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Abstract

Several approaches have been developed that generate embeddings for Description Logic ontologies
and use these embeddings in machine learning. One approach of generating ontologies embeddings is
by first embedding the ontologies into a graph structure, i.e., introducing a set of nodes and edges for
named entities and logical axioms, and then applying a graph embedding to embed the graph in R".
Methods that embed ontologies in graphs (graph projections) have different formal properties related to
the type of axioms they can utilize, whether the projections are invertible or not, and whether they can
be applied to asserted axioms or their deductive closure. We analyze, qualitatively and quantitatively,
several graph projection methods that have been used to embed ontologies, and we demonstrate the
effect of the properties of graph projections on the performance of predicting axioms from ontology
embeddings. We find that there are substantial differences between different projection methods, and
both the projection of axioms into nodes and edges as well ontological choices in representing knowledge
will impact the success of using ontology embeddings to predict axioms.

Keywords

ontology embedding, graph embedding, Semantic Web ontologies, approximate reasoning

1. Introduction

Ontologies are widely used to integrate and standardize data across databases. In recent years,
ontologies and their associated knowledge in databases have been used in machine learning
to constrain the solution space by the ontology structure, with several applications in the
biomedical domain [1]. One form of using ontologies in machine learning tasks is based
on graphs [2, 3, 4]. We use the term graph projection to refer to the transformation of an
ontology into a graph. With recent developments in machine learning over graphs [5], several
approaches to project ontologies into graphs have emerged. These approaches are able to
capture the ontology structure at some level and have been evaluated on tasks such as similarity
computation, link (axiom) prediction [4], or ontology alignment [6].
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Graphs as a form of representation of knowledge have been studied for several decades [7, 8].
Existential Graphs (EGs) were proposed by C. S. Peirce as a means to depict logical expressions
through diagrams. EGs enabled the representation of first order logic formulas [9]. Semantic
Networks, like EGs, are graphs which contain representations of concepts as nodes and relations
between concepts as edges [10, 11]. Conceptual graphs arose from both EGs and Semantic
Networks, by leveraging the logical foundation of EGs with the properties of Semantic Networks
[12]. The diagrammatic representation of logical expressions has not only been developed to
make such expressions more readable and understandable, but also to enable certain operations,
for example those that correspond to forms of computing entailments and reasoning. In Dau
[13], the formalization of the diagrams of Existential Graphs and their use in logic calculus
and reasoning is explored. Further work [14, 15] investigates the reasoning capabilities that
existential and conceptual graphs can have for Description Logics.

There has been a renewed interest in graph-based representations of ontologies with the
emergence of graph-based machine learning methods. Graph embedding methods and knowl-
edge graph embeddings [5] have been developed to embed (knowledge) graphs in the R” where
gradient-based methods can be used to solve optimization problems that allow these embeddings
to be used, for example, for the prediction of edges or for determining similarity between nodes.
A graph projection embeds an ontology in a graph structure; this graph structure can then be
used to generate embeddings of ontology entities in R™. Because graphs can be intermediate
steps in generating ontology embeddings (in R™), it becomes important to investigate properties
of graph projections. A graph projection is total if it uses of all the axioms in the ontology to
generate a graph, and partial otherwise. Totality can be defined with respect to asserted axioms
in an ontology, or with respect to the deductive closure. Relating a (predicted) edge in a graph to
an axiom in an ontology requires that the graph projection is injective (i.e., that different axioms
induce different subgraphs). This is not true for every graph projection method. Furthermore,
graph projections can project axioms into single edges or into subgraphs (potentially with
multiple edges); some graph embedding methods are designed to predict single edges and not
subgraphs, and graph projections that generate subgraphs may therefore not be suitable to
be used jointly with those graph embeddings. Analyzing these properties is crucial to under-
standing how the information provided by ontologies is utilized by each method and what their
limitations are; understanding the limitations enables the development of new methods that can
address them. While graph-based embeddings are not the only way to embed ontologies, graphs
are widely used due to the large availability of graph-based machine learning methods. Here,
we analyze graph projections and their properties in the context of embedding ontologies in R™.
Our contributions are the following: (a) We provide a qualitative analysis of graph projection
methods with respect to totality, injectivity, and use of deductive closure; (b) We quantitatively
analyze the effect of properties of graph projections in experiments that predict axioms in the
deductive closure of ontologies.

