
Consequence-Based Reasoning

for Ontology Classification

František Simančík
Worcester College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2013





Abstract

Description logics (DLs) are knowledge representation languages that provide the the-

oretical underpinning for modern ontology languages such as OWL and serve as the

basis for the development of ontology reasoners and tools.

Most modern ontology reasoners are based on optimized tableau algorithms, which

perform reasoning by trying to build counter-models. More recently, another kind of

reasoning algorithms has been introduced that, instead of building counter-models, di-

rectly derive logical consequences of axioms in the ontology using inference rules.

Such consequence-based algorithms were first introduced for the EL family of DLs,

and later extended to more expressive Horn DLs. However, up until now, consequence-

based algorithms could not handle non-Horn features such as disjunctions.

We consider several complementary aspects of consequence-based reasoning in this

thesis. Firstly, we describe the parallelized consequence-based reasoner ELK, which

is currently the fastest reasoner for EL ontologies. Secondly, we demonstrate how

consequence-based algorithms can be extended to handle disjunctions using inference

rules reminiscent of ordered resolution. Finally, we combine our consequence-based

framework with methods based on tree decompositions, and thus obtain what we be-

lieve are the first fixed-parameter tractability results for subsumption reasoning in DLs.





Acknowledgements

First of all, this thesis would not have been possible without the help of my supervi-

sors Ian Horrocks and Yevgeny Kazakov. I am grateful to Ian for always being able

to find time for me when I needed advice, both technical and about academia in gen-

eral, and for checking the drafts of this thesis. I thank Yevgeny for introducing me to

consequence-based reasoning and having patience with me when I struggled with our

first papers and reasoners.

I am further grateful to Boris Motik and Markus Krötzsch whose ideas and contribu-

tions substantially influenced this thesis. Their diligent work has been a great source of

motivation for me.

I also thank Birte Glimm who, together with Yevgeny, took excellent care of me during

my stay in Ulm. Thanks to them, I retain many warm memories from that trip.

Finally, I thank the members of the Department of Computer Science, especially the

KRR group and the Slovak Mafia, for many interesting discussions over lunch and

coffee breaks. I had great time with all of you.

This work was supported by a studentship under the Engineering and Physical Sciences

Research Council (EPSRC) Doctoral Training Award scheme.





Contents

I Foundations 1

1 Introduction 3

1.1 Consequence-Based Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Description Logics 11

2.1 Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The DL Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Relationship to OWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II ELK System Description 21

3 Consequence-Based Calculus for EL+
⊥ 23

3.1 Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Canonical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Saturation Procedures 31

4.1 Abstract Saturation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Saturation Procedure for EL+
⊥ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Abstract Concurrent Saturation Procedure . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Concurrent Saturation Procedure for EL+
⊥ . . . . . . . . . . . . . . . . . . . . . . 42

i



5 Optimization Techniques 47

5.1 Optimization of Decomposition Rules . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Optimization of the Role Composition Rule . . . . . . . . . . . . . . . . . . . . . 49

5.3 Disjointness Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Efficient Join Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 Taxonomy Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Experimental Evaluation 55

6.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Performance Comparison with Other Reasoners . . . . . . . . . . . . . . . . . . . 59

6.4 Optimizations of Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.5 Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.6 Transitive Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Discussion 69

7.1 Reasoning in OWL EL and Beyond . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2 Rule- and Saturation-Based Reasoning . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 Concurrent, Distributed, and Parallel Reasoning . . . . . . . . . . . . . . . . . . . 72

7.4 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

III Beyond Horn DLs 77

8 Consequence-Based Reasoning in ALCI 79

8.1 Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.2 Intuitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.3 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.4 Redundancy Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.5 Initialization and Expansion Strategies . . . . . . . . . . . . . . . . . . . . . . . . 95

8.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

ii



IV Parameterized Reasoning in DLs 103

9 Analyzing And-Branching Using ε-Free Decompositions 105

9.1 Fixed-Parameter Tractable Problems . . . . . . . . . . . . . . . . . . . . . . . . . 106

9.2 Intuitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9.3 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.4 Constructing ε-Free Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.5 Decompositions and the Hypertableau Algorithm . . . . . . . . . . . . . . . . . . 122

10 Analyzing Or-Branching Using General Decompositions 125

10.1 Tree Decompositions and Treewidth . . . . . . . . . . . . . . . . . . . . . . . . . 125

10.2 Intuitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

10.3 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10.4 Constructing Decompositions via ε-Refinement . . . . . . . . . . . . . . . . . . . 136

11 Bounds on Decomposition Length 143

11.1 Decomposition Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

11.2 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

11.3 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

12 Discussion 153

12.1 Decomposition Width and Length in Practice . . . . . . . . . . . . . . . . . . . . 153

12.2 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Appendices 161

A ABoxes and Safe Nominals in EL+
⊥ 163

B Normalization of SHI Ontologies 167

C The Hypertableau Algorithm 171

iii



D Completeness Proofs 173

D.1 Proof of Theorem 8.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

D.2 Proof of Theorem 10.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Bibliography 189

iv



Part I

Foundations

1





A beginning is the time for taking the most delicate

care that the balances are correct.

—Frank Herbert
Dune

Chapter 1

Introduction

Description logics (DLs) [12] are a family of formal knowledge representation languages that pro-

vide the theoretical underpinning for modern ontology languages such as OWL [29] and serve as

the basis for the development of ontology reasoning algorithms and tools. DLs have been employed

extensively in areas as diverse as biology [99, 117, 122], medicine [40, 113], geography [42], as-

tronomy [33], agriculture [123], and defence [77].

To deal effectively with a large number of concepts involved in modern ontologies, the concepts

are typically organized in a hierarchical structure called a taxonomy which reflects the subsump-

tion relation between the concepts. In a medical ontology, for example, the concept ‘Flu’ would

be subsumed by the concept ‘Disease’ and would be placed under this concept in the taxonomy.

DL-based ontology languages help reduce redundancies in modeling of taxonomies: rather than

stating all relations between the concepts explicitly, an ontology engineer provides definitions of

concepts and their general properties, from which the subsumption relations can be computed using

an appropriate reasoning algorithm [106]. Reasoning also plays an important role during the design

of ontologies (e.g., for detecting inconsistencies and other modeling errors [103]) and in the deploy-

ment of ontologies (e.g., for query answering [99]). An important terminological reasoning task in

DLs is ontology classification whose goal is to compute the taxonomy.

Most modern ontology reasoners, such as FaCT++ [132], HermiT [94], Pellet [121], and Rac-

erPro [47], implement optimized tableau-based algorithms, or variations thereof, which perform

classification by trying to build counter-models for candidate subsumptions. More recently, another

kind of reasoning algorithms has been introduced which, instead of building counter-models, di-

3



rectly derive logical consequences of axioms in the ontology using inference rules. For this reason,

such algorithms are sometimes called consequence-based. The inference rules are designed to de-

rive all implied subsumptions, while guaranteeing that only a bounded number of consequences is

derived.

1.1 Consequence-Based Reasoning

Consequence-based classification algorithms were first introduced for the tractable EL family of

DLs [10]. EL is a simple DL which features top (>), conjunctions (C u D), and existential restric-

tions (∃R.C) as the only concept constructors [8].1 These, however, are amongst the most common

constructors used in existing ontologies. Some of the largest currently available ontologies, such as

SNOMED CT [113]—a medical ontology describing over 300,000 concepts—can be expressed in

a minor extension of EL. Other commonly used ontologies, such as Open Biomedical Ontologies

(OBO) [122], are covered by EL to a large degree.

The consequence-based classification algorithm for EL has many characteristics that can re-

sult in much better practical performance than conventional tableau-based algorithms. Since the

consequence-based algorithm derives only consequences of the ontology, it never checks subsump-

tions that are not entailed. The number of entailed subsumptions is typically much smaller than

the number of all potential subsumptions between the concepts. For example, SNOMED CT en-

tails only about 5 million subsumptions, which is less than 0.01% of the total number of possible

subsumptions. Furthermore, the algorithm derives all entailed subsumptions in ‘one pass’, and the

number of operations needed for classification is much smaller than for computing each entailed

subsumption separately. Finally, as we will show, the algorithm is relatively easily parallelizable.

Although modern tableau-based reasoners incorporate many optimizations that can reduce the

number of subsumption tests and reuse the results of computations between the tests [39, 89, 133],

they still cannot achieve the performance of consequence-based reasoners on EL ontologies. For

example, the EL version of GALEN [102]—an average size ontology containing about 23,000

concepts—cannot be classified by any tableau reasoner available today, but can easily be classified

by all existing EL reasoners. The main difficulty for tableau reasoners is that GALEN contains

1DL constructors will be introduced formally in Chapter 2.

4



many cyclic axioms, which causes them to construct very large models.

It has recently been shown that consequence-based classification algorithms are not limited to

just EL, but can be extended to more expressive Horn DLs [60, 98]. In addition to the favorable

properties above, the extended algorithms demonstrate optimal worst-case complexity and ‘pay-as-

you-go’ behavior: the fewer non-EL constructors an ontology uses, the more the algorithm behaves

like the EL algorithm. However, up until now, consequence-based algorithms could not handle

non-Horn features such as disjunctions.

1.2 Contributions

We consider several complementary aspects of consequence-based reasoning in this thesis. Firstly,

in Part II, we describe the parallelized consequence-based reasoner ELK, which is currently the

fastest reasoner for EL ontologies. Secondly, in Part III, we demonstrate how consequence-based

algorithms can be extended to handle disjunctions using inference rules reminiscent of ordered

resolution. Finally, in Part IV, we combine our consequence-based framework with methods based

on tree decompositions, and thus obtain what we believe are the first fixed-parameter tractability

results for subsumption reasoning in DLs.

1.2.1 Part II: ELK System Description

In this part of the thesis we present ELK—an open source Java-based reasoner for OWL EL ontolo-

gies.2 OWL EL is a profile of the W3C standardized logic-based ontology language OWL [90, 100]

based on the EL family of DLs. The main goals of ELK are good coverage of OWL EL features,

high performance of reasoning, and easy extensibility and use. Since its first release in 2011, ELK

has already been used in a variety of biomedical applications, e.g., to model the neuroanatomy of

flies [99], to integrate databases of diseases, genes, and drugs [50, 51], and to validate and query

genetic ontologies [58, 129]. The latest stable release 0.3.1 of ELK supports a fragment of OWL

EL that corresponds to the DL EL+
⊥ which extends EL with bottom (⊥) and role inclusion axioms.

Although the algorithm in ELK shares many similarities with existing EL algorithms [10], it

offers a range of improvements. First, the algorithm does not require the input ontology to contain

2http://elk.semanticweb.org/

5

http://elk.semanticweb.org/


only simple (flattened) axioms. Second, the algorithm can avoid many redundant inferences. Third,

the algorithm is able to apply inferences in parallel, which can take advantage of existing multipro-

cessor systems. In combination with some further implementation techniques, such as indexing and

efficient join computation, these improvements result in a significant performance increase com-

pared with other EL reasoners. For example, SNOMED CT can be classified in about 10 minutes

by the EL reasoners CEL [15] and jcel [87], and in about 40 seconds by the EL reasoner Snorocket

[78]. The same ontology can now be classified by ELK in as little as 5 seconds on the same (quad-

core) computer.

• In Chapter 3 we present a consequence-based calculus for terminological reasoning with EL+
⊥

ontologies, and prove its soundness and completeness. The calculus is closely related to ex-

isting completion-based algorithms for the EL family [10, 11, 25], but it can be used without

normalizing the ontology.

• In Chapter 4 we describe a multi-phase algorithm that implements this calculus using indexing

and an abstract saturation procedure. We then present a concurrent extension of this proce-

dure, in which several independent workers can apply inference rules in parallel. Notably,

our concurrent procedure requires neither locking nor thread-safe datastructures for storing

conclusions.

• In Chapter 5 we describe some key optimizations implemented in ELK, in particular, spe-

cific join optimizations for matching premises of the rules, optimized transitive reduction,

and special treatment of disjointness axioms. We also demonstrate that some applications of

inference rules in our algorithm can be avoided without losing completeness, introduce and

study an appropriate notion of redundancy for inferences, and discuss how it can be applied

in practice.

• In Chapter 6 we provide an extensive experimental evaluation measuring the effect of concur-

rency and optimizations in ELK on a collection of some of the largest EL+
⊥ ontologies that

we were able to obtain from public and commercial sources. We compare the improvements

both in system-dependent values, such as running times, as well as system-independent val-

ues, such as the number of rule applications. We also compare the performance of ELK with

6



other commonly used DL reasoners.

