The Challenge of Learning Symbolic Representations
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Abstract

Learning abstract representations from perceptual stimuli is a natural task for humans, but a real
challenge for Al systems. In the vast majority of cases, in fact, systems that have to deal with symbol
manipulation, like in reasoning or planning, do not need to also learn the symbols they operate on,
but these are typically assumed to be given by a supervisor. Moreover, symbolic manipulation often
implies compositional properties which are difficult to learn. In this paper, we consider the problem of
learning symbolic representations that can be associated to abstract concepts, to be used in a variety
of downstream tasks, and we analyze the many challenges related to this important problem, with a
particular emphasis on paving the way towards composable symbolic representations learned by neural
networks. We identify key properties for symbolic composable representations, such as non-ambiguity
and purity, that suggest the need for different types of regularizations within the learning process, as
well as new metrics for their evaluation.
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1. Introduction

In their everyday activities, humans continuously operate with symbols. Reasoning skills, deci-
sion making processes, planning activities, causality modeling, all require symbol formalization
and manipulation. Al systems designed to address these tasks typically do not require to also
learn the symbolic representations they operate on: symbols, predicates, or concepts are usually
known a priori, or given by an external source of information, or by a supervisor [1].

In this paper, we aim to bring the attention of the neuro-symbolic Al community to the
problem of learning symbolic representations, a task which has been largely under-explored in
the recent literature of this research area. According to Newell and Simon [2], a symbolic system
maps abstract entities into symbols that are arbitrary (i.e., whose shapes have no relation with
their semantic meaning) and recursively composable (i.e., to produce complex and more general
representations from elementary entities). In order to guarantee both properties, a symbol must
belong to a discrete set. Learning these symbolic representations from perceptual stimuli is a
challenging task. In fact, there exist several works that try to learn discrete representations,
like discrete probabilistic latent spaces [3], vector-quantized variational autoencoders [4],
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or deep hashing methods [5]. Yet, we claim that those approaches do not consider crucial
properties that symbolic representations should have, such as non-ambiguity, purity, and
especially composability [2]. While the processing phase of the input stimuli is naturally
handled by neural architectures, building a differentiable end-to-end approach for discrete,
symbolic representations poses a number of challenges, starting from the ill-defined nature
of gradient-based techniques [6]. Moreover, we conjecture that, ideally, the learning process
that produces symbolic representations should be unsupervised, or at least weakly/partially
supervised [7]. This observation raises additional issues that suggest to re-think the whole
learning paradigm, and that also advocate the need for novel metrics to be exploited to assess
the effectiveness of the learned representations.

The paper is structured as follows. After discussing related works in Section 2, in Section 3 we
describe the properties that symbolic representations should have, and we discuss the challenges
related to the learning problem, also focusing on the metrics that should be used to evaluate the
goodness of the learned representations. In Section 4 we present a preliminary experiment to
show the intrinsic difficulties of the considered task. Finally, Section 5 concludes the paper.

2. Related Works

Neural discrete representations have been successfully used for a plethora of tasks. We identified
in the literature a few categories of approaches: embedding tables, probabilistic latent spaces
encoding discrete probability distributions, deep hashing approaches.

Embedding tables encode a finite (and thus discrete) set of objects with a continuous repre-
sentation. Vector-quantized variational autoencoders [4] exploit a quantized embedding table,
effectively making the representations discrete and achieving outstanding results in image and
sound generation tasks. They found that discrete representations are crucial to avoid posterior
collapse in variational autoencoders. The categorical reparametrization trick (Gumbel-softmax
operator) [8] and its variant, the concrete distribution (Gumbel-sigmoid operator) [9], are con-
tinuous relaxations of binary and categorical random variables. Discretization is achieved by
annealing a temperature parameter to zero, and it is thus susceptible to a trade-off between the
“discreteness” of the representation and the “informativeness” of its gradient.

A notable mention of neuro-symbolic methods expoiting discrete probabilistic latent spaces
is Latplan [3], a variational autoencoder capable of generating a PDDL specification, which
can then be solved by a traditional symbolic planner, from pairs of images (before and after)
demonstrating actions. Specific architectural constraints are enforced in order to guarantee
STRIPS-like semantics, so that multiple binary latent spaces can encode a state as a set of fluents
which are either true or false, and an action as a set of added and removed fluents.

Deep hashing methods [5] deal with efficient information retrieval, exploiting binary latent
representations which are then used to address buckets by means of Hamming distance compu-
tations. Research directions in this area mainly focus on non-differentiability issues of discrete
representations and the Hamming function, as well as efficiency, in terms of number of training
samples, availability of annotations and retrieval performance.