2. Ontology embeddings and graph embeddings

An embedding is a structure-preserving mapping between two mathematical structures. A
graph-based embedding is a two-step process where an ontology is first embedded into a graph,
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Figure 1: Ontology embedding (left to right) and inference (right to left) processes.

and then a graph-embedding is used to embed the graph in the R™. We call the first embedding
an “graph projection” or “projection” and the second embedding a “graph embedding”. Within
R", inferences may then be done approximately and translated back to the ontology. The
inference computation is done by computing plausibility of edges (links) in the graph that were
generated by a query axiom (Figure 1).

While the machine learning and the Semantic Web communities have spent substantial effort
on designing methods that achieve the second part (graph embeddings), the first part (graph
projection) remains rather unexplored. However, the property of the graph projection itself has
consequences for the types of operations that can be performed in the embedding space (R™).
The main question that we investigate is how the mathematical properties of graph projections
affect the inference task. We analyze totality and injectivity, as well as, the use of semantic
information in the process of graph generation.

3. Graph projection methods

3.1. Preliminaries

An ontology O = (3, Az) is a tuple consisting of a signature ¥ and a set of (Description Logic)
axioms Az. The signature > = (C, R, I) consists of a set of class names C, a set of role names
R, a set of individual names I. The set Az is a set of formulas in a language £(X). We consider
here only ontologies where the set of axioms Az are formulated in a Description Logic [16]
language (see Appendix B). The deductive closure O" of O is defined as O" = {¢ | Az I ¢}.

Relational graphs are intermediate structures during the ontology embedding process. A
relational graph G is a triple (V, E, L), where a V' is a set of vertices, L is a set of edge labels,
and £ C V x L x V is a set of edges between vertices and with a label from L.

The prediction of edges and the prediction of axioms can be formulated as ranking problems
where edges and axioms are scored using a scoring function, with the intended meaning that a
higher-scoring edge or axiom is preferred over a lower-scoring edge or axiom.

A graph projection for O = (X, Az) is a function p that maps an ontology into a relational
graph G = (V, E, L) such that CURUI C V U L (i.e., each class, individual, and role name is
represented as a node or edge label in G) and for each a € Az, p(a) C E (i.e., p maps an axiom
onto a subgraph of (). The function p may be total or partial with respect to O depending
on whether it is defined for all axioms in the set Az or only for some axioms. p may also be
total or partial with respect to the deductive closure of O based on whether it is defined for
all axioms in O". We call p simple if the cardinality of p(a) is 1 for all axioms a, i.e., if the
projection function maps each axiom onto exactly one edge. p takes an axiom as argument



and generates a graph. If p is injective, it will generate different subgraphs for different axioms
and the projection function is therefore invertible, i.e., from a (predicted) subgraph it becomes
possible to generate a corresponding axiom.

Here, we analyze different projection methods developed for ontologies and their use in
machine learning: (i) taxonomic projection, OWL2Vec* and DL2Vec [4, 3], Onto2Graph [2], and
the graphs constructed from the RDF rendering of OWL. Examples of graphs generated by each
projection method can be found in Appendix D.

3.2. Taxonomy projection

A taxonomy projection generates a graph from subclass axioms between named classes. From
ontology O, the axioms used are those of the form C' C D where C, D are class names; the
projection function is simple and generates a single edge, from C to D. The projection is partial
if O contains axioms besides C' C D, and total otherwise; if it is total for O, the projection is
also total for O". Furthermore, this projection is both simple and injective, which means we
can infer a single axiom from a predicted edge.

3.3. OWL2Vec*

OWL2Vec* [4] (and variants such as DL2Vec [3]) targets the Description Logic SROZQ [17]
underlying OWL 2 DL [18]. The projection rules for the graph component in OWL2Vec*
are shown in Appendix C. In addition to the taxonomic structure, the OWL2Vec” projection
includes projections for axioms involving complex class descriptions, including quantifiers
and roles. The role names used with quantifiers are used as labels in the relational graph. For
example, an axiom of the form Parent C JhasChild.Person is transformed into the edge
(Parent, hasChild, Person), which relates two nodes using a labeled edge corresponding
to the role hasChild. The OWL2Vec” projection does not differentiate between quantifiers,
i.e., Powizvees (A C IR.B) = powizvecs(A T YR.B) = {(A, R, B)}. Similarly, union (M)
and intersection (L) operators are not distinguished, i.e., Poyizvecx(A & FR.(B M C)) =
Powizvees(A C FR.(BUC)) = {(A, R, B), (A, R,C)}. The OWL2Vec" projection is a partial
function in both the set of axioms Az and the deductive closure O" because concept descriptions
including operators such as negation (—) are not defined for py2peck- The OWL2Vec* projection
is not injective because different axioms will produce the same edge, such as when quantifiers
are not distinguished. When inferring an axiom from a graph, several axioms would obtain
exactly the same score because they generate the same edge or set of edges (and therefore the
inverse of poyi2vecs produces a set of axioms instead of a single axiom). For example, if we
query axioms A C JR.B or A C VR.B, both will receive the score given to the edge (A, R, B).
Moreover, poyizvecs 1s not simple; for example, the cardinality of pyyi2pecs (A E IR.(B M C))
is greater than 1 because the projection maps to edges {(A, R, B), (A, R, C)} (Figure 2a).