• In Chapter 7 we discuss related works and conclude with suggestions for future work.

1.2.2 Part III: Beyond Horn DLs

Consequence-based classification algorithms are not limited to just EL, or even to tractable DLs,

but can be extended to more expressive DLs, such as Horn-SHIQ [60] and even Horn-SROIQ

[98], which approximately corresponds to the Horn fragment of OWL. However, up until now,

consequence-based algorithms could not handle non-Horn features such as disjunctions. In tableau

algorithms, disjunctive axioms such as A v B tC result in non-deterministic inferences: in order to

satisfy A one tries to satisfy either B or C. A direct reformulation of this idea as a non-deterministic

rule producing consequences would not work: if A v B tC holds then it is not true that either A v B

or A v C holds.

In this part of the thesis we demonstrate how disjunctions can be handled in a deterministic

way using inference rules reminiscent of ordered resolution (see, e.g., [18]). We will consider a

relatively simple DL ALCI which extends EL with disjunctions (C tD), negations (¬C), universal

restrictions (∀R.C), and inverse roles (R−). Moreover, via well-known reductions of transitivity

and role inclusion axioms, our algorithm can also be applied to SHI ontologies, thus covering a

significant subset of OWL. Our extended algorithm retains many favorable properties of existing

consequence-based algorithms, including optimal worst-case complexity, one-pass classification,

and pay-as-you-go behavior.

Disjunctions are interesting not only from a theoretical point of view. Although many existing

ontologies are Horn, in particular the largest ones such as SNOMED CT and GALEN, this is often

for historical reasons, and advances in reasoning systems for expressive DLs have led many ontol-

ogy developers to consider the use of new language features. One example of this phenomenon is

the latest initiative to remodel the anatomical part of SNOMED CT. Presently, the ontology uses

the so-called SEP-triplet encoding [125], which encodes ‘part-of’ relations as ‘is-a’ relations. For

example, ‘finger’ is modeled using a triple of concepts: S-finger representing the structure of fin-

ger, which subsumes E-finger representing the entire finger and P-finger representing the parts of

finger. The fact that finger is a part of hand is expressed as S-finger v P-hand. A new version of

7



the SNOMED CT anatomical model is being developed using axioms that fully define the S- and

P- concepts using disjunctions and the transitive part-of relation, for example:

S-finger ≡ E-finger t P-finger,

P-finger ≡ ∃part-of.E-finger.

We have been granted access to a preliminary version of the ontology featuring this encoding, and

were able to classify it in under 2 minutes using our new algorithm. In comparison, the fastest

tableau-based reasoner required over 25 minutes to classify this ontology.

• In Chapter 8 we present a consequence-based algorithm for subsumption reasoning in ALCI

and SHI. We prove its soundness and completeness, describe optimizations, and present

first experimental results which suggest that the algorithm scales well to non-Horn ontologies

without adversely affecting performance on Horn ontologies.

1.2.3 Part IV: Parameterized Reasoning in DLs

Subsumption checking in ALCI is ExpTime-complete [131]. The reason for this high complexity is

the size and the number of candidate models [12, Ch. 3]: due to an interaction between existential

and universal quantifiers, an ontology may be satisfied only in models containing an exponential

number of objects (an effect known as and-branching), and due to disjunctions, one may need to

consider an exponential number of candidate models (an effect known as or-branching). State of the

art DL reasoners are heavily optimized to curb and- and or-branching [12, Ch. 9], which allows them

to successfully process many large and nontrivial ontologies. The performance of such reasoners

is, however, relatively brittle. Although there has been some work on identifying the qualitative

features of an ontology that may degrade the performance of a given reasoner [41], no existing

method can provide a quantitative measure of the difficulty of reasoning with a particular ontology.

One can frame this problem in terms of parameterized complexity [34], which measures the

difficulty of a computational problem not only w.r.t. the size n of a problem instance, but also a pa-

rameter k that quantifies specific aspects of the instance. Of particular interest are fixed-parameter

tractable (FPT) problems, which can be solved in time f (k) · nc for a fixed constant c and a fixed

8



computable function f ; such problems are interesting because one can hope to solve large instances

provided that the parameter remains small. For example, many hard graph-theoretic problems

(including graph homomorphism and 3-colorability) are FPT when the parameter is the graph’s

treewidth [105]—a measure of the graph’s similarity to a tree. Furthermore, the notion of treewidth

has also been extended to propositional formulae and has been used to obtain FPT results [126].

In this part of the thesis we combine our consequence-based algorithm from Part III with meth-

ods based on tree decompositions [105], and thus obtain what we believe to be the first framework

for a quantitative, parameterized analysis of the complexity of subsumption reasoning in DLs. We

characterize the difficulty of subsumption reasoning with an ALCI ontology using a graph-like

structure called a decomposition, and present a family of reasoning algorithms based on decompo-

sitions that facilitate FPT reasoning.

• In Chapter 9 we introduce the central notion of a decomposition D of an ontology O and a

set of queries Q. Intuitively, D is a graph-like structure that summarizes the models of O rel-

evant for answering the queries in Q; each vertex of D identifies a propositional subproblem

that could occur in these models, and each edge of D identifies a pathway for the exchange

of information between such subproblems. We identify the length and width of D as param-

eters that characterize the and- and or-branching encountered during the application of our

consequence-based algorithm from Part III to O and Q. Finally, we show that the algorithm

can be implemented so that it is FPT w.r.t. decomposition length and width.

• In Chapter 10 we further extend our results using methods based on tree decompositions.

More specifically, we introduce a notion of an ε-refinement of a decomposition D which,

roughly speaking, is obtained by replacing each vertex of D with a tree decomposition of

the propositional problem corresponding to the vertex. This can reduce the width of a de-

composition while increasing the length by a linear factor, so it can reduce the complexity of

reasoning. Computing an ε-refinement of D of bounded width (if one exists) is FPT.

• In Chapter 11 we present transformations for decomposition optimization, and establish lower

and upper bounds on the sizes of the decompositions of O and Q. For the lower bound, we

show that O and Q exist for which all decompositions of minimal width have exponential

9



length. For the upper bound, we show that O and Q always admit a decomposition of minimal

width with at most exponential length.

• In Chapter 12 we measure decomposition width and length of realistic ontologies. Our results

show that almost all ontologies admit a decomposition of length about twice the number

of concepts in the ontology and of width below 30. These results, we believe, explain the

good performance of consequence-based reasoning algorithms in practice. We conclude with

suggestions for future work.

10



Deep in the human unconscious is a pervasive need

for a logical universe that makes sense. But real

universe is always one step beyond logic.

—Frank Herbert
Dune

Chapter 2

Description Logics

Description logics (DLs) [12] are a family of knowledge representation languages with formal syn-

tax and semantics that are widely used in ontological modeling. An important reason for this is that

they provide one of the main underpinnings for the Web Ontology Language OWL [29]. However,

DLs have been used in knowledge representation long before the advent of ontological modeling

in the context of the Semantic Web, with first DL modeling languages arising in the mid 1980s

[24, 111] as an attempt to standardize the semantics of network-based knowledge representation

systems [79]. Many DLs can be seen as decidable fragments of first-order logic [3] and as syntactic

variants of modal logics [108].

DLs provide means to model the relationships between entities in a domain of interest. In DLs

there are three kinds of entities: concepts, roles, and named individuals. Concepts denote sets of

individuals, roles denote binary relations between the individuals, and named individuals denote

single individuals in the domain. A DL ontology consists of a set of statements, called axioms, that

are known to be true in the domain. These axioms typically capture only partial knowledge about

the domain that the ontology is describing, and there may be many different states of the world that

are consistent with the ontology. It is customary to separate axioms into two groups. Assertional

(ABox) axioms capture factual knowledge about named individuals, such as membership of an

individual in a concept or a relationship between two individuals via a role. Terminological (TBox)

axioms describe general knowledge about relationships between concepts and roles.

For example, an ontology modeling the domain of people and their family relationships might

use concepts such as Woman to represent the set of all women, roles such as parentOf to denote

11



the (binary) relationship between parents and their children, and individual names such as julia and

john to denote the individuals Julia and John. The ontology might include ABox axioms such as

Woman(julia) and parentOf(julia, john) to assert that Julia is a woman and that Julia is a parent of

John, and TBox axioms such as Mother ≡ Woman u ∃parentOf.Person to state that mothers are

exactly those individuals who are women and are parents of at least one person.

DLs are equipped with a formal semantics that gives a precise specification of the meaning

of DL ontologies. This semantics allows humans and computer systems to exchange ontologies

without ambiguity as to their intended meaning, and also makes it possible to use logical deduction

to infer implicit information from the facts stated explicitly in an ontology. The computation of

inferences is called reasoning and an important goal of DL language design has been to ensure that

reasoning algorithms of good performance are available. This is one of the reasons why there is not

just a single description logic: the best balance between expressivity of the language and complexity

of reasoning depends on the intended application.

In this chapter we introduce some of the DLs that are most commonly used in practice and

describe their relationship to the Web Ontology Language OWL. Finally, we list and discuss the

DLs that are used later in this thesis.

2.1 Syntax and Semantics

Here we formally introduce syntax and semantics of description logics (DLs). Many different DL

features have been introduced in the literature; we present those that correspond to the DL SROIQ

[56], which is the logic that underlies OWL. Readers who are not familiar with DLs may wish to

consult a more gentle first introduction [76].

DLs are defined w.r.t. to a fixed vocabulary Σ consisting of countably infinite sets ΣI of named

individuals, ΣT of atomic roles, and ΣA of atomic concepts. Complex roles and concepts are defined

recursively in Table 2.1. Unless specified otherwise, we use the letters a, b for individuals, R, S for

roles, T for atomic roles, C,D, E for concepts, and A, B for atomic concepts. At-least restrictions

>n R.C and at-most restrictions 6n R.C are jointly called number restrictions. For convenience, for

an arbitrary role R we define its inverse inv(R) by inv(T ) B T− and inv(T−) B T .

DL axioms are listed in Table 2.2. Additionally, a concept equivalence C ≡ D abbreviates

12



syntax semantics
Individuals:

named individual a aI ∈ ∆I

Roles:
atomic role T TI ⊆ ∆I × ∆I

inverse role T− {〈x, y〉 | 〈y, x〉 ∈ TI}

Concepts:
atomic concept A AI ⊆ ∆I

top > ∆I

bottom ⊥ ∅

conjunction C u D CI ∩ DI

disjunction C t D CI ∪ DI

negation ¬C ∆I \CI

existential restriction ∃R.C {x | some RI-successor of x is in CI}

universal restriction ∀R.C {x | all RI-successors of x are in CI}

at-least restriction >n R.C {x | at least n RI-successors of x are in CI}

at-most restriction 6n R.C {x | at most n RI-successors of x are in CI}

local reflexivity ∃R.Self {x | 〈x, x〉 ∈ RI}

nominal {a} {aI}

Table 2.1: Syntax and semantics of DL constructors

the two concept inclusions C v D and D v C, and a role equivalence R ≡ S is used similarly.

Axioms that involve individuals are called assertional axioms, or ABox axioms. Other axioms are

called terminological axioms, or TBox axioms. Role inclusions and compositions are sometimes

jointly called complex role inclusions. The axioms in the bottom part of Table 2.2 are called role

characteristics. An ontology O is a finite set of axioms. The size of O, written ‖O‖, is the number

of symbols in O. The cardinality of O, written |O|, is the number of axioms in O.

DLs have Tarski-style semantics. An interpretation I consists of a nonempty set ∆I called the

domain of I and an interpretation function ·I that assigns to each named individual a an element

aI ∈ ∆I , to each atomic role T a binary relation TI ⊆ ∆I × ∆I , and to each atomic concept A a set

AI ⊆ ∆I . This assignment is extended to complex roles and concepts as shown in Table 2.1, where

by an “RI-successor of x” we mean any domain element y such that 〈x, y〉 ∈ RI .

An interpretation I satisfies an axiom α (written I |= α) if the corresponding condition in

Table 2.2 holds. I is a model of an ontology O (written I |= O) if I satisfies all axioms in O. An

ontology is consistent if it has at least one model, otherwise it is inconsistent. We say that an axiom

α is a consequence of an ontology O, or also that O entails α (written O |= α), if every model of

O satisfies α. Note that an inconsistent ontology entails every axiom. A concept C is unsatisfiable

w.r.t. O if O |= C v ⊥, otherwise C is satisfiable w.r.t. O. A concept C is subsumed by D w.r.t.