Among neuro-symbolic appraoches, methods feeding combinatorial optimizers with neural
information must deal with discrete representations and how to backpropagate through ill-



defined gradients. A plethora of solutions [10, 6, 11, 12] have been proposed to define a gradient
which is both well-behaved and useful as a learning signal which allows to exploit information
from the downstream task of combinatorial optimization. These techniques however are often
method-specific and are difficult to generalize to other tasks (e.g., planning or deduction).

There is extensive literature in philosophy of science concerned with the formal definition of
desirable properties for symbols and symbolic reasoning. In the work by Taddeo and Floridi [13],
for example, a “truly” symbolic system has to perform grounding while satisfying the zero
semantic commitment condition (i.e., the agent must be able to develop its own semantics
without external guidance). In the work by Santoro et al. [14], properties are instead defined
within a meaning-by-convention framework: symbolic behavior is defined as the set of traits
allowing an interpreter to operate within a socio-cultural setting. They identify six desirable
properties, possessed by human behaviour but not yet by autonomous agents, and postulate
that symbolic fluency can arise as emergent behaviour under meaning-by-convention training
regimes, exploiting social interactions with humans, mediated by natural language, and large
training sets. According to them, symbolic systems should be: receptive, constructive, embedded,
malleable, meaningful and graded. While these properties are certainly intuitive, they are
difficult to quantify and, therefore, they cannot be exploited to guide the learning process.

In this work, we took inspiration also from classic principles of knowledge organization [15]
and knowledge representation [16, 17].

3. How to Learn Symbolic Representations

Symbolic manipulation is almost unanimously assumed to play an important role in reasoning
generalization. The binding problem for subsymbolic systems is an open problem concerning
the generation and manipulation of symbolic entities (objects) starting from subsymbolic
stimuli [18]. Many neuro-symbolic approaches address this problem, by combining symbolic
and subsymbolic components, so that manipulation subtasks (notoriously difficult to address
by neural networks) are dealt by the former whereas learning and noise-sensitive subtasks
(difficult to address symbolically) are solved by the latter. Our idea is to reduce this dichotomy,
conferring a reasoning capability to neural networks, so that synergy with symbolic methods
can be further strengthened, allowing for interleaved end-to-end neuro-symbolic computation.

3.1. Properties of symbolic representations

Toward this goal, we propose the use of symbolic representations, with the final objective of
acting both as an interface between neural and symbolic components, and as computational
entities within the neural component. These representations should possess the following
desirable properties: (i) non-ambiguity, (ii) purity, (iii) usefulness, (iv) symbol composability, (v)
manipulation composability, and (vi) generalizability with respect to different tasks.

Non-ambiguity means that different entities should not be mapped to the same represen-
tation, while purity is its dual: every entity should have the smallest possible number of
representations (ideally only one each). A high degree of non-ambiguity increases downstream
performance and a high degree of purity implies a stronger robustness to noise. If both properties
are optimal, there is a 1-to-1 mapping between entities and their representations.



Usefulness is the capability of improving performance for a downstream symbolic task,
with respect to another representation. According to Newell and Simon [2], a symbolic system
should be able to operate with arbitrary symbols. However, this property only works under
ideal assumptions of perfect non-ambiguity and purity, whereas imperfect representations may
convey information more or less effectively. Moreover, an arbitrary representation does not
allow to optimize for performance, preventing the use of heuristics or pruning strategies. We
advocate for a case-by-case evaluation of usefulness, as tasks with a large reasoning component
will arguably benefit more from a concise representation, while tasks pivoting around a strong
perceptual component may benefit more from redundant representations, robust to noise. It is
also important to note that usefulness is necessarily a relative metric, subject to an absolute
performance: a small usefulness with respect to a large performance may be more beneficial
than a great usefulness associated with low performance.

Symbol composability is the possibility of creating complex constructs (e.g., sequences,
expressions, graphs, etc.) from atomic symbols and it is commonly accepted as the key com-
ponent of any form of reasoning. As both perceptual information and underlying semantics
are seldom “flat”, it is often necessary to encode hierarchies of entities. Grounding complex
structures can be addressed by a wide spectrum of strategies, ranging from grounding atoms
into a fixed structure, to learning part-whole hierarchies from perceptual stimuli [18]. Since
different downstream tasks require different abstractions, we advocate for a semi-quantitative
evaluation of symbol composability, to determine whether a given technique is beneficial, while
acknowledging the difficulty in devising a quantitative metric.