3.4. Syntax trees and RDF graphs

We can use the syntactic representation of Az directly to generate graphs using, for example,
syntax trees. One option is to use the graph-based rendering of the OWL syntax in RDF [19],
which is a representation of the syntax tree underlying the Description Logic axioms in OWL.



The main advantage of using a syntax tree as a graph representation is that the totality of
the projection function are guaranteed, both for axioms in O and the deductive closure O".
However, nodes in the relational graph generated from the projection no longer correspond to
named entities in the signature of O (due to the introduction of internal nodes in the syntax
tree, or blank nodes in RDF). For example, to represent the axiom C' 11 D C L, four blank nodes
are created (Appendix Figure 3). Similarly, to represent the axioms A C 3R.(B 1 (), five blank
nodes are introduced (Figure 2c). A major difference to methods such as OWL2Vec™ is that
single axioms do not correspond to a single edge but rather to a subgraph, i.e., the projection is,
in general, not simple. This raises an issue during axiom inference when axioms need to be
generated and scored, because the score will be computed from subgraphs instead of single

edges.

3.5. Relational axiom patterns

Onto2Graph [2] is a method that implements graph projection based on (relational) ontology
design patterns [20]. In the past, ontologies in the biomedical domain were often represented
as directed acyclic graphs [21] and not using a formal language based on a model-theoretic
semantics. It took several years before the graph representation of the ontologies was put
on a formal semantic foundation [22, 23, 20]. Two approaches provided this foundation, one
based on a correspondence between edges and axioms of a certain type as in the OWL2Vec*
projection [22, 23], and others based on relational ontology design patterns [20]. The OBO
Relation Ontology [24] contains a large number of such patterns used in biomedical ontologies.

A relational pattern is defined using variables that stand for symbols and are used to define
edges in a graph. An example of a relational pattern is 7X T 3?R.?Y from which an edge
(?X,7R,?Y) can be created in a graph. More commonly, patterns that use specific roles are
used, such as 7X T dpart-of.?Y to create an edge labeled “part-of” from 7 X to 7Y Relational
patterns are flexible and can be defined for arbitrary axioms. For example, a set of “disjointness”
edges can be created from an axiom pattern such as 7XT7Y C L. In Figure 2b, the pattern
A C JR.7X is selected, where 7X = B M C is the query to apply to the ontology. Given a
relational pattern, an ontology can be queried for pairs or triples that satisfy these patterns in
quadratic (O(|C|?)) or cubic (O(|C|?|R/|)) time, respectively, by substituting every class name
and role name in the variables of the relational patterns. This querying can be applied to either
the set of axioms Ax or their deductive closure. The Onto2Graph [2] method implements an
algorithm to generate graph edges (?.X, R, 7Y’) more efficiently for some axiom patterns.

Ponto2graph 18 a partial function unless a pattern for every type of axiom is defined (and the
patterns are only generated from asserted axiom and not their deductive closure). ponto2graph
may be injective if the patterns are defined so that different axioms map to different subgraphs.
However, the OWL2Vec” projection function can be seen as a special case of relational patterns
(where no domain knowledge is used to specify patterns), and since the OWL2Vec” projection is
not injective, relational patterns may also not be injective. In general, ponto24raph is not simple
as multiple edges can be generated from a single axiom; however, in practice, the Onto2Graph
projection is usually simple (i.e., the library of relational patterns defined in the OBO Relation
Ontology [24] implements only simple projections).
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Figure 2: Graphs generated by each projection method on the axiom A C 3R.(B M C). For the case of
Onto2Graph, we can query every class X; = B 1 C and generate the corresponding edge.