13



syntax semantics
ABox:

concept assertion C(a) aI ∈ CI

role assertion R(a, b) 〈aI , bI〉 ∈ RI

individual equality a ≈ b aI = bI

individual inequality a 0 b aI , bI

TBox:
concept inclusion C v D CI ⊆ DI

role inclusion R v S RI ⊆ S I

role composition R1 ◦ R2 v S 〈x, y〉 ∈ RI
1 ∧ 〈y, z〉 ∈ RI

2 → 〈x, z〉 ∈ S I

transitive role Tra(R) 〈x, y〉 ∈ RI ∧ 〈y, z〉 ∈ RI → 〈x, z〉 ∈ RI

symmetric role Sym(R) 〈x, y〉 ∈ RI → 〈y, x〉 ∈ RI

asymmetric role Asy(R) 〈x, y〉 ∈ RI → 〈y, x〉 < RI

reflexive role Ref(R) 〈x, x〉 ∈ RI for every x ∈ ∆I

irreflexive role Irr(R) 〈x, x〉 < RI for every x ∈ ∆I

universal role Uni(R) 〈x, y〉 ∈ RI for all x, y ∈ ∆I

disjoint roles Dis(R, S ) RI ∩ S I = ∅

Table 2.2: Syntax and semantics of DL axioms

O if O |= C v D. Concepts C and D are equivalent w.r.t. O if O |= C ≡ D. An individual a is an

instance of a concept C w.r.t. O if O |= C(a).

A general reasoning problem in DLs is checking entailment of axioms from ontologies: given

an ontology O and an axiom α, check if O |= α. If both O and α consist only of terminological

axioms, we speak about terminological reasoning. In case α is a concept inclusion (α = C v D),

the problem is known as subsumption checking. Many other reasoning problems can be reduced to

subsumption checking. In any DL that supports > and ⊥, consistency checking (α = > v ⊥) and

satisfiability checking (α = C v ⊥) are just special cases of subsumption checking. In any DL that

supports existential restrictions, entailment of a role inclusion R v S can be checked by checking

the subsumption ∃R.A v ∃S .A where A is a new atomic concept not occurring in the ontology (see,

e.g., [39]).

In practice one often does not check entailment of a single axiom, but performs a reasoning task

that consists of checking multiple entailments at once. The goal of the ontology classification task is

to compute the taxonomy: an acyclic graph representing direct subsumptions between equivalence

classes of atomic concepts occurring in O. The goal of the ontology realization task is to compute

all entailed instances of atomic concepts occurring in O.

14



2.2 The DL Family

Different DLs can typically be characterized by the types of constructors and axioms they allow.

For example, the description logic ALC [111] is the fragment of SROIQ that only allows the

constructors >, ⊥, u, t, ¬, ∃, ∀, and only concept inclusion axioms. The extension of ALC with

transitive roles is traditionally denoted by the letter S [57]. Additional letters in DL names hint at a

particular constructor or an axiom, such as inverse roles I, number restrictions Q, nominals O, and

role inclusions H. For example, the DL SHI extends S with role inclusions and inverse roles. The

letter R is most commonly used for the combination of complex role inclusions, role characteristics,

and local reflexivity. This naming scheme explains the name of SROIQ. Furthermore, each logic

can be extended with a number of concrete domains (a.k.a. datatypes) such as Booleans, integers,

and strings. This is commonly denoted by the letter D in parentheses as in SROIQ(D). Each logic

can also be considered with or without ABox axioms.

2.2.1 Syntactic Restrictions

Unrestricted combination of the above DL constructors makes reasoning undecidable. To recover

decidability, expressive DLs impose additional syntactic restrictions on ontologies. These refer to

the ontology as a whole and cannot be checked for each axiom individually. However, none of these

restrictions are relevant for any of the DLs that we consider later in this thesis, so we discuss them

only briefly here.

There are two main sources of undecidability in DLs, both due to role compositions. Firstly,

unrestricted use of role compositions causes undecidability already in case of fairly inexpressive

DLs such as ALC [19] (with the notable exception of EL; see below). Decidability is recovered

by a syntactic regularity condition that ensures that role compositions, viewing each R1 ◦ R2 v S

as a context-free grammar rule S → R1R2, generate regular languages [32, 56, 61]. Regular role

compositions can be eliminated from an ontology without affecting its consequences [59, 118].

The second source of undecidability stems from the interaction of transitive roles with number

restrictions, e.g., in the DL SHIQ [57]. To avoid this interaction, SHIQ allows number restric-

tions only with roles that have no transitive subroles. These are called simple roles. In SROIQ, the

definition of simple roles is adjusted to take general role compositions into account, and non-simple

15



roles are also forbidden to occur in several other constructs such as local reflexivity concepts and

some role characteristics [56].

2.2.2 Light-Weight DLs

Subsumption checking is ExpTime-complete for all DLs between ALC and SHIQ [131], and

coN2ExpTime-complete for SROIQ [59]. In recent years, other fragments of DLs have been iden-

tified that have more favorable computational properties. This has resulted in three main families of

light-weight DLs: EL [8, 10], DL-Lite [5, 27], and DLP [46], which also correspond respectively

to the fragments OWL EL, OWL QL, and OWL RL of the Web Ontology Language.

EL is a simple tractable fragment of ALC that restricts concept constructors to top, conjunctions,

and existential restrictions [8]. Its extension EL++ further allows bottom, nominals, a restricted

form of concrete domains, and complex role inclusions. Subsumption checking in EL++ can still

be solved in polynomial time [10], and this is even with arbitrary (non-regular) role compositions.

Further tractable extensions of EL++ exist [11, 70]. The EL family has been used widely to model

large but light-weight ontologies that consist mainly of terminological axioms, in particular in the

life sciences, such as SNOMED CT [113] and OBO [122].

DL-Lite is a family of DLs that is commonly used in combination with large volumes of data

stored in traditional relational databases to augment the expressivity of a query language that re-

trieves such data. This approach, known as Ontology Based Data Access, considers ontologies as a

language for constructing views on top of existing data [101]. The core feature of DL-Lite is that

query answering can be realized with standard query languages such as SQL that are not aware of

the DL semantics [27]. Ontological information is used only in a preprocessing step for rewriting

DL-Lite queries into SQL queries.

DLP is short for Description Logic Programs and comprises various DLs that are syntactically

restricted in such a way that axioms could also be read as rules in first-order Horn logic without

function symbols [46]. For this reason, DLP-type logics can be considered as kinds of rule lan-

guages contained in DLs. DLP is often used to augment databases, e.g., in an implementation of

OWL RL in the Oracle 11g database management system [67].

16



2.3 Relationship to OWL

The Web Ontology Language OWL is a knowledge representation language standardized by the

World Wide Web Consortium (W3C). The current version of the OWL specification is OWL 2

[100]. OWL is one of the most important applications of DLs today. In this section we briefly

outline the relationship of the two languages.

The main building blocks of OWL are very similar to those of DLs, with the main difference

being that concepts are called classes and roles are called properties. Historically, however, OWL

has also been conceived as an extension of RDF [84], a Web data modeling language whose expres-

sivity is comparable to DL ABoxes. The formal semantics of RDF [48] is subtly different from that

of DLs, even though both lead to the same consequences in many common cases. For this reason,

there are two styles of formal semantics for OWL: the Direct Semantics [91] based on DLs and the

RDF-Based Semantics [112].

The Direct Semantics of OWL is only defined for a certain syntactic fragment of OWL called

OWL DL. In contrast, the OWL language without any syntactic constraints is called OWL Full;

it comprises ontologies that can only be interpreted under the RDF-based Semantics. Under the

Direct Semantics, large parts of OWL DL can indeed be considered as a syntactic variant of DLs.

For example, the axiom Mother ≡ FemaleuParent would be written as follows in OWL Functional-

Style Syntax:

EquivalentClasses( Mother ObjectIntersectionOf( Female Parent ) )

where the symbols Mother, Female, and Parent would be identifier strings that conform to the

OWL specification which is based on Uniform Resource Identifiers (URIs). The above example

illustrates the close relationship between the syntax of DLs and that of OWL. In many cases, it

is enough to translate an operator symbol of DLs into the corresponding operator name in OWL,

which is then written in prefix notation like a function. This is also why the above form of syntax

is called Functional-Style Syntax [92]. The OWL standard provides a number of syntactic forms

that can be used to express OWL ontologies. The most prominent among these is the RDF/XML

Syntax [20] since it is the only format that all conforming OWL tools need to support. On the other

17



logic roles concepts axioms subsumption checking
EL+
⊥ T A,>,⊥,u,∃ C v D,R v S ,R1 ◦ R2 v S PTime-complete

ALCI T,T− A,>,⊥,u,t,¬,∃,∀ C v D ExpTime-complete
SHI T,T− A,>,⊥,u,t,¬,∃,∀ C v D,R v S ,Tra(R) ExpTime-complete

Table 2.3: List of the DLs considered in this thesis

hand, it is more difficult for humans to read, and we do not present it here. The OWL API [55], a

Java API for manipulating and reasoning with OWL ontologies, provides parsers and writers for all

standard OWL syntaxes as well as interfaces for OWL reasoners. Popular reasoners for large parts

of OWL DL include FaCT++ [132], HermiT [94], Pellet [121], and RacerPro [47]. Up-to-date lists

of current OWL reasoners are best found online.1

The expressivity of OWL DL corresponds approximately to the DL SROIQ(D) [29]. The

OWL standard defines three fragments (also known as profiles) [90] that trade expressive power for

favorable computation properties. These are closely related to and have similar properties as the

three families of light-weight DLs that we discussed above: OWL EL is based on the EL family of

DLs, OWL QL (for Query Language) is based on the DL-Lite family of DLs, and OWL RL (for

Rule Language) is based on Description Logic Programs.

OWL also provides a number of non-logical features that are not considered in DLs. These

include the ability to give a name and a version to an ontology, import axioms from one ontol-

ogy into another, declare identifiers, and annotate axioms and entities with extra information, e.g.,

provenance.

2.4 Roadmap

In this thesis we develop algorithms for the subsumption checking problem and for the ontology

classification task. In Part II we work in the EL family of logics, in particular in the DL EL+
⊥ which

extends EL with ⊥ and complex role inclusions. Equivalently, EL+
⊥ is EL++ without nominals and

concrete domains. In Parts III and IV we then move on to the more expressive DL ALCI. However,

since it is possible to eliminate role inclusions and transitivity axioms from a SHI ontology to

obtain an ALCI ontology that entails the same consequences, our results are applicable to the DL

SHI as well. Table 2.3 lists all these DLs. We stress that no syntactic restrictions are necessary for

1A list of reasoners can be found, e.g., at http://semanticweb.org/wiki/Category:Reasoner.

18

http://semanticweb.org/wiki/Category:Reasoner


these logics; each logic allows unrestricted combination of the corresponding features in Table 2.3.

Since our focus is on TBox reasoning, we omit individuals and ABox axioms from the rest of

the main presentation. Note that, in all DLs without nominals, the presence of ABox axioms in

an ontology can have no effect on the entailment of TBox axioms apart from possibly making the

whole ontology inconsistent. Thus, assuming the ontology is consistent, our algorithms can be used

for classification even in the presence of an ABox. Moreover, we show in Appendix A that, by

treating individuals as atomic concepts, ABox reasoning in EL+
⊥ can be reduced to TBox reasoning.

Unfortunately, this reduction does not work in more expressive DLs, and extending our algorithms

to support ABox reasoning in ALCI and beyond is interesting future work.

19



20



Part II

ELK System Description

21





All proofs inevitably lead to propositions which have

no proof! All things are known because we want to

believe in them.

—Frank Herbert
Children of Dune

Chapter 3

Consequence-Based Calculus for EL+
⊥

In this chapter we present the inference system that is implemented in ELK without yet focusing on

specific algorithmic details of the implementation. We first formulate a calculus for terminological

reasoning in EL+
⊥ in Section 3.1, and then prove completeness of this calculus in Section 3.2.

3.1 Inference Rules

Our calculus for EL+
⊥ is based on a set of inference rules that are similar to the completion rules orig-

inally proposed for EL++ [10]. The improvement and extension of these rules to more expressive

logics is a part of the ongoing development of ELK [63, 64, 65].

Given an EL+
⊥ ontology O, we write v∗O for the smallest reflexive transitive binary relation over

roles such that R v∗O S holds for all R v S ∈ O. We say that a concept C occurs negatively

(respectively positively) in an ontology O, if C is a syntactic subexpression of D (respectively E)

for some concept inclusion D v E ∈ O.

