trachea and 3 - 7 cm above the carina.
SimpleMind computes this region using spatial inferencing for explainable decisions regarding ETT
placement. During image understanding, SimpleMind uses the knowledge base to guide DNN
segmentation agents and machine reasoning agents that evaluate the results. It enables reasoning on
multiple detected objects to ensure consistency, providing cross-checking between DNN outputs. This
machine reasoning improvesthereliability and trustworthiness of DNNsthrough an interpretable model
and explainable decisions. The CXR application was integrated and evaluated in the clinical imaging
workflow at our institution.

2.1. Knowledge Representation

The knowledge base for a SimpleMind application is created as a semantic network (SN) [6] where
each node represents an object, object component, or object state. The SimpleMind environment
provides a human-readable intuitive language to specify a semantic network. Each node contains
attributes that describe expected object characteristics relating to size, shape, pixel intensity, and
relative position. Spatial relationships that can be described between objects, include part of, right of,
left of, above, below, inside, etc. Attributes are derived from a vocabulary that defines the name of the
atribute and its associated parameters. Relational attributes form the links between nodes in the
semantic network. For example, the vocabulary defines “RightOf”, which includes two parameters: (1)
the related node (forming a relational link between nodes), and (2) the expected distance to the right.
Fuzzy sets are used to represent prior expectations for object characteristics using a confidence function
over the range of possible parameter values [ 7], so the expected distance to the right is represented in
the knowledge base as afuzzy membership function. The fuzzy functions can be setinitially by a human
expert and refined by learning from data.

The semantic network attributes can also represent procedural knowledge used by processing agents,
including DNN architectures (e.g., U-Net, ResNet, or any user-defined architectures), learning hyper
parameters, and image pre and post processing parameters. Crucially, all attribute parameters in the
semantic network are exposed (separate from the processing code) and human readable, so they can be
both specified by a human and auto optimized by SimpleMind. The SimpleMind environment allows a
DNN agent to train weights using the above attribute parameters from a given SN node. The DNN
weights are then stored with the node, embedding the DNN within the semantic network. Thus, a
SimpleMind knowledge base can include both declared knowledge (that it is “taught”) and learned
knowledge from examples (acquired through machine learning), i.e., we can actively teach the
Cognitive Al aswell as have it learn passively from data.



The CXR knowledge base is derived from the medical literature that states that the tip of the
endotracheal tube should be 5 + 2 cm above the carina, where the trachea bifurcates into the two main
stem bronchi. The semantic network shown in Fig 1 includes DNNs for the trachea (trachea_cnn),
carina(carina_cnn), and ETT (et_tube 1 cnnand et_tube 2 cnn). It defines a “safe zone” for the ETT
tip using spatial concepts:

e part of thetrachea: Line 3 of the et_zone 1 node (Fig 1B)

e 3 -7 cm above the carina: Line 4 of the et zone 1 node - based on the y-coordinate of the
centroid (Fig 1B)

e ETT tip must be inside the safe zone: et_tip_correct node describes this relative to the et_zone
node and represents the state of the ETT tip (Fig 1C)

e the ETT path must be within the trachea (and thus not going into the esophagus):
et_path_incorrect node describes this relative to the trachea node and represents the state of
the ETT path

o for the ETT position to be correct the two criteria above must be met - this requirement is
defined in the et_tube_correct node which represents the final decision of the system based on
its machine reasoning (Fig 1D)

The knowledge base also demonstrates checking of DNN outputs for consistency. The carina_cnn
outputs acoordinatefor the position of the carina, represented by the carina_1 node. The carinalocation
can also be derived from the inferior portion of the trachea where it branches into the two main stem
bronchi, represented by the carina 2 node. The carina 3 node indicates that these two should
correspond and refines the final result. Accurate detection the carina is necessary for ETT position
checking. Crucially, if the alternate carina locations do not correspond, then the system will report that
it is unableto reliably identify the carinarather than outputting an incorrect result. Using knowledge to
identify interpretation errors is an important benefit of machine reasoning that allows the system to
determine when it is likely to be wrong rather than failing silently.
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Figure 1: The SimpleMind semantic network (SN) for the ETT with selected node details.