4. Machine learning with graph projections

4.1. Queries and axiom scoring

The main reason we investigate graph projections is due to the availability of machine learning
methods for graphs. In particular, (knowledge) graph embeddings can be used for tasks such as
determining similarity between nodes [3], to predict edges that may be added to a knowledge
graph [25], or (approximately) answer complex queries corresponding to subgraphs of the knowl-
edge graph [26, 27, 28]. Here, we investigate the impact of the properties of graph projections
on machine learning with ontologies. Specifically, for graph edges (h, r,t) that can be added to
the graph, knowledge graph embeddings can be used to define scores (score(h,r,t)), and we
can use score(h,r,t) to score axioms that may be added to ontology O (“axiom inference”).
The main operation that allows us to score and infer axioms is the inverse of the projection
function p. If p is simple and injective, its inverse p~! will yield exactly one axiom a for an edge
(h,r,t), and we can define score(a) := score(h,r,t) to score axioms; we also refer to scoring
an axiom as a “query”. For example, to query the axiom C' C VR.D, we first project the axiom
onto a graph edge (for example, the edge (C, R, D) using the OWL2Vec* projection); then, we
determine the score of the edge (C, R, D) using a knowledge graph embedding method; and,
finally, we apply the inverse of the projection function to determine score(C' C VR.D). If the
projection is not injective (such as the OWL2Vec™ projection), multiple axioms are generated
with the same score; if axioms are added to ontology O by ranking their scores, this needs to be
considered. For example, the inverse of the OWL2Vec* projection for the edge (C, R, D) will
produce a set of axioms containing at least C' C VR.D and C' C 3R.D, with the same score.
Non-simple projections produce multiple edges for single axioms, and computing the inverse
requires determining a score for a subgraph and transferring it to the axiom. While there



are methods to directly score subgraphs using knowledge graph embeddings, we will use the
arithmetic mean of the scores of each edge in the subgraph as the score of the subgraph.

4.2. Experimental setup

To test the performance of different projection methods, we test their ability to predict axioms
in the deductive closure of an ontology. We evaluate axiom prediction in two different ways: (i)
we generate embeddings using the original ontology (O), and (ii) we generate embeddings from
a reduced version of the ontology (O, equceqd) by removing some axioms. The test set consists of
axioms that are in O" but not in O: cduceq- The first case corresponds to computing entailments
analogously to an automated reasoner, and the second case corresponds to “prediction” of
statements that may hold true although they are not entailed; the second case may also be
considered a form of approximate entailment [29].

We used two large biomedical ontologies for evaluation, the Gene Ontology [30] (GO) and
the Food Ontology (FoodOn) [31]. In GO, we tested prediction of subclass (sub) axioms of the
form C' C D and axioms involving existential restrictions (ex) of the form C' C 3R.D. We
generated reduced ontologies GOy, and GO, by randomly removing 10% of the sub and ex
axioms, respectively. In contrast to GO, FoodOn axioms use both quantifiers (3, V). We used
FoodOn to investigate the effect of injective projections by testing the methods on the axiom
patterns C' C 3R.D and C C VR.D. Furthermore, to obtain a substantial difference between
the FoodOn'" and FoodOn';ub or» We randomly removed 30% of the sub and ex axioms from
FoodOn. To generate the deductive closure for all the ontologies and their reduced versions,
we used the OWLAPI and the ELK reasoner [32]. ELK is a reasoner for OWL 2 EL ontologies.
Other reasoners can be used, especially for FoodOn, where axioms can belong to more complex
description logics than ££ [16]. However, due to the complexity of reasoning in expressive
description logics, we use ELK for our experiments. Projection methods can handle axioms
involving existential and universal quantifiers, but axioms in the deductive closure will not
involve universal restrictions due to the use of ELK.

To embed the graphs generated from projection methods, we first use the knowledge graph
embedding method TransE [33] (see Appendix F for details). While there are many methods to
embed knowledge graphs [5], we use TransE because it is a simple approach to embed graphs.
We also use TransR [34] to evaluate the effect of a different graph embedding method.

In the evaluation, for every sample axiom C' T D or C' C JR.D in the testing set, we
generate predictions for every other axiom C' T D’ or C' C JR.D’ for every named class
D'. Then, we compute the rank of the positive axiom based on the score obtained from the
projected graph. We report mean rank, hits at {1, 10, 100} and ROC AUC. We report filtered
metrics by not considering the predictions that exist in the deductive closure. We performed
hyperparameter optimization (see Appendix G) and provide complete source code for our
experiments at https://github.com/bio-ontology-research-group/ontology-graph-projections.

4.3. Evaluation results

We test the performance of ontology embeddings in two tasks. First, we test on prediction of
plausible axioms that cannot be inferred but which may hold true given the other axioms. We
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Table 1

Results of prediction of axioms of the form C' C D and C' C 3R.D of different projection methods on
different versions of the Gene Ontology.

Predictions of axioms C' C D
Method GO ‘ GOgyp
MR H@1 H@10 H@100 AUC MR H@1 H@10 H@100 AUC

Onto2Graph-TransE  2947.81 0.41 0.85 1232 94.23 4439.27 0.41 1.35 10.09 91.31
Onto2Graph-TransR 3599.95 0.03 0.74 6.86 9295 3704.74 0.09 0.45 8.17 92.75
OWL2Vec™-TransE 4514.51 1.98 10.03 33.87 9116 5374.64 1.79 9.55 3434 89.48
OWL2Vec*-TransR 3083.20 2.98 5.40 22,71 93.96 4604.52 0.01 5.90 15.24  90.98
RDF-TransE 4158.77 0.36 2.85 10.03  91.86 4122.82 0.41 2.82 10.10  91.93
RDF-TransR 4116.13 0.04 0.62 541 9194 4899.87 0.02 0.52 6.16  90.41

Predictions of axioms C' C dR.D

GO | GOy
OntoZGraph—TransE 9250.77 5.21 14.26 25.53 81.93 10214.69 4.26 13.19 22.45 80.05
OntoZGraph—TransR 9430.42 0.00 6.28 7.45 81.61 10644.37 0.00 0.00 0.43 79.23
OWL2Vec*-TransE 8956.46 0.74 21.60 28.09 82.51 9037.64 0.21 2117 28.30 82.36
OWL2Vec*-TransR 12746.62 0.00 0.64 4.04 75.09 13342.04 0.00 0.53 3.09 73.93
RDF-TransE 12240.94 1.49 3.51 5.74 76.08 12864.34 0.00 0.21 1.49 74.86
RDF-TransR 11976.59 0.00 0.21 4.04 76.65 10740.08 0.00 0.00 0.00 79.07

use embeddings from ontologies with removed axioms GOyg,;, and GO, and evaluate on axioms
C C Dand C C JR.D existing in the deductive closure of GO, but not in the deductive closure
of GOgyp and GO, respectively; this task is a form of “ontology completion” [4, 35]; we focus on
axioms in the deductive closure instead of asserted axioms to evaluate whether the regularities
hold semantically instead of merely syntactically. Second, we test on a deductive inference task
(i-e., test the prediction of axioms in the deductive closure), similarly to an automated reasoner.
We use embeddings from GO and to compare directly with the first task, we evaluated on the
same test set of axioms used in the first task. Table 1 shows the results.

OWL2Vec” can parse complex axioms (i.e., C = DM3R.FE) and generates edges (C, subclassof,
D) that Onto2Graph does not generate (given the relational patterns we employ). Furthermore,
OWL2Vec” generates several inverse edges not created by Onto2Graph. These differences allow
OWL2Vec” to rank axioms of type C' C D higher in Hits@k metrics (See Appendix A). The RDF
projection generates edges of the form (C, subclassof, D) where and C or D are not necessarily
named classes but can be blank nodes. The presence on blank nodes adds noise when embedding
RDF graphs, which causes lower values in Hits@k compared to other methods.

For axioms of type C' C 3R.D, Onto2Graph and OWL2Vec” behave differently. For GO,
both methods generate approximately the same number of edges (30,266 and 31,429) containing
R roles as labels. However, only around half (18,339) of the edges are shared by both graphs.
The remaining edges for Onto2Graph correspond to those generated by the reasoning process
and for OWL2Vec” correspond to edges generated from subroles and inverse roles which are
ignored by Onto2Graph. Inverse edges create cycles in the graph. These differences suffice so
that OWL2Vec* outperforms Onto2Graph in almost all the metrics.

TransR embeds nodes and each relation in different spaces. In OWL2Vec” projections and
Onto2Graph, axioms C' C D and C' C 3R.D have the same graph structure ((C,subclassof,D)



Table 2
Prediction of axioms of the form C' C 3R.D by ranking over (Case A) axioms {C' T 3R.D’|D’ € C}
and (Case B) axioms {C T OR.D'|D’' € C,0 € {3, V}. We performed this test on FoodOn.

Case A
Method MR H@1 H@10 H@100 AUC
Onto2Graph-TransE 7332.68 0.06 0.23 1.67 78.51
Onto2Graph-TransR 8798.84 0.04 0.56 2.85 74.21
OWL2Vec*-TransE 8361.63 0.16 1.46 8.43 75.49
OWL2Vec*-TransR 8003.53 0.00 0.14 5.37 76.54
RDF-TransE 8417.59 0.02 0.04 1.34 75.33
RDF TransR 13282.75 0.00 0.01 0.61 61.07

Case B
Onto2Graph-TransE 14676.41 0.02 0.15 0.91 78.49
Onto2Graph-TransR 17609.04 0.04 0.40 2.56 74.19
OWL2Vec*-Transk 16732.26 0.08 0.73 5.25 75.48
OWL2Vec*-TransR 16017.71 0.00 0.01 2.10 76.52
RDF 16605.67 0.01 0.03 0.74 75.66
RDF TransR 14330.19 0.00 0.00 0.08 79.00

and (C,R,D), respectively). TransR helps to differentiate the label “subclassof” from other labels
in the graph, improving average ranking metrics such as Mean Rank and AUC. However, for
axioms C' C 3R.D, where a number of edge labels must be considered, TransR underperforms
compared to TransE for OWL2Vec* and Onto2Graph, while improving for RDF projection.

Additionally, we also evaluated over FoodOn which contains more complex axioms to deter-
mine the effect of injectivity on predicting axioms, specifically axioms of the type C C 3R.D
and C C VR.D. As in the evaluation of GO, we generated embeddings for FoodOn and evaluated
the performance on the prediction of axioms C' C JR.D existing in the deductive closure of
FoodOn but not in the deductive closure of FoodOn with some axioms removed (FoodOngyp, z).

We evaluate the ranking of testing samples C' C JR.D among a set of predictions. We have
two cases: we rank axioms C' C 3R.D among all axioms C' C 3R.D’ for all named classes
D’ (case A in Table 2), and, secondly, we rank axioms C' C 3R.D among axioms C' C JR.D’
for all named class D" and [0 = {3,V} (case B in Table 2). Non-injective methods (such as
OWL2Vec”) generate multiple axioms when inverting the projection of C' C 3R.D, making it
necessary to consider the scores of multiple axioms when evaluating axiom inference. We limit
the choice of quantifier to only 3 and V and ignore cardinality restrictions We also evaluate
Onto2Graph projections that are non-injective and project both C C dR.D and C C VR.D
onto the same edge (similarly to OWL2Vec*).

Obviously, methods such as OWL2Vec* and (non-injective) Onto2Graph decrease the per-
formance from case A to case B. More specifically, the mean rank doubles because for every
axiom C C JR.D, another axiom (C C VR.D) has the same score and is ranked at the same
position. In the RDF projection, both C' C 3R.D and C C VR.D will, usually, obtain different
scores. Nevertheless, we observe that the mean ranks almost doubles between case A and B



when using TransE. This is because the subgraphs projected from C C 3R.D and C C VR.D
differ only in the edge labels “somevaluesfrom” and “allvaluesfrom” (Appendix Figure 4), and, in
our case, TransE generates similar embeddings for “somevaluesfrom” and “allvaluesfrom”. We
also included another experiment using TransR [34] instead of TransE; TransR uses a different
embedding for relations which are embedded in a different space than nodes. Although the
overall performance drops in case A, TransR represents relations corresponding to “someval-
uesfrom” and “allvaluesfrom” differently, illustrated by an increase in mean rank from case A to
case B, and an increase in AUC. In the future, further knowledge graph embedding approaches
need to be evaluated. Furthermore, Onto2Graph produces a lower mean rank than OWL2Vec™.
A potential reason is that FoodOn contains complex axioms that, alike OWL2Vec*, Onto2Graph
can represent through its reasoning step (see Appendix A).

5. Conclusion

Graph representations of ontologies enable the use of graph-based machine learning methods
to predict axioms. Machine learning methods on graphs have been extensively studied, and we
analyzed the properties of different methods that project ontologies onto graphs and their effects
on axiom inference using machine learning. We find that the properties of graph projections can
have a significant effect on the inference of axioms using ontology embeddings. Our analysis
can be used to further improve graph-based ontology embeddings and their applications.
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A. Analysis of the performance of projection methods

As shown in Section 4.3, in most cases OWL2Vec* obtains higher values on Hits@1 but
Onto2Graph obtains lower mean rank. This phenomenon is due to the different capabili-
ties of each method. We show the following example in GO using the class GO_2000859, which
is involved in the following axiom in the training set:

GO_2000859 = GO_0065007 r1JRO_0002212.GO_0035932 (3)

And is involved in the following axiom in the testing set:

GO_2000859 £ GO_0023051 (4)

OWL2Vec* generates an edge (GO_2000859, subclassof, GO_0065007) from axiom 3 but
Onto2Graph does not. Furthermore, classes GO_0065007 and GO_0023051 are involved in
training axioms, and the edge generated by OWL2Vec” is important in the prediction of the
testing axiom 4 and contributing to the high value at Hits@k.

Furthermore, RDF performs worse than other methods because of the noise introduced
by blank nodes. For example, axiom 3, will be projected as: (GO_2000859, subclassof, m),
(m, intersection, 1), (1, first, GO_0065007).

In the case of FoodOn, we notice that Onto2Graph obtains much lower mean rank than
OWL2Vec®. This happens because Onto2Graph, through its reasoning step, generates edges
than OWL2Vec* cannot generate due to the complexity of the axioms in FoodOn. For example,
from the following axiom involving the entity CDNO_0200195:

CDNO_0200195 = PATO_0000033r3R0O_0000052.(CHEBI_12777M3BFO_0000050.BFO_0000040)
Onto2Graph generates
(CDNO_0200195,RO_0000052, CHEBI_12777)

whereas OWL2Vec* does not generate any edge with roles as edge labels. This difference
between both graphs enables Onto2Graph to get lower mean rank when predicting axioms

C CdR.D.

B. Description logics and ontologies

Ontologies can be constructed using Description Logics. A Description Logic (DL) [16] theory
is defined over a signature ¥ = (C, R, I) where C is a set of class names, R a set of role names,
I a set of individual names. There are several description logic languages that differ from each
other on the operators that they support. In the description logic ALC, a concept description is
constructed inductively from class names using the operations of negation (—), intersection (1),
union (L), existential (J) and universal quantification (V).

In DLs, subsumption axioms between concept descriptions can be defined using the sub-
sumption operation (C). To define the semantics of a DL, we need an interpretation domain A



and an interpretation function L In ALC, for a class name A € C, its interpretation is the set
AT C AT, The semantics of concept descriptions is constructed inductively:

1T=9
T — AI
(AT = af\A* )
(cnDY =ctTnD?
(VR.C)F = {a € AT |Vb.(a,b) € RT = be CT}
AR.T) ={ae AT | 3b.(a,b) € REND e CT}.

C. Details on implementations of projection methods

For Onto2Graph, we relied on the original implementation of [2] found at https://github.com/
bio-ontology-research-group/Onto2Graph. In the case of RDF, we used the Python library
rdflib, found at https://github.com/RDFLib/rdflib

In the case of the projection found in OWL2Vec*, we used the implementation found in
mOWL[36]. Both mOWL and the original implementation of OWL2Vec* projection, project
axioms with complex superclasses such as C' C D M E. We added this rule in Table 3.

Table 3
Projection rules for OWL2Vec* model.
Axiom or triple(s) | Axiom or triple(s) of condition 2 Projected triple(s)
of condition 1
ACOr.D
or D=B|BiU...UB,|B;N...NB, (A,r,B)foriel,...,n
Or.DC A
Ir.T C | T CVr.B(range)
A(domain)
AC 3Irb B(b) (A, r, B;)
rCorf (A,r', B) has been projected
P Crl (B,r', A) has been projected
s10...08, Er | (A,s1,C4) ...(Cy, sn,Cp) has been projected
(B, subClassOf, A)
BL4 (A, subClassOf ', B)
(a, type, A)
Ala) ) (4, type™", a)
r(a,b) - {a,r,b)
New rule

| ACBNIRC | | (A, subClassOf, B) ‘



https://github.com/bio-ontology-research-group/Onto2Graph
https://github.com/bio-ontology-research-group/Onto2Graph
https://github.com/RDFLib/rdflib

D. Examples of graphs generated by different projection
methods

To show the differences between the different projection results, Figure 3 shows the subgraphs
generated by each method on the axiom C' 11 D C _L. Similarly, Figure 4 shows the projections
of axioms C' C 3R.D and C' C VR.D using the RDF projection.

c—"°

p—" 1

(a) Onto2Graph

rest

intersection ll rest l2 nil
subclassofl firstl firstl
1 C D
(b) RDF

Figure 3: Graphs generated by each projection method on the axiom C' M D T L. This axiom is
applicable for Onto2Graph (if the appropriate pattern is defined) and for RDF projection.
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Figure 4: RDF projection of axioms C C 3R.D and C C VR.D



E. Graphs generated for GO and FOODON

For the quantitative analysis of projection methods, we chose two ontologies: GO and FoodOn.
Table 4 shows the number of edges generated by each projection method on the different
ontologies.

Table 4

Number of edges generated by projection methods. C represents the edges for subclass axioms between
named classes (Onto2Graph, OWL2Vec*, RDF) or between a named class and a blank node (RDF). C~*
represents the inverse edge of C.

Projection method Edges generated on each ontology

GO | GOgup | GO,y | FoodOn
Total C C~'| Total [ C-' | Total C C~'| Total C !
Onto2Graph 99619 69353(70%) ~ | 97660 66886(68%) ~ | 96294 69353(72%) ~ | 77203 36755(47%) -
OWL2Vec* 189849  79210(42%) 79210(42%) | 176281 72426(41%) 72426(41%) | 188355 79210(42%) 79210(42%) | 89980 40248(44%) 40248(44%)
RDF 709409  87602(12%) — | 702477 80667(11%) — | 702128  85781(12%) ~ | 210718 46668(22%) -

Table 5

Number of edges projected from the FoodOn ontology from axioms C' C 3R.D for methods Onto2Graph
and OWL2Vec®. “With self-loops” represent edges of the from (C, R, C) for some ontology role R. “Shared”
represent the number of edges found in both graphs.

.. Number of existential axioms C' C dR.D
Projection method

Total With self-loops  Shared Not-shared

Onto2Graph 40448 32018 6583 1847
OWL2Vec” 9484 4 6583 2899

F. Knowledge graph embedding method TransE
In TransE[33], every edge (h,r,t) is assigned a distance score
dip gy = [l +7 =] (8)

That is, every edge label is considered as a translation betweeon the head and tail nodes. The
training objective is denoted as L:

L= max(()’ d(h,r,t) — d(h,r,t’) + ’7) 9)

where (h,r,t) is a positive triple that exists in the graph and (h, r,t’) is a negative triple that
does not exist in the graph and is computed by corrupting the node ¢ by another node that is
chosen randomly. £ tries to minimize distance of positive triples with respect to negative ones.
v is a margin parameter that enforces a minimum separation between the scores of a positive
and a negative sample.



G. Hyperparameter optimization

For all the methods, we performed hyperparameter optimization of the following parameters: em-
bedding size [64, 128, 256], margin (7) [0.0, 0.2, 0.4], L2 regularization factor [0.0, le™%, 5¢ 4],
batch size [4096, 8192, 16384] and learning rate [0.1,0.01,0.001].

Table 6
Hyperparameters chosen for projection methods in experiments regarding Table 1

Chosen hyperparameter values

Method

Dimension Margin L2 Reg. Batchsize Learning rate

Prediction of C' C D with GO and GOy,
Onto2Graph-TransE 128 0.4  0.0005 4096 0.010
Onto2Graph-TransR 128 0.4  0.0001 8192 0.001
OWL2Vec*-TransE 128 0.2 0.0001 8192 0.010
OWL2Vec*-TransR 128 0.4 0.0001 8192 0.001
RDF-TranskE 64 0.2 0.0 4096 0.010
RDF-TransR 128 0.4 0.0 8192 0.001
Prediction of C' C 3R.D with GO and GO,

Onto2Graph-TransE 64 0.4 0.0 8192 0.100
Onto2Graph-TransR 256 0.4 0.0001 4096 0.001
OWL2Vec*-TransE 128 0.4 0.0 16384 0.001
OWL2Vec*-TransR 64 0.0 0.0 4096 0.001
RDF-TransE 64 0.4 0.0 8192 0.010
RDF-TransR 64 0.4 0.0005 16384 0.001

Table 7
Hyperparameters chosen for projection methods in experiments regarding Table 2

Chosen hyperparameter values

Method
Dimension Margin L2 Reg. Batchsize Learning rate
Case A and Case B

Onto2Graph-TransE 64.0 0.0 0.0 16384.0 0.010
Onto2Graph-TransR 256 0.2 0.0005 16384 0.001
OWL2Vec*-TransE 256.0 0.4 0.0001 16384.0 0.001
OWL2Vec*-TransR 64 0.2 0.0001 16384 0.001
RDF-TransE 128.0 0.0 0.0 4096.0 0.001

RDF-TransR 128.0 0.0 0.0 4096.0 0.001
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