The inference rules for EL+
⊥ are shown in Fig. 3.1. They operate with expressions of the form

init(C), C v D, C R
→ D, where C and D are (possibly complex) concepts. We call the expression

C R
→ D an (existential) link, and expression init(C) a concept initialization. Intuitively, init(C) is used

to initialize derivation of subsumers for C, and expression C R
→ D means that for two (initialized)

concepts C and D, the subsumption C v ∃R.D is entailed. We distinguish between the premises of

a rule (appearing above the horizontal line) and its side conditions (appearing after the colon). Note

that the subsumptions in O are only used as side conditions of rule Rv; to distinguish them from the

23



R0
init(C)
C v C

R>
init(C)
C v >

: > occurs negatively in O R⊥
E R
→ C C v ⊥

E v ⊥

R−u
C v D1 u D2

C v D1 C v D2
R+
u

C v D1 C v D2

C v D1 u D2
: D1 u D2 occurs negatively in O

R−∃
C v ∃R.D

init(D) C R
→ D

R+
∃

E R
→ C C v D
E v ∃S .D

:
∃S .D occurs negatively in O
R v∗O S

Rv
C v D
C v E

: D v E ∈ O R◦
E R1
→ C C R2

→ D

E S
→ D

:
S 1 ◦ S 2 v S ∈ O
R1 v

∗
O S 1

R2 v
∗
O S 2

Figure 3.1: Inference rules for reasoning in EL+
⊥

derived subsumptions, we refer to them as told subsumptions.

The inference procedure starts with a set Input of expressions init(C) for concepts C for which

computation of subsumers is required. Intuitively, the subsumers are computed by: (i) deriving

trivial subsumers using rules R0 and R>, (ii) combining subsumers into complex subsumers using

composition rules R+
u and R+

∃
, (iii) expanding subsumers under told subsumptions using Rv, and

(iv) decomposing complex subsumers using decomposition rules R−u and R−
∃

.

The mechanism of composition and decomposition rules for conjunction R+
u and R−u is rela-

tively straightforward. The rules R+
∃

and R−
∃

for existential restrictions involve auxiliary existential

links. Intuitively, whenever a subsumption C v ∃R.D with an existential restriction is derived, the

decomposition rule R−
∃

produces a link C R
→ D and initializes the derivation of subsumers for D. The

link together with the derived subsumers for D can then be used to derive new existential subsumers

for the original concept C using the composition rule R+
∃

. Apart from deriving new existential sub-

sumers, existential links can also be used by rule R⊥ for propagation of inconsistency and by rule

R◦ for composing links using role compositions.

Example 3.1. Consider the ontology O consisting of the following axioms.

A v ∃R.(C u D) (3.1)

B ≡ A u ∃S .D (3.2)

∃S .D v C (3.3)

R v S (3.4)

24



To compute the subsumers of A, we compute the closure of Input = {init(A)} under the inference

rules in Fig. 3.1.

init(A) input expression (3.5)

A v A by R0 to (3.5) (3.6)

A v ∃R.(C u D) by Rv to (3.6) using (3.1) (3.7)

init(C u D) by R−∃ to (3.7) (3.8)

A R
→ C u D by R−∃ to (3.7) (3.9)

C u D v C u D by R0 to (3.8) (3.10)

C u D v C by R−u to (3.10) (3.11)

C u D v D by R−u to (3.10) (3.12)

A v ∃S .D by R+
∃ to (3.9) and (3.12) using (3.4) (3.13)

A v A u ∃S .D by R+
u to (3.6) and (3.13) (3.14)

init(D) by R−∃ to (3.13) (3.15)

A S
→ D by R−∃ to (3.13) (3.16)

A v C by Rv to (3.13) using (3.3) (3.17)

A v B by Rv to (3.14) using (3.2) (3.18)

D v D by R0 to (3.15) (3.19)

The application of rules R+
∃

and R+
u in lines (3.13) and (3.14) uses the fact that concepts ∃S .D and

Au∃S .D occur negatively in Au∃S .D v B which is a part of (3.2). Intuitively, these rules are used

to gradually construct the subsumption A v A u ∃S .C, so that rule Rv with side condition (3.2) can

be applied to derive A v B.

From (3.6), (3.13), (3.14), (3.17), (3.18) we can see that the following subsumers of A have been

derived: A, ∃R.(C u D), ∃S .D, A u ∃S .D, C, and B.

What can be said about the subsumptions derived by the inference rules? We can show that all

of them are entailed by the ontology O, that is, the inference system is sound. To prove this fact,

we extend the interpretation relation to expressions init(C) and C R
→ D by defining that I |= init(C)

25



always holds and that I |= C R
→ D if and only if I |= C v ∃R.D. Then it is easy to see for

each inference rule in Fig. 3.1 that, if O entails all premises of the rule, then O entails all of its

conclusions. Since, by our definition, O entails all expressions in Input, one can conclude that O

entails every expression derivable from Input.

The converse of this property does not necessarily hold. That is, the inference system is not

complete for deriving all entailed subsumptions with complex concepts. Indeed, from Example 3.1

it is easy to see that O |= A v B u C (because O |= A v B and O |= A v C), but A v B u C is

not derivable. However, as described in the following theorem, the system is complete for deriving

atomic subsumers of initialized concepts. The theorem will be proved in the next section.

Theorem 3.2 (Completeness). Let O be an EL+
⊥ ontology, let Input be a set of expressions init(C),

and let Closure be the closure of Input under the inference rules in Fig. 3.1 w.r.t. O. Then, for each

concept C such that init(C) ∈ Closure and C v ⊥ < Closure, each atomic concept A, and each

atomic role S , we have

(i) C is satisfiable w.r.t. O;

(ii) if O |= C v A, then C v A ∈ Closure;

(iii) if O |= C v ∃S .A, then there exist R and D such that C R
→ D ∈ Closure, R v∗O S , and

D v A ∈ Closure.

For example, for checking consistency of an ontology O, it is sufficient to verify whether > v ⊥

can be derived from Input containing init(>). The rules can also be used for ‘one pass’ ontology

classification, which can be accomplished by computing the closure of Input containing init(A) for

every atomic concept A occurring in O and considering only derived subsumptions with atomic

concepts or ⊥.

To estimate the complexity of the procedure, note that the inference rules can only derive ex-

pressions of the form C v D, C R
→ D, and init(C) where C, D, and R occur in O∪Input, and each rule

has a bounded number of premises and side conditions. Therefore, the closure under the inference

rules can be computed in time polynomial in the size of O and Input.

26



3.2 Canonical Models

A commonly used technique for proving completeness of EL algorithms is based on canonical

model construction.1 Similarly to saturation-based theorem proving [18], canonical models are

constructed (uniquely) from the closure of a set of expressions under inference rules. The canonical

model not only witnesses satisfiability of the input ontology, but can also be used to refute all non-

subsumptions with initialized concepts.

Assume that O, Input, and Closure satisfy the condition of Theorem 3.2. If C v ⊥ ∈ Closure

for every concept C such that init(C) ∈ Closure, then Theorem 3.2 trivially holds. Therefore, in the

rest of this section we can assume that we have init(C) ∈ Closure and C v ⊥ < Closure for at least

one concept C. In this case, one can define the canonical model (of O w.r.t. Closure) as follows.

Definition 3.3 (Canonical Model). The canonical model I is defined by

∆I = {xC | init(C) ∈ Closure and C v ⊥ < Closure},

AI = {xC ∈ ∆I | C v A ∈ Closure},

S I = {〈xC , xD〉 ∈ ∆I × ∆I | there exists R such that C R
→ D ∈ Closure and R v∗O S }.

The domain ∆I contains a distinct element xC for each concept C such that init(C) ∈ Closure

and C v ⊥ < Closure. Since there is at least one such C by the assumption, the domain is nonempty.

Example 3.4. Consider the set of expressions (3.5)–(3.19), which were computed in Example 3.1.

Then the canonical model I = (∆I , ·I) w.r.t. (3.5)–(3.19) is defined by:

• ∆I = {xA, xCuD, xD},

• AI = BI = {xA}, CI = {xA, xCuD}, DI = {xCuD, xD},

• RI = {〈xA, xCuD〉}, S I = {〈xA, xCuD〉, 〈xA, xD〉}.

It is easy to see that I is a model of axioms (3.1)–(3.4).

Of course, even if I is well-defined, it does not immediately follow that it is a model of O. In

order to prove that this is indeed the case, we first need two auxiliary lemmas.

1In the earlier EL papers [8, 10, 11], canonical models were called completion graphs.

27



Lemma 3.5. For each xC ∈ ∆I and each concept D, C v D ∈ Closure implies xC ∈ DI .

Proof. The proof is by induction over the structure of D. In each case, we assume that xC ∈ ∆I and

C v D ∈ Closure, and prove that xC ∈ DI .

• Case D = A: xC ∈ AI follows from our assumptions and the definition of AI .

• Case D = >: We have xC ∈ >
I since >I = ∆I .

• Case D = ⊥: This case cannot occur, since xC ∈ ∆I implies C v ⊥ < Closure.

• Case D = D1uD2: Since Closure is closed under R−u, we have C v Di ∈ Closure for i = 1, 2.

Therefore, by the induction hypothesis, we have xC ∈ DI
i , from which xC ∈ (D1 u D2)I

follows by the semantics of u.

• Case D = ∃S .D2: Since Closure is closed under R−
∃

, we have init(D2) ∈ Closure and

C S
→ D2 ∈ Closure. Now xC ∈ ∆I implies C v ⊥ < Closure, so, since C S

→ D2 ∈ Closure,

D2 v ⊥ < Closure follows due to R⊥. Thus xD2 ∈ ∆I . Also, init(D2) ∈ Closure implies

D2 v D2 ∈ Closure due to rule R0. By the induction hypothesis applied to xD2 ∈ ∆I and

D2 v D2 ∈ Closure we get xD2 ∈ DI
2 . Since C S

→ D2 ∈ Closure, we have 〈xC , xD2〉 ∈ S I by

the definition of S I . Then xC ∈ (∃S .D2)I holds by the semantics of ∃. �

Corollary 3.6. For each C such that init(C) ∈ Closure and C v ⊥ < Closure, we have xC ∈ CI .

Proof. Suppose init(C) ∈ Closure and C v ⊥ < Closure. Then xC ∈ ∆I by the definition of ∆I ,

and C v C due to rule R0. Hence xC ∈ CI follows by Lemma 3.5. �

The next lemma is the converse of Lemma 3.5 for D occurring negatively in O.

Lemma 3.7. For each xC ∈ ∆I and each D occurring negatively in O, xC ∈ DI implies C v D ∈

Closure.

Proof. The proof is by structural induction on D. In each case, we assume that D occurs negatively

in O and xC ∈ DI , and prove that C v D ∈ Closure.

• Case D = A: If xC ∈ AI , then C v A ∈ Closure by the definition of AI .

28



• Case D = >: By assumption, > occurs negatively in O and xC ∈ >
I = ∆I . Then init(C) ∈

Closure by the definition of ∆I , from which C v > ∈ Closure follows since Closure is

closed under rule R>.

• Case D = ⊥: This case cannot occur since xC ∈ ⊥
I = ∅ is not possible.

• Case D = D1 u D2: By assumption, D1 u D2 occurs negatively in O and xC ∈ (D1 u D2)I .

Then xC ∈ DI
i by the semantics of u and Di occurs negatively in O for i = 1, 2. Applying the

induction hypothesis to xC ∈ DI
i we obtain C v Di ∈ Closure, from which C v D1 u D2 ∈

Closure follows since Closure is closed under rule R+
u and D1 u D2 occurs negatively in O.

• Case D = ∃S .D2: Since ∃S .D2 occurs negatively in O and xC ∈ (∃S .D2)I by assumption,

there exists some element xD1 ∈ ∆I such that 〈xC , xD1〉 ∈ S I and xD1 ∈ DI
2 by the semantics of

∃, and D2 occurs negatively in O. Applying the induction hypothesis to xD1 ∈ DI
2 we obtain

D1 v D2 ∈ Closure. Further, by the definition of S I , there exists R such that C R
→ D1 ∈

Closure and R v∗O S . Since Closure is closed under rule R+
∃

and the rule is applicable to

premises C R
→ D1 and D1 v D2 with side conditions that ∃S .D2 occurs negatively in O and

R v∗O S , we conclude C v ∃S .D2 ∈ Closure. �

We are now ready to prove that I is indeed a model of O.

Theorem 3.8. I |= O.

Proof. We check that I |= α for each axiom α ∈ O.

• Case α = D v E: We consider an arbitrary element xC ∈ DI and show that xC ∈ EI . By

Lemma 3.7, since D occurs negatively in O and xC ∈ DI , we have C v D ∈ Closure. Then,

since Closure is closed under rule Rv, we have C v E ∈ Closure, from which xC ∈ EI

follows by Lemma 3.5. Therefore I |= D v E.

