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Vortobrates
(Vertobrata)

“Armphioras Manual Labor

m Fast, automatic and repeatable classification driven by
Semantic technologies

m Web Ontology Language, a W3C standard family
of logic-based formalisms

m OWL bio- and chemo-ontologies widely adopted
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= OWL ontology Chemical Entities of Biological Interest
m Dictionary of molecules with taxonomical information
m Pharmaceutical design and study of biological pathways

m ChEBI is manually incremented
m Currently ~30,000 chemical entities, expands at 3,500/yr
m Existing chemical databases describe millions of molecules

m Speed up growth by automating chemical classification
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= Required reasoning support

Is cyclobutane a cyclic molecule? v
Is cyclobutane a hydrocarbon? v
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Acyclicity conditions for existential rules that extend
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m Model-faithful acyclicity: 2EXPTIME-complete to check
m Model-summarising acyclicity: EXPTIME-complete to check

Implementation that draws upon DLV and performs
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| Evaluation over part of the manually curated ChEBI
ontology revealed modelling errors

Language for representing complex objects with a
favourable performance/expressivity trade-off
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Input fact: ascorbicAcid(a)

Stable model: (a), hasAtom(a, al) for 1 <i < 13,
o(a) for 1 <i<6, c(af) for 7 <i< 12, h(aly), single(al,al),
single(al;, a)), single(al,, af) fori € {5, 11}, single(al,,al),
single(al,, af) for i € {1,9, 11,13}, single(al, al) fori € {1,8},
double(al,, af), double(al, al)), horc(af) for 7 <i < 13,

(), (), (@)

~+ Ascorbic acid is a cyclic polyatomic entity and a carboxylic ester
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m Rules with function symbols in the head can axiomatise
infinitely large structures

m Reasoning with unrestricted DGLP ontologies is
undecidable

m Acyclicity checks are sufficient but not necessary conditions
for chase termination

m Model-faithful and model-summarising acyclicity (MFA and
MSA): capture as generally as possible class of programs
with models of finite size

m Cost for checking MFA and MSA

bounded arity no restriction
MFA | 2EXPTIME-complete | 2EXPTIME-complete
MSA coNP-complete | EXPTIME-complete

m Both subsume previously suggested polynomial conditions
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IMPLEMENTATION

Draws upon DLV, a deductive databases engine %EBI

Evaluation with data extracted from ChEBI
500 molecules under 51 chemical classes in 40 secs
Quicker than other approaches:
m [Hastings et al., 2010] 140 molecules in 4 hours
m [Magka et al., 2012] 70 molecules in 450 secs
m Subsumptions exposed by our prototype:
m ascorbic acid is a polyatomic entity, a carboxylic ester and a
cyclic molecule
m missing from the ChEBI OWL ontology
m Contradictory subclass relation from ChEBI:

m Ascorbic acid is asserted to be a carboxylic acid (release 95)
m Not listed among the subsumptions derived by our prototype

HO A o

HO OH
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m Future directions
m SMILES-based surface syntax
m Detect subsumptions between classes
m Extensions with numerical datatypes
m Define a mapping of DGLPs to RDF

m Thank you! Questions?!?