Manipulation composability is the capability of deriving a new symbol by performing
a sequence of operations to an existing symbol. There are many reasons justifying the need
of manipulating entitites in a learnable way. To give some examples: the initial encoding may
be at the “wrong” abstraction level (thus requiring a specialization/generalization operation),
there may be the need to enforce a specific property (e.g., when encoding the set of natural
numbers, it can be beneficial to enforce that each number is the successor of some other
number), incremental construction (like contextual embeddings are computed in a transformer),
denoising a representation, and so on. Although distinct concepts, manipulation composability
is strongly related with the principle of elaboration tolerance [19] in knowledge representation,
as it provides a mechanism to alter (or, conversely, guarantee invariance) a representation in
response to external conditioning. As manipulation composability paves the way for a recursive
processing, it also provides enough expressive power to allow a certain degree of reasoning
capability, thus, just like symbol composability, it is important to quantify such capability.

Other properties are more application-specific, and thus we leave their analysis to future
research, among these, generalizability (the capability of reusing the same representations
for different downstream tasks) is of particular importance, while others are compactness,
monotonicity, invertibility (or de-composability), and so on.

Existing representations present some, but not all of these properties. One-hot encoding
is the most pure and general representation, however it is also arbitrary (unless it is relaxed
into a continuous softmax, it cannot propagate gradients) and non-compact. Manipulation
composability is extremely limited, as it can only be performed in terms of permutations,
and symbol composability is non-trivial. Continuous embeddings are useful and general, but
they lack in purity and may be ambiguous. Manipulation composability is extremely good, if



implemented by transformers, and very limited symbol composability can be performed by
algebraic operations in embedding space. To the best of our knowledge, symbolic properties
of both probabilistic discrete latent representations and deep hashing methods have not been
studied yet, and their application outside their traditional domains (variational autoencoders
and retrieval systems) is relatively unexplored. We conjecture they both can achieve good
generalizability and usefulness, provided they are learned with additional regularizations, but
lack either kind of composability. Finally, discrete tensors acting as interfaces between neural
and symbolic components, achieve the maximum degree of composability (delegated entirely to
the symbolic part), along with the potential for high levels of purity and non-ambiguity (handled
by the neural one). However, they have limited generalizability and, unless it is possible to
backpropagate through the symbolic component, they may have reduced (or absent) usefulness.

In appendix A, we provide examples on how these properties may be quantified in practice.

3.2. The challenges of learning

Every discretization operation, from the simplest sign(x), to the most complicated, is typically
implemented by step functions, that are not well suited for gradient-based optimization methods,
since their derivative is zero everywhere except in discontinuity points. This characteristic
effectively stops information flow, because the chain rule would cause vanishing gradients.
Existing methods mitigating this issue are not general and present specific issues. Residual
connections between continuous and discrete representations are a naive and somewhat in-
effective approach: since gradient only flows along the continuous path, the learning process
is encouraged to discard information coming from the discrete one. A temperature parameter
scaling inputs for a sigmoid or softmax non-linearity can be annealed to zero during training,
providing a progressively smaller gradient. Although simple and potentially effective, this
method is sensitive to initial values and annealing schedule [20]. Straight-through estimation
replaces a non-differentiable non-linear activation with the identity function in the backward
pass, hence “skipping” the activation during chain rule computation. This approach works well
in those cases in which the non-linearity closely approximates the identity, but may provide
misleading gradient updates when this assumption does not hold. Methods such as the ones
exploited by differentiable combinatorial optimizers [11] are extremely powerful techniques
for backpropagation, based on building gradients as finite differences between the input rep-
resentation and the minimal perturbation acting as a counterfactual. Although effective and
representation-centric, they require binary decision boundaries and are slow to compute.

An additional issue arising in gradient-based methods is the choice of the loss function.
Symbolic computations are usually discrete in nature, and therefore it may be challenging to
devise both a quantitative evaluation of the representation, and an optimizable continuous
relaxation or upper bound of such evaluation. Assignment-based manipulations (e.g., deduction,
Hungarian matching, etc.) can be reformulated within a fuzzy or probabilistic framework,
allowing for a differentiable objective, with suitable thresholding operations performed at infer-
ence time, which can however present boundary instability issues. Retrieval-based approaches
heavily rely on non-differentiable functions comparing different representations (such as the
Hamming distance) and often require to devise a continuous upper bound [21].

High-quality training data is often expensive to annotate and the ideal condition in which



supervision is provided for every concept associated to each data point is often far from reality.
Symbolic representation learning should exploit intrinsic characteristics which reduce the
quantity and quality of annotations required, ideally up to the completely unsupervised
discovery of symbols and their compositions. In general, one could provide (i) complete su-
pervision on concepts, (ii) supervision on the downstream task only, (iii) no supervision at all,
(iv) weak or partial supervision in the form of relations between entities (e.g., monotonicity
constraints, ontologies, equivalence classes between entities, etc.).

Knowledge plays an important role both in learning and reasoning. Being able to learn a
representation by means of knowledge injection is not only a way of reducing the amount of
data required to achieve a “good” representation, but also greatly improves usefulness. This
challenge is strongly related to the way in which supervisions are provided, as well as to the
problem of learning through gradient-descent. Knowledge can be injected in the form of (i)
representational constraints (e.g., distances between representations should mirror paths inside
a knowledge graph), (ii) constraints related to the downstream task structure (as it happens
with planning [3]), (iii) manipulation constraints (e.g., symbols should be combined according
to a generative grammar). Knowledge injection could exploit techniques such as architectural
constraints, semantic-based regularization [22], empirical model learning [23], conditioning
from a symbolic component [24], unstructured knowledge integration [25], etc.

Regarding the metrics to be used to evaluate symbolic representations, we do not believe
in the existence of a one-size-fits-all metric, in virtue of different downstream applications for
which different subsets of desirable properties are needed. To define a suitable metric, one
should consider: (i) the target property, (ii) the type of supervision required, (iii) the interaction
with learning. By target property we mean the property quantified by the metric: we provide
some examples in Appendix A. An important open question along this dimension is how to
quantify composability. The second dimension addresses the availability of ground truth
with respect to the four categories of quality of annotations mentioned above. For example,
in a metric learning setup only the equivalence relation between inputs is known (category
iv), and purity and non-ambiguity could be measured by re-identification metrics such as
mAP@k, while in planning from visual stimuli where only feedback on the downstream task is
available (category ii), usefulness of representations could be measured by the number of failed
plans, or the average length of successful plans. Differentiable metrics may be also exploited
during learning. Along this dimension we can distinguish (i) truly differentiable metrics, (ii)
non-differentiable metrics, (iii) metrics with differentiable proxies (e.g., Hamming distance
approximated by binary crossentropy), (iv) compliance to logic or combinatorial constraints. In
the latter case it may be possible to define, for example, complex purity measures taking into
account hierarchies of entities, or logic formulae against which compliance can be evaluated
with techniques such as semantic-based regularization [22].

Additionally, specific challenges arise in specific scenarios. For example, in a multi-agent
setting, agents may share information in the form of visual stimuli or directly as symbols. In
the first case, an additional challenge is to ensure coherence across different representations;
in the second case, the learning process should pursue consistency, so that the same symbol
has the same meaning for all agents, and should also handle the case in which an agent
may receive new symbols it never encountered before. In the case of continual learning,
additional challenges are posed by handling catastrophic forgetting (not only in the sense of



poor performance in forgotten tasks, but also in the sense of forgetting or overwriting the
“meaning” of rarely observed representations), guaranteeing elaboration tolerance when new
information is discovered, and generally requiring a stronger robustness to noise. As these
require case-specific considerations, we leave their discussion to future work.

4. A Preliminary Experiment

We now present a preliminary experiment, devised to back up some of our claims, and to pave
the way for further investigations. Our aim is to analyze (i) whether symbolic representations
can be achieved both by means of supervised classification and metric learning, and (ii) whether
learning a symbolic representation via a downstream subsymbolic task is beneficial.

4.1. Experimental Setup

We considered the traditional MNIST digit classification [26] and the associated one-digit sum
tasks [27]. We employ a siamese neural network [28] to learn discrete representations that are
fed into two independent neural classifiers, one for digit classification (output layer with 10
neurons) and the other for the sum (classification task with 19 possible labels). Both classifiers
are implemented via a multi-layer perceptron with two hidden layers (16 and 32 neurons,
respectively), using batch normalization, GELU activation function, and dropout rate p = 0.1.
The two classifiers share no parameters. We measure performance in terms of F1-score.

Our training data consist of triplets randomly sampled from the MNIST dataset (we extract
batches of 64 samples for 20,000 training steps): two images belong to the same class, and the
third to a different one. In the literature, these samples are usually called anchor (a), positive
(p) and negative (n). We store as training labels the value of the anchor for the single digit
classification, and the sum of anchor and negative for the sum classification.

As an additional experiment, we consider whether the discrete representations, learned
when the downstream task is the one-digit sum, can be exploited by a decision tree to perform
the same classification tasks. For this scenario, we collect 200 training batches of 64 samples
each (thus 12,800 training samples), we compute the discrete representations, and implement a
standard decision tree using the default parameters of the scikit-learn library [29].

After training, we measure non-ambiguity and purity of learned representations, exploiting
the entropy-based method presented in appendix B for supervised evaluation. Being intrinsic
properties of the representation, we measure them once, regardless of the downstream task.

We leave to future work the design and implementation of metrics to validate the other
properties presented in Section 3.

!Single digit classification could be improved by also annotating positive and negative samples: however, to balance
the number of supervisions available for both tasks, we decided not to.



4.2. Implementation details

The discrete representation bottleneck is a layer with IV neurons which is discretized by means
of the sign function, and which provides intermediate values for loss computation as follows:

(=W-xz+b h = tanh(?)
h 1

d = sign(h W==4=
sign(h) 2+2

where / is a linear combination of the inputs, /i applies to £ the non-linear activation function
tanh, d is the discretized (binary) encoding of h, and h' rescales the values of h in [0,1], in order
to further exploit training with a cross-entropy loss. Embedding ¢ is subject to L2 regularization
and to the traditional Euclidean triplet loss with anchor a, positive p and negative n:

ﬁtriplet = max (Hga - zp”% - ||£a - EnH% + «, 0)
whereas a second triplet loss, modified to approximate Hamming distance, is applied to h’:
['Hamming = max (BCE(}Z&, h;) — BCE(h;, h;l) —+ ﬂ7 O) .

BC'E is the standard binary cross-entropy loss, whereas v and 3 are hyper-parameters, fixed
to 0.5 in every experiment. The final learning objective is given by:

L= )\m : ﬁtriplet + )\h . EHamming + )\c : (Edigits + Esum) + )\7‘H€”%

being A, and A;, the weights of the representation losses, A. that of the classification losses
Ldigits and Ly, (standard cross-entropy), and A, that of L2-regularization applied to /.

As the sign function has an ill-behaved gradient, the gradient flow across the discrete repre-
sentation layer is effectively stopped.” To demonstrate the importance of receiving information
from a downstream task, we implemented a simple strategy via the stop gradient operator:
basically, we propagate d in the forward pass, and the gradient of & during the backward pass.

Purity and non-ambiguity are computed with a representation matrix associating discrete
representations (d) and true labels.

4.3. Results

Figure 1 shows the F1 scores for the tested classifiers as a function of the number of bits used
for the discrete representations. The top row reports performance of the neural classifiers for
the digit (a) and sum (b) classification tasks, respectively. The bottom row in (c) and (d) does the
same for the decision trees trained on the learned discrete representations. Lines are grouped
by those where the classifiers backpropagate information (grad, A. = 1, solid lines), those
where they do not (nograd, A\, = 1, dashed lines) and those where no classifier is trained and
the discrete representation depends entirely on the triplet losses (nocls, A\, = 0, dotted lines).
Nonsensical combinations (e.g., nocls, A,;, = A, = 0) have not been used. We kept A\, = 1.
Results show that raw performance is good for every model, both for the neural classifier and
the decision tree, with the exception of the cases in which the Hamming loss is the only training

*When gradient is not back-propagated, then the learned representations are inherently arbitrary.
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Figure 1: F1 score (y-axis) on digit and sum classification as a function of the number of bits used for
the discrete representation (x-axis): (a) digit classification with MLP; (b) sum classification with MLP; (c)
digit classification with decision trees; (d) sum classification with decision trees.

signal (nograd, A\, = 0, A\, = 1). The Hamming triplet loss alone is not able to converge to
useful discrete representations (blue dashed and dotted curves in Figures 1c and 1d): this is a
counter intuitive result, however we posit that the multiple steps involved in the computation
(bits approximated by tanh, Hamming distance approximated by binary crossentropy on tanh
rescaled in [0,1]) may be a poor proxy of the Hamming distance. Unsurprisingly, the classification
objective alone (grad, A\, = A, = 0) provides a stronger representation than the metric objective
alone (nocls, A\, = 1, Ay, = 0). Table 4 in Appendix C reports the same results in tabular form.

Figure 2 shows purity (a) and non-ambiguity (b) as a function of the number of bits in the
discrete representation (lower values are better). Table 6 in Appendix C represents the same
data in numerical form. Not surprisingly, we observe that purity degrades (larger values) with
a larger number of bits, as without any form of regularization the learning process tends to
use more symbols than necessary. When gradients from the classifier are allowed to flow
(grad), purity degradation is more graceful and it is relatively insensitive to other parameters.
When gradient is stopped (nograd), purity degrades more sharply. Interestingly, the Hamming
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Figure 2: Purity (a) and non-ambiguity (b) of learned symbols (lower values are better).

objective alone (dashed blue line) seems to have a regularizing effect on purity, whereby the
other cases quickly diverge (the red dashed line represents a random baseline, as no learning
objective was enforced on the discrete representation). As for non-ambiguity, it improves in all
cases as the number of bits increases. While ultimately converging to zero, each curve has a
different decreasing rate: as expected, when gradient flows, convergence is faster (grad, solid
lines) and the random baseline (dashed red line) is the slowest.

5. Conclusions

We considered the task of learning symbolic representation, a problem that has been under-
explored in the neuro-symbolic Al community. We defined the key properties of discrete
symbolic representations and identified challenges associated to the learning problem. As
the downstream use of symbolic representations can be applied to an ample and varied set of
symbolic tasks, we identified a strong need also for appropriate evaluation metrics.

Multiple interesting research directions can be identified for the future. In particular, we aim
to focus on two promising topics: the use of Peano arithmetics to represent the properties of
symbolic representations by modeling composability through recursion, and the formalization
of the learning problem within a continual learning setting, which also seems a natural way to
enable the composability of different representations.
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A. How Can Properties Be Measured?

The definitions we provided in Section 3.1 are general enough to be applicable to a broad variety
of tasks. We hereby instantiate those definitions to some exemplar metrics, applicable in specific
contexts. We will mainly focus on the supervised setting in which labels are available for each
of the entities to be encoded, and we will try to generalize where possible. It is important to
note how more interesting cases, such as the unsupervised setting, present challenges which
make quantification difficult. In Section 3.2 we discussed a possible taxonomy of metrics, to
better navigate such complex landscape.

In the supervised case, discrete representations of discrete entities allow to build a repre-
sentation matrix, where rows are associated with entities and columns with representations.
Each entry R;; counts the times in which representation j is used to encode entity 4. In general
this matrix is rectangular, and it can be seen as a generalization of the confusion matrix, where
predicted labels are replaced by their representations.

Purity and non-ambiguity can be defined in terms of the representation matrix, and the
ideal condition would correspond to a matrix where every row and every column have exactly
one non-zero entry (such as Table 3). Purity can be naively computed on the representation
matrix as a pseudo-recall, but a more robust metric would be the column-wise average of
the entropies computed for each row (after a row-wise normalization of counts). Likewise,
non-ambiguity can be computed as a pseudo-precision, or as the row-wise average of the
entropies for each column (normalized column-wise). For both metrics, zero is the optimal
value, and larger positive values are progressively worse. Appendix B contains an example on
how to compute purity and non-ambiguity from a representation matrix.

Usefulness is strongly coupled with the nature of the downstream task, thus there are
no general metrics. Moreover, it follows from the definition that a suitable metric should



compare two different representations. Since downstream tasks can be monitored by means
of performance metrics (even in the case of weakly or unsupervised symbols), we propose to
quantify usefulness as a direct comparison of the two performance scores. This comparison can
be instantiated as a difference, ratio, log-ratio, or any other suitable function.

Symbol and manipulation composability are challenging to quantify, however it is still
important to define an order relation between methods. To give a motivating example for this
claim, consider the case of two systems, one of which combines symbols by concatenating their
representations, and the other constructing a causal graph where nodes are grounded with the
representations: these two approaches clearly possess a different degree of symbol composability.
Likewise, for manipulation composability, the repeated application of the same multi-layer
perceptron block a fixed number of times, transformer-like blocks, and the unbounded iteration
of a recurrent architecture where gates are conditioned by external inputs, have different
expressivity. We do not have a practical solution, however we advocate for the need of a
(preferably formal) hierarchy of methods, which reflects the intuitive comparisons made above.
We postulate that a Chomsky-like hierarchy, where classes are defined by constraints on the
allowed manipulations, may serve the purpose.

Generalizability can be evaluated for multi-task settings or when it is important to assess
robustness with respect to domain shifts. We suggest three possible approaches for quantifying
generalizability: a naive direct comparison (similar to usefulness), the use of multi-task bench-
marks (possibly with an aggregated final score), or the use of continual learning experimental
setups [30]. Since we are measuring the generalizability of a representation, instead of the
entire architecture, the encoding process should be kept fixed across every task.

B. Measuring Purity and Non-Ambiguity

In this section we show how to compute purity and non-ambiguity using the entropy-based
metrics proposed in Appendix A. For this example we perform computations with base 2
logarithms and assume a numpy-like indexing (rows-first, indexes go from 0 to size — 1).

Let us assume a task where supervision is given for five symbols (e.g., classes), A, B,C, D, E
associated with six possible representations, j, k,l, m,n, o (note that we abstract from the
specific encoding used, i.e., j could be associated with a string, a sequence of bits or an ordinal
number, the only consideration here is that j is different than &, and so on). After training, each
symbol is mapped to the representations with a number of occurrences indicated by Table 1.
Note how there is symbol imbalance (A is represented 11 times, while C' only twice).

Also note how for symbols D and F, there is only one possible representation (if considered
alone their representation would be perfectly pure), and how representation j is associated only
to symbol B (so it is a perfectly non-ambiguous representation). The purity and non-ambiguity
metrics proposed try to quantify such behavior globally.

Let us now compute purity. We first normalize the counts by row, which produces the matrix
P on the left in Table 2. We then compute the entropy of each row as follows:

ot
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H; =) —P;j-logy(P;).

.
Il
=)



Table 1
Example of representation matrix. Rows indicate symbols, columns indicate representations.

j k I m n o] Total
A 0 1 0 3 5 2 11
B 1T 0 1 0o 0 1 3
C 0 0 o0 1T 0 1 2
D 0 7 0 0 0 0 7
E 0o 0 9 0 0 0 9
Total |1 8 10 4 5 4

Table 2

Example of computation of purity and non-ambiguity. On the left table values are normalized by rows
and entropy is computed for each (last column), then they are averaged for purity. On the right, values
are normalized by columns and entropies (last row) are averaged to produce non-ambiguity.

0 0.09 0 0.27 045 0.8 | 1.79 0 0.125 0 075 1 05
0.33 0 0.33 0 0 0.33 | 1.58 1 0 0.1 0 0 0.25
0 0 0 0.5 0 0.5 1 0 0 0 025 0 0.25
0 1 0 0 0 0 0 0 0.875 0 0 0 0
0 0 1 0 0 0 0 0 0 0.9 0 0 0
0.87 0 054 047 081 0 15 | 040

Finally, we average the entropies, by summing and dividing by 5.
For non-ambiguity, the process is the same, but rows and columns are switched (we call Q)
the matrix normalized by columns). Entropies are computed column-wise as follows:

5—1
Hj =Y —Qij -10gy(Qij)

1=0

In this case, averaging is performed row-wise, so we divide by 6.

Table 3 is a different example, where an encoding perfectly matches symbols to representations
(this can be the case of a one-hot encoding output by a perfect classifier, for example). Note how,
in this case, normalizing row-wise and column-wise will both produce a permutation of the
identity matrix, and thus how entropy is zero, no matter from which direction it is computed.

An important point to keep in mind when using a representation matrix is sparsity, for two
reasons. The first one is storage or computation efficiency, as large representation sets grow
exponentially with the degrees of freedom of representations (e.g., 32-bit binary representations
for 10 classes have a 10 x 232 representation matrix, which cannot be stored densely). Since the
validation and test sets of a machine learning setup are typically assumed to be finite in size, it
may be more efficient to store occurrences as associations (e.g., dictionaries mapping entities
and representations, which will only grow linearly with the dataset and representation sizes),
but this may result in slower computations for denser representations. The other consideration
is related to the normalization term in the final average of non-ambiguity computations, as it
can be computed as the total number of representations, or as the number of representations
with non-zero occurrence. The former choice can lead to an underestimation of non-ambiguity
in the case of a sparse representation space (where many entries in the representation matrix



Table 3
Example of a representation matrix for a perfectly pure and non-ambiguous encoding (eg. one-hot of

true labels) of entities A-E to symbols j—n. Note how this is a square matrix corresponding to a permuted
confusion matrix with perfect accuracy.

j k I m n | Total
A 0 10 0 0 O 10
B 0o 0 3 0 0 3
C o o0 o0 o0 2 2
D 7 0 0 0 O 7
E o o0 o0 9 o0 9
Total | 7 10 3 9 2

are zero).? It can be argued, however, that many symbolic representations, especially those
rooted in logic, work better with concise (and thus dense) representations, and that the latter
choice, of averaging with respect to non-zero entries, would break the symmetry with respect
to purity computation.

C. Additional Details on Experiments

In Tables 4 and 5 we report the performance, in terms of F1-score, achieved by neural classifiers
and, respectively, decision trees, on the digit (D) and sum (S) classification tasks, with the
considered combinations of regularization hyper-parameters in the loss function. These are the
same data represented in graphical form in Figure 1. Similarly, Table 6 reports the values of
purity and non-ambiguity as a function of the number of bits used for the representations.

*Note that the same does not hold for purity, since it is averaged across entities.



Table 4

F1 score of the neural classifiers for digits (D) and sums (S).

Latent dim 4 8 12 16 20 24
grad

Am =0 095 097 098 098 099 0.99
A, =0 091 093 093 092 095 0.96
Am =0 0.74 098 098 098 098 0.98
Ap =1 0.64 094 093 093 094 094
A =1 093 097 097 098 098 0.98
Ap = 0.85 092 095 095 094 095
Am =1 0.81 098 096 0.99 098 0.98
Ap =1 0.74 093 092 095 096 095
nograd
Am = 0.07 0.08 0.1 0.09 0.13 0.14
AL =0 0.01 0.01 0.01 0.01 0.01 0.02
Am =0 0.13 0.09 049 034 040 0.22
Ap =1 0.06 0.05 0.25 0.16 0.19 0.10
Am =1 049 088 095 096 097 0.96
Ap = 0.30 0.6 0.74 0.80 0.75 0.77
A =1 0.70 094 092 096 095 0.96
Ap =1 0.61 077 0.70 0.80 0.72 0.81




Table 5

F1 score of the decision tree classifiers for digits (D) and sums (S).

Latent dim 4 8 12 16 20 24
grad
Am =0 097 098 098 099 099 0.99
A, =0 093 095 096 095 095 0.96
Am =0 0.76 099 098 098 098 0.99
Ap =1 066 097 095 095 094 0095
Am =1 092 099 098 098 098 0.98
A, =0 086 096 095 095 094 094
Am =1 0.82 098 098 099 099 0.99
A =1 0.77 096 095 095 095 0.95
nograd
Am =0 0.09 010 010 012 011 0.10
A =0 0.04 0.05 0.05 0.06 0.07 0.06
Am =0 0.13 0.09 048 0.32 0.38 0.20
A =1 0.05 0.05 0.28 0.20 0.21 0.10
Am =1 055 087 095 095 096 094
A =0 032 073 083 085 084 0.82
Am, 1 0.73 096 093 096 095 0.95
A =1 0.65 090 081 088 080 0.85
nocls

Am =0 0.05 0.09 0.1 0.12 0.12 0.12
A =0 0.05 0.06 0.06 0.06 0.06 0.06
A 0 0.24 059 0.16 068 056 0.11
Ap =1 0.13 038 0.06 042 031 0.05
Am =1 055 092 095 096 096 0.96
A\ = 042 081 085 085 081 0.83
A 1 062 090 094 096 096 0.96
Ap =1 052 079 083 086 0.87 0.90




Table 6

Purity (P) and non-ambiguity (N) of discrete representations for the neural classifiers. Lower values are
better. The row nograd \,,, = 0, A\, = 0 corresponds to random mapping and can thus be considered a
baseline.

Latent dim 4 8 12 16 20 24

grad
Am =0 P 031 09 135 178 218 208
A =0 N 043 0.03 0.00 0.00 000 0.00

Am =0 P 070 0.64 136 190 211 239
1 N 059 0.02 0.00 0.00 000 0.00

Am =1 P 062 065 125 1.44 249 244
A, =0 N 035 0.02 000 0.00 0.00 0.00

Am =1 P 057 071 140 173 206 220
Ap =1 N 052 0.03 0.00 0.00 0.00 0.00

Am =0 P 312 513 6.61 678 686 6.86
An=0 N 274 075 0.08 0.00 0.00 0.00

Am =0 P 071 060 203 199 266 1.56
Ap =1 N 094 0.07 0.01 0.00 0.00 0.00

Am =1 P 113 267 370 469 563 5092
An=20 N 099 0.14 0.00 0.00 000 0.00

0.85 225 325 423 511 545
0.58 0.05 0.00 0.00 0.00 0.00
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