• Case α = S 1 v S 2: We consider arbitrary elements 〈xC , xD〉 ∈ S I
1 and show that 〈xC , xD〉 ∈

S I
2 . By the definition of S I

1 , there exists R such that C R
→ D ∈ Closure and R v∗O S 1. The

latter and S 1 v S 2 ∈ O implies R v∗O S 2, so 〈xC , xD〉 ∈ S I
2 by the definition of S 2. Therefore

I |= S 1 v S 2.

29



• Case α = S 1 ◦ S 2 v S : We consider arbitrary 〈xC , xD〉 ∈ S I
1 and 〈xD, xE〉 ∈ S I

2 and show

that 〈xC , xE〉 ∈ S I . By the definition of S I
1 and S I

2 , there exist R1 and R2 such that C R1
→ D ∈

Closure, D R2
→ E ∈ Closure, R1 v

∗
O S 1, and R2 v

∗
O S 2. Then, since Closure is closed under

rule R◦, we have C S
→ E ∈ Closure, from which 〈xC , xE〉 ∈ S I follows by the definition of S .

Therefore I |= S 1 ◦ S 2 v S . �

It is now easy to conclude the proof of completeness.

Proof of Theorem 3.2. Consider an arbitrary concept C such that init(C) ∈ Closure and C v ⊥ <

Closure, an arbitrary atomic concept A, and an arbitrary atomic role S . Let I be the canonical

model of O w.r.t. Closure. By Corollary 3.6, we have xC ∈ CI .

(i) C is satisfiable w.r.t. O since xC ∈ CI implies CI , ∅.

(ii) If O |= C v A, then xC ∈ AI , hence the required C v A ∈ Closure follows from the definition

of AI .

(iii) If O |= C v ∃S .A, then xC ∈ (∃S .A)I , so there exists an element xD ∈ ∆I with 〈xC , xD〉 ∈ S I

and xD ∈ AI ; hence, by the definition of S I and AI , there exists some R such that C R
→ D ∈

Closure, R v∗O S , and D v A ∈ Closure. �

30



What do such machines really do? They increase the

number of things we can do without thinking. Things

we do without thinking—there’s the real danger.

—Frank Herbert
God Emperor of Dune

Chapter 4

Saturation Procedures

In the previous chapter we discussed soundness and completeness of our calculus for EL+
⊥. In this

chapter we focus on the algorithmic aspect of the problem, specifically, on how to compute the

deductive closure under the inference rules in an efficient way. Although it is relatively easy to

implement the procedure so that it runs in polynomial time, we will demonstrate that a number of

optimizations and efficient data structures can account for a significant difference in performance.

We first give a high-level overview of the procedure in Section 4.1, which can essentially be

applied to any inference system, and provide a more detailed description that is specific to EL+
⊥ in

Section 4.2. We then present concurrent extensions of both procedures in Sections 4.3 and 4.4.

4.1 Abstract Saturation Procedure

In this section we present a basic algorithm for computing the deductive closure of input expressions

under inference rules, which we call the abstract saturation procedure. This procedure is well-

known: it is similar to the ‘given clause’ algorithm (set of support strategy) used in saturation-based

theorem proving (see, e.g., [18, 139]) and semi-naive (bottom-up) evaluation of logic programs (see,

e.g., [1]).

The abstract saturation procedure can be described using Algorithm 4.1. In order to compute

the deductive closure for a set Input of expressions under inference rules, the procedure maintains

two collections of expressions: the queue Todo containing expressions to which the rules have yet

to be applied and the set Closure that accumulates the result of the computation. The queue Todo

31



Algorithm 4.1: The abstract saturation procedure
1 for expression ∈ Input do
2 Todo.add(expression);

3 while (expression← Todo.poll()) , null do
4 process(expression);

5 process(expression) :
6 if Closure.add(expression) then
7 for inference ∈ inferences(expression, Closure) do
8 Todo.add(inference.conclusion)

is initialized with expressions from Input (lines 1–2), and every expression in Todo is processed by

function process(expression) until the queue is empty (lines 3–4). When the expression is pro-

cessed, the procedure first attempts to insert it into Closure (line 6). If this operation is successful,

i.e., the expression was not in Closure, then all inferences between this expression and the expres-

sions in Closure are applied and the conclusions of the inferences are added to the Todo queue

(lines 7–8).

Example 4.1. The derivation in Example 3.1 already presents the expressions in the order in which

they are processed by the abstract saturation procedure. For example, after processing expression

(3.10), Closure contains expressions (3.5)–(3.10), and Todo contains expressions (3.11) and (3.12).

The algorithm then takes and removes expression (3.11) from Todo, adds it to Closure, and applies

all inferences involving this expression and the previously processed expressions (3.5)–(3.10). In

this case, no inference rules are applicable. The algorithm then takes the next expression (3.12) from

Todo, adds it to Closure, and applies all inferences involving this expression and the previously

processed expressions (3.5)–(3.11). In this case, rule R+
∃

is applicable to the premises (3.9) and

(3.12), so the conclusion (3.13) is added to Todo.

Correctness of Algorithm 4.1 is a consequence of the following (semi-)invariants that can be

proved by induction over execution of the algorithm:

(1) Every expression in Todo and Closure either occurs in Input or is obtained by an inference rule

from some expressions in Closure;

(2) Closure does not contain duplicate expressions;

(3) After every iteration of the loop at lines 3–4:

32



(a) Either the size of Closure increases or, otherwise, it remains the same and the size of Todo

decreases;

(b) every element in Input and every conclusion of an inference from Closure occurs either

in Todo or in Closure.

From (1), it follows that Algorithm 4.1 can add to Closure only expressions that are derivable

from Input. Therefore, from (2) and (3a), it follows that if there are only finitely many different

expressions that can be derived from Input, then Algorithm 4.1 terminates. Finally, from (3b) it

follows that when Algorithm 4.1 terminates (and thus Todo is empty), Closure contains all the

expressions that are derivable from Input.

4.2 Saturation Procedure for EL+
⊥

One of the key details of Algorithm 4.1 that has not been discussed so far is the application of

inference rules in line 7. At this point, the abstract saturation procedure requires computing all

inferences between the given expression and the expressions in Closure. How to implement this

computation? One possibility is to enumerate all tuples of expressions in Closure that contain the

given expression (note that the given expression will already be present in Closure at this point)

and check application of all rules to each tuple. Although this operation can be implemented in

polynomial time in the size of Closure, this procedure will, clearly, be impractical. Instead, modern

EL reasoners use sophisticated control structures that enable more efficient search and application

of inference rules (see, e.g., [14] for a description of the CEL reasoner).

In this section we describe the algorithms and datastructures used in ELK. Our optimized satu-

ration procedure for EL+
⊥ consists of three phases: the first two can be seen as a kind of compilation

for rules which enables their efficient application in the third phase.

4.2.1 Phase 1: Indexing

The goal of the indexing phase is to build a representation of the input ontology O so that the side

conditions of the rules in Fig. 3.1 can be efficiently verified. For this purpose, we store information

about occurrences of roles and concepts in O using a system of indexed objects.

33



IdxRole

occurs : integer
id: String

IdxExistential

role : IdxRole
filler : IdxConcept

IdxConjunction

firstConj : IdxConcept
secondConj : IdxConcept

IdxAtomic

id: String

IdxConcept

negOccurs : integer
posOccurs : integer

Figure 4.1: Classes for indexing objects

The type hierarchy of indexed objects is shown in Fig. 4.1; it closely follows the recursive defi-

nition of EL expressions. The top level classes IdxRole and IdxConcept are used to represent roles

and concepts, respectively. For each indexed role, the field occurs stores the number of times this

role occurs in the ontology O, and the field id contains the string identifier of the role. For indexed

concepts we separately keep track of the number of their negative and positive occurrences in O

in the fields negOccurs and posOccurs. The different types of EL concepts are represented by

the corresponding subclasses of IdxConcept from Fig. 4.1. For example, a conjunction C u D is

represented by an object of type IdxConjunction, and its fields firstConj and secondConj point to

the indexed objects that represent the concepts C and D, respectively. In addition, there are distin-

guished instances top and bottom of IdxConcept that represent the concepts > and ⊥, respectively.

From now on, when we mention roles or concepts, we refer to their indexed representations.

Apart from creating the indexed objects, the indexing phase also constructs data structures for

efficient look-up of side conditions of the inference rules. Specifically, the following tables (sets of

tuples) of indexed objects are constructed.

negConjs = {〈C,D,C u D〉 | C u D occurs negatively in O}

negExists = {〈R,C,∃R.C〉 | ∃R.C occurs negatively in O}

concIncs = {〈C,D〉 | C v D ∈ O}

roleIncs = {〈R, S 〉 | R v S ∈ O}

roleComps = {〈R1,R2, S 〉 | R1 ◦ R2 v S ∈ O}

34



These data structures provide a complete representation of O.

Example 4.2. Consider the ontology O from Example 3.1. Its index contains the following indexed

objects with occurrence counts as indicated.1

IdxRole R S

occurs 2 4

IdxConcept > ⊥ A B C D C u D ∃R.(C u D) ∃S .D A u ∃S .D

negOccurs 0 0 2 1 0 2 0 0 2 1

posOccurs 0 0 1 1 2 2 1 1 1 1

The look-up tables contain the following tuples.

negConjs = {〈A,∃S .D, A u ∃S .D〉}

negExists = {〈S ,D,∃S .D〉}

concIncs = {〈A,∃R.(C u D)〉, 〈B, A u ∃S .D〉, 〈A u ∃S .D, B〉, 〈∃S .D,C〉}

roleIncs = {〈R, S 〉}

roleComps = ∅

To give an idea how these index datastructures can be used during the saturation phase, consider

the point in the derivation from Example 3.1 when the saturation algorithm processes the expression

A v ∃S .D in line (3.13). To apply rule R+
u to this expression, the algorithm iterates over those tuples

in negConjs whose first or second component is ∃S .D to find all possible ways of satisfying the

side condition. Since negConjs contains 〈A,∃S .D, A u ∃S .D〉, the algorithm checks if the set of

processed expressions contains A v A, which can be used as the first premise of R+
u. Since this

is the case, the conclusion A v A u ∃S .D is added to the Todo queue. Note that (a pointer to) the

indexed conjunction Au∃S .D used in the conclusion can be taken directly from the table negConjs.

This illustrates that conclusions of the inference rules can be constructed by simply following the

pointers in the index, and no new indexed objects need to be created during the saturation phase.

Indexing is a lightweight task that can be performed by a single recursive traversal through the

structure of each axiom in the ontology. Furthermore, the index datastructures can be constructed

incrementally by considering one axiom at a time. Since we keep the exact counts of negative and

1Recall that we treat the equivalence axiom (3.2) as two individual concept inclusion axioms, so, e.g., the occurrence
count of S is 4, not 3.

35



positive occurrences of concepts and roles, the index can be easily updated not only when axioms are

added, but also when axioms are removed. This can be highly useful when working with ontologies

that are being modified, e.g., in ontology editors, as it is sufficient to reindex changed axioms only.

Example 4.3. Let us see how the index data structures in Example 4.2 are updated if we remove

the axiom B ≡ A u ∃S .D from O. First, the tuples 〈B, A u ∃S .D〉 and 〈A u ∃S .D, B〉 are removed

from the table concIncs. Second, the counters for both negative and positive occurrences of B,

A u ∃S .D, A, ∃S .D, and D are decremented, and the occurrence counter for S is decreased by 2.

Since the counter for negative occurrences of the conjunction A u ∃S .D becomes zero, the tuple

〈A,∃S .D, A u ∃S .D〉 is removed from the table negConjs. The negative occurrence count of the

existential restriction ∃S .D remains positive (the concept still occurs negatively in (3.3)), so the

table negExists remains unchanged. Finally, since there are no more occurrences of B and Au∃S .D,

the corresponding indexed objects are deleted.

4.2.2 Phase 2: Saturation of Roles

In order to efficiently check the side conditions of rules R+
∃

and R◦, we compute the reflexive

transitive closure v∗O of the role inclusion axioms of O, and store it in a table called hier (for

role hierarchy):

hier = {〈R, S 〉 | R v∗O S }.

The table hier can be easily computed from the table roleIncs obtained in the previous phase. Since

the number of roles in real-world ontologies is usually much smaller than the number of concepts,

any reasonable algorithm for computing the transitive closure can be used with no significant impact

on overall performance.

