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Abstract
In this work, we consider function-free existential
rules extended with nonmonotonic negation under
a stable model semantics. We present new acyclic-
ity and stratification conditions that identify a large
class of rule sets having finite, unique stable mod-
els, and we show how the addition of constraints on
the input facts can further extend this class. Check-
ing these conditions is computationally feasible,
and we provide tight complexity bounds. Finally,
we demonstrate how these new methods allowed
us to solve relevant reasoning problems over a real-
world knowledge base from biochemistry using an
off-the-shelf answer set programming engine.

1 Introduction
Logic-based knowledge representation (KR) languages are
widely used to model complex, structured information, e.g.,
in biology [Gkoutos et al., 2012] and chemistry [Hastings et
al., 2012]. Structured knowledge models, such as the ChEBI
database and ontology of chemical compounds [de Matos et
al., 2010], serve as shared reference terminologies. Reason-
ing supports a wide range of tasks including quality assur-
ance, modelling, data integration, and search, and can com-
plement statistical and machine learning approaches, e.g., in
classifying chemical structures [Ferreira and Couto, 2010].

Many ontologies, including ChEBI, are based on descrip-
tion logics (DLs); DLs are, however, severely limited in their
ability to model structures that are not tree-shaped. This ex-
plains, e.g., why ChEBI does not model molecular struc-
tures in its ontology, thus excluding its main content from
logical reasoning. Numerous extension of DLs, such as de-
scription graphs [Motik et al., 2009], provide carefully re-
stricted kinds of rule-based or graph-based modelling, but re-
main largely unrealised in tools and applications. Moreover,
a form of closed-world assumption is often needed to reason
about the absence of structural features, e.g., to conclude that
a molecule is inorganic if it does not contain carbon. This can
be naturally modelled using a nonmonotonic DL, but such
DLs currently lack tool support [Motik and Rosati, 2010].

This motivates the use of (nonmonotonic) rule languages
for modelling ontologies. Existential rules—function-free
Horn rules with existential quantifiers in rule heads—have

been proposed as an ontology and data integration language
[Calì et al., 2010; Baget et al., 2011a], and can be viewed
as a restricted kind of logic programs with function symbols.
Recent works have considered nonmonotonic rule-based on-
tology languages using stratified negation [Calì et al., 2009;
Magka et al., 2012], stable model semantics [Eiter et al.,
2012], and well-founded semantics [Gottlob et al., 2012]. If
we additionally remove the stratification requirement, then
the resulting language allows for the accurate modelling of
complex finite structures such as those found in ChEBI.

Unfortunately, reasoning in these formalisms is computa-
tionally challenging. If negation is stratified, then all of these
semantics agree, and programs have uniquely determined sta-
ble models; this is highly desirable and easy to check, but
too restrictive for many applications. Moreover, even without
negation, satisfiability, fact entailment, query answering, and
the existence of finite models are all undecidable; and, while
many non-stratified programs also have unique stable mod-
els, this property, too, is undecidable in general. As most on-
tologies are concerned with finite, uniquely determined struc-
tures, these problems raise serious doubts about the use of
such formalisms in ontological modelling.

We address this issue by presenting new conditions that
are computationally feasible to check, and that identify a
large class of programs having finite and unique stable mod-
els. These conditions are based on an analysis of whether
one rule relies on another, in the sense that it might either
be ‘triggered’ or ‘inhibited’ by the other rule’s application.
These relationships allow us to define R-acyclicity and R-
stratification. Specifically, our contributions are as follows:
• We define R-acyclic and R-stratified logic programs, and

show that recognising such programs is coNP-complete.
• We show that R-acyclic programs have finite stable mod-

els, and that reasoning is coN2EXPTIME-complete (NP-
complete for data complexity).
• We show that R-stratified programs have unique stable

models, so that reasoning becomes deterministic, and
that if programs are also R-acyclic, reasoning becomes
2EXPTIME-complete (P-complete for data complexity).

• We extend reliances to exploit constraints, and show that
this strictly generalises our earlier criteria. Reasoning
complexities carry over, but deciding R-acyclicity and
R-stratification under constraints is complete for ΠP
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• We conduct a case study with ChEBI, which demon-
strates that our conditions do not preclude suitable mod-
elling, that R-stratification can be exploited to allow the
DLV reasoner [Leone et al., 2006] to scale to the large
number of rules in our experiments, and that DLV can
then be used to discover missing relationships in ChEBI.

We first introduce basic notions (Section 2) and discuss the
use of nonmonotonic existential rules in ontological mod-
elling (Section 3). Next, we define positive reliances and
R-acyclicity, and establish related complexity results (Sec-
tion 4). We then define negative reliances and R-stratification,
and study the complexity of recognising these notions (Sec-
tion 5). Reasoning with R-stratified programs is discussed
separately (Section 6). Thereafter, we discuss the utility of
constraints and extend all of our results accordingly (Sec-
tion 7). We then present the ChEBI case study (Section 8),
discuss related works (Section 9), and conclude (Section 10).

2 Preliminaries
We consider a standard first-order language. We use the let-
ters a, b for constants, f , g for functions, x, y, z, u, v, w for
variables, and t for terms. Lists of terms 〈t1, . . . , tn〉 are ab-
breviated as t, similarly for lists of variables x. We treat lists
as sets when order is irrelevant. A special nullary predicate
symbol ⊥ is used to denote falsity. We use Pred(ε), Var(ε),
Const(ε), and Terms(ε) to denote the predicates, variables,
constants, and terms, respectively, that occur in an expres-
sion ε . Atoms, i.e., formulae without operators, are writ-
ten α , β , γ . When used like a formula, sets of atoms al-
ways denote the conjunction of their members. Nonmono-
tonic negation is denoted not. For a set A of atoms, we define
not A := {not α | α ∈ A}. A nonmonotonic existential rule
(or simply rule) is of the form

r : ∀x.∀z. B+∧not B−→∃y.H (1)

where the positive body B+, negative body B−, and head H
are sets (or conjunctions) of atoms without function sym-
bols, such that Var(B+) = x ∪ z, Var(B−) ⊆ x ∪ z, and
Var(H)⊆ x∪y. We abbreviate r as (B+,B−,H). When writ-
ing rules as in (1), universal quantifiers are usually omitted.
Sets of rules are called (logic) programs.

The skolemisation sk(r) of a rule r as in (1) is obtained by
replacing each variable y ∈ y in H by a skolem term fy(x),
where fy is a fresh skolem function symbol of arity |x|. Given
a program P, we set sk(P) := {sk(r) | r ∈ P}. Assuming a
fixed choice of skolem functions, sk is a bijection between
rules and their skolemisations, which allows us to use the term
rule liberally without risk of confusion. Our results refer to
rules (or their skolemisations), and do not generally hold for
arbitrary logic programming rules with function symbols.

A term or formula is ground if it contains no variables.
Ground atoms are called facts. The Herbrand universe HU(P)
of a program P is the set of all ground terms formed with con-
stants and function symbols from sk(P) (using an auxiliary
constant if Const(sk(P)) = /0). The grounding ground(P) of
P is the set of all rules that can be obtained from rules in sk(P)
by uniformly replacing variables with terms from HU(P).

An (Herbrand) interpretation M is a set of facts with
⊥ /∈ M. Satisfaction is defined as usual: M |= B+,not B−
holds if B+ ⊆M and B− ∩M = /0; M |= (B+,B−,H)
if M 6|= B+,not B− or M |= H; and M |= P if M |= r
for all r ∈ P. The Gelfond-Lifschitz reduct of P w.r.t. M
is GL(P,M) := {(B+, /0,H) | (B+,B−,H) ∈ ground(P) and
B−∩M= /0}.M is a stable model of P, writtenM |=SM P,
if M |= GL(P,M) and there is no smaller model M′ (M
withM′ |= GL(P,M). We consider cautious entailment: for
a program P and a fact α , P |= α if α ∈ M for all stable
modelsM of P. Consequences of programs can be computed
with the TP operator:
Definition 1. Consider a program P and set of facts F. For a
rule r ∈ P with sk(r) = (B+,B−,H), define

r(F) := {Hθ | B+
θ ⊆ F and B−θ ∩F = /0}.

Moreover, let TP(F) := F ∪
⋃

r∈P r(F) and define

T 0
P (F) := F, T i+1

P (F) := TP(T i
P(F)), T ∞

P (F) :=
⋃
i≥0

T i
P(F).

Given a program P, a sequence of disjoint programs
P = P1, . . . ,Pn is a stratification of P if P =

⋃n
i=1 Pi and,

for all programs Pi,Pj ∈ P, rules (B+
1 ,B−1 ,H1) ∈ Pi and

(B+
2 ,B−2 ,H2) ∈ Pj, and every predicate R ∈ Pred(H1), we

have: (i) if R ∈ Pred(B+
2 ) then i≤ j, and (ii) if R ∈ Pred(B−2 )

then i < j. The elements of P are called strata. P is stratified
if it has a stratification. The TP operator can be used to char-
acterise stable models; for stratified programs, we even obtain
a deterministic computation procedure [Apt and Bol, 1994].
Fact 1. Given a program P, a set of facts F, and a stable
modelM |=SM P∪F, we haveM= T ∞

GL(P,M)(F).
If P = P1, . . . ,Pn is a stratification of P, then M :=

T ∞
Pn

(. . .T ∞
P1

(F) . . .) is the unique stable model of P if ⊥ /∈M.

3 Modelling with Nonmonotonic Rules
Rule-based formalisms are well suited for modelling rela-
tional structures, irrespective of whether these structures are
tree-shaped or cyclic. As a practical example, we consider
the modelling of chemical compounds and their relations
in bioinformatics. We model concepts found in the popular
ChEBI database and ontology, which contains information
about chemical entities and classes [de Matos et al., 2010;
Hastings et al., 2013].

The structure of molecules can be readily represented as a
logical structure. For example, the formula MH2O(x,y,z) :=
o(x)∧bond(x,y)∧bond(x,z)∧h(y)∧h(z) could represent a
water molecule (using unidirectional bonds for simplicity).
We model molecules as members of a unary predicate mol,
related to their constituting atoms by the predicate hA (has
atom). The following rule infers the structure of the six atoms
of methanol (CH3OH), described by the formula MCH3OH(y):

methanol(x)→∃y.mol(x)∧MCH3OH(y)∧
∧6

i=1hA(x,yi) (2)
Molecules can also be classified by their structure, e.g., to
identify molecules that contain oxygen, or organic hydroxy
molecules (those with a substructure C-O-H):

hA(x,y)∧o(y)→ hasO(x) (3)

MCOH(y)∧
∧3

i=1 hA(x,yi)→ orgHydroxy(x) (4)
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Figure 1: The chemical structure and the models of methanol

It is not hard to express syntactic identity with a predicate =,
predefined in most rule engines. To this end, we are making
the following two assumptions.

• For every constant c in the program or set of facts, the
set of facts also contains c = c.

• For every existentially quantified variable y in the head
of a rule, the head also contains the atom y = y.

With the above assumptions, we can treat = like any other
predicate, also in our later analysis of programs. Since all
facts about equality are identities, we do not need rules to ax-
iomatise properties like symmetry or transitivity of =; indeed,
such rules would have a significant influence on the properties
of the program. Using not we can express syntactic inequality
and define, e.g., molecules with exactly one carbon atom:∧2

i=1 hA(x,yi)∧ c(yi)∧not y1=y2→multiC(x) (5)
mol(x)∧hA(x,y)∧ c(y)∧not multiC(x)→ oneC(x) (6)

The fact methanol(a) and the rules (2)–(6) have a unique sta-
ble model (using skolem functions f1, . . . , f6 for (2)):

M1 := {methanol(a),hasO(a),orgHydroxy(a),oneC(a),

mol(a),hA(a, fi(a))6
i=1,MCH3OH( f1(a), . . . , f6(a))}

We can thus conclude, e.g., that methanol is an organic hy-
droxy molecule. To obtain such inferences for organic hy-
droxy molecules in general, we can use another rule:

orgHydroxy(x)→∃y.MCOH(y)∧
∧3

i=1 hA(x,yi) (7)

The fact orgHydroxy(b) and the rules (3)–(7) have a unique
stable model (using skolem functions g1, . . . ,g3 for (7)):

M2 := {orgHydroxy(b),hasO(b),

hA(b,gi(b))3
i=1,MCOH(g1(b),g2(b),g3(b))}

Hence, organic hydroxy molecules are structures with oxy-
gen, as expected. However, if we consider all of the above
rules and facts together, then rather than M1 ∪M2 we ob-
tainM1∪M2∪{hA(a,gi(a))3

i=1,MCOH(g1(a),g2(a),g3(a)),
multiC(a)} \ {oneC(a)} as the unique stable model, since
rule (7) is applicable to orgHydroxy(a). Thus, the stable
model is no longer a faithful representation of the molecule
a, which is wrongly classified as a multi-carbon molecule.

Nonmonotonic negation can be used to overcome this
problem. We replace rules (4) and (7) by the following, where
we abbreviate orgHydroxy by oH:

MCOH(y)∧
∧3

i=1 hA(x,yi)∧not n(yi)→ oH(x)∧ r(x) (8)

oH(x)∧not r(x)→∃y.MCOH(y)∧
∧3

i=1 hA(x,yi)∧n(yi) (9)

The predicates r (‘recognised’) and n (‘new’) ensure that
only one of these rules is applicable to a given structure.
The above facts with rules (2), (3), (5), (6), (8), and (9)
have the unique stable model M1 ∪M2 ∪ {r(a),n(g1(b)),
n(g2(b)),n(g3(b))}, as desired. However, the resulting set of
rules is not stratified, which causes various problems. First,
we cannot be sure that the stable model will be unique for
other sets of facts. Second, rule engines may need to apply
more complex algorithms to find the stable model. Our exper-
iments in Section 8 suggest that this may cause performance
issues that prevent rule engines from computing entailments
at all. The goal of this work is to overcome these issues.

4 Positive Reliances and R-Acyclicity
As recalled in Fact 1, every stable model of a logic program
can be obtained from a (possibly infinite) sequence of con-
secutive rule applications. Insights about the semantics of a
program can thus be gained by analysing, for all pairs of rules
r1 and r2, whether an application of r1 can potentially enable
a later application of r2. In this section, we formalise this idea
of positive reliance between rules and define R-acyclic pro-
grams, which have stable models of bounded size.
Definition 2 (Positive Reliance). Let r1 and r2 be rules
such that sk(r1) = (B+

1 ,B−1 ,H1) and sk(r2) = (B+
2 ,B−2 ,H2);

w.l.o.g. assume that Var(r1)∩Var(r2) = /0. Rule r2 positively
relies on r1 (written r1

+−→ r2) if there exists a set of facts F
that contains no skolem terms and a substitution θ such that:

B+
1 θ ⊆ F (P1)

B−1 θ ∩F = /0 (P2)

B+
2 θ ⊆ F ∪H1θ (P3)

B−2 θ ∩(F ∪H1θ) = /0 (P4)

B+
2 θ 6⊆ F (P5)

H2θ 6⊆ F∪H1θ (P6)
Thus, r1

+−→ r2 holds if there is a situation (defined by F)
where r1 is applicable (P1)/(P2), r2 is not applicable (P5), and
applying r1 allows r2 to derive something new (P3)/(P4)/(P6).
Example 1. Consider rule r(4) of (4), and rule r′(7) ob-
tained from (7) by replacing variable x with x′. We find



that r(4)
+−→ r′(7) since F := {MCOH(b)}∪{hA(a,bi)}3

i=1 and
θ := {x 7→ a,y 7→ b,x′ 7→ a} satisfy (P1)–(P6).

In contrast, r′(7) 6
+−→ r(4). Intuitively, r(4) can only derive facts

that are already necessary to apply r′(7) in the first place, thus
violating (P6). More formally, suppose that r′(7)

+−→ r(4) could
be shown using F ′ and θ ′. By (P1) and (P6), θ ′(x) 6= θ ′(x′).
Thus, by (P3), hA(x,yi)θ ′ ∈ F ′ for all i ∈ {1,2,3}. Since
F ′ must not contain skolem terms, θ ′(yi) 6= gi(θ ′(x′)), so
MCOH(y)θ ′ ⊆ F ′, again by (P3). Thus (P5) would be violated.

Note that Definition 2 does not consider the syntactic
equality predicate = discussed in Section 3. In particular, F
is not required to contain all facts c = c. This condition could
easily be added, but even in its current form, the definition
will merely lead to a very small amount of additional re-
liances in cases of little practical interest (namely for rules
with body atoms not x=x). Since reliances are only approx-
imating actual relationships between rules in any case, such
an overestimation does not impair the correctness of any of
our subsequent results.

Various previous works consider similar notions. The acti-
vation relation by Greco et al. [2012] is most similar to Def-
inition 2, but allows F to contain function terms to accom-
modate arbitrary disjunctive logic programs with functions.
Our stronger restriction is needed to show r′(7) 6

+−→ r(4) in Ex-
ample 1. This illustrates how we can take advantage of the
specific structure of existential rules to discard certain poten-
tial interactions. Other similar notions are the ≺ relation by
Deutsch et al. [2008] and the rule dependency by Baget et al.
[2011a], neither of which cover negation. Baget et al. omit
condition (P6), needed to show r′(7) 6

+−→ r(4) in Example 1.
If a finite program has an infinite stable model, some rule

with an existential quantifier must be applicable an infinite
number of times. This, however, requires that there is a cycle
in rule reliances, motivating the following definition.

Definition 3 (R-Acyclic). A program P is R-acyclic if there
is no cycle of positive reliances r1

+−→ . . . +−→ rn
+−→ r1 that in-

volves a rule with an existential quantifier.

Example 2. The complete list of positive reliances for the
rules r(2), . . . ,r(7) is r(2)

+−→ r(3), r(2)
+−→ r(4), r(2)

+−→ r(5), r(2)
+−→

r(6), r(4)
+−→ r(7), r(7)

+−→ r(3), r(7)
+−→ r(5), and r(7)

+−→ r(6). Thus
the program is R-acyclic. To model =, we assume that yi = yi
is derived for all existential variables yi.

We prove that checking positive reliance for two rules is
NP-complete. Similar results are shown by Deutsch et al.
[2008] and by Baget et al. [2011b] for rules without nega-
tion. The complexity refers to the size of the two involved
rules rather than to the size of the whole program: in practice,
positive reliances can be checked efficiently by checking the
applicability of one of the rules to a linear number of facts.

Theorem 1. Given rules r1 and r2, the problem of deciding
whether r1

+−→ r2 is NP-complete. Checking whether a pro-
gram P is R-acyclic is coNP-complete.

Proof. We first show the complexity for deciding r1
+−→ r2.

For this let sk(r1) = (B+
1 ,B−1 ,H1), sk(r2) = (B+

2 ,B−2 ,H2), and
Var(r1)∩Var(r2) = /0.

Membership: Assume that r1
+−→ r2. Then there exists a

set of facts F and a substitution θ that satisfy the conditions
of Definition 2. By conditions (P1) and (P3) we can assume
w.l.o.g. that

F ⊆ (B+
1 ∪B+

2 )θ . (10)

Thus the size of θ is Var(B+
1 ∪B+

2 ) which, like the size of F ,
is polynomial in the size of r1 and r2. It is thus possible to
guess F and θ , and to verify all conditions of Definition 2 in
polynomial time.

Hardness: The problem of checking whether there exists a
homomorphism from a set of atoms to another set of atoms is
known to be NP-complete [Mugnier, 2009]. Therefore we re-
duce the problem of homomorphism checking to the problem
of checking positive reliance. In order to do that, we assign to
each instance of the homomorphism problem for two sets of
atoms Q 6= /0 and Q′ a pair of rules r1 and r2, such that:

∃ homomorphism h : Q→ Q′ ⇔ r1
+−→ r2 (11)

Let Q and Q′ be two such sets of atoms with Var(Q) = x and
Var(Q′) = x′. For each term s and set of atoms R, we define
Aster(s,R) := {P̂(s, t) | P(t) ∈ R, |t| ≥ 0}. Rules r1 and r2 are
defined as follows:

r1 : Start→∃y′,x′.Aster(y′,Q′)
r2 : Aster(y,Q)→ Goal

where Start and Goal are fresh nullary predicates, and y and
y′ are distinct fresh variables. Clearly, the size of r1 and r2 is
polynomial in the size of Q′ and Q. Consider a substitution
τ := {y′ 7→ cy′}∪{x′ 7→ cx′ | x′ ∈ x′}, where cy′ and cx′ are the
constant and the vector of constants used to skolemise y′ and
x′, respectively.

First, we show⇒ of (11). Given a homomorphism h : Q→
Q′, let F := {Start}, let σ := {x 7→ h(x) | x ∈ x}∪{y 7→ y′}
and let θ := σ ◦ τ . To show the claim, we check whether the
conditions of positive reliance are satisfied:
(P1) B+

1 θ ⊆ F because {Start} ⊆ {Start}.
(P2) B−1 θ ∩F = /0 because B−1 = /0.

(P3) B+
2 θ ⊆ F ∪ H1θ by Aster(y,Q)θ ⊆ Aster(cy′ ,Q′τ),

which is a consequence of h(Q)⊆ Q′ and θ(y) = cy′ .

(P4) B−2 θ ∩ (F ∪H1θ) = /0 because B−2 = /0.

(P5) B+
2 θ 6⊆F because F = {Start} and there is no atom with

a nullary predicate in B+
2 θ .

(P6) H2θ 6⊆ F ∪H1θ by {Goal} 6⊆ {Start}∪Aster(cy′ ,Q′).
Now we show ⇐ of (11). If r1

+−→ r2, then there exists a
set of facts F and a substitution θ such that (P1)–(P6) hold.
By conditions (P3) and (P6), there exists at least one atom
α ∈ B+

2 and an atom α ′ ∈H1, such that αθ = α ′. Since α and
α ′ are of the form P̂(y, t) and P̂(cy′ ,ct′), we have θ(y) = c′y.
Additionally, since y occurs in every atom of B+

2 , θ(y) = c′y
and c′y is a skolem constant, we have B+

2 θ ∩F = /0. Now by
B+

2 θ ∩F = /0 and (P3), we have B+
2 θ ⊆ H1. Thus, for every

atom in B+
2 of the form P̂(y, t) there exists an atom of the form

P̂(cy′ ,ct′) such that P̂(y, t)θ = P̂(cy′ ,ct′). Since θ(y) = cy′ ,



for every atom P(t) ∈ Q, there exists an atom P(ct′) ∈ Q′,
such that P(t)θ = P(t′). So, the function h = θ ◦ τ−1 is a
homomorphism from Q to Q′.

This shows (11) and establishes the claimed hardness re-
sult.

Finally, we show that checking R-acyclicity is coNP-
complete. Membership follows since it can be checked in
NP that P is not R-acyclic. Indeed, if P is not R-acyclic,
it has a cycle of length n ≤ |P|. One can guess such a cy-
cle r0

+−→ . . . +−→ rn−1
+−→ r0 and justifications Fi, θi for each

of the positive reliances ri
+−→ r(i+1)modn, and these choices

can be verified in polynomial time. For hardness, consider
a rule r3 : Goal → Start and the rules r1 and r2 as con-
structed in the above hardness proof. Clearly, the program
{r1,r2,r3} is R-acyclic if and only if there is no homomor-
phism h : Q→ Q′.

The main result of this section shows that entailment under
stable model semantics is decidable for R-acyclic programs.
Hardness for coN2EXPTIME can be shown by reducing the
word problem of 2EXPTIME-bounded non-deterministic Tur-
ing machines to cautious entailment, adapting constructions
by Calì et al. [2012] and Krötzsch and Rudolph [2011].

Theorem 2. Let P be an R-acyclic program and let F ∪{α}
be a set of facts. Every stable model of P∪F has size doubly
exponential in the size of P and polynomial in the size of F.
Deciding P∪F |= α is coN2EXPTIME-complete w.r.t. pro-
gram complexity and coNP-complete w.r.t. data complexity.

The subsequent proof of this theorem involves a contradic-
tion argument: we show that if a desired property does not
hold, then there must be reliances that violate R-acyclicity.
According to Definitions 2 and 4, in order to show the exis-
tence of a reliance we need to define suitable sets of facts F
and θ , where F does not contain skolem terms. Facts that are
obtained during a derivation do usually not have this property,
but a suitable set of facts can still be obtained by replacing
skolem terms with fresh constants. This construction is used
in several proofs in this paper, so we give a formal definition.

Notation 1. For a set of facts F, the mapping γF on ground
terms is recursively defined as follows:

• if t is a constant, let γF(t) := t;

• if t ∈ Terms(F) \Const(F), let γF(t) := ct be a unique
fresh constant symbol;

• if t = f (s) 6∈ Terms(F), let γF(t) := f (γF(s)).
We apply γF to (sets of) formulae and to substitutions by ap-
plying it to all terms in these structures.

Proof of Theorem 2. A functional term f (t) is called cyclic if
t either contains the function symbol f , or (recursively) if t
contains a cyclic term. We first prove that the stable models
of P∪F do never contain any fact that uses a cyclic term.
Suppose for a contradiction that there is a stable model M
of P∪ F and a fact α ∈ M, such that α contains a cyclic
term. By Fact 1, we have M = T ∞

GL(P,M)(F). Thus, α is
derived by some finite chain of applications of rules from
GL(P,M) to F . Let r1, . . . ,rm be a minimal sequence of rules
ri ∈ GL(P,M) that derive α , that is, α ∈ rm(. . .r1(F) . . .) and

this property does not hold if any of the rules are omitted
from the sequence. Let F1 := F and let Fi+1 := ri(Fi) for all
i ∈ {1, . . . ,m− 1}. Let r′i ∈ P be a rule and θi be a ground
substitution such that ri ∈ GL(P,M) is obtained from r′iθi
by removing negative body atoms that do not occur in M.
We show that, for every i ∈ {1, . . . ,m− 1}, there is a re-
liance r′i

+−→ r′i+1. Let sk(r′i) = (B+
i ,B−i ,Hi) and sk(r′i+1) =

(B+
i+1,B

−
i+1,Hi+1), and set G := γFi(Fi) and σ := γFi(θi∪θi+1)

(it might be necessary to rename variables in r′i+1 to ensure
Var(r′i)∩Var(r′i+1) = /0). We show that the conditions of Def-
inition 2 are satisfied.
(P1) B+

i σ ⊆ G since ri = sk(r′i)θi is applicable to Fi.

(P2) B−i σ ∩G = /0 since ri = sk(r′i)θi ∈ GL(P,M).

(P3) B+
i+1σ ⊆ G∪Hiσ since G∪Hiσ = γFi(Fi+1).

(P4) B−i+1σ ∩ (G ∪ Hiσ) = /0 since ri+1 = sk(r′i+1)θi+1 ∈
GL(P,M).

(P5) B+
i+1σ 6⊆ G since otherwise ri would not be required to

derive α .
(P6) Hi+1σ 6⊆G∪Hiσ since otherwise ri+1 would not be re-

quired to derive α .
Thus, we obtain a chain of reliances r′1

+−→ . . . +−→ r′m. Since
F does not contain functional terms of the form g(s), every
such (sub)term that occurs in α must have been introduced
by the application of some rule ri. There is only exactly one
rule rg ∈ P that can introduce a term of form g(s). Thus, if α

contains a cyclic term that contains a subterm f (t) such that t
contains f , then there are two distinct indices k < ` such that
r′k = r′` = r f . The reliances shown above thus yield a cycle
r′k

+−→ . . . +−→ r′`−1
+−→ r′` = r′k. Since r f contains an existential

quantifier, this shows that P is not R-acyclic, contradicting
our assumptions.

Now we establish an upper bound on the number of dis-
tinct terms that a stable model of P∪F may contain. For the
computation of the bound, let c be the number of constants in
F ∪P, let e be the maximal number of variables in any rule of
P, assume that sk(P) contains d distinct function symbols and
let α > 1 be some upper bound for the arity of function sym-
bols. Each term can be represented by a tree where the outer-
most function symbol is the root, nested function symbols are
the inner nodes and constants are the leaves. For terms that are
not cyclic, this tree has depth at most d + 1, with at most ad

inner nodes and at most ad leaves. Each inner node is marked
by one of the d function symbols, and each leaf is marked by
one of the c constants, so there are at most cad ·dad

= (c ·d)ad

distinct terms that occur in any stable model of P∪F .
Grounding P with (c ·d)ad

terms yields a maximal number
of ((c ·d)ad

)e = (c ·d)e·ad
propositional rules. The entailments

of P agree with the entailments of this propositional program.
Cautious entailment for propositional logic programs with
negation can be decided in coNP [Dantsin et al., 2001], so
entailment over P can be decided in coN2EXPTIME. If the
size of P is fixed, the bound on the number of grounded rules
is of the form k1 · ck2 , where k1 and k2 are constants. The size
of the grounded program is thus polynomial in the size of F ,
so entailment can be decided in coNP w.r.t. data complexity.



1. Initialisation: if w = α0 . . .αm

mink(x0)∧
∧

0≤i≤m succk(xi,xi+1)→ stateq0(x0)∧
∧

0≤i≤m symbolαi
(x0,xi)∧ symbol�(x0,xm+1)

mink(x0)∧ symbol�(x0,x)∧ succk(x,y)→ symbol�(x0,y)

2. Transition rules: for all δ = 〈q,α,q′,α ′,m〉 ∈ ∆ with ∆[δ ] := {ε ∈ ∆ | ε = 〈q,α,q∗,α∗,m∗〉,ε 6= δ}
stateq(v)∧head(v,x)∧ symbolα(v,x)∧
succk(y,x)∧ succk(v,v′)∧

∧
ε∈∆[δ ] not selectε(v)→ stateq′(v′)∧head(v′,y)∧ symbolα ′(v′,x)∧ selectδ (v) if m = l

stateq(v)∧head(v,x)∧ symbolα(v,x)∧
succk(x,y)∧ succk(v,v′)∧

∧
ε∈∆[δ ] not selectε(v)→ stateq′(v′)∧head(v′,y)∧ symbolα ′(v′,x)∧ selectδ (v) if m = r

3. Inertia: for all α ∈ Σ

succk(v,v′)∧head(v,x)∧ succt(x,y)∧ symbolα(v,y)→ symbolα(v′,y)
succk(v,v′)∧head(v,x)∧ succt(y,x)∧ symbolα(v,y)→ symbolα(v′,y)

4. Acceptance: for each accepting state qa ∈ Q

stateqa(v)→ accept

Figure 2: Program Pcomp
T ,w simulating computation of an NTM T over w

The claimed coNP-hardness w.r.t. data complexity is an
immediate consequence of the fact that entailment is coNP-
hard w.r.t. data-complexity for Datalog with negation (i.e.,
rules without existential quantifiers or function symbols)
[Dantsin et al., 2001]. Indeed, every Datalog program with
negation is clearly R-acyclic, since it does not contain exis-
tential quantifiers.

To prove coN2EXPTIME-hardness w.r.t. program com-
plexity, we show that for every non-deterministic Turing ma-
chine (NTM) T = 〈Q,Σ,∆,q0〉, word w ∈ Σ∗, and number
k ≥ 1, we can construct an R-acyclic program PT ,w,k with a
special propositional symbol reject such that

T accepts w in time 22k ⇔ PT ,w,k 6|= reject. (∗)
The proof adapts standard reduction techniques [Bidoit and
Froidevaux, 1991; Dantsin et al., 2001; Calì et al., 2012;
Krötzsch and Rudolph, 2011].

Let T = 〈Q,Σ,∆,q0〉 be an NTM such that the transition re-
lation ∆ consists of tuples of the form 〈q,α,q′,α ′,m〉, where
q,q′ ∈ Q, α,α ′ ∈ Σ and m ∈ {l,r} depending on whether the
head moves left or right.

First, given k ≥ 1, we construct an R-acyclic program
Pdexp

k of polynomial size, which encodes a chain of 22k
ele-

ments. We use this double-exponentially long chain to model
both the tape of cells and the timeline of instants. Our con-
struction follows Calì et al. [2012]. Pdexp

k contains the facts
r0(c0), r0(c1),succ0(c0,c1),min0(c0),max0(c1), and the fol-
lowing rules for each i ∈ {0, . . . ,k−1}:

ri(x)∧ ri(y)→∃z.si(x,y,z)
si(x,y,z)→ ri+1(z)

si(x,y,z)∧ si(x,y′,z′)∧ succi(y,y′)→ succi+1(z,z′)

si(x,y,z)∧ si(x′,y′,z′)∧
maxi(y)∧mini(y′)∧ succi(x,x′)→ succi+1(z,z′)

mini(x)∧ si(x,x,y)→mini+1(y)
maxi(x)∧ si(x,x,y)→maxi+1(y)

We extend Pdexp
k with the following two rules, which transi-

tively close the precedence relation that arises from the binary
predicate succk between the elements of the chain:

succk(x,y)→ succt(x,y)

succt(x,y)∧ succt(y,z)→ succt(x,z)

Next, we build Pcomp
T ,w which simulates the computation of T

on w. We use the following predicates for our encoding:

• stateq(v) for q ∈ Q, when T is at state q at time v;

• head(v,x), when the head of T is on cell x at time v;

• symbolα(v,x) for α ∈ Σ, when cell x contains symbol α

at time v;

• selectδ (v) for δ ∈ ∆, when the transition δ is selected at
time v;

• accept, when the computation of T on w has reached an
accepting state.

The rules of Pcomp
T ,w are shown in Fig. 2. Finally, let PT ,w,k =

Pdexp
k ∪Pcomp

T ,w ∪{not accept→ reject}, where the latter rule
is added to ensure entailment of reject only when none of
the computation branches reaches an accepting state. Then
PT ,w,k is an R-acyclic program. Indeed, the program Pdexp

k is
clearly acyclic by construction, and its predicates do not occur
in any rule head of Pcomp

T ,w . Moreover, Pcomp
T ,w is R-acyclic since

it does not contain existential quantifiers. The size of PT ,w,k is
polynomial in the size of T , w, and k.

It is easy to see that (∗) holds: T accepts w if and only
if at least one branch of the computation tree contains in its
leaf an accepting state qa. This holds if and only if at least



one of the stable models of PT ,w,k contains a fact of the form
stateqa(t) for some instant t; due to the acceptance rule, the
latter is true if and only if there exists one stable model of
PT ,w,k that does not contain reject, which on its turn is true if
and only if PT ,w,k 6|= reject.

5 Negative Reliances and R-Stratification
While positive reliances allow us to estimate if one rule can
‘trigger’ another rule, the use of nonmonotonic negation may
also give rise to the opposite interaction where one rule ‘in-
hibits’ another. In this section, we formalise this by defining
negative reliances between rules. This suggests a new kind
of stratification, which generalises the classical notion but
can still be decided efficiently. The impact of R-stratification
on the existence of unique stable models is discussed in Sec-
tion 6.
Definition 4 (Negative Reliance). Let r1 and r2 be rules
such that sk(r1) = (B+

1 ,B−1 ,H1) and sk(r2) = (B+
2 ,B−2 ,H2);

w.l.o.g. assume that Var(r1)∩Var(r2) = /0. Rule r2 negatively
relies on r1 (written r1

−−→ r2) if there exists a set of facts F
that contains no skolem terms and a substitution θ such that:

B+
1 θ ⊆ F (N1)

B−1 θ ∩F = /0 (N2)

B+
2 θ ⊆ F (N3)

B−2 θ ∩H1θ 6= /0 (N4)

B−2 θ ∩F = /0 (N5)

Example 3. Consider rule r(8) of (8), and rule r′(9) obtained
from (9) by variable x with x′. We can show r(8)

−−→ r′(9) us-
ing F := {oH(a),MCOH(b)}∪{hA(a,bi)}3

i=1 and θ := {x 7→
a,y 7→ b,x′ 7→ a}. Conversely, r′(9) 6

−−→ r(8) follows from a sim-
ilar argument as in Example 1, since F is not allowed to con-
tain skolem terms.

The following definition is inspired by the classical notion
of stratification in logic programming.
Definition 5 (R-Stratification). A sequence of disjoint pro-
grams P = P1, . . . ,Pn is an R-stratification of a program P if
P =

⋃n
i=1 Pi and, for every two programs Pi,Pj ∈ P and rules

r1 ∈ Pi and r2 ∈ Pj, we have:

if r1
+−→ r2 then i≤ j and if r1

−−→ r2 then i < j.

P is R-stratified if it has an R-stratification.

Example 4. For P consisting of rules r(2), r(3), r(5), r(6), r(8),
and r(9) we obtain the reliances r(2)

+−→ r(8)
−−→ r(9)

+−→ r(3),
r(2)

+−→ r(3), r(2)
+−→ r(6), r(2)

+−→ r(5)
−−→ r(6), r(9)

+−→ r(5), and
r(9)

+−→ r(6). An R-stratification of P is therefore given by
P1 := {r(2),r(8)}, P2 := {r(3),r(5),r(9)}, and P3 := {r(6)}. In
contrast, P is not stratified due to rules r(8) and r(9).

Together with the previous example, the next result shows
that R-stratification properly generalises stratification.
Proposition 1. If P is stratified, then P is R-stratified.

Proof. Let P be a stratification of P = P1, . . . ,Pn. We show
that P is an R-stratification of P. Clearly, P =

⋃n
i=1 Pi. Now

consider arbitrary programs Pi,Pj ∈ P and rules r1 ∈ Pi and
r2 ∈ Pj. If r1

+−→ r2 then, by (P3) and (P5), there is a predicate
in the head of r1 that occurs in a positive body atom of r2.
Therefore i ≤ j, since P is a stratification. Similarly, if r1

−−→

r2, (N4) implies that there is a predicate in the head of r1 that
occurs in a negative body atom of r2, and thus i < j.

The graph structure that is induced by reliances, defined
next, can be used to decide R-stratification in practice, as
shown in Proposition 2 below.

Definition 6 (Graph of Reliances). For a program P, the
graph of reliances GoR(P) is a directed graph that has the
rules of P as its vertices and two sets of edges: positive edges
that correspond to the positive reliances of P and negative
edges that correspond to the negative reliances of P.

Proposition 2. P is R-stratified iff its graph of reliances
GoR(P) contains no directed cycle with a negative edge.

Proof. Consider a program P. First, assume that GoR(P) has
no cycles with negative edges. Let ≈ be an equivalence rela-
tion on P defined by setting r1 ≈ r2 if r1 and r2 occur on a
cycle of positive edges in GoR(P). Let GoR(P)≈ be the fac-
torisation of GoR(P) by ≈:

• vertices of GoR(P)≈ are equivalence classes of≈ (which
we denote as [r]≈ := {r′ ∈ P | r ≈ r′});
• GoR(P)≈ contains an edge [r1]≈ +−→ [r2]≈ whenever

r′1
+−→ r′2 for some ri ∈ [ri]≈ (i ∈ {1,2});

• GoR(P)≈ contains an edge [r1]≈ −−→ [r2]≈ whenever
r′1
−−→ r′2 for some ri ∈ [ri]≈ (i ∈ {1,2}).

Since any cycles in GoR(P) must consist of positive edges
only, GoR(P)≈ is a directed acyclic graph. Any topological
order of the nodes of GoR(P)≈ (which are sets of rules) sat-
isfies the properties of an R-stratification.

Conversely, assume that GoR(P) has a cycle r0
±−→ . . . ±−→

rk
−−→ rk+1

±−→ . . . ±−→ r`−1
±−→ r0. Suppose for a contradic-

tion that P has a stratification P1, . . . ,Pn. For each rule ri
(i = 0, . . . , `−1), let p(i) denote an integer such that ri ∈ Pp(i).
By the properties of R-stratification, we have p(k) < p(k+1)
but also p(i) ≤ p((i + 1)mod`) for each i ∈ {0, . . . , `− 1}.
The latter implies p(k + 1) ≤ p(k)—a contradiction. Hence,
P has no R-stratification.

From the previous result it is clear that, given the graph of
reliances, R-stratification can be decided in polynomial time.
The overall complexity is therefore dominated by the com-
plexity of checking individual reliances—in this sense, it is
polynomial in the total number of rules, and coNP-complete
only in the maximal size of a rule. Moreover, in contrast to the
NP-completeness of checking positive reliances (Theorem 1),
negative reliances can be detected in polynomial time.

Theorem 3. Given rules r1 and r2, it can be decided in poly-
nomial time whether r1

−−→ r2. Checking whether a program
P is R-stratified is coNP-complete.

Proof. We first show that r1
−−→ r2 can be decided in poly-

nomial time. Let r1 and r2 be two rules with sk(r1) =
(B+

1 ,B−1 ,H1) and sk(r2) = (B+
2 ,B−2 ,H2); w.l.o.g. we assume

that Var(r1)∩Var(r2) = /0. To check r1
−−→ r2, we apply the

following algorithm: for each α ∈H1 and each β ∈ B−2 , check
if the following conditions are satisfied:

(i) there exists a most general unifier σ of α and β ;



(ii) there are no skolem symbols in B+
1 σ ∪B+

2 σ ;

(iii) (B−1 σ ∪B−2 σ)∩ (B+
1 σ ∪B+

2 σ) = /0.

If these conditions hold for at least one pair of α and β , return
r1
−−→ r2; else return r1 6

−−→ r2.
The above algorithm clearly runs in polynomial time: at

most |H1|× |B−2 | pairs of atoms need to be considered, their
most general unifier can be computed in linear time, and the
remaining checks are easy to perform in polynomial time.

We now show that the algorithm is correct. For soundness,
assume that the algorithm returns r1

−−→ r2, and let σ be the
unifier considered in the algorithm when terminating. We de-
fine a substitution θ := σ ◦ θc, where θc is the substitution
that maps every variable x to a fresh constant cx unique for
x, and a set of facts F := B+

1 θ ∪B+
2 θ . It is easy to see that

conditions (N1)–(N5) hold for this choice of F and θ .
To show completeness of the algorithm, assume that r1

−−→
r2. Then there exist F and θ satisfying the conditions of Def-
inition 4. We can assume that F = B+

1 θ ∪ B+
2 θ , which is

w.l.o.g. since only conditions (N1) and (N3) require F to con-
tain atoms. By (N4), there exists α ∈ H1 and β ∈ B−2 , such
that αθ = βθ . Thus, in particular α and β have a most gen-
eral unifier σ , that is, θ = σθ ′ for some θ ′. Thus, since there
are no skolem symbols in F = B+

1 θ ∪B+
2 θ by Definition 4,

condition (ii) is also satisfied. Likewise, condition (iii) fol-
lows from (N2) and (N5).

It remains to show that deciding if a program is R-stratified
is coNP-complete. The proof is similar to the proof of coNP-
completeness of R-acyclicity in Theorem 1. Membership is
immediate by verifying the existence of a problematic cy-
cle as in Proposition 2, which can be done in NP. Hard-
ness was shown in Theorem 1 by constructing two rules of
the form r1 : Start→ H1 and r2 : B2 → Goal that satisfy the
equivalence (11). Clearly, (11) still holds if we modify r1 to
r′1 : Start∧not Goal→ H1. Then r2

−−→ r′1, and hence {r′1,r2}
is R-stratified if and only if r′1 6

+−→ r2 if and only if there is no
homomorphism from Q to Q′.

6 Computing Stable Models
In this section, we show that R-stratified programs have at
most one stable model, and that this model can always be
obtained by repeated application of rules according to their
stratification. This leads to a semi-decision procedure for en-
tailment. If the program is also R-acyclic, we obtain a deci-
sion procedure and tight complexity bounds.

Note that Definition 4 does not include a condition that cor-
responds to (P6) from Definition 2. Indeed, as the next exam-
ple shows, such a condition would not lead to a notion of
R-stratification that ensures unique stable models.

Example 5. Given the rules r1 : not p→ q and r2 : q→ p,
we find that r1

+−→ r2 and r2
−−→ r1, so that the program is

not R-stratified. Indeed, it has no stable models for the empty
set of facts. Yet, if we required that H2θ 6⊆ F in Definition 4,
then r2

−−→ r1 would not hold, and the program would be R-
stratified. Intuitively speaking, negative reliances do not just
consider the case where r2 could derive something new, but
also the case where r2 has already been used in a derivation
that is no longer justified after applying r1.

We now define a computation scheme that can be used to
obtain the unique stable model of R-stratified programs, or to
derive a contradiction ⊥ if no such model exists.

Definition 7. For a set of facts F and a program P with R-
stratification P = P1, . . . ,Pn, define S0

P(F) := F and

Si+1
P (F) := T ∞

Pi+1
(Si

P(F)) for 0≤ i < n.

For the remainder of this section, let P denote an R-
stratified program with R-stratification P = P1, . . . ,Pn, and
let F denote a set of facts. We use the abbreviations
Pm

1 :=
⋃m

i=1 Pi, P0
1 := /0, and Si

P := Si
P(F).

We first show that Sn
P is a (not necessarily unique) stable

model of F ∪ P, provided that ⊥ /∈ Sn
P. The next two lem-

mas are key ingredients to this proof. Intuitively speaking,
Lemma 1 asserts that, if the body of a rule r ∈ Pi is satisfied at
some point while computing Si

P, then it will remain satisfied
in all later stages of the computation. The crucial claim is that
the negative part of the rule will not be derived at any later
stage. The proof of Lemma 1 relies on the definition of −−→.

Lemma 1. Consider numbers 1 ≤ i ≤ j ≤ k ≤ n and ` ≥ 0,
a rule r ∈ Pi with skolemisation sk(r) = (B+,B−,H), and
a substitution θ . Then T `

Pj
(S j−1

P ) |= B+θ ,not B−θ implies
Sk

P |= B+θ ,not B−θ .

Proof. For brevity, defineM= T `
Pj

(S j−1
P ) andM′ = Sk

P. As-
sume M |= B+θ ,not B−θ . Suppose for a contradiction that
M′ 6|= B+θ ,not B−θ . Since M⊆M′, we find that M′ |=
B+θ . Hence M′ 6|= not B−θ , that is, M′ ∩B−θ 6= /0. Thus
there are m≥ j and o≥ 0 such that T o

Pm
(Sm−1

P )∩B−θ = /0 and
T o+1

Pm
(Sm−1

P )∩B−θ 6= /0. Hence there is a rule r1 ∈ Pm with
sk(r1) = (B+

1 ,B−1 ,H1), and a substitution θ1 such that

B+
1 θ1 ⊆ T o

Pm(Sm−1
P ) (12)

B−1 θ1∩T o
Pm(Sm−1

P ) = /0 (13)

H1θ1∩B−θ 6= /0 (14)

We show that r1
−−→ r. For brevity, let F ′ := T o

Pm
(Sm−1

P ). If
H1 contains a skolem term f (x), then f (x)θ1 /∈ Terms(F ′).
Indeed, f (x)θ1 ∈ Terms(F ′) would imply that H1θ1 ⊆
T o

Pm
(Sm−1

P ), which would contradict T o
Pm

(Sm−1
P )∩B−θ = /0.

We show that G := γF ′(T o
Pm

(Sm−1
P )) and σ := γF ′(θ1 ∪ θ)

establish the conditions for r1
−−→ r in Definition 4:

(N1) B+
1 σ ⊆ G by (12).

(N2) B−1 σ ∩G = /0 by (13).

(N3) B+σ ⊆ G by T `
Pj

(S j−1
P ) |= B+θ and T `

Pj
(S j−1

P ) ⊆
T o

Pm
(Sm−1

P ); note that if m = j, then o≥ ` which follows
from T `

Pj
(S j−1

P )∩B−θ = /0 and T o+1
Pj

(S j−1
P )∩B−θ 6= /0.

(N4) B−σ ∩H1σ 6= /0 by (14); note that for every skolem
term f (x)θ1 in H1θ1, the definition of γF ′ ensures
γF ′( f (x)θ1) = f (γF ′(xθ1)) (the former occurs in B−σ ,
the latter occurs in H1σ ).

(N5) B−σ ∩G = /0 by T o
Pm

(Sm−1
P )∩B−θ = /0.



Thus r1
−−→ r. However, r ∈ Pi, r1 ∈ Pm, and i≤ j ≤ m, which

contradicts Definition 5.

Lemma 2 complements the previous result. Intuitively
speaking, it states that a rule r ∈ Pi, which is clearly satisfied
after computing Si

P, will remain satisfied in all later stages of
the computation. The key part of this claim concerns the case
that r is satisfied because its positive body is not satisfied. In
this case, the positive body will never become satisfied later
on, unless the head of the rule becomes satisfied as well. This
argument hinges upon the definition of +−→.

Lemma 2. Consider numbers 1≤ i < j≤ k≤ n, a rule r ∈ Pi,
and a substitution θ . Then S j

P |= sk(r)θ implies Sk
P |= sk(r)θ .

Proof. Let sk(r) = (B+,B−,H) and suppose for a contra-
diction that S j

P |= sk(r)θ and Sk
P 6|= sk(r)θ . Since S j

P ⊆ Sk
P,

neither B−θ ∩ S j
P 6= /0 nor S j

P |= (B+ ∪H)θ ,not B−θ may
hold. Therefore, B+θ 6⊆ S j

P. By Sk
P 6|= sk(r)θ , we have Sk

P |=
B+θ ,not B−θ and Sk

P 6|= Hθ . As a consequence, there exists
a maximal non-empty set of facts A such that A ⊆ B+θ and
A∩ S j

P = /0. Hence there are numbers ` ≥ 0 and m such that
j < m ≤ k, a rule r1 ∈ Pm with sk(r1) = (B+

1 ,B−1 ,H1) and a
substitution θ1 such that

B+
1 θ1 ⊆ T `

Pm(Sm−1
P ) (15)

B−1 θ1∩T `
Pm(Sm−1

P ) = /0 (16)

H1θ1∩A 6⊆ T `
Pm(Sm−1

P ) (17)

Let F ′ := T `
Pm

(Sm−1
P )∪ (A \H1θ1). We claim that the set of

facts G := γF ′(T `
Pm

(Sm−1
P )∪ (A\H1θ1)) and substitution σ :=

γF ′(θ1∪θ) meet the conditions for r1
+−→ r in Definition 2.

(P1) B+
1 σ ⊆ G by (15).

(P2) B−1 σ ∩G = /0 by (16) and B−1 θ1 ∩A = /0; note that the
latter follows from A ⊆ Sk

P and Sk
P |= B+

1 θ1,not B−1 θ1

which is a consequence of Lemma 1, T `
Pm

(Sm−1
P ) |=

B+
1 θ1,not B−1 θ1, r1 ∈ Pm and k ≥ m.

(P3) B+σ ⊆ G∪H1σ by B+θ ⊆ F ′∪H1θ1.

(P4) B−σ ∩ (G∪H1σ) = /0 by Sk
P |= B+θ ,not B−θ .

(P5) B+σ 6⊆ G by (17).

(P6) Hσ 6⊆ G∪H1σ by G∪H1θ1 ⊆ Sk
P and Sk

P 6|= Hθ .

Thus, by r1 ∈ Pm, r ∈ Pi and m > i we derive a contradiction
and show our initial claim.

Using Lemmas 1 and 2, we can show the following result.

Proposition 3. If ⊥ /∈ Sn
P, then Sn

P |=SM F ∪P.

Proof. We show that ⊥ /∈ Sn
P implies (♣) Sn

P is a model of
F ∪GL(Pn

1 ,Sn
P) and (♠) the model Sn

P of F ∪GL(Pn
1 ,Sn

P) is
minimal.

(♣) We prove Sk
P |=SM F ∪GL(Pk

1 ,Sk
P) for all k ∈ {0, . . . ,n}

by induction over k.
If k = 0, then Pk

1 = /0 and Sk
P = F . Clearly, F is a stable

model of F , since GL( /0,F) = /0 and T ∞
/0 (F) = F .

For the induction step, let Sk
P be a model of F ∪GL(P1,S

k
P)

(induction hypothesis). We claim that Sk+1
P is a model of

F ∪GL(Pk+1
1 ,Sk+1

P ). Note that Sk+1
P |= F ∪GL(Pk+1

1 ,Sk+1
P ) is

equivalent to Sk+1
P |= F ∪ sk(Pk+1

1 ). Since Sk+1
P = T ∞

Pk+1
(Sk

P),
we find Sk+1

P |= F ∪ sk(Pk+1). It remains to show Sk+1
P |=

sk(Pk
1 ). Thus consider an arbitrary rule r ∈ Pk

1 . By induction
hypothesis, Sk

P |= sk(Pk
1 ), and thus Sk

P |= sk(r). By Lemma 2,
Sk+1

P |= sk(r). Since r was arbitrary, this shows the claim.
(♠) Suppose for a contradiction that there isM( Sn

P such
thatM |= F ∪GL(Pn

1 ,Sn
P). Then there are `≥ 0 and j, where

1 ≤ j ≤ n, such that T `
Pj

(S j−1
P ) ⊆M and T `+1

Pj
(S j−1

P ) 6⊆ M.
Thus there is a rule r ∈ Pj with sk(r) = (B+,B−,H), and a
substitution θ with

B+
θ ⊆ T `

Pj
(S j−1

P ) (18)

B−θ ∩T `
Pj

(S j−1
P ) = /0 (19)

Hθ 6⊆M (20)

By T `
Pj

(S j−1
P ) ⊆ M and (18), B+θ ⊆ M. Together with

(20) and M |= F ∪GL(Pn
1 ,Sn

P), this implies (B+θ , /0,Hθ) /∈
GL(Pn

1 ,Sn
P), and thus B−θ ∩ Sn

P 6= /0. However, by (18), (19),
and Lemma 1, Sn

P |= B+θ ,not B−θ , which yields the required
contradiction.

The next lemma captures the main statement that is needed
to prove the claimed uniqueness of the stable model.
Lemma 3. IfM |=SM P∪F, then Sn

P =M.

Proof. We show by induction that, for every k ∈ {0, . . . ,n},
we have Sk

P = T ∞

GL(Pk
1 ,M)

(F). This establishes the claim since

the latter is equal toM if k = n.
For k = 0, the claim is immediate: S0

P = F , P0
1 = /0 and

GL(P0
1 ,M) = /0, and thus T ∞

GL(P0
1 ,M)

(F) = F .
For the induction step, assume that the claim has been

shown for k. We show that Sk+1
P = T ∞

GL(Pk+1
1 ,M)

(F).

We first show that Sk+1
P ⊆ T ∞

GL(Pk+1
1 ,M)

(F). For brevity, we

use T i to denote T ∞

GL(Pi
1,M)(F). Suppose for a contradiction

that Sk+1
P 6⊆ T k+1. Then there are numbers m ∈ {1, . . . ,k +1}

and `≥ 0 such that

T `
Pm(Sm−1

P )⊆ T k+1 (21)

T `+1
Pm

(Sm−1
P ) 6⊆ T k+1 (22)

By the induction hypothesis, Sk
P ⊆ T k+1, so (22) implies m =

k + 1. Thus there is a rule r ∈ Pk+1 with sk(r) = (B+,B−,H)
and a substitution θ such that

B+
θ ⊆ T `

Pk+1
(Sk

P) (23)

B−θ ∩T `
Pk+1

(Sk
P) = /0 (24)

Hθ 6⊆ T k+1 (25)

Together, (23), (21) (where m = k +1), and (25) imply

B−θ ∩T k+1 6= /0 (26)



Thus there is a rule r1 with sk(r1) = (B+
1 ,B−1 ,H1), a substitu-

tion θ1, and a number j such that

B+
1 θ1 ⊆ T j

GL(Pk+1
1 ,M)

(F) (27)

B−1 θ1∩M= /0 (28)

B−θ ∩T j
GL(Pk+1

1 ,M)
(F) = /0 (29)

B−θ ∩H1θ1 6= /0 (30)

Define F ′ := T j
GL(Pk+1

1 ,M)
(F)∪ T `

Pk+1
(Sk

P). We claim that the

set of facts G := γF ′(F ′) and substitution σ := γF ′(θ ∪ θ1)
satisfy the conditions for r1

−−→ r in Definition 4. By defini-
tion, G does not contain function symbols.

(N1) B+
1 σ ⊆ G by (27).

(N2) B−1 σ ∩G = /0 by (28) and F ′ ⊆M, obtained from (21)
(where m = k +1).

(N3) B+σ ⊆ G by (23).

(N4) B−σ ∩H1σ 6= /0 by (30).

(N5) B−σ ∩G = /0 by (24) and (29).

Thus r1
−−→ r, and therefore r1 ∈ Pk

1 by Definition 5. By (28)
and T k ⊆ M, we have B−1 θ1 ∩ T k = /0. By the induction
hypothesis, T k = Sk

P, so B−1 θ1 ∩ Sk
P = /0. By (30) and (24),

H1θ1 6⊆ Sk
P. Together, these observations imply that B+

1 θ1 6⊆
Sk

P. Using again T k = Sk
P, we find that B+

1 θ1 6⊆ T k.
From B+

1 θ1 6⊆ T k and (27), we conclude that there is a rule
r2 ∈ Pk+1 with sk(r2) = (B+

2 ,B−2 ,H2), a substitution θ2, and a
number o < j such that

B+
2 θ2 ⊆ T o

GL(Pk+1
1 ,M)

(F) (31)

B−2 θ2∩M= /0 (32)

H2θ2∩B+
1 θ1 6⊆ T o

GL(Pk+1
1 ,M)

(F) (33)

By (29) and (30), there is α ∈ H1θ1 \T j
GL(Pk+1

1 ,M)
(F), and by

(33), there is β ∈ (H2θ2∩B+
1 θ1)\T o

GL(Pk+1
1 ,M)

(F). Let F ′′ :=

M\{α,β}. We claim that the set of facts G′ := γF ′′(F ′′) and
substitution σ ′ := γF ′′(θ1∪θ2) satisfy the conditions for r2

+−→
r1 in Definition 2. By definition, G′ does not contain function
symbols.

(P1) B+
2 σ ′ ⊆ G′ by (31) and T o

GL(Pk+1
1 ,M)

(F) ⊆ F ′′. For

the latter, note that β /∈ T o
GL(Pk+1

1 ,M)
(F), and that

α /∈ T o
GL(Pk+1

1 ,M)
(F) since α /∈ T j

GL(Pk+1
1 ,M)

(F) and

T o
GL(Pk+1

1 ,M)
(F)⊆ T j

GL(Pk+1
1 ,M)

(F) (by o < j).

(P2) B−2 σ ′∩G′ = /0 by (32).

(P3) B+
1 σ ′ ⊆ G′∪H2σ ′ by (27) and α /∈ T j

GL(Pk+1
1 ,M)

(F).

(P4) B−1 σ ′∩ (G′∪H2σ ′) = /0 by (28) and H2θ2 ⊆M.

(P5) B+
1 σ ′ 6⊆ G′ by our choice of β .

(P6) H1σ ′ 6⊆ G′ ∪ H2σ ′ by our choice of α and α /∈
T j
GL(Pk+1

1 ,M)
(F).

Thus r2
+−→ r1. This contradicts the assumption that r1 ∈ Pk

1
while r2 ∈ Pk+1, and thus refutes our initial assumption that
Sk+1

P 6⊆ T k+1. We have thus shown that Sk+1
P ⊆ T k+1.

For the converse, recall that Sk+1
P is a stable model of

Pk+1
1 (by Proposition 3 and ⊥ 6∈ Sk+1

P which is a conse-
quence of ⊥ 6∈ T k+1). Thus Sk+1

P = T ∞

GL(Pk+1
1 ,Sk+1

P )
(F). Now

since Sk+1
P ⊆ T k+1 ⊆M, we find that

GL(Pk+1
1 ,Sk+1

P )⊇ GL(Pk+1
1 ,T k+1)⊇ GL(Pk+1

1 ,M).

Thus Sk+1
P = T ∞

GL(Pk+1
1 ,Sk+1

P )
(F) ⊇ T ∞

GL(Pk+1
1 ,M)

(F) = T k+1 as

required.

Summing up, we obtain the main result of this section.

Theorem 4. If ⊥ /∈ Sn
P, then Sn

P is the unique stable model of
F ∪P. Otherwise F ∪P does not have a stable model.

Proof. Assume that⊥ /∈ Sn
P. By Proposition 3, Sn

P |=SM F∪P.
By Lemma 3, every stable model of P∪ F is equal to Sn

P,
which is the claimed uniqueness.

If ⊥ ∈ Sn
P, then let P′ := P\PC, where PC is the set of con-

straints that are in P. P′ is clearly R-stratified, so Sn
P \⊥ is

the unique stable model of F ∪P′. Since there exists at least
one constraint c ∈ PC such that Sn

P 6|= c, F ∪P does not have a
stable model.

We can further improve the complexity results of Theo-
rem 2 for programs that are both R-acyclic and R-stratified.

Theorem 5. Let P be an R-acyclic R-stratified program, let
F be a set of facts, and let α be a fact. Deciding P∪F |= α

is 2EXPTIME-complete w.r.t. program complexity and P-
complete w.r.t. data complexity.

Proof. In the proof of Theorem 2, we have already shown
that there is a maximal number n of terms that may occur in
any stable model of an R-acyclic program P, where n is dou-
ble exponential in the size of P∪F , and polynomial in the
size of F . If a is the maximal arity of predicates in P, and b
is the number of predicate symbols, then the size of the com-
puted stable model is bounded by b ·na, which is still double
exponential in P∪F and polynomial in F . By Theorem 4, we
can compute the unique stable model of P∪F as in Defini-
tion 7, where we only need to consider substitutions that map
to the bounded set of relevant ground terms. The applicabil-
ity of one ground rule over a set of facts of size at most b ·na

can be checked deterministically in time b · na. As discussed
in the proof of Theorem 2, the number of ground rules con-
sidered in each step is again double exponential in the size of
P∪F and polynomial in the size of F ; the number of steps
has the same bound, since each rule can be applied at most
once. Hence, Sn

P can be computed in time that is double expo-
nential in the size of P∪F , and polynomial in the size of F ,
and the claimed upper bounds for complexity follow.

Hardness for 2EXPTIME w.r.t. the size of P∪ F follows
by the same Turing machine construction as in the proof of



Theorem 2, applied to deterministic Turing machines only.
The resulting program is R-stratified since the transition rules
do not contain negation for deterministic Turing machines.
Hardness for P w.r.t. the size of F follows from the fact that
already Datalog (i.e., rules without negation, existential quan-
tifiers, or function symbols) is P-complete w.r.t. data com-
plexity [Dantsin et al., 2001].

7 Reliances under Constraints
To widen the classes of logic programs with unique stable
models, it has been proposed to study stratification for a par-
ticular set of facts [Bidoit and Froidevaux, 1991]. Indeed, it
might be that a program that does not have a unique stable
model for all sets of facts still has a unique stable model for
all sets of facts that arise in the context of a given applica-
tion. On the other hand, notions that depend on a particular
set of facts do not easily capture a wider class of relevant sets
of facts, making it hard to develop logic programs that are
robust to changing inputs.

In this section, we therefore propose a generalisation of R-
acyclicity and R-stratification that considers constraints, that
is, rules of the form B+→⊥ where B+ is a set of atoms. As
illustrated by the following example, constraints restrict the
possible types of input so that more programs are stratified.

Example 6. Organic molecules are those containing carbon
and each inorganic entity is a molecule of geological origin:

r1 : mol(x)∧hA(x,y)∧ c(y)→ organic(x)
r2 : mol(x)∧not organic(x)→ inorganic(x)
r3 : inorganic(x)→mol(x)∧geoOrigin(x)

It is easily checked that r1
−−→ r2

+−→ r3
+−→ r1, so {r1,r2,r3} is

not R-stratified by Proposition 2. Although the program has a
unique stable model for all sets of facts, there is no stratified
order of rule applications that produces the stable model. In
particular, the set of facts {inorganic(a),hA(a,b),c(b)} re-
quires us to apply r3 before r1. This situation is undesired,
since inorganic molecules usually do not contain carbon, and
a refined notion of reliance should take this into account.

Definition 8 (Reliances under Constraints). Let r1 and r2 be
rules, and let C be a set of constraints.

• r2 positively relies on r1 under C (written r1
+−→C r2) if

there exists a set of facts F and a substitution θ that
satisfy the conditions in Definition 2, and where F |= C.

• r2 negatively relies on r1 under C (written r1
−−→C r2) if

there exists a set of facts F and a substitution θ that
satisfy the conditions in Definition 4, and where F |= C.

The classes of programs that are R-acyclic under C and R-
stratified under C are defined as in Definition 3 and 5, respec-
tively, but using ±−→C instead of ±−→.

It should be noted that our earlier results treat constraints
like any other rule of P. This is still possible here, e.g., if
some constraints are not deemed to be relevant for showing
stratification. Indeed, the fewer constraints are part of C, the
fewer additional checks are needed to compute reliances.

Example 7. Consider the rules of Example 6 and the con-
straint c : inorganic(x)∧hA(x,y)∧ c(y)→⊥. With C := {c},
we find r3 6

+−→C r1, and indeed P1 := {r1}, P2 := {r2,r3} is an
R-stratification under these constraints.

The consideration of constraints increases the complexity
of checking positive reliances from NP to ΣP

2 , i.e., the check
can be performed in polynomial time by a nondeterministic
Turing machine using an NP oracle. Yet, as before, the NP
computations correspond to checking the applicability of a
rule or constraint to a small set of facts, for which efficient
implementations exist. A lower bound can be shown by re-
ducing satisfiability of a quantified Boolean formula ∃p.∀q.ϕ
to testing a positive reliance under a set of constraints.
Theorem 6. Given rules r1 and r2, and a set of constraints C,
deciding whether r1

+−→C r2 is ΣP
2 -complete. Checking whether

a program P is R-acyclic under constraints is ΠP
2 -complete.

Proof. We first show the complexity for deciding r1
+−→C r2.

Membership: As in the proof of Theorem 1, we can guess
a set of facts F and a substitution θ with size polynomial
in the input and then check in polynomial time whether the
conditions of Definition 2 are met. Given a constraint c ∈C,
we can check F |= c by invoking a (co)NP oracle that decides
the existence of a substitution under which the body of c is
included in F (which would show F 6|= c). Since the number
of oracle calls is linear in |C|, the overall check is in ΣP

2 .
Hardness: We consider quantified Boolean formulae

(QBF) of the form ∃p.∀q.ϕ , where p and q are lists of propo-
sitional variables, and ϕ is a propositional formula over p∪q.
Deciding the satisfiability of such a QBF is ΣP

2 -hard, even if
it is of the form

∃p.∀q.(`11∧ `12∧ `13)∨ . . .∨ (`n1∧ `n2∧ `n3)

where each `i j is a propositional variable or a negated propo-
sitional variable [Bauer et al., 1973]. Given a QBF ∃p.∀q.ϕ
of this form, we construct rules r1 and r2, and constraints C
such that

∃p.∀q.ϕ is satisfiable ⇔ r1
+−→C r2. (34)

Let p = 〈p1, . . . , pk〉 and q = 〈q1, . . . ,qm〉. Rules r1 and r2 are
defined as follows, where 0 and 1 are constants, expressions
and all other terms are variables:

r1: V(x1, . . . ,xk)∧
N(0,0,0)∧N(0,0,1)∧N(0,1,0)∧

N(0,1,1)∧N(1,0,0)∧N(1,0,1)∧N(1,1,0)∧
Lpos(0,0)∧Lpos(1,1)∧Lneg(0,1)∧Lneg(1,0) →
∃v.B1(v,1,x1)∧B1(v,0,x1)∧ . . .∧Bk(v,1,xk)∧Bk(v,0,xk)

r2: B1(w,y1,y1)∧ . . .∧Bk(w,yk,yk)→ Goal

Facts matching the atom V(x1, . . . ,xk) in r1 will be inter-
preted as truth assignments for p. Facts about N enumerate
all cases in which a conjunction of three truth values evalu-
ates to false, while facts about Lpos and Lneg yield a conve-
nient way to compute the truth value of positive and negative
propositional literals. The predicates Bi are used to constrain
the possible truth assignments: the body of r2 can only match
the head of r1 if each variable xi is mapped to 0 or 1.



To define C, we consider variables z1, . . . ,zk (represent-
ing p), z′1, . . . ,z

′
m (representing q), and u11,u12,u13, . . . ,

un1,un2,un3 (representing truth values of literals). Given
any literal `i j of the QBF, let Li j := Lpos if `i j is a positive
literal and Li j := Lneg otherwise, and let ξi j := zo if `i j
contains the existentially quantified propositional variable
po and ξi j := z′o if `i j contains the universally quantified
propositional variable qo. We define C to consist of a single
constraint c:

c: V(z1, . . . ,zk)∧
N(u11,u12,u13)∧ . . .∧N(un1,un2,un3)∧

L11(ξ11,u11)∧L12(ξ12,u12)∧L13(ξ13,u13)∧
. . .

Ln1(ξn1,un1)∧Ln2(ξn2,un2)∧Ln3(ξn3,un3) →⊥

First, we show ⇒ of (34). Assume that ∃p.∀q.ϕ is satis-
fiable, i.e., there exists a truth assignment v∃ : p → {0,1}
such that for every truth assignment v∀ : q → {0,1}, we
have v∃ ∪ v∀ |= ϕ . We define a substitution θ by setting
θ(xi) := v∃(pi) and a set of facts F as follows:

F := {V(v∃(p1), . . . ,v∃(pk))}∪
{Lpos(0,0),Lpos(1,1),Lneg(0,1),Lneg(1,0)}∪
{N(v1,v2,v3) | v1,v2,v3 ∈ {0,1}}\{N(1,1,1)}

It is easy to check that conditions (P1)–(P6) are satisfied.
Suppose for a contradiction that F 6|= c, and let ψ denote
the body of c. Then there exists a substitution σ for the
variables in c, such that ψσ ⊆ F . Since V (z1, . . . ,zk) ∈ ψ ,
we obtain v∃(pi) = σ(zi) for all i = 1, . . . ,k. Similarly, de-
fine v∀ : q→ {0,1} by setting v∀(qi) := σ(z′i). Clearly, the
truth value for every literal `i j under v∃ ∪ v∀ is σ(ui j). By
ψσ ⊆ F , we find v∃ ∪ v∀ 6|= `i1 ∧ `i2 ∧ `i3 for all i− 1, . . . ,n.
Thus v∃ ∪ v∀ 6|= ϕ , which contradicts the assumption on v∃.
Thus F |= c as required.

Next, we show ⇐ of (34). Assume that r1
+−→C r2

is witnessed by a set of facts F and substitution θ .
By (P1), V(x1, . . . ,xk)θ ∈ F , and, by (P3) and (P5), we
have Bi(w,yi,yi)θ ∈ {Bi( f (x),1,xi)θ ,Bi( f (x),0,xi)θ} for
every i ∈ {1, . . . ,k}, where f is the skolem function used
when skolemising r1. This implies that θ(xi) ∈ {0,1} for
all i ∈ {1, . . . ,k}. We define v∃ : p → {0,1} by setting
v∃(pi) := θ(xi). Suppose for a contradiction that there is
a truth assignment v∀ : q → {0,1} such that v∃∪ v∀ 6|= ϕ .
Let σ be the substitution for the variables in c defined by
setting σ(zi) := v∃(pi), σ(z′i) := v∀(qi), and σ(ui j) = 1 if
v∃∪ v∀ |= `i j and σ(ui j) = 0 otherwise. It is easy to see that
ψσ ⊆ F , where ψ is the body of c as above. This contradicts
r1

+−→C r2, so we conclude that no such v∀ exists, i.e., that
∃p.∀q.ϕ is not satisfiable.

Finally, we show that checking R-acyclicity under con-
straints is ΠP

2 -complete. Membership follows since it can
be checked in ΣP

2 that P is not R-acyclic under constraints,
analogously to the case of R-acyclicity in Theorem 1. For
hardness, consider the rules r1 and r2, and constraints C as
constructed in the above hardness proof, as well as the rule
r3 : Goal → Start. Let r′1 be obtained from r1 by adding
Start to its body atoms. Clearly, the program {r′1,r2,r3} is

R-acyclic under C if and only if ∃p.∀q.ϕ is satisfiable.

As before, the relations +−→C and −−→C induce a graph of
reliances under constraints. Analogously to Proposition 2, we
can show that P is R-stratified under constraints if and only if
this graph does not contain cycles that involve −−→C. This is the
basis for deciding R-stratification under constraints, leading
to the following result.

Theorem 7. Given rules r1 and r2, and a set of constraints C,
the problem of deciding whether r1

−−→C r2 is in ∆P
2 . Checking

whether a program P is R-stratified under C is ΠP
2 -complete.

Proof. In the proof of Theorem 3, we showed that r1
−−→ r2

can be decided in polynomial time by describing a polyno-
mial, correct and complete algorithm. We extend the same al-
gorith to check r1

−−→C r2, by checking for each F and θ such
that r1

−−→ r2 (F and θ as defined in the correctness part of
Theorem 3 proof) whether F |= C. In order to decide whether
F |=C, we need to check for each c∈C whether F |= c, which
requires a call to an NP-oracle. Since the number of possible
F and θ pairs that the algorithm tests is polynomial in the
size of the input, the algorithm needs at most a polynomial
number of steps, each of which invokes a polynomial num-
ber of calls to an NP-oracle. As a consequence, a polynomial
number of calls to an NP-oracle is required overall and the
problem lies in ∆P

2 .
It remains to show that deciding R-stratification of a pro-

gram P under a set of constraints C is ΠP
2 -complete. Member-

ship follows by the fact that it can be checked in ΣP
2 whether

a program P is not R-stratified under a set of constraints C.
Indeed, as discussed above, this can be detected by finding
a cycle of the form r0

±−→C . . . ±−→C rk
−−→C rk+1

±−→C . . . ±−→C
r`−1

±−→C r0, where ` ≤ |P|. One can guess such a cycle and
justifications Fi, θi for each of the reliances ri

±−→C r(i+1)mod`,
and these choices can be verified by a polynomial number of
calls to an NP-oracle.

For hardness, we show that checking satisfiability of a
quantified Boolean formula ∃p.∀q.ϕ can be reduced to
checking whether a program P is not R-stratified under a set
of constraints C. In the proof of Theorem 6, we constructed a
set of constraints C and rules r1 : B1→H1 and r2 : B2→Goal
satisfying (34). If we modify r1 to r′1 : B1 ∧not Goal→ H1,
then ∃p.∀q.ϕ is satisfiable if and only if {r′1,r2} is not R-
stratified under C, which proves our claim.

Given an R-stratification of P under constraints C, we can
again define a computation scheme to obtain unique stable
models. C in this case is evaluated on all strata, though one
can also defer constraint checking to the highest stratum.

Definition 9. For a set of facts F and a program P with
R-stratification P = P1, . . . ,Pn under constraints C, define
S0

P,C(F) := TC(F) and

Si+1
P,C(F) := T ∞

Pi+1∪C(Si
P,C(F)) for 0≤ i < n.

In the rest of the section, we abbreviate Si
P,C(F) with Si

P,C.
The following result can be shown using the same overall

proof structure as in Section 6. The main difference is that in
all arguments that discuss potential reliances between rules,



we also need to show satisfaction of the constraints. This is
usually a consequence of the assumption that⊥ is not derived.

Theorem 8. If⊥ /∈ Sn
P,C(F), then Sn

P,C(F) is the unique stable
model of F ∪P∪C, or else F ∪P∪C has no stable model.

We first show some intermediate results that we will use
for the proof of the main claim.

Lemma 4. Consider numbers 1≤ i≤ j≤ k≤ n, a rule r ∈ Pi
with sk(r) = (B+,B−,H), a substitution θ , and some ` ≥ 0,
such that ⊥ 6∈ Sk

P,C. Then T `
Pj∪C(S j−1

P,C ) |= B+θ ,not B−θ im-

plies Sk
P,C |= B+θ ,not B−θ .

Proof. For brevity, defineM= T `
Pj∪C(S j−1

P,C ) andM′ = Sk
P,C.

Assume M |= B+θ ,not B−θ . Suppose for a contradic-
tion that M′ 6|= B+θ ,not B−θ . Since M ⊆ M′, we
find that M′ |= B+θ . Hence M′ 6|= not B−θ , that is,
M′∩B−θ 6= /0. Thus there are m ≥ j and o ≥ 0 such that
T o

Pm∪C(Sm−1
P,C )∩B−θ = /0 and T o+1

Pm∪C(Sm−1
P,C )∩B−θ 6= /0. Hence

there is a rule r1 ∈ Pm with sk(r1) = (B+
1 ,B−1 ,H1), and a sub-

stitution θ1 such that

B+
1 θ1 ⊆ T o

Pm∪C(Sm−1
P,C ) (35)

B−1 θ1∩T o
Pm∪C(Sm−1

P,C ) = /0 (36)

H1θ1∩B−θ 6= /0 (37)

We show that r1
−−→C r. For brevity, let F ′ := T o

Pm∪C(Sm−1
P,C ). If

H1 contains a skolem term f (x), then f (x)θ1 /∈ Terms(F ′).
Indeed, having f (x)θ1 ∈ Terms(F ′) would imply that
H1θ1 ⊆ T o

Pm∪C(Sm−1
P,C ), which would subsequently contradict

T o
Pm∪C(Sm−1

P,C )∩B−θ = /0.

We show that G := γF ′(T o
Pm∪C(Sm−1

P,C )) and σ := γF ′(θ1∪θ)
establish the conditions for r1

−−→C r in Definition 4:

(N1) B+
1 σ ⊆ G by (35).

(N2) B−1 σ ∩G = /0 by (36).

(N3) B+σ ⊆ G is a consequence of T `
Pj∪C(S j−1

P,C ) |= B+θ and

T `
Pj∪C(S j−1

P,C )⊆ T o
Pm∪C(Sm−1

P,C ); note that if m = j, then

o ≥ ` which follows from T `
Pj∪C(S j−1

P,C )∩B−θ = /0 and

T o+1
Pj∪C(S j−1

P,C )∩B−θ 6= /0.

(N4) B−σ ∩H1σ 6= /0 by (37); note that for every skolem
term f (x)θ1 in H1θ1, the definition of γF ′ ensures
γF ′( f (x)θ1) = f (γF ′(xθ1)) (the former occurs in B−σ ′,
the latter occurs in H1σ ′).

(N5) B−σ ∩G = /0 by T o
Pm∪C(Sm−1

P,C )∩B−θ = /0.

Since⊥ 6∈G, we have G |=C. Thus r1
−−→C r. However, r ∈ Pi,

r1 ∈ Pm, and i≤ j ≤ m, which contradict Definition 5.

Lemma 5. Consider numbers 1≤ i < j≤ k≤ n, a rule r ∈ Pi,
and a substitution θ , such that ⊥ 6∈ Sk

P,C. Then S j
P,C |= sk(r)θ

implies Sk
P,C |= sk(r)θ .

Proof. Let sk(r) = (B+,B−,H) and suppose for a con-
tradiction that S j

P,C |= sk(r)θ and Sk
P,C 6|= sk(r)θ . Since

S j
P,C ⊆ Sk

P,C, we cannot have either B−θ ∩ S j
P,C 6= /0

or S j
P,C |= (B+∪H)θ ,not B−θ . So, B+θ 6⊆ S j

P,C. By
Sk

P,C 6|= sk(r)θ , we derive Sk
P,C |= B+θ ,not B−θ and

Sk
P,C 6|= Hθ . Therefore, there exists non-empty set of facts

A such that A ⊆ B+θ and A ∩ S j
P,C = /0. Hence there are

numbers `≥ 0 and m such that j < m≤ k, a rule r1 ∈ Pm with
sk(r1) = (B+

1 ,B−1 ,H1) and a substitution θ1 such that

B+
1 θ1 ⊆ T `

Pm∪C(Sm−1
P,C ) (38)

B−1 θ1∩T `
Pm∪C(Sm−1

P,C ) = /0 (39)

H1θ1∩A 6⊆ T `
Pm∪C(Sm−1

P,C ) (40)

Let F ′ := T `
Pm∪C(Sm−1

P,C )∪ (A \H1θ1). We claim that the set
of facts G := γF ′(T `

Pm∪C(Sm−1
P,C )∪ (A\H1θ1)) and substitution

σ := γF ′(θ1 ∪ θ) meet the conditions for r1
+−→C r in Defini-

tion 2.

(P1) B+
1 σ ⊆ G by (38).

(P2) B−1 σ ∩ G = /0 by (39) and B−1 θ1 ∩ A = /0; note
that the latter follows from A ⊆ Sk

P,C and Sk
P,C |=

B+
1 θ1,not B−1 θ1 which is a consequence of Lemma 4,

T `
Pm∪C(Sm−1

P,C ) |= B+
1 θ1,not B−1 θ1, r1 ∈ Pm and k ≥ m.

(P3) B+σ ⊆ G∪H1σ by B+θ ⊆ F ′∪H1θ1.

(P4) B−σ ∩ (G∪H1σ) = /0 by Sk
P,C |= B+θ ,not B−θ .

(P5) B+σ 6⊆ G by (40).

(P6) Hσ 6⊆ G∪H1σ by G∪H1θ1 ⊆ Sk
P,C and Sk

P,C 6|= Hθ .

Also ⊥ 6∈ G, so, G |= C. Thus, by r1 ∈ Pm, r ∈ Pi and m > i
we derive a contradiction and show our initial claim.

Proposition 4. If ⊥ /∈ Sn
P,C, then Sn

P,C |=SM F ∪P∪C.

Proof. We show that ⊥ /∈ Sn
P,C implies (♣) Sn

P,C is a
model of F ∪ GL(Pn

1 ∪C,Sn
P,C) and (♠) the model Sn

P,C of
F ∪GL(Pn

1 ∪C,Sn
P,C) is minimal.

(♣) We prove Sk
P,C |=SM F ∪GL(Pk

1 ∪C,Sk
P,C) for all k ∈

{0, . . . ,n} by induction over k.
If k = 0, then Pk

1 = /0 and Sk
P,C = F (since⊥ /∈ Sn

P,C). Clearly,
F is a stable model of F ∪GL(C,F), since T ∞

GL(C,F)(F) = F .

For the induction step, let Sk
P,C be a model of

F ∪GL(Pk
1 ∪C,Sk

P,C) (induction hypothesis). We claim
that Sk+1

P,C is a model of F ∪ GL(Pk+1
1 ∪ C,Sk+1

P,C ). Note
that Sk+1

P,C |= F ∪ GL(Pk+1
1 ∪ C,Sk+1

P,C ) is equivalent to
Sk+1

P,C |= F ∪ sk(Pk+1
1 ∪C). Since Sk+1

P,C = T ∞
Pk+1∪C(Sk

P,C),
we find Sk+1

P,C |= F ∪ sk(Pk+1). It remains to show
Sk+1

P,C |= sk(Pk
1 ∪C). Thus consider an arbitrary rule r ∈ Pk

1 .
By induction hypothesis, Sk

P,C |= sk(Pk
1 ∪ C), and thus



Sk
P,C |= sk(r). By Lemma 5, Sk+1

P,C |= sk(r). Since r was
arbitrary, this shows the claim.

(♠) Suppose for a contradiction that there is M ( Sn
P,C

such that M |= F ∪GL(Pn
1 ∪C,Sn

P,C). Then there are ` ≥ 0

and j, where 1 ≤ j ≤ n, such that T `
Pj∪C(S j−1

P,C ) ⊆ M and

T `+1
Pj∪C(S j−1

P,C ) 6⊆ M. Thus there is a rule r ∈ Pj with sk(r) =
(B+,B−,H), and a substitution θ with

B+
θ ⊆ T `

Pj∪C(S j−1
P,C ) (41)

B−θ ∩T `
Pj∪C(S j−1

P,C ) = /0 (42)

Hθ 6⊆M (43)

By T `
Pj∪C(S j−1

P,C )⊆M and (41), B+θ ⊆M. Together with (43)
andM |= F ∪GL(Pn

1 ∪C,Sn
P,C), this implies (B+θ , /0,Hθ) /∈

GL(Pn
1 ∪C,Sn

P,C), and thus B−θ ∩Sn
P,C 6= /0. However, by (41),

(42), and Lemma 4, Sn
P,C |= B+θ ,not B−θ , which yields the

required contradiction.

Lemma 6. IfM |=SM F ∪P∪C, then Sn
P,C =M.

Proof. We show by induction that, for every k ∈ {0, . . . ,n},
we have Sk

P,C = T ∞

GL(Pk
1∪C,M)

(F). This establishes the claim

since the latter is equal toM if k = n.
For k = 0, we have S0

P,C = F and T ∞

GL(P0
1∪C,M)

(F) = C(F).

SinceM |=SM F ∪P∪C, ⊥ 6∈C(F).
For the induction step, assume that the claim has been

shown for k. We show that Sk+1
P,C = T ∞

GL(Pk+1
1 ∪C,M)

(F).

We first show that Sk+1
P,C ⊆ T ∞

GL(Pk+1
1 ∪C,M)

(F). For brevity,

we use T i to denote T ∞

GL(Pi
1∪C,M)(F). Suppose for a con-

tradiction that Sk+1
P,C 6⊆ T k+1. Then there are numbers

m ∈ {1, . . . ,k +1} and `≥ 0 such that

T `
Pm∪C(Sm−1

P,C )⊆ T k+1 (44)

T `+1
Pm∪C(Sm−1

P,C ) 6⊆ T k+1 (45)

By the induction hypothesis, Sk
P,C ⊆ T k+1, so (45) im-

plies m = k + 1. Thus there is a rule r ∈ Pk+1 with
sk(r) = (B+,B−,H) and a substitution θ such that

B+
θ ⊆ T `

Pk+1∪C(Sk
P,C) (46)

B−θ ∩T `
Pk+1∪C(Sk

P,C) = /0 (47)

Hθ 6⊆ T k+1 (48)
Together, (46), (44) (where m = k +1), and (48) imply

B−θ ∩T k+1 6= /0 (49)

Thus there is a rule r1 with sk(r1) = (B+
1 ,B−1 ,H1), a substitu-

tion θ1, and a number j such that

B+
1 θ1 ⊆ T j

GL(Pk+1
1 ∪C,M)

(F) (50)

B−1 θ1∩M= /0 (51)

B−θ ∩T j
GL(Pk+1

1 ∪C,M)
(F) = /0 (52)

B−θ ∩H1θ1 6= /0 (53)

Define F ′ := T j
GL(Pk+1

1 ∪C,M)
(F) ∪ T `

Pk+1∪C(Sk
P,C). We claim

that the set of facts G := γF ′(F ′) and substitution
σ := γF ′(θ ∪θ1) satisfy the conditions for r1

−−→C r in Def-
inition 4. By definition, G does not contain function symbols.

(N1) B+
1 σ ⊆ G by (50).

(N2) B−1 σ ∩G = /0 by (51) and F ′ ⊆M, obtained from (44)
(where m = k +1).

(N3) B+σ ⊆ G by (46).

(N4) B−σ ∩H1σ 6= /0 by (53).

(N5) B−σ ∩G = /0 by (47) and (52).

By M |= F ∪ P ∪ C and T j
GL(Pk+1

1 ∪C,M)
(F) ⊆ M, we

have ⊥ 6∈ T j
GL(Pk+1

1 ∪C,M)
(F); also, by (44) (where

m = k +1) T `
Pk+1∪C(Sk

P,C) ⊆ T j
GL(Pk+1

1 ∪C,M)
(F) and, so,

⊥ 6∈ T `
Pk+1∪C(Sk

P,C). Therefore, ⊥ 6∈ F ′ and, thus, ⊥ 6∈ G,
which implies G |= C. As a consequence, r1

−−→ r, and
therefore r1 ∈ Pk

1 by Definition 5. By (51) and T k ⊆M, we
have B−1 θ1∩T k = /0. By the induction hypothesis, T k = Sk

P,C,
so B−1 θ1∩Sk

P,C = /0. By (53) and (47), H1θ1 6⊆ Sk
P,C. Together,

these observations imply that B+
1 θ1 6⊆ Sk

P,C. Using again
T k = Sk

P,C, we find that B+
1 θ1 6⊆ T k.

From B+
1 θ1 6⊆ T k and (50), we conclude that there is a rule

r2 ∈ Pk+1 with sk(r2) = (B+
2 ,B−2 ,H2), a substitution θ2, and a

number o < j such that

B+
2 θ2 ⊆ T o

GL(Pk+1
1 ∪C,M)

(F) (54)

B−2 θ2∩M= /0 (55)

H2θ2∩B+
1 θ1 6⊆ T o

GL(Pk+1
1 ∪C,M)

(F) (56)

By (52) and (53), there is α ∈ H1θ1 \ T j
GL(Pk+1

1 ∪C,M)
(F),

and by (56), there is β ∈ (H2θ2∩B+
1 θ1)\T o

GL(Pk+1
1 ∪C,M)

(F).

Let F ′′ := M \ {α,β}. We claim that the set of facts
G′ := γF ′′(F ′′) and substitution σ ′ := γF ′′(θ1∪θ2) satisfy the
conditions for r2

+−→C r1 in Definition 2. By definition, G′ does
not contain function symbols.

(P1) B+
2 σ ′ ⊆ G′ by (54) and T o

GL(Pk+1
1 ∪C,M)

(F) ⊆ F ′′. For

the latter, note that β /∈ T o
GL(Pk+1

1 ∪C,M)
(F), and that

α /∈ T o
GL(Pk+1

1 ∪C,M)
(F) since α /∈ T j

GL(Pk+1
1 ∪C,M)

(F) and

T o
GL(Pk+1

1 ∪C,M)
(F)⊆ T j

GL(Pk+1
1 ∪C,M)

(F) (by o < j).

(P2) B−2 σ ′∩G′ = /0 by (55).

(P3) B+
1 σ ′ ⊆ G′∪H2σ ′ by (50) and α /∈ T j

GL(Pk+1
1 ∪C,M)

(F).

(P4) B−1 σ ′∩ (G′∪H2σ ′) = /0 by (51) and H2θ2 ⊆M.

(P5) B+
1 σ ′ 6⊆ G′ by our choice of β .

(P6) H1σ ′ 6⊆ G′ ∪H2σ ′ is a consequence of our choice of α

and α /∈ T j
GL(Pk+1

1 ∪C,M)
(F).



SinceM |=SM F ∪P∪C, we have ⊥ 6∈ F ′′ and, so, G′ |= C.
As a consequence, r2

+−→C r1. This contradicts the assump-
tion that r1 ∈ Pk

1 while r2 ∈ Pk+1, and thus refutes our ini-
tial assumption that Sk+1

P,C 6⊆ T k+1. We have thus shown that
Sk+1

P,C ⊆ T k+1.
By Sk+1

P,C ⊆ T k+1, we have ⊥ 6∈ Sk+1
P,C . The latter com-

bined with Proposition 4 yields Sk+1
P,C |=SM F∪Pk+1

1 ∪C. Thus
Sk+1

P,C = T ∞

GL(Pk+1
1 ∪C,Sk+1

P,C )
(F). Now since Sk+1

P,C ⊆ T k+1⊆M, we

find that

GL(Pk+1
1 ∪C,Sk+1

P,C )⊇GL(Pk+1
1 ∪C,T k+1)⊇GL(Pk+1

1 ∪C,M).

So, Sk+1
P,C = T ∞

GL(Pk+1
1 ∪C,Sk+1

P,C )
(F)⊇ T ∞

GL(Pk+1
1 ∪C,M)

(F) = T k+1

as required.

Proof of Theorem 8. If ⊥ /∈ Sn
P,C, then by Proposition 4,

Sn
P,C |=SM F ∪P∪C, which together with Lemma 6 implies

that Sn
P,C is the unique stable model.

If ⊥ ∈ Sn
P,C assume for a contradiction that there exists

set of facts M, such that M |=SM F ∪P∪C. By Lemma 6,
M= Sn

P,C which is not possible since no stable model may
contain bottom.

Theorems 2 and 5 can be generalised to programs that are
R-acyclic and R-stratified under constraints:
Theorem 9. For a set of facts F, a fact α , and a program
P that is R-acyclic under a set of constraints C, deciding
P∪F ∪C |= α is coN2EXPTIME-complete (coNP-complete)
w.r.t. program (data) complexity. If P is also R-stratified un-
der C, deciding P∪F∪C |= α becomes 2EXPTIME-complete
(P-complete) w.r.t. program (data) complexity.

Proof. Since extending P with constraints does not increase
the bound on the number of terms and checking satisfaction
of constraints is in NP w.r.t. program complexity and poly-
nomial w.r.t. data complexity, the claims follow from Theo-
rems 2 and 5.

8 Experimental Evaluation
In order to assess the practical utility of our solution, we con-
ducted a case study with ChEBI. Our test datasets, software,
and detailed results are published online.1

The ChEBI database (release 97) contains about 20,000
molecular structures and taxonomic relations for about 8,000
chemical classes, while the DL-based ontology contains tax-
onomic information only. To obtain rules for reasoning, we
considered a sample of 500 molecules, with sizes ranging
from 2 to 138 atoms. The structure of each molecule (given
in MDL Molfile format) was converted to rules of the form
(2). Chemical classes, such as one-carbon molecule or or-
ganic hydroxy, do not have machine-readable descriptions in
ChEBI. We selected 50 chemical classes and manually for-
malised their human-readable descriptions as rules, such as
(3) and (6). In addition, we defined 30 molecule classes that

1http://www.cs.ox.ac.uk/isg/people/despoina.magka/tools/
ijcai13experiments.zip

are characterised by small substructures (functional groups of
2 to 8 atoms), e.g., organic hydroxy. We modelled each with
two rules of the form (8) and (9), using distinct predicates
r and n for each pair of rules. Finally, existential quantifiers
were skolemised, and conjunctions in rule heads were decom-
posed into multiple rules. This led to a program P with 78,957
rules, the largest of which had 38 body atoms (8 negative). P
was not stratified, but was R-stratified and R-acyclic. In ad-
dition, we generated a set F of 530 facts of the form C(aC),
one for each molecule or functional group. This allowed us to
compute subsumptions between chemical classes: C is sub-
sumed by C′ iff C′(aC) is in the unique stable model of P∪F .

We ran experiments on a desktop computer (2GHz quad-
core CPU, 4GB RAM) running Linux. In a first experiment,
we tried to compute a stable model of P ∪ F using DLV
[Leone et al., 2006], but the system failed to compute this
result within a time limit of 600 seconds. In a second exper-
iment, we split P into R-strata and consecutively computed
the stable model of each stratum. Of the five R-strata of P, the
first stratum P1 contained 78,251 rules, while the 706 rules of
the remaining four R-strata formed a stratified program P5

2 .
We thus used DLV to compute the stable model of P1 ∪F ,
converted the result into a new set of facts S1

P, and used DLV
to compute the stable model of S1

P∪P5
2 . This took 17 seconds,

with 13.5 seconds being used for actual reasoning in DLV.
We obtained 8,639 non-trivial subsumptions overall be-

tween chemical classes, (excluding reflexive subsumptions
and subsumptions with auxiliary predicates), which we com-
pared to ChEBI’s manually created taxonomy. This revealed
several omissions in ChEBI, e.g., the fact that every organic
hydroxy (ChEBI id 33822) is an organooxygen compound
(ChEBI id 36963), illustrating the practical relevance of our
approach.

9 Related Work

Nonmonotonic extensions for existential rules are considered
by Calì et al. [2009] using stratified negation, and more re-
cently by Gottlob et al. [2012] using well-founded seman-
tics. Another approach to nonmonotonic ontological mod-
elling are FDNC programs [Eiter and Simkus, 2010], which
are related to DLs and inherit many of their limitations in
modelling finite structures.

Local stratification generalises stratification by consid-
ering the (infinite) groundings of normal logic programs
[Przymusinski, 1989]. This condition is undecidable [Cholak
and Blair, 1994], but does not generalise R-stratification as
Exaple 8 shows.

Before providing the example, we formally define lo-
cal stratification. Given a program P, a sequence of dis-
joint programs P = P1, . . . ,Pn is a local stratification of P if
Ground(P) =

⋃n
i=1 Pi and, for all programs Pi,Pj ∈ P, rules

(B+
1 ,B−1 ,H1) ∈ Pi and (B+

2 ,B−2 ,H2) ∈ Pj, and every atom α ∈
Pred(H1), we have: (i) if α ∈ Pred(B+

2 ) then i ≤ j, and (ii)
if α ∈ Pred(B−2 ) then i < j. P is locally stratified if it has a
local stratification.



Example 8. Let r1 and r2 be defined as follows:

r1 : A(x)∧S(x,y)∧not A(y)∧not B(y)→ R(x,y)
r2 : A(u)∧T(u,v)∧not R(v,u)→ B(u)

We have r1
−−→ r2 because there are no F and θ

that satisfy (N1)–(N5) for r1
−−→ r2, as this would re-

quire θ(u) = θ(y), A(u)θ ∈ F but A(y)θ 6∈ F; also, by
Pred(H1)∩Pred(B+

2 ) = /0 it is r1 6
+−→ r2. Moreover, by r1 6

−−→ r1
and r2 6

−−→ r2, we derive that P = {r1,r2} is R-stratified. P is
not locally stratified as shown by the following instantiation
of P.

r′1 : A(a)∧S(a,b)∧not A(b)∧not B(b)→ R(a,b)

r′2 : A(b)∧T (b,a)∧not R(a,b)→ B(b)

Since B(b) occurs both in the negative body of r′1 and in the
head of r′2 and R(a,b) occurs both in the negative body of
r′2 and in the head of r′1, it is not possible to define a local
stratification for {r′1,r′2}.

Further extensions along these lines led to weak strati-
fication [Przymusinska and Przymunsinski, 1990], effective
stratification [Bidoit and Froidevaux, 1991], modular strati-
fication [Ross, 1994], and left-to-right dynamic stratification
[Sagonas et al., 2001], all of which are known or suspected to
be undecidable in the presence of function symbols.

Many other works study the problem of recognising
negation-free programs with finite models, e.g., Fagin et al.
[2005], Krötzsch and Rudolph [2011] and Cuenca Grau et al.
[2012]. Negation is rarely considered. Omega-restrictedness
uses a kind of ‘stratification’ to ensure finiteness of stable
models [Syrjänen, 2001]. Magka et al. [2012] define seman-
tic acyclicity to ensure finite models in reasoning about struc-
tured objects but only consider stratified negation. In contrast,
non-stratified negation is the key to our modelling solution in
Section 3.

Any program can be partitioned in such a way that each
problematic reliance cycle is fully contained in some part.
One can then apply other acyclicity or stratification criteria to
each part to extend our results to even wider program classes.
Deutsch et al. [2008] apply a similar idea to acyclicity.

10 Conclusions
We showed that nonmonotonic existential rules under a stable
model semantics can address complex real-world modelling
problems, and presented novel conditions to ensure efficient,
deterministic reasoning in these cases. Our experiments indi-
cate that our approach can dramatically increase the perfor-
mance of existing answer set programming engines, enabling
them to address new, practically relevant application areas.

For future work, it is thus very promising to integrate our
approach into existing rule engines, which will also allow
more extensive evaluations. Section 7 suggests that cyclic or
non-stratified programs could be ‘repaired’ by adding suitable
constraints, which could inspire new tools for rule modelling.
Equality theories often lead to additional reliances, whereas
datatypes and numeric constraints could be exploited to dis-
card reliances—further work is needed to study these effects.
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