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The rising popularity of deep learning has brought to light a fundamental limitation of
neural network architectures: they lack the ability to provide interpretable justifications for
their decisions, making them unsuitable for contexts where human experts require transparent
explanations [1]. This abstract summarizes a newly introduced comprehensive approach to
Explainable Artificial Intelligence (XAI), which demonstrates how a deliberate design of neural
networks produces a family of interpretable deep learning models known as Logic Explained
Networks (LEN) [2]. LENs only necessitate human-understandable predicates as input concepts
and offer logic explanations of the output predictions via a set of First-Order Logic (FOL) formulas
build on these predicates (see an example in Figure 1). A very interesting feature of this model
is its versatility, indeed LENs can be applied in many use cases, including as interpretable
classifiers or to explain another black-box model. In case of interpretable classification, some
design choices, like learning criterion and parsimony index, allows to achieve state-of-the-art
results in the prediction accuracy while gaining transparency on the model’s decision process
[3]. Concerning the learning paradigms, LENs can be successfully trained to learn and provide
explanations both in supervised and unsupervised learning settings [2, 4].

Experimental Analysis Experimental findings on several datasets and tasks demonstrate
that LENs can yield superior classifications compared to established white-box models such
as decision trees and Bayesian rule lists[5], while providing more succinct and meaningful
explanations. For instance, LENs have been applied to classification problems ranging from
computer vision to medicine, such as (MIMIC-II) [6] and (CUB) [7], and recently also to NLP
tasks [8], always with the aim of solving the classification task, while also providing FOL
explanations of the underlying decision process. In [3] six quantitative metrics are defined
and used to compare the proposed approach with other state-of-the-art methods. In addition,
in order to make LENSs accessible to the whole community, we released the library PyTorch,
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Explain! as a Python package on PyPI: https://pypi.org/project/torch-explain/ with an extensive
documentation that is available on read at https: //pytorch-explain.readthedocs.io/en/latest/

C Y
bill_shape_ Black_foot_
hooked_seabird albatross
. Gray
size_medium Y-
- third  GEAEa A
o e ‘ ® i | Ve, Black_foot_albatross !
() — — ) — I bill_shape_hooked_seabird 1
I 1 | A size_medium !
”””” 1 A throat_color_white !
CLASSIFIER LOGICEXPLANED | | - - - - TR0 eI,
@ | o color NETWORK 'Y Evening LOGIC EXPLANATION p € P
white grosbeak of Black_foot_albatross
INPUT
DATA INPUT OUTPUT
CONCEPTS PREDICTION

Figure 1: Example of a possible instance of a LEN on the CUB 200-2011 fine-grained classification
dataset. Here, a LEN is placed on top of a convolutional neural network g(-) in order to (i) classify the
species of the bird in input and (ii) provide an explanation on why it belongs to this class.
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