Example 4.4. For the table roleIncs in Example 4.2 we have hier = {〈R,R〉, 〈R, S 〉, 〈S , S 〉}.

4.2.3 Phase 3: Saturation of Concepts

In this phase we compute the saturation of Input under the inference rules in Fig. 3.1 using a special-

ized version of Algorithm 4.1. Recall that our inference rules operate with three types of expressions

init(C), C v D, and E R
→ C. Depending on where these expressions are saved, we use different rep-

resentations for them. The expressions in Todo are represented by objects with the corresponding

36



R0: If inits(C),
then subs(C,C).

R>: If inits(C) & top.negOccurs > 0,
then subs(C, top).

R⊥: If links(E,R,C) & subs(C, bottom),
then subs(E, bottom).

R−u: If subs(C,D) & D instanceOf IdxConjunction,
then subs(C,D.firstConj) and subs(C,D.secondConj).

R+
u: If subs(C,D1) & subs(C,D2) & negConjs(D1,D2,D),

then subs(C,D).

R−
∃
: If subs(C,D) & D instanceOf IdxExistential,

then inits(D.filler) and links(C,D.role,D.filler).

R+
∃
: If links(E,R,C) & subs(C,D) & negExists(S ,D, F) & hier(R, S ),

then subs(E, F).

Rv: If subs(C,D) & concIncs(D, E),
then subs(C, E).

R◦: If links(E,R1,C) & links(C,R2,D) & roleComps(S 1, S 2, S ) & hier(R1, S 1) & hier(R2, S 2),
then links(E, S ,D).

Figure 4.2: The closure properties induced by rules in Fig. 3.1

number of parameters, whereas the expressions in Closure are represented using three tables inits,

subs, and links for the respective types of expressions as below:

Expression Representation in Todo Representation in Closure

init(C) Init(C) C ∈ inits

C v D Sub(C,D) 〈C,D〉 ∈ subs

E R
→ C Link(E,R,C) 〈E,R,C〉 ∈ links

Before presenting details of the saturation algorithm, we first reformulate in Fig. 4.2 the rules

from Fig. 3.1 as closure properties in the above representation. In these rule formulations, for each

table T and a tuple x the expression T (x) stands for x ∈ T .

The main body of the optimized saturation algorithm remains the same as for the abstract sat-

uration procedure (Algorithm 4.1, lines 1–4). We only replace the implementation of the function

process(expression) as shown in Algorithm 4.2. Processing of each expression is done according

to its type, and corresponds to all possible ways the expression can be used as a premise of the rules

in Fig. 4.2. Note that Algorithm 4.2 uses a number of iterations over joins of tables; we discuss

possible ways of optimizing these iterations in Section 5.4.

37



Algorithm 4.2: process(expression)
1 process(Init(C)) :
2 if inits.add(C) then
3 Todo.add(new Sub(C,C)); // rule R0
4 if top.negOccurs > 0 then
5 Todo.add(new Sub(C, top)); // rule R>

6 process(Sub(C,D)) :
7 if subs.add(〈C,D〉) then
8 if D = bottom then
9 for each E,R with links(E,R,C) do

10 Todo.add(new Sub(E, bottom)); // rule R⊥

11 if D instanceOf IdxConjunction then
12 Todo.add(new Sub(C,D.firstConj));
13 Todo.add(new Sub(C,D.secondConj)); // rule R−u
14 for each D2, E with subs(C,D2) and negConjs(D,D2, E) do
15 Todo.add(new Sub(C, E)); // rule R+

u

16 for each D1, E with subs(C,D1) and negConjs(D1,D, E) do
17 Todo.add(new Sub(C, E)); // rule R+

u

18 if D instanceOf IdxExistential then
19 Todo.add(new Init(D.filler));
20 Todo.add(new Link(C,D.role,D.filler)); // rule R−

∃

21 for each E, F,R, S with links(E,R,C) and negExists(S ,D, F) and hier(R, S ) do
22 Todo.add(new Sub(E, F)); // rule R+

∃

23 for each E with concIncs(D, E) do
24 Todo.add(new Sub(C, E)); // rule Rv

25 process(Link(E,R,C)) :
26 if links.add(〈E,R,C〉) then
27 if subs(C, bottom) then
28 Todo.add(new Sub(E, bottom)); // rule R⊥
29 for each D, F, S with subs(C,D) and negExists(S ,D, F) and hier(R, S ) do
30 Todo.add(new Sub(E, F)); // rule R+

∃

31 for each D,R2, S 1, S 2, S with links(C,R2,D) and roleComps(S 1, S 2, S ) and hier(R, S 1) and
hier(R2, S 2) do

32 Todo.add(new Link(E, S ,D)); // rule R◦
33 for each D,R1, S 1, S 2, S with links(D,R1, E) and roleComps(S 1, S 2, S ) and hier(R1, S 1)

and hier(R, S 2) do
34 Todo.add(new Link(D, S ,C)); // rule R◦

38



4.3 Abstract Concurrent Saturation Procedure

One surprising property of the abstract saturation procedure described in Section 4.1 is that it works

correctly in the concurrent setting. Specifically, the while loop 3–4 of Algorithm 4.1 can be executed

from several independent ‘workers’ running in parallel, that repeatedly take the next expression from

the shared Todo queue and perform inferences between this expression and the expressions in the

shared set Closure. Concurrent processing of inferences can considerably accelerate the saturation

process on multiprocessor systems. Of course, the implementations of Todo and Closure should

support concurrent operations, such as addition, removal, and iteration over elements. In particular,

when performing inferences between the given expression and Closure (lines 7–8), at least all infer-

ences with the expressions that have occurred in Closure at the beginning of the iteration should be

computed, even if new expressions are inserted by other workers during the iteration. This property

is sufficient to guarantee that no inferences between expressions in Closure get lost: if an inference

between some tuple of expressions in Closure is possible, it will be applied by the worker that in-

serts the last expression from this tuple into Closure since all other expressions will already occur

in Closure when this worker starts its iteration over the inferences.

However, concurrent (thread-safe) datastructures satisfying the above requirements might not

always be available, or may exhibit certain overheads compared to conventional datastructures. In

this section we describe an alternative concurrent method for saturation which uses just concurrent

queues and Booleans with atomic ‘compare and swap’ operations. These features are more common

in programming libraries. The main idea is to distribute expressions according to ‘contexts’ in

which the expressions can be used as premises of inference rules, and which can be processed

independently by the workers. To this end, we assume that there is a set of contexts and a function

getContexts(expression) assigning to every expression a nonempty subset of contexts such that,

whenever an inference between several expressions is possible, at least one common context is

assigned to these expressions. We will present a concrete context assignment in Section 4.4.

The new concurrent saturation procedure is described in Algorithm 4.3. The procedure works as

follows. Every context c has a separate queue c.Todo and a separate set c.Closure, whose purpose

is similar to those of Todo and Closure from Algorithm 4.1, but they only contain expressions to

which this context is assigned. In addition, the procedure maintains a queue activeContexts to keep

39



Algorithm 4.3: The abstract concurrent saturation procedure
1 for expression ∈ Input do
2 for context ∈ getContexts(expression) do
3 context.enqueue(expression);

4 while (context← activeContexts.poll()) , null do
5 while (expression← context.Todo.poll()) , null do
6 context.process(expression);

7 deactivate(context);

8 context.process(expression) :
9 if context.Closure.add(expression) then

10 for inference ∈ inferences (expression, context.Closure) do
11 for c ∈ getContexts(inference.conclusion) do
12 c.enqueue(inference.conclusion)

13 context.enqueue(expression) :
14 context.Todo.add(expression);
15 activate(context);

16 activate(context) :
17 if context.isActive.compareAndSet(false, true) then
18 activeContexts.put(context);

19 deactivate(context) :
20 context.isActive← false;
21 if context.Todo , ∅ then activate(context);

all contexts c for which c.Todo is not empty. Queuing of expressions for processing is now done by

calling, for every context c assigned to the given expression, the function c.enqueue(expression)

(lines 13–15) which inserts the expression into c.Todo and activates c. Activation of a context (lines

16–18) is done by trying to change the flag c.isActive from false to true and adding the context to

the queue activeContexts if the flag changes. In the main loop of the procedure (lines 4–7) the

Todo expressions of every context from activeContexts are repeatedly processed, and the context is

deactivated when its Todo becomes empty. Processing of expressions (lines 8–12) is done similarly

as in Algorithm 4.1, except that all inferences are performed with the context-local Closure.

The main purpose of activation and deactivation of contexts is to make sure that, for each con-

text c, the set c.Closure is never accessed by more than one worker at a time. This allows the use

of ordinary datastructures for Closure without the need to deal with concurrency issues. To prove

that c.Closure is never accessed concurrently by several workers, consider the moment tn when c

was returned by activeContexts.poll() the n-th time. Then there should be at least n corresponding

40



Algorithm 4.4: Non-thread-safe activation of contexts
1 activate(context) :
2 if context.isActive = false then
3 context.isActive← true;
4 activeContexts.put(context);

calls of activeContexts.put(c) before tn, and thus, at least n calls to activate(c) in which the value

of c.isActive has changed from false to true. Hence, the value of c.isActive must have changed from

true to false at least n−1 times before tn, and so, there must be at least n−1 calls of deactivate(c).

Let t′n−1 be the moment of the (n − 1)-th call of deactivate(c). Then tn−1 < t′n−1 < tn since

deactivate(c) is only called after c is returned by activeContexts.poll() in the main loop (lines 4–

7). Furthermore, for deactivate(c) at time t′n−1, the corresponding activeContexts.poll() return-

ing c must be the one at time tn−1; otherwise, for activeContexts.poll() returning c at time tn−1, the

corresponding deactivate(c) happens after tn, so there are fewer calls to activeContexts.poll()

than to deactivate(c) before tn, which is not possible. Hence c.Closure can be accessed only

during the intervals [tn; t′n] and only by one worker in each interval. Therefore, two workers can

never access c.Closure at the same time.

It is essential that, in the function activate(context), the flag context.isActive is compared

and changed in one instruction. The procedure is no longer thread-safe if we replace this func-

tion with a seemingly equivalent one in Algorithm 4.4. Indeed, it may well be the case that two

workers call activate(c) for some c at the same time, both see that c.isActive is false, set it

to true, and insert c into activeContexts two times, after which c may be simultaneously pro-

cessed by two different workers. This cannot happen in Algorithm 4.3: if several workers call

isActive.compareAndSet(false, true) at the same time, the operation succeeds only for one of them.

Note that the implementation of the queues Todo and activeContexts must still be thread-safe

since several workers can insert elements into these queues at the same time during the calls of the

function context.enqueue(expression). Fortunately, concurrent queues are common in program-

ming libraries.

Next, we show correctness of Algorithm 4.3. To show termination, note that a context c can be

inserted into activeContexts only after an expression has been inserted into c.Todo, which happens

only for expressions in Input, or after a new expression has been inserted into some Closure. So, if

41



the number of expressions derived from Input is finite, eventually, the procedure is not going to add

anything into activeContexts or any Todo. Therefore, the main loop of the procedure (lines 4–7)

terminates.

It is possible to show that, after termination, all Todo queues will be empty. Indeed, consider

any context c and the value of c.isActive during the run of the procedure. If it was never true, then

nothing has been inserted into c.Todo. Otherwise, let t be the last moment when c.isActive was set

to false (at line 20). Then c.Todo is empty after t, because, otherwise, the value of c.isActive would

have changed by the subsequent calls of activate(c) and deactivate(c). Note that checking

Todo on emptiness in line 21 is important for correctness. Otherwise, it could happen, e.g., that

some worker inserts an expression into c.Todo shortly before the flag c.isActive was set to false in

deactivate(c), in which case the context c will not be activated.

Finally, it is easy to show by induction that every expression derivable from Input will be in-

serted into c.Closure for every context c assigned to this expression. This is a consequence of our

requirement on the function getContexts(expression), which ensures that every inference will be

performed within at least one context.

4.4 Concurrent Saturation Procedure for EL+
⊥

In this section we briefly discuss how to turn the saturation procedure for EL+
⊥ presented in Sec-

tion 4.2.3 into a concurrent one using Algorithm 4.3. First, we need to find a suitable assignment

of contexts to expressions that satisfies the requirement for the inference rules in Fig. 3.1. A simple

solution would be to use the inference rules themselves as contexts and assign to every expression

the set of inference rules in which the expression can participate. Unfortunately, this strategy pro-

vides only for as many contexts as there are inference rules, so it may not be very effective with

many workers. To find a better solution, note that all premises of the rules in Fig. 3.1 always have

a common concept denoted as C. So, instead of assigning expressions to rules, we can assign ex-

pressions to the corresponding concepts. This gives us the following assignment: expressions of the

form init(C), C v D, or E R
→ C are assigned to the context C. Additionally, E R

→ C is also assigned

to the context E because the expression may be used as the second premise of rule R◦. Note that

this assignment of contexts is minimal in the sense that every inference is possible in exactly one

42



context, so the overall number of inferences performed by the workers does not increase.