2.2. Multi-Agent Thinking

SimpleMind provides a Think Module for computer vision, i.e., recognizing objects (nodes) from
the knowledge base in agivenimage. Multiple software agents work together to segment theimageinto
candidate regions, then select the best candidate based on object attributes described in the knowledge
base. Software agents collaborate to solve the vision problem by reading from, and writing to, a global
Blackboard data structure [8]. The Blackboard is the working space of SimpleMind during the
“thinking” process, i.e., during comparison and matching of the image to a knowledge base for image
understanding. An agent can read information from the Blackboard generated by other agents and add
or update information. Agents operate independently and collaborate only via the Blackboard, giving
them a degree of autonomy and making the system more flexible and scalable. Agent types provided in
SimpleMind are shownin Fig 2.
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Figure 2: SimpleMind multi-agent thinking architecture. Schematic showing agent types and the
Blackboard for sharing of results during image understanding.

For each node in the semantic network, a data structure called a Solution Element is created on the
Blackboard, corresponding to an object to be recognized in the image. The Solution Element stores all
agent contributions while recognizing the object. Knowledge base attributes and candidate image
regions are transformed into a common feature space for selection of the best candidate. A Knowledge
Agent accesses the knowledge base and creates each Solution Element, initializing it with prior
expectations for object feature values. Thus, the objects and their relationships represented in the
semantic network are transformed into a directed graph of Solution Elements on the Blackboard, with
the direction of the link reflecting the dependency of an object’s attribute upon another object.

Solution Elements are processed sequentially by agents. Objects are recognized in order based on
the directed links between their Solution Elements. When a particular Solution Element is scheduled
for processing (by a Scheduling Agent), a Reasoning Agent computes an image search areausing spatial
inferencing from the relationships to previously recognized objects. This search area is provided as a
mask to guide a Segmentation Agent that generates candidate image regions for the object.
Segmentation is typically performed by a DNN agent that generates multiple connected components as



candidate regions. Feature values are computed for each candidate region and compared against the
expected values by a Reasoning Agent. Feature values are computed for each candidate according to
the attributes provided in the knowledge base and the corresponding fuzzy membership function yields
a confidence value for that attribute. The overall confidence for a candidate region is then computed as
the minimum confidence of any attribute. Thus, by pattern classification, the candidate that best matches
these expectations from the knowledge base is selected.

Agents are activated iteratively, one at atime. At each iteration an activation score is computed for
each registered agent. The agent with the highest score is activated and can contribute to the solution
on the Blackboard. Each agent provides a function to compute its activation score based on the contents
of the Blackboard, in particular whether the Solution Element being processed hasthe rel evant attributes
and necessary data required by the agent. The process repeats until all activation scores are zero and no
further agents activate. The system control is ssimple, yet highly flexible, with agent priorities
determined through their activation functions.

The contents of the Blackboard reflect what SimpleMind is thinking at any point in time and its
current understanding of the image. Once all Solution Elements have been processed, the Blackboard
contains an instantiation of the general knowledge base to a particular image. The object attributes from
the general knowledge base are now instantiated with actual numerical feature values from the image,
enabling further high-level reasoning.

2.3. Machine Learning

SimpleMind provides a Learn Module for machine learning within a knowledge base, in particular
for training the weights of embedded DNNs. For the CXR Al, we used 2000 images collected
retrospectively from ICU patients between April 2018 and September 2019. All of the DNN nodes are
trained with 1488 images, and the application was initially tested experimentally on 512 images [9].

Although not used in this application, the SmpleMind environment also includes a Knowledge
Network Learning and Optimization (KNoLO) method. It comprehensively co-optimizes all attribute
parameters from all nodes simultaneously, including: object expected characteristics, DNN input
channels and image preprocessing options, and DNN learning hyper parameters. The parameter
optimization is performed using a genetic algorithm and details can be found in [5].

2.4. Implementation and Evaluation in Clinical Practice

The CXR Al is currently deployed within our institution’s clinical workflow for investigational use
only as aquality improvement (QI) tool. A new cloud-based computing infrastructure was designed to
integrate the CXR Al system with the clinical Picture Archiving and Communications System (PACS).
An image router was configured to push CXRs to an on-premise Azure AI/ML platform where the Al
system is deployed. The CXR Al processes the image, detects tubes and anatomic landmarks on the
image, and generates an enhanced CXR image with overlays and an alert/informational message that is
pushed back to the PACS. Both the original and Al CXR images are available in PACS viewersfor the
radiologist or ICU physician. The total turnaround time from CXRs reaching PACS to the Al output
being available in PACS is within 3 to 4 minutes, ensuring that Al outputs are available to ICU
physicians at the point of care during their CXR review. A specific order code was set up for CXR with
Al processing, providing a limited deployment on identifiable cases to be reviewed by a selected pool
of ICU physicians and radiologists. From June 11, 2021 to November 3, 2022, 214 CXRs were ordered
by ICU physicians through this specific order code for checking ETT placement with Al assistance.

The Al displays one of the three possible ETT messages: (1) “Found” (ETT tip was determined to
be in the safe zone), (2) “Position Alert” (ETT tip was not in the saf e zone or the Al could not determine
the safe zone), (3) “Not Found” (no ETT was detected by the AI). The Al alerts were evaluated against
the findings in the radiology report in which the radiologists were asked to include the following
statement: “An investigational endotracheal tube Al overlay was available and was/was not consistent
with my interpretation”. We evaluated the Al performance by defining a positive output (alert) as
messages (2) and (3), and a negative output (no aert) as message (1). When the Al output was positive,
atrue positive (TP) required that the ETT be misplaced per the radiology report or that the ETT was



missing (since cases being routed to Al were expected to havean ETT), otherwiseit was afalse positive
(FP). When the output was negative, afalse negative (FN) required the ETT to be misplaced, otherwise
it was a true negative (TN). When alerts were issued, follow-up CXRs were reviewed and radiology
reports checked to confirm repositioning of the tube. Positive predictive value (PPV = TP/(TP+FP))
and negative predictive value (NPV=TN/(TN+FN)) metrics were computed to give a sense of
trustworthiness of the Al from aphysician perspective. In previous experimental testing, the PPV, NPV,
and sensitivity to misplaced tubes were 42%, 99%, and 95%, respectively [8]. The Al system was
designed to be highly sensitive to avoid missed alerts when ET Tswere misplaced, thus higher NPV and
lower PPV were considered sufficient for the system to be deployed in clinical practice and further
evaluated as described in this paper.

A survey was conducted to qualitatively evaluate the ICU physicians and radiologists experiencein
using the CXR Al in their clinical workflow. They were asked to provide ratings for usefulness and
satisfaction with the Al clinical application.

3. Results

For the 214 CXR images ordered to check ETT placement with Al assistance by ICU physicians, a
confusion matrix is shown in Table 1. The Al alert messages had a positive predictive value (PPV) of
42% (21 / (21 + 29)) and a negative predictive value NPV of 98% (161 / (161 + 3)) based on the
radiology reports. These performance metrics were consistent with clinical requirements and previous
experimental testing.

Table 1: Confusion matrix of Al alert vs. actual ETT placement

Al Alert
Actual ETT placement Yes No
Incorrect 21 3
Correct 29 161

The Al generates CXR overlays, showing the ETT path and distance from the ETT tip to the carina
as shown in Figs 3 and 4. Fig 3 is a case with correct ETT position showing the internal results of
SimpleMind (Fig 3b,c) that explain why it thinks the position is correct (tip inside the safe zone) and
the final output of the system as presented to the ICU physician (Fig 3D). Fig 4 shows an example of
incorrect ETT placement, with the tip too low relative to the carina (outside of the safe zone).

Seven clinicians completed the user survey: three were radiol ogists with 9 - 26 years of experience,
four were physicians with 1 - 10 years of experience in critical care medicine. Five of the seven
clinicians had reviewed over 20 CXRswith Al, and two had reviewed over 50. Table 2 summarizesthe
frequency and median ratings. Users indicated that they agreed with the Al outputs, had increased
confidence in their decisions, and were more effective with Al assistance. The trust and willingness to
adopt the system was further confirmed in weekly user group meetings.

Table 2: Frequency of user ratings for survey questions: 1 = “Strongly disagree”; 5 = “Strongly agree”.

System Outputs 1 2 3 4 5 Median
The system output agrees with my assessment 0 0 1 4 2 4
Tube annotations are helpful/appropriate 0 0 2 3 2 4
Informational/alert messages are helpful/appropriate 0 0 3 2 2 4
The system output increases my confidence 0 0 2 3 2 4

Usefulness and Satisfaction 1 2 3 4 5 Median
It helps me be more effective 0 0 3 4 0 4
It helps me be more productive 0 1 4 2 0 3
It works the way | want it to work 0 0 3 4 0 4
| am satisfied with it 0 0 2 4 0 4



Figure 3: Visualization of SimpleMind nodes for correct ETT placement. (A) Original CXR; (B) trachea
region on an enhanced image; (C) ETT safe zone (et_zone) and tube tip location (et_tip) showing the
tip within the safe zone; (D) output of the system as presented to the physician with the green overlay
indicating correct tube placement.

Portable |

(d)
Figure 4: Visualization of SimpleMind nodes for incorrect ETT placement. (A) Original CXR; (B) trachea
region on an enhanced image; (C) ETT safe zone (et_zone) and tube tip location (et_tip) showing the
tip outside the safe zone; (D) output of the system as presented to the physician with the red overlay
indicating incorrect tube placement (tip too low relative to the carina).




4. Discussion

SimpleMind brings explainability and trustworthinessto ETT placement checking on CXRs using a
knowledge base that describes not only the ETT but also relevant anatomic landmarks and includes
relational attributes to cross-check multiple DNNs and ensure consistency and overall reliability of the
system. Rather than attempting to learn misplacement of the ETT indirectly from examples, the
SimpleMind knowledge base can directly describe when an alert should be given based on the tip
location relative to the carina.

SimpleMind is a Cognitive Al software environment that enables users to build applications for
image understanding by specifying a knowledge base in the human-readable language of SmpleMind
and then tuning its parameters. Developing a SimpleMind application is like teaching or instructing a
human at a cognitive level, it allows non-programmers to build a medical application directly and
completely using their domain knowledge without knowing the details of the processing code. At
runtime, the knowledge base is applied to recognize objects. SimpleMind is open source
(https://gitlab.com/sm-ai-team/simplemind) and the environment can be extended through application
programming interfaces (APIs) whereby developers can expand the vocabulary and implement new
processing algorithms as agents. SimpleMind automatically handles the aggregation and chaining of
many processing agents, enabling a multi-DNN Cognitive Al system. It has also been applied to
segmentation of the kidney on CT [10, 11] and the prostate on MRI [12].

SimpleMind can be considered a “hybrid learning system” that brings together features from
connectionism and symbolic Al. Four key advantages have been suggested as arising from this
combined approach [13]: (1) interpretability, (2) error recovery, (3) out of distribution (OOD) handling,
and (4) learning from small data; and SimpleMind supports DNNs accordingly:

» It alowsexplicit knowledge to be applied systematically to improve performance and reliability.

e Computing a search areain which to apply DNN segmentation using spatial relationshipsin
the semantic network.

e Selection of the best candidate image region outputted by the DNN based on expected
characteristics defined in the knowledge base, or conversely, rejection of the output if it does
not meet expectations. It enables reasoning on multiple detected objects, providing cross-
checking between DNN outputs for more robust the image interpretation. Rejecting
candidates for an object does not preclude recognition of subsequent objects based on other
knowledge and avoids propagating errors. This gives SmpleMind applications more
resilience in handling OOD cases and error recovery.

» It provides a high degree of interpretability and explainability.

e The knowledge base makes explicit the knowledge that was previously implicit in pre and
post processing code and makes it easier to apply more knowledge intuitively.

e Thethinking of SimpleMind asit processes an imageis captured in the Blackboard. A human
can know what it was thinking by reviewing the Blackboard contents.

» Using ahuman-provided knowledge base, SimpleMind can perform object recognition with little
or ho training data.

o When there is insufficient data to train a DNN, other segmentation agents (e.g., intensity
thresholding or edge detection) can use the knowledge base to generate initial segmentation
results. Little or no training data is needed since the initial semantic network can be
constructed using declarative knowledge rather than machine learning. These initial results
can be used with manual editing to generate training sets for DNN learning. When an OOD
situation arisesit can be added to the knowledge base and handled without training data being
initially available.

These benefits are also consistent with goals of trustworthy Al according to the High-Level Expert
Group on Al from the European Commission [14], in particular the following guidelines:

e Transparency: Al systems and their decisions should be explained.

e Technical Robustness and safety: Al systems need to beresilient with afall back planin case
something goes wrong.

¢ Human agency and oversight: Al systems should empower human beings, alowing them to
make informed decisions with proper oversight mechanisms.




5. Conclusion

SimpleMind is a Neurosymbolic Al environment for medical imaging that supports DNNs with a
knowledge base and machine reasoning. It was used to build an Al for checking ETT placement on
CXR that was adopted and evaluated as trustworthy in real-world clinical practice. We believe that
thereisstrong potential utility for broader research and commercial applicationsin building trustworthy
Al. The open source software allows for knowledge base expansion and agent aggregation by a
community of developers.
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