MODELLING STRUCTURED DOMAINS USING DESCRIPTION GRAPHS AND LOGIC PROGRAMMING

Despoina Magka, Boris Motik and Ian Horrocks

Department of Computer Science, University of Oxford

June 7, 2012

<ロト <回ト < 国ト < 国ト < 国ト 三 国

DL ontologies used for the representation of complex structures:

DL ontologies used for the representation of complex structures:

- DL ontologies used for the representation of complex structures:
 - Anatomy of the Animal Cell Aerospace Mitochondria Microfilaments Rough Lysosome Endoplasmic Reticulum Peroxisome Cellular biology Centrioles Nucleus Nuclear Pores Plasma - Membrane Nucleolus Micro Tubules Nuclear Envelope Golgi Apparatus Chromatin Cilia Rough Endoplasmic Reticulum Smooth

Endoplasmic

Reticulum

Figure 1

Ribosomes

- DL ontologies used for the representation of complex structures:
 - Aerospace
 - Cellular biology
 - Human anatomy

- DL ontologies used for the representation of complex structures:
 - Aerospace
 - Cellular biology
 - Human anatomy
 - Molecules

Chemical Entities of Biological Interest

Chemical Entities of Biological Interest

Freely accessible dictionary of 'small' molecular entities

Chemical Entities of Biological Interest

- Freely accessible dictionary of 'small' molecular entities
- High quality annotation and taxonomy of chemicals

Chemical Entities of Biological Interest

- Freely accessible dictionary of 'small' molecular entities
- High quality annotation and taxonomy of chemicals
- Interoperability between researchers

- Chemical Entities of Biological Interest
 - Freely accessible dictionary of 'small' molecular entities
 - High quality annotation and taxonomy of chemicals
 - Interoperability between researchers
 - Drug discovery and elucidation of metabolic pathways

ChEBI is manually incremented

ChEBI is manually incremented

Currently contains approx. 28,000 fully annotated entities

- ChEBI is manually incremented
- Currently contains approx. 28,000 fully annotated entities
- Grows at a rate of ~1,500 entities per curator per year

- ChEBI is manually incremented
- Currently contains approx. 28,000 fully annotated entities
- Grows at a rate of ~1,500 entities per curator per year
- Biologically interesting entities possibly > 1,000,000

- ChEBI is manually incremented
- Currently contains approx. 28,000 fully annotated entities
- Grows at a rate of ~1,500 entities per curator per year
- Biologically interesting entities possibly > 1,000,000
- Each new molecule is subsumed by several chemical classes

- ChEBI is manually incremented
- Currently contains approx. 28,000 fully annotated entities
- Grows at a rate of ~1,500 entities per curator per year
- Biologically interesting entities possibly > 1,000,000
- Each new molecule is subsumed by several chemical classes
 - Is dinitrogen inorganic?

- ChEBI is manually incremented
- Currently contains approx. 28,000 fully annotated entities
- Grows at a rate of ~1,500 entities per curator per year
- Biologically interesting entities possibly > 1,000,000
- Each new molecule is subsumed by several chemical classes
 - Is dinitrogen inorganic?
 - Does cyclobutane contain a four-membered ring?

(日) (日) (日) (日) (日) (日) (日)

- ChEBI is manually incremented
- Currently contains approx. 28,000 fully annotated entities
- Grows at a rate of ~1,500 entities per curator per year
- Biologically interesting entities possibly > 1,000,000
- Each new molecule is subsumed by several chemical classes
 - Is dinitrogen inorganic?
 - Does cyclobutane contain a four-membered ring?
 - Is acetylene a hydrocarbon?

- ChEBI is manually incremented
- Currently contains approx. 28,000 fully annotated entities
- Grows at a rate of ~1,500 entities per curator per year
- Biologically interesting entities possibly > 1,000,000
- Each new molecule is subsumed by several chemical classes
 - Is dinitrogen inorganic?
 - Does cyclobutane contain a four-membered ring?
 - Is acetylene a hydrocarbon?
 - Does benzaldehyde contain a benzene ring?

- ChEBI is manually incremented
- Currently contains approx. 28,000 fully annotated entities
- Grows at a rate of ~1,500 entities per curator per year
- Biologically interesting entities possibly > 1,000,000
- Each new molecule is subsumed by several chemical classes
 - Is dinitrogen inorganic?
 - Does cyclobutane contain a four-membered ring?
 - Is acetylene a hydrocarbon?
 - Does benzaldehyde contain a benzene ring?

Speed up curating tasks with automated reasoning tools

- ChEBI is manually incremented
- Currently contains approx. 28,000 fully annotated entities
- Grows at a rate of ~1,500 entities per curator per year
- Biologically interesting entities possibly > 1,000,000
- Each new molecule is subsumed by several chemical classes
 - Is dinitrogen inorganic? ~>Yes
 - Does cyclobutane contain a four-membered ring? ~~ Yes
 - Is acetylene a hydrocarbon? ~> Yes
 - Does benzaldehyde contain a benzene ring? ~ Yes
- Speed up curating tasks with automated reasoning tools

Chemical compounds with rings are highly frequent

- Chemical compounds with rings are highly frequent
- Fundamental inability of DL to represent cycles

- Chemical compounds with rings are highly frequent
- Fundamental inability of DL to represent cycles
- At least one tree-shaped model for each consistent DL knowledge base

- Chemical compounds with rings are highly frequent
- Fundamental inability of DL to represent cycles
- At least one tree-shaped model for each consistent DL knowledge base

EXAMPLE

Cyclobutane $\sqsubseteq \exists (= 4)$ hasAtom.(Carbon $\sqcap \exists (= 2)$ hasBond.Carbon)

- Chemical compounds with rings are highly frequent
- Fundamental inability of DL to represent cycles
- At least one tree-shaped model for each consistent DL knowledge base

EXAMPLE

Cyclobutane $\sqsubseteq \exists (= 4)$ hasAtom.(Carbon $\sqcap \exists (= 2)$ hasBond.Carbon)

- Chemical compounds with rings are highly frequent
- Fundamental inability of DL to represent cycles
- At least one tree-shaped model for each consistent DL knowledge base

EXAMPLE

Cyclobutane $\sqsubseteq \exists (= 4)$ hasAtom.(Carbon $\sqcap \exists (= 2)$ hasBond.Carbon)

- Chemical compounds with rings are highly frequent
- Fundamental inability of DL to represent cycles
- At least one tree-shaped model for each consistent DL knowledge base

EXAMPLE

Cyclobutane $\sqsubseteq \exists (= 4)$ hasAtom.(Carbon $\sqcap \exists (= 2)$ hasBond.Carbon)

DL-based reasoning support

- Chemical compounds with rings are highly frequent
- Fundamental inability of DL to represent cycles
- At least one tree-shaped model for each consistent DL knowledge base

EXAMPLE

Cyclobutane $\sqsubseteq \exists (= 4)$ hasAtom.(Carbon $\sqcap \exists (= 2)$ hasBond.Carbon)

DL-based reasoning support

- Does cyclobutane contain a four-membered ring? X
- Does benzaldehyde contain a benzene ring? X

 Limitation of DLs to represent cycles (partially) remedied by extension of DLs with Description Graphs and rules [Motik et al., 2009]

- Limitation of DLs to represent cycles (partially) remedied by extension of DLs with Description Graphs and rules [Motik et al., 2009]
- A Description Graph represents structures by means of a directed labeled graph

- Limitation of DLs to represent cycles (partially) remedied by extension of DLs with Description Graphs and rules [Motik et al., 2009]
- A Description Graph represents structures by means of a directed labeled graph

・ コット (雪) ・ (目) ・ (目)

EXAMPLE

Cyclobutadiene 1 C = C Carbon $(2 \neq -= 3)$ Carbon C = C Carbon $5 \neq -= 34$ Carbon

6

- Limitation of DLs to represent cycles (partially) remedied by extension of DLs with Description Graphs and rules [Motik et al., 2009]
- A Description Graph represents structures by means of a directed labeled graph

EXAMPLE

- Limitation of DLs to represent cycles (partially) remedied by extension of DLs with Description Graphs and rules [Motik et al., 2009]
- A Description Graph represents structures by means of a directed labeled graph

EXAMPLE

Does cyclobutadiene have a conjugated four-membered ring?

- Limitation of DLs to represent cycles (partially) remedied by extension of DLs with Description Graphs and rules [Motik et al., 2009]
- A Description Graph represents structures by means of a directed labeled graph

EXAMPLE

Does cyclobutadiene have a conjugated four-membered ring?
- Limitation of DLs to represent cycles (partially) remedied by extension of DLs with Description Graphs and rules [Motik et al., 2009]
- A Description Graph represents structures by means of a directed labeled graph

EXAMPLE

- Limitation of DLs to represent cycles (partially) remedied by extension of DLs with Description Graphs and rules [Motik et al., 2009]
- A Description Graph represents structures by means of a directed labeled graph

EXAMPLE

- Limitation of DLs to represent cycles (partially) remedied by extension of DLs with Description Graphs and rules [Motik et al., 2009]
- A Description Graph represents structures by means of a directed labeled graph

EXAMPLE

Is cyclobutadiene a hydrocarbon?

- Limitation of DLs to represent cycles (partially) remedied by extension of DLs with Description Graphs and rules [Motik et al., 2009]
- A Description Graph represents structures by means of a directed labeled graph

EXAMPLE

Is cyclobutadiene a hydrocarbon? X

Key idea:

Key idea:

Switch from first-order logic to logic programming semantics

- Key idea:
 - Switch from first-order logic to logic programming semantics
 - Use negation-as-failure to derive non-monotonic inferences

- Key idea:
 - Switch from first-order logic to logic programming semantics
 - Use negation-as-failure to derive non-monotonic inferences
- Expressive decidable logic-based formalism for modelling structured entities: Description Graph Logic Programs (DGLPs)

Key idea:

Switch from first-order logic to logic programming semantics

- Use negation-as-failure to derive non-monotonic inferences
- Expressive decidable logic-based formalism for modelling structured entities: Description Graph Logic Programs (DGLPs)

DGLPs	all cycles	CWA
DL+DGS+RULES	some cycles	OWA
DL	no cycles	OWA

Key idea:

Switch from first-order logic to logic programming semantics

- Use negation-as-failure to derive non-monotonic inferences
- Expressive decidable logic-based formalism for modelling structured entities: Description Graph Logic Programs (DGLPs)

DGLPs	all cycles	CWA
DL+DGS+RULES	some cycles	OWA
DL	no cycles	OWA

 Prototypical implementation of DGLPs with application in structure-based chemical classification

Key idea:

Switch from first-order logic to logic programming semantics

- Use negation-as-failure to derive non-monotonic inferences
- Expressive decidable logic-based formalism for modelling structured entities: Description Graph Logic Programs (DGLPs)

DGLPs	all cycles	CWA
DL+DGS+RULES	some cycles	OWA
DL	no cycles	OWA

 Prototypical implementation of DGLPs with application in structure-based chemical classification

The syntactic objects of a DGLP ontology:

- The syntactic objects of a DGLP ontology:
 - Description graphs

- The syntactic objects of a DGLP ontology:
 - Description graphs

EXAMPLE

- The syntactic objects of a DGLP ontology:
 - Description graphs
 - Function-free FOL Horn rules

- The syntactic objects of a DGLP ontology:
 - Description graphs
 - Function-free FOL Horn rules

EXAMPLE		
Bond(x, y)	\rightarrow	Bond(y,x)
SingleBond(x,y)	\rightarrow	Bond(x,y)

- The syntactic objects of a DGLP ontology:
 - Description graphs
 - Function-free FOL Horn rules

EXAMPLE		
Bond(x, y)	\rightarrow	Bond(y,x)
SingleBond(x,y)	\rightarrow	Bond(x,y)

Rules with negation-as-failure

The syntactic objects of a DGLP ontology:

- Description graphs
- Function-free FOL Horn rules

EXAMPLE		
Bond(x, y)	\rightarrow	Bond(y,x)
SingleBond(x,y)	\rightarrow	Bond(x,y)

Rules with negation-as-failure

EXAMPLE

- The syntactic objects of a DGLP ontology:
 - Description graphs
 - Function-free FOL Horn rules

EXAMPLE		
Bond(x, y)	\rightarrow	Bond(y,x)
SingleBond(x,y)	\rightarrow	Bond(x,y)

Rules with negation-as-failure

EXAMPLE

Facts

The syntactic objects of a DGLP ontology:

- Description graphs
- Function-free FOL Horn rules

EXAMPLE		
Bond(x, y)	\rightarrow	Bond(y,x)
SingleBond(x,y)	\rightarrow	Bond(x,y)

Rules with negation-as-failure

EXAMPLE

Facts

EXAMPLE

 $Cyclobutane(c_1), \quad Dinitrogen(c_2), \ldots$

ENCODING DESCRIPTION GRAPHS

Translate DGs into logic programs with function symbols

ENCODING DESCRIPTION GRAPHS

Translate DGs into logic programs with function symbols

EXAMPLE

ENCODING DESCRIPTION GRAPHS

Translate DGs into logic programs with function symbols

EXAMPLE

 $\begin{array}{lll} & {\sf Cyclobutane}(x) & \rightarrow G_{cb}(x,f_1(x),f_2(x),f_3(x),f_4(x)) \\ & {\sf G}_{cb}(x,y_1,y_2,y_3,y_4) \rightarrow & {\sf Cyclobutane}(x) \wedge \\ & {\sf Carbon}(y_1) \wedge & {\sf Carbon}(y_2) \wedge \\ & {\sf Carbon}(y_3) \wedge & {\sf Carbon}(y_4) \wedge \\ & {\sf HasAtom}(x,y_1) \wedge & {\sf Bond}(y_1,y_2) \wedge \\ & {\sf HasAtom}(x,y_2) \wedge & {\sf Bond}(y_2,y_3) \wedge \\ & {\sf HasAtom}(x,y_3) \wedge & {\sf Bond}(y_3,y_4) \wedge \\ & {\sf HasAtom}(x,y_4) \wedge & {\sf Bond}(y_4,y_1) \end{array}$

EXAMPLE

 $\begin{array}{l} Molecule(x) \land HasAtom(x,y) \land not \; Carbon(y) \land not \; Hydrogen(y) \\ \rightarrow \; NotHydroCarbon(x) \end{array}$

 $Molecule(x) \land not \ NotHydroCarbon(x) \rightarrow HydroCarbon(x)$

EXAMPLE

 $\begin{array}{l} \mathsf{Molecule}(x) \land \mathsf{HasAtom}(x,y) \land \mathbf{not} \ \mathsf{Carbon}(y) \land \mathbf{not} \ \mathsf{Hydrogen}(y) \\ \rightarrow \mathsf{NotHydroCarbon}(x) \\ \\ \mathsf{Molecule}(x) \land \mathbf{not} \ \mathsf{NotHydroCarbon}(x) \rightarrow \mathsf{HydroCarbon}(x) \end{array}$

EXAMPLE

 $\begin{array}{l} \mathsf{Molecule}(x) \land \mathsf{HasAtom}(x,y) \land \mathbf{not} \ \mathsf{Carbon}(y) \land \mathbf{not} \ \mathsf{Hydrogen}(y) \\ \rightarrow \mathsf{NotHydroCarbon}(x) \\ \\ \mathsf{Molecule}(x) \land \mathbf{not} \ \mathsf{NotHydroCarbon}(x) \rightarrow \mathsf{HydroCarbon}(x) \end{array}$

■ Is cyclobutane a hydrocarbon? ✓

EXAMPLE

$$\begin{split} & \text{Molecule}(x) \land \bigwedge_{1 \leq i \leq 4} \text{HasAtom}(x, y_i) \land \bigwedge_{1 \leq i \leq 3} \text{Bond}(y_i, y_{i+1}) \land \\ & \text{Bond}(y_4, y_1) \bigwedge_{1 \leq i < j \leq 4} \text{not } y_i = y_j \\ & \rightarrow \text{MoleculeWith4MemberedRing}(x) \end{split}$$

EXAMPLE

$$\begin{split} & \text{Molecule}(x) \land \bigwedge_{1 \leq i \leq 4} \text{HasAtom}(x, y_i) \land \bigwedge_{1 \leq i \leq 3} \text{Bond}(y_i, y_{i+1}) \land \\ & \text{Bond}(y_4, y_1) \bigwedge_{1 \leq i < j \leq 4} \text{not } y_i = y_j \\ & \rightarrow \text{MoleculeWith4MemberedRing}(x) \end{split}$$

$$\begin{array}{c}
c - c \\
l \\
c - c
\end{array}$$

EXAMPLE

■ Does cyclobutane contain a four-membered ring? ✓

 Logic programs with function symbols can axiomatise infinitely large structures

- Logic programs with function symbols can axiomatise infinitely large structures
- Reasoning with DGLP ontologies is trivially undecidable

- Logic programs with function symbols can axiomatise infinitely large structures
- Reasoning with DGLP ontologies is trivially undecidable
- We are only interested in finite structures

- Logic programs with function symbols can axiomatise infinitely large structures
- Reasoning with DGLP ontologies is trivially undecidable
- We are only interested in finite structures

SYNTACTIC ACYCLICITY CONDITIONS

Chase [Maier et al., 1979] termination is undecidable

SYNTACTIC ACYCLICITY CONDITIONS

Chase [Maier et al., 1979] termination is undecidableProblem extensively studied in theory of databases

SYNTACTIC ACYCLICITY CONDITIONS

- Chase [Maier et al., 1979] termination is undecidable
- Problem extensively studied in theory of databases
- Various syntax-based acyclicity conditions
SYNTACTIC ACYCLICITY CONDITIONS

- Chase [Maier et al., 1979] termination is undecidable
- Problem extensively studied in theory of databases
- Various syntax-based acyclicity conditions
 - weak acyclicity [Fagin et al., ICDT, 2002]
 - super-weak acyclicity [Marnette, PODS, 2009]
 - joint acyclicity [Krötzsch and Rudolph, IJCAI, 2011]

SYNTACTIC ACYCLICITY CONDITIONS

- Chase [Maier et al., 1979] termination is undecidable
- Problem extensively studied in theory of databases
- Various syntax-based acyclicity conditions
 - weak acyclicity [Fagin et al., ICDT, 2002]
 - super-weak acyclicity [Marnette, PODS, 2009]
 - joint acyclicity [Krötzsch and Rudolph, IJCAI, 2011]

(日) (日) (日) (日) (日) (日) (日)

rule out naturally-arising nested structures

SYNTACTIC ACYCLICITY CONDITIONS

- Chase [Maier et al., 1979] termination is undecidable
- Problem extensively studied in theory of databases
- Various syntax-based acyclicity conditions
 - weak acyclicity [Fagin et al., ICDT, 2002]
 - super-weak acyclicity [Marnette, PODS, 2009]
 - joint acyclicity [Krötzsch and Rudolph, IJCAI, 2011]
 - rule out naturally-arising nested structures

Define a transitive and irreflexive graph ordering which specifies which graph instances may imply the existence of other graph instances

Define a transitive and irreflexive graph ordering which specifies which graph instances may imply the existence of other graph instances

- Define a transitive and irreflexive graph ordering which specifies which graph instances may imply the existence of other graph instances
- Extend the logic program with rules that detect violation of the graph ordering

- Define a transitive and irreflexive graph ordering which specifies which graph instances may imply the existence of other graph instances
- Extend the logic program with rules that detect violation of the graph ordering

EXAMPLE

$$AceticAcid(x) \rightarrow G_{AA}(x, f_1(x), f_2(x))$$

 $\begin{array}{c} \mathsf{G}_{\mathsf{A}\mathsf{A}}(x_1,x_2,x_3) \rightarrow & \mathsf{AceticAcid}(x_1) \wedge \mathsf{Methyl}(x_2) \wedge \mathsf{Carboxyl}(x_3) \wedge \\ & \mathsf{HasPart}(x_1,x_2) \wedge \mathsf{HasPart}(x_1,x_3) \end{array}$

- Define a transitive and irreflexive graph ordering which specifies which graph instances may imply the existence of other graph instances
- Extend the logic program with rules that detect violation of the graph ordering

EXAMPLE

$$AceticAcid(x) \rightarrow G_{AA}(x, f_1(x), f_2(x))$$

 $\begin{array}{c} \mathsf{G}_{\mathsf{A}\mathsf{A}}(x_1,x_2,x_3) \rightarrow & \mathsf{AceticAcid}(x_1) \land \mathsf{Methyl}(x_2) \land \mathsf{Carboxyl}(x_3) \land \\ & \mathsf{HasPart}(x_1,x_2) \land \mathsf{HasPart}(x_1,x_3) \end{array}$

 $G_{\text{AA}}(x_1,x_2,x_3) \land \text{AceticAcid}(x_2) \rightarrow$

- Define a transitive and irreflexive graph ordering which specifies which graph instances may imply the existence of other graph instances
- Extend the logic program with rules that detect violation of the graph ordering
- 3 Repetitive construction of graph instances during reasoning triggers derivation of Cycle

EXAMPLE

$$\textbf{AceticAcid}(x) \rightarrow \textbf{G}_{AA}(x, f_1(x), f_2(x))$$

 $\begin{array}{c} \mathsf{G}_{\mathsf{A}\mathsf{A}}(x_1,x_2,x_3) \rightarrow & \mathsf{AceticAcid}(x_1) \wedge \mathsf{Methyl}(x_2) \wedge \mathsf{Carboxyl}(x_3) \wedge \\ & \mathsf{HasPart}(x_1,x_2) \wedge \mathsf{HasPart}(x_1,x_3) \end{array}$

 $G_{\text{AA}}(x_1,x_2,x_3) \wedge \text{AceticAcid}(x_2) \rightarrow$

- Define a transitive and irreflexive graph ordering which specifies which graph instances may imply the existence of other graph instances
- Extend the logic program with rules that detect violation of the graph ordering
- 3 Repetitive construction of graph instances during reasoning triggers derivation of Cycle

EXAMPLE

$$AceticAcid(x) \rightarrow G_{AA}(x, f_1(x), f_2(x))$$

 $\begin{array}{c} \mathsf{G}_{\mathsf{A}\mathsf{A}}(x_1,x_2,x_3) \rightarrow & \mathsf{AceticAcid}(x_1) \land \mathsf{Methyl}(x_2) \land \mathsf{Carboxyl}(x_3) \land \\ & \mathsf{HasPart}(x_1,x_2) \land \mathsf{HasPart}(x_1,x_3) \end{array}$

 $G_{\text{AA}}(x_1,x_2,x_3) \land \text{AceticAcid}(x_2) \rightarrow \text{Cycle}$

- Define a transitive and irreflexive graph ordering which specifies which graph instances may imply the existence of other graph instances
- Extend the logic program with rules that detect violation of the graph ordering
- Repetitive construction of graph instances during reasoning triggers derivation of Cycle
- A DGLP ontology \mathcal{O} is semantically acyclic if $\mathcal{O} \not\models$ Cycle

- Define a transitive and irreflexive graph ordering which specifies which graph instances may imply the existence of other graph instances
- Extend the logic program with rules that detect violation of the graph ordering
- Repetitive construction of graph instances during reasoning triggers derivation of Cycle
- A DGLP ontology \mathcal{O} is semantically acyclic if $\mathcal{O} \not\models$ Cycle
- \blacksquare DGLP ontology with acetic acid is semantically acyclic \checkmark

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

14

- Define a transitive and irreflexive graph ordering which specifies which graph instances may imply the existence of other graph instances
- Extend the logic program with rules that detect violation of the graph ordering
- Repetitive construction of graph instances during reasoning triggers derivation of Cycle
- A DGLP ontology \mathcal{O} is semantically acyclic if $\mathcal{O} \not\models$ Cycle
- \blacksquare DGLP ontology with acetic acid is semantically acyclic \checkmark

1 Termination guarantee for semantically acyclic ontologies

- **I** Termination guarantee for semantically acyclic ontologies
- 2 Decidability of semantic acyclicity for negation-free DGLP ontologies

- **1** Termination guarantee for semantically acyclic ontologies
- 2 Decidability of semantic acyclicity for negation-free DGLP ontologies
- 3 Decidability of semantic acyclicity for DGLP ontologies with stratified negation

- **1** Termination guarantee for semantically acyclic ontologies
- 2 Decidability of semantic acyclicity for negation-free DGLP ontologies
- 3 Decidability of semantic acyclicity for DGLP ontologies with stratified negation
- Semantically acyclic DGLP ontologies with stratified negation capture a wide range of chemical classes:

- **1** Termination guarantee for semantically acyclic ontologies
- 2 Decidability of semantic acyclicity for negation-free DGLP ontologies
- 3 Decidability of semantic acyclicity for DGLP ontologies with stratified negation
- Semantically acyclic DGLP ontologies with stratified negation capture a wide range of chemical classes:
 - Is dinitrogen inorganic?
 - Does cyclobutane contain a four-membered ring?
 - Is acetylene a hydrocarbon?
 - Does benzaldehyde contain a benzene ring?

- **1** Termination guarantee for semantically acyclic ontologies
- 2 Decidability of semantic acyclicity for negation-free DGLP ontologies
- 3 Decidability of semantic acyclicity for DGLP ontologies with stratified negation
- Semantically acyclic DGLP ontologies with stratified negation capture a wide range of chemical classes:
 - Is dinitrogen inorganic? ✓
 - Does cyclobutane contain a four-membered ring?
 - Is acetylene a hydrocarbon?
 - Does benzaldehyde contain a benzene ring?

Expressive and decidable formalism for representation of structured objects

- Expressive and decidable formalism for representation of structured objects
- 2 Novel acyclicity condition for logic programs with restricted use of function symbols

- Expressive and decidable formalism for representation of structured objects
- 2 Novel acyclicity condition for logic programs with restricted use of function symbols
- 3 Prototype for structure-based classification of complex objects

- Expressive and decidable formalism for representation of structured objects
- 2 Novel acyclicity condition for logic programs with restricted use of function symbols
- 3 Prototype for structure-based classification of complex objects
- Future directions:
 - Generalise acyclicity condition for datalog rules with existentials in the head

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

16

- Expressive and decidable formalism for representation of structured objects
- 2 Novel acyclicity condition for logic programs with restricted use of function symbols
- 3 Prototype for structure-based classification of complex objects
- Future directions:
 - Generalise acyclicity condition for datalog rules with existentials in the head

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Relax stratifiability criteria for negation

16

- Expressive and decidable formalism for representation of structured objects
- 2 Novel acyclicity condition for logic programs with restricted use of function symbols
- 3 Prototype for structure-based classification of complex objects
- Future directions:
 - Generalise acyclicity condition for datalog rules with existentials in the head

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Relax stratifiability criteria for negation
- User-friendly surface syntax

- Expressive and decidable formalism for representation of structured objects
- 2 Novel acyclicity condition for logic programs with restricted use of function symbols
- 3 Prototype for structure-based classification of complex objects
- Future directions:
 - Generalise acyclicity condition for datalog rules with existentials in the head
 - Relax stratifiability criteria for negation
 - User-friendly surface syntax
 - Fully-fledged classification system for graph-shaped objects

(日) (日) (日) (日) (日) (日) (日)

16

- Expressive and decidable formalism for representation of structured objects
- 2 Novel acyclicity condition for logic programs with restricted use of function symbols
- Prototype for structure-based classification of complex objects
- Future directions:
 - Generalise acyclicity condition for datalog rules with existentials in the head
 - Relax stratifiability criteria for negation
 - User-friendly surface syntax
 - Fully-fledged classification system for graph-shaped objects
- Thank you for listening. Questions?