Note that since the contexts c under our assignment are parts of expressions, it is possible to

‘compress’ the representations of elements in c.Todo and c.Closure by removing the arguments that

are uniquely determined the context c as below:

Expression Context c Representation in c.Todo Representation in c.Closure

init(C) C Init C.Init = true

C v D C Sub(D) D ∈ C.subs

E R
→ C

C BackLink(R,E) 〈R, E〉 ∈ C.backLinks

E ForwLink(R,C) 〈R,C〉 ∈ E.forwLinks

The context-local version of function process(expression) from Algorithm 4.2 that uses this

context assignment and representation is presented in Algorithm 4.5.

Example 4.5. In this example we show how the inferences from Example 3.1 are transformed

when applying the concurrent saturation procedure in Algorithm 4.3. In Table 4.1 we have listed all

conclusions (3.5)–(3.19) in their Todo representation in the order they are derived in the respective

contexts. The rules applied to these conclusions by Algorithm 4.5 are listed in the last column of the

table. The rules indicate in which contexts they are applied to the current expression (assuming all

the previous expressions have been processed), and which table entries from Examples 4.2 and 4.4

that were precomputed during the phases 1 and 2 of the saturation procedure (see Section 4.2) are

used in the inferences. The conclusion of every inference appears in the respective context below

the current line, unless it has already been derived (we do not list duplicate conclusions because

no inference applies to them). Contexts are activated when the first unprocessed conclusion is

derived in the context and deactivated when no unprocessed conclusions left. For example, context

A is activated when Init is produced, deactivated after ForwLink(R,C u D) is processed, activated

again when Sub(∃S .D) is derived, and, finally, deactivated after Sub(B) is processed. Note that the

contexts A and D can be active at the same time, and thus, can be processed in parallel.

43



Algorithm 4.5: C.process(expression)

1 C.process(Init) :
2 if C.Init = false then
3 C.Init←true;
4 C.enqueue(new Sub(C)); // rule R0
5 if top.negOccurs > 0 then
6 C.enqueue(new Sub(top)); // rule R>

7 C.process(Sub(D)) :
8 if C.subs.add(D) then
9 if D = bottom then

10 for each E,R with C.backLinks(E,R) do
11 E.enqueue(add(new Sub(bottom))); // rule R⊥

12 if D instanceOf IdxConjunction then
13 C.enqueue(new Sub(D.firstConj));
14 C.enqueue(new Sub(D.secondConj)); // rule R−u
15 for each D2, E with C.subs(D2) and negConjs(D,D2, E) do
16 C.enqueue(new Sub(E)); // rule R+

u

17 for each D1, E with C.subs(D1) and negConjs(D1,D, E) do
18 C.enqueue(new Sub(E)); // rule R+

u

19 if D instanceOf IdxExistential then
20 D.filler.enqueue(Init);
21 D.filler.enqueue(new BackLink(D.role,C));
22 C.enqueue(new ForwLink(D.role,D.filler)) ; // rule R−

∃

23 for each E, F,R, S with C.backLinks(R, E) and negExists(S ,D, F) and hier(R, S ) do
24 E.enqueue(new Sub(F)); // rule R+

∃

25 for each E with concIncs(D, E) do
26 C.enqueue(new Sub(E)); // rule Rv

27 C.process(BackLink(R, E)) :
28 if C.backLinks.add(〈R, E〉) then
29 if C.subs.contains(bottom) then
30 E.enqueue(new Sub(bottom)); // rule R⊥
31 for each D, F, S with C.subs(D) and negExists(S ,D, F) and hier(R, S ) do
32 E.enqueue(new Sub(F)); // rule R+

∃

33 for each D,R2, S 1, S 2, S with C.forwLinks(R2,D) and roleComps(S 1, S 2, S ) and hier(R, S 1)
and hier(R2, S 2) do

34 D.enqueue(new BackLink(S , E));
35 E.enqueue(new ForwLink(S ,D)); // rule R◦

36 C.process(ForwLink(R,D)) :
37 if C.forwLinks.add(〈R,D〉) then
38 for each E,R1, S 1, S 2, S with C.backLinks(R1, E) and roleComps(S 1, S 2, S ) and

hier(R1, S 1) and hier(R, S 2) do
39 D.enqueue(new BackLink(S , E));
40 E.enqueue(new ForwLink(S ,D)); // rule R◦

44



Context A : Context C u D : Context D : context : Rule[Precomputed Table Entries]
Init A : R0

Sub(A) A : Rv[concIncs(A,∃R.(C u D))]
Sub(∃R.(C u D)) A : R−

∃

ForwLink(R,C u D) Init C u D : R0
BackLink(R, A)

Sub(C u D) C u D : R−u
Sub(C)
Sub(D) C u D : R+

∃
[negExists(S ,D,∃S .D), hier(R,S)]

Sub(∃S .D)
A : R−

∃
, R+

u[negConjs(A,∃S .D, A u ∃S .D)],
Rv[concIncs(∃S .D,C)]

ForwLink(S ,D) Init D : R0
Sub(A u ∃S .D) BackLink(S , A) A : R−u,Rv[concIncs(A u ∃S .D, B)]

Sub(C) Sub(D) D : R+
∃
[negExists(S ,D,∃S .D), hier(S,S)]

Sub(B) A : Rv[concIncs(B, A u ∃S .D)]

Table 4.1: The rule applications from Example 3.1 using the concurrent saturation procedure

45



46



Show me a completely smooth operation and I’ll

show you someone who’s covering mistakes. Real

boats rock.

—Frank Herbert
Chapterhouse: Dune

Chapter 5

Optimization Techniques

In the previous chapter we showed how one can accelerate the saturation procedure by taking ad-

vantage of multiprocessor systems to perform computations in parallel. Another way to make the

procedure more efficient is to reduce the number of computations. In this chapter we describe

several optimizations of this kind that turned out to work well in practice.

In Sections 5.1 and 5.2 we identify certain redundant inferences which can be omitted without

losing completeness, in Section 5.3 we improve treatment of large disjointness axioms, in Sec-

tion 5.4 we describe join optimizations for matching premises of inference rules, and finally in

Section 5.5 we consider the algorithm for constructing the (transitively reduced) taxonomy from the

result of the (transitively closed) saturation.

5.1 Optimization of Decomposition Rules

In this section we show that it is possible in some situations to omit applications of the decom-

position rules R−u and R−
∃

from Fig. 3.1 without losing completeness. Specifically, we prove the

correctness of the following two optimizations:

Ou Do not apply rule R−u to a subsumption C v D1 u D2 that has been derived by rule R+
u.

O∃ Do not apply rule R−
∃

to a subsumption C v ∃S .E that has been derived by rule R+
∃

.

Optimization Ou is trivial: if C v D1 u D2 has been derived by rule R+
u, then both the premises

C v D1 and C v D2 of the rule must have been derived earlier, so it is redundant to derive them

47



again in rule R−u. Even then, avoiding the actual application of the rule can still bring some speedup

of the algorithm.

Optimization O∃ is more interesting: if C v ∃S .E has been derived by rule R+
∃

, then some

premises C R
→ D with R v∗O S and D v E of the rule must have been derived earlier (and thus also

init(D)), but not necessarily the conclusion C S
→ E of rule R−

∃
applied to C v ∃S .E. This observation

motivates the following definition:

Definition 5.1 (Redundancy of R−
∃

). We say that the inference from C v ∃S .E by R−
∃

is redundant

w.r.t. Closure and O if {init(D), C R
→ D, D v E} ⊆ Closure for some concept D and role R v∗O S .

We say that Closure is closed under R−
∃

up to redundancy w.r.t. O if every inference using R−
∃

from

Closure is redundant w.r.t. Closure and O.

Note that if Closure is closed under R−
∃

and R0, then it is closed under R−
∃

up to redundancy

because C v ∃S .E ∈ Closure implies {init(D), C S
→ D, D v D} ⊆ Closure. So, closure under R−

∃

up to redundancy is a weaker condition than closure under R−
∃

and R0. Also note that an inference

from C v ∃S .E by R−
∃

can be redundant even if C v ∃S .E was not obtained by rule R+
∃

. Therefore,

this notion of redundancy can potentially be used to prune even more inferences than O∃.

The correctness of the optimization O∃ now follows from Lemma 5.2:

Lemma 5.2. All results in Section 3.2 hold for any set Closure that is closed under R−
∃

up to

redundancy and closed under the remaining inference rules.

Proof. The condition that Closure is closed under R−
∃

was used only in the case D = ∃S .D2 of

Lemma 3.5 in . We can repeat this case of the proof using a weaker assumption that Closure is

closed under R−
∃

up to redundancy:

• Case D = ∃S .D2: Assume that xC ∈ ∆I and C v D = C v ∃S .D2 ∈ Closure. We need to

prove that xC ∈ DI , where I is the canonical model constructed for Closure. Since Closure

is closed under R−
∃

up to redundancy, we have {init(D1), C R
→ D1,D1 v D2} ⊆ Closure for

some D1 and some R v∗O S . Since xC ∈ ∆I , we have C v ⊥ < Closure, and since C R
→ D1 ∈

Closure, due to rule R⊥, we have D1 v ⊥ < Closure. Therefore, xD1 ∈ ∆I since init(D1) ∈

Closure. By the induction hypothesis applied to xD1 ∈ ∆I and D1 v D2 ∈ Closure, we get

xD1 ∈ DI
2 . Since C R

→ D1 ∈ Closure and R v∗O S , we have 〈xC , xD1〉 ∈ S I by the definition of

S I . Then xC ∈ (∃S .D2)I by the semantics of ∃. �

48



Example 5.3. Using optimization O∃, the application of rule R−
∃

to axiom (3.13) in Example 3.1

is redundant. This avoids deriving expressions (3.15), (3.16), and (3.19), and, in particular, even

avoids the need to initialize D.

In practice, to implement Ou and O∃ in the saturation algorithm, we introduce a new expression

constructor Sub+(C,D) and change the implementation of rules R+
u and R+

∃
in Algorithm 4.2 to

produce Sub+ instead of Sub. Processing of Sub+(C,D) is analogous to process(Sub(C,D))

in Algorithm 4.2 except that the applications of rules R−u and R−
∃

are omitted. The changes in

Algorithm 4.5 are analogous.

It is currently not very clear how one can benefit from the more general optimization based on

the notion of redundancy in Definition 5.1. While it is certainly possible to add the redundancy

conditions as additional negative premises for rule R−
∃

in Fig. 4.2, it is not clear how to implement

such a rule efficiently so that it could give further practical improvement over the optimization O∃.

5.2 Optimization of the Role Composition Rule

All the inference rules in Fig. 3.1 have the property that if a conclusion is derivable from a premise

E S
→ D, then the same conclusion is also derivable from each stronger premise E S ′

→ D with S ′ v∗O S .

Therefore, the former is superfluous in the presence of the latter. In this section, we present an

optimization of rule R◦ that avoids deriving the conclusion E S
→ D from the premises E R1

→ C and

C R2
→ D if a stronger conclusion E S ′

→ D with S ′ v∗O S is also derivable by R◦ from the same premises.

First, to simplify the application of rule R◦, we expand all indexed role composition axioms

under the role hierarchy, i.e., we precompute the join

hierComps(R1,R2, S ) := roleComps(S 1, S 2, S ) Z hier(R1, S 1) Z hier(R2, S 2),

which can be done already during the role saturation phase. The application of rule R◦ in Fig. 4.2

then simplifies to the following:

R◦: If links(E,R1,C) & links(C,R2,D) & hierComps(R1,R2, S ),

then links(E, S ,D).

49



Second, we eliminate all entries hierComps(R1,R2, S ) for which there exists another entry hi-

erComps(R1,R2, S ′) with S ′ v∗O S ; to avoid the problem of simultaneously removing all entries

with equivalent roles, the entries need to be removed sequentially one at a time. This optimization

prevents the algorithm from deriving two different conclusions E S
→ D and E S ′

→ D with S ′ v∗O S by

rule R◦ from the same premises. We denote this optimization O◦.

It is also possible to implement a more aggressive optimization that discards each derived link

E S
→ D in case a stronger link E S ′

→ D with S ′ v∗O S has already been processed by the saturation

algorithm. Although less restrictive, the practical advantage of O◦ is that, at a relatively small cost

of preprocessing the table hierComps in the role saturation phase, it avoids even the construction of

the weaker link E S
→ D in the concept saturation phase.

5.3 Disjointness Axioms

In OWL EL one can write axioms DisjointClasses( C1 . . . Cn ) meaning that the concepts C1, . . . ,Cn

are pairwise disjoint. Although such statements can be straightforwardly translated to DL axioms

Ci uC j v ⊥ for 1 ≤ i < j ≤ n, this translation introduces n(n− 1)/2 axioms which can be inefficient

for large n.

We can treat large disjointness axioms (whose length exceeds a certain threshold) differently.

For each such axiom α = DisjointClasses(C1, . . . ,Cn) we introduce a special ‘marker’ concept Dα

and assert Ci v Dα for 1 ≤ i ≤ n. Then, in the saturation phase, whenever we process a subsumption

C v Dα the second time, i.e., whenever we attempt to insert 〈C,Dα〉 into table subs in Algorithm 4.2

but the tuple is already there, we know that C v Ci must have already been derived for at least two

different is, so we derive the conclusion C v ⊥.

5.4 Efficient Join Computation

Iterations over joins of tables are used extensively in Algorithm 4.2 and Algorithm 4.5 to retrieve all

matching side conditions and premises of inference rules. We can optimize such iterations by iterat-

ing over smaller tables and precomputing partial joins. In this section we illustrate these techniques

on the application of rules R+
u and R+

∃
.

50



Consider rule R+
u implemented in Algorithm 4.2 in lines 14–17. To apply the rule with an axiom

C v D as the first premise, the loop in line 14 iterates over all indexed concepts D2 and E such

that subs(C,D2) ∧ negConjs(D,D2, E), i.e., such that the subsumption C v D2 has already been

processed and E = DuD2 occurs negatively in the ontology. One possibility is to iterate over all D2

with subs(C,D2) and for each of them check if a (necessarily unique) E with negConjs(D,D2, E)

exists. Another possibility is to iterate over all pairs of D2 and E with negConjs(D,D2, E) and for

each of them check if subs(C,D2) holds. Most concepts D occur only in few negative conjunctions,

or even in none at all; for such concepts the second order of iteration will be more efficient than

the first. In some ontologies, however, there are several concepts that occur in many conjunctions.

For example, in the SNOMED CT ontology there are three concepts that occurs in more than 1,000

negative conjunctions. For such concepts the first order of iteration is likely to be more efficient than

the second. For this reason, we do not fix the order of iteration upfront, instead, we dynamically

choose the order that requires iterating over a smaller set.

The above approach can be further improved for rules where the same join is recomputed multi-

ple times. Consider the application of rule R+
∃

to a link E R
→ C as the first premise implemented

in Algorithm 4.2 in lines 29–30. For simplicity, we will ignore the role hierarchy in this dis-

cussion. In that case, the loop in line 29 iterates over all indexed concepts D and F such that

subs(C,D) ∧ negExists(R,D, F), i.e., such that the subsumption C v D has already been pro-

cessed and F = ∃R.D occurs negatively in the ontology. Since this iteration is independent of E,

the algorithm repeats it for all links E R
→ C with the same R and C. To avoid the recomputation,

we maintain the join in a new table props(R,C, F) := subs(C,D) Z negExists(R,D, F) which we

update whenever a new subsumption C v D is derived.

5.5 Taxonomy Construction

Recall that, for the classification task, we initialize the saturation algorithm with init(A) for each

atomic concept A, and then, by our completeness result, the result of the saturation contains all

entailed subsumptions A v B between atomic concepts. The computed saturation, however, is not

very convenient for navigating over subsumptions. Instead, subsumptions are usually represented in

the form of a taxonomy, which contains equivalent classes of atomic concepts and direct subsump-

51



tion relations between them. We say that an atomic concept A is directly subsumed by an atomic

concept B w.r.t. O if O |= A v B and for every atomic concept C such that O |= A v C v B, either

O |= C ≡ A or O |= C ≡ B. The procedure of computing the ‘direct part’ of a transitive relation

is usually called transitive reduction. The problem of efficient taxonomy construction has been in-

vestigated in the literature both in the context of tableau-based (see, e.g., [39]) and saturation-based

(see, e.g., [16]) reasoning.

To perform transitive reduction of a (transitively closed) set subs of all subsumption relations

between atomic concepts, we compute for every atomic concept A the set of its equivalent concepts

A.equivalent and the set of its direct subsumers A.directSubs.

Algorithm 5.1: Naive Transitive Reduction
1 for each C with subs(A,C) do
2 if C , A then
3 isDirect← true;
4 for each B with subs(A, B) do
5 if B , A and B , C and subs(B,C) then
6 isDirect← false;

7 if isDirect then
8 A.directSubs.add(C);

Algorithm 5.2: Better Transitive Reduction
1 for each C with subs(A,C) do
2 if subs(C, A) then
3 A.equivalent.add(C);

4 else
5 isDirect← true;
6 for B ∈ A.directSubs do
7 if subs(B,C) then
8 isDirect← false;
9 break;

10 if subs(C, B) then
11 A.directSubs.remove(B);

12 if isDirect then
13 A.directSubs.add(C);

A naive algorithm for computing A.directSubs is shown in Algorithm 5.1. The algorithm it-

erates over all subsumers C of A, and for each of them checks if another subsumer B of A exists

with A v B v C. If no such B exists, then C is a direct subsumer of A. Note that this approach does

52



not work as expected when A has two equivalent subsumers, in which case none of them would be

found as direct. Apart from this shortcoming, the algorithm is also inefficient because it performs

two nested iterations over the subsumers of A. In realistic ontologies, the number of all subsumers

of A can be sizeable, while the number of direct subsumers is usually much smaller, often just one.

A more efficient algorithm would take advantage of this and perform the inner iteration only over

the set of direct subsumers of A that have been found so far, as shown in Algorithm 5.2. Note that it

is safe to execute Algorithm 5.2 in parallel for multiple concepts A.

The rest of the taxonomy construction is straightforward. We introduce one taxonomy node for

each distinct class of equivalent concepts, and connect the nodes according to the direct subsumption

relation. Care has to be taken to put the top and the bottom node in their proper positions, even if >

or ⊥ do not occur in the ontology.

Example 5.4. Consider again the ontology from Example 3.1. Initializing the saturation algorithm

with init(A) for each atomic concept A occurring in the ontology and projecting the computed sub-

sumptions in table subs to atomic concepts yields

subs = {〈A, A〉, 〈A, B〉, 〈A,C〉, 〈B, A〉, 〈B, B〉, 〈B,C〉, 〈C,C〉, 〈D,D〉},

from which Algorithm 5.2 computes the following taxonomy (shown to the right):

A.equivalent = {A, B}, A.directSubs = {C},

B.equivalent = {A, B}, B.directSubs = {C},

C.equivalent = {C}, C.directSubs = ∅,

D.equivalent = {D}, D.directSubs = ∅.

>

C

A ≡ B
D

⊥

53



54



To know a thing well, know its limits. Only when

pushed beyond its tolerances will its true nature be

seen.

—Frank Herbert
Chapterhouse: Dune

Chapter 6

Experimental Evaluation

A practical implementation of the reasoning methods explained in the previous chapters is provided

in the form of the ontology reasoner ELK. This chapter describes the ELK system (Section 6.1) and

provides an experimental evaluation of classification using ELK on some of the largest EL+
⊥ ontolo-

gies (described in Section 6.2) that we were able to obtain from public and commercial sources.

In Section 6.3 we compare the performance of ELK in its default settings (all optimizations

turned on) with other commonly used OWL and OWL EL reasoners. In Section 6.4, to evaluate

the effect of individual optimizations, we repeat the experiments with certain optimizations turned

off. In Section 6.5 we evaluate the effect of varying the number of concurrent workers. Finally, in

Section 6.6 we compare the two transitive reduction algorithms from Section 5.5.

6.1 System Overview

ELK is a Java-based system for reasoning with OWL EL ontologies under Direct Semantics; as

explained in Section 2.3, OWL EL can be viewed as a slightly richer syntax for the EL family of

DLs. ELK is free and open source, using a commercial-friendly Apache 2 license.1

The latest stable release ELK 0.3.1 supports all features of EL+
⊥: conjunction (ObjectIntersec-

tionOf), existential restriction (ObjectSomeValuesFrom), top (owl:Thing), bottom (owl:Nothing),

and complex role inclusions (property chains). This also covers transitive and reflexive proper-

ties and disjoint classes, for which OWL provides syntactic shortcuts. Moreover, ELK implements

1Download at http://code.google.com/p/elk-reasoner/

55

http://code.google.com/p/elk-reasoner/


Command-line Client ReasonerOWL FSS Parser

Protégé Plugin OWL API Bindings

OWL
Object

Interfaces

Indexing

Saturation

Taxonomy

Job
Manager

Figure 6.1: Main software modules of ELK and information flow during classification

support for ABoxes and ObjectHasValue restrictions as discussed in Appendix A. Finally, ELK

provides some preliminary support for datatypes, using a simplified syntactic matching to compare

values. The reasoning tasks supported in ELK are ontology consistency checking, TBox classifica-

tion, and ABox realization.

ELK implements the concurrent saturation procedure described in Chapter 4 and all optimiza-

tion techniques detailed in Chapter 5. The number of concurrent workers used by ELK can be

configured, where the same number will be used for all reasoning tasks (saturation of roles , satu-

ration of concepts, transitive reduction). The default is to use the number of cores reported by the

operating system; this usually includes virtual cores. In addition, ELK generally uses one parallel

worker to generate the ontology index (Section 4.2.1) while loading an ontology.

ELK is a flexible system that can be used in a variety of configurations. This is supported by

a modular program structure that is organized using the Apache Maven build manager for Java.

Maven can be used to automatically download, configure, and build ELK and its dependencies, but

there are also pre-built packages for the most common configurations. The modular structure also

separates the consequence-based reasoning engine from the remaining components, which facili-

tates extension of the system with new language features.

The main software modules of ELK are shown in Fig. 6.1. The arrows illustrate the information

flow during classification. The two independent entry points are the command-line client and the

Protégé plug-in to the left. The former extracts OWL ontologies from files in OWL Functional-

Style Syntax (FSS), while the latter uses ELK’s bindings to the OWL API [55] to get this data from

Protégé [66]. All further processing is based on ELK’s own representation of OWL objects (axioms

and expressions) that does not depend on the (more heavyweight) OWL API. The core of ELK is

its reasoning module, which has been descibed in detail in the previous chapters.

Useful combinations of ELK’s modules are distributed in three pre-built packages, each of

56



which includes the ELK reasoner. The standalone client includes the command-line client and

the FSS parser for reading OWL ontologies. The Protégé plugin allows ELK to be used as a rea-

soner in Protégé and compatible tools such as Snow Owl.2 The OWL API bindings package allows

ELK to be used as a software library that is controlled via the OWL API interfaces.

6.2 Experimental Setup

The experiments in this chapter were executed on a laptop with Intel Core i7-2630QM 2GHz quad-

core CPU and 6GB RAM running Microsoft Windows 7. On this architecture, ELK defaults to using

8 concurrent workers in the saturation phase. We ran Java 1.6 with the -XX:+AggressiveHeap and

4GB of heap space. All figures reported here were obtained as the average over 5 runs of the

experiment.

Our test ontology suite contains SNOMED CT obtained from the official January 2012 inter-

national release by converting from the native syntax (RF2) to OWL functional syntax using the

supplied converter. Additionally, we used an experimental version ANATOMY, which remodels

the ‘body structure’ hierarchy of SNOMED CT using role composition axioms. Both of these on-

tologies are freely available for research and evaluation.3 We included several versions of GALEN.

GALEN7 and GALEN8 were obtained from versions 7 and 8 respectively of OpenGALEN4 by re-

moving all inverse role and functional role axioms, and replacing all data property restrictions with

new atomic concepts. The role composition axioms of GALEN7 and GALEN8 do not satisfy the

regularity condition imposed by OWL 2 and therefore are not proper OWL EL ontologies. Although

this is not problematic for ELK, these ontologies are rejected by most OWL reasoners. We have ad-

ditionally included GALEN-OWL, a proper OWL EL version of GALEN, which is obtained from

the CO-ODE version of GALEN5 by removing inverse role and functional role axioms. This version

of the ontology has been used extensively in the past for evaluating reasoners [31, 60, 63, 88, 116].

It is similar to GALEN7 but its only role compositions are transitivity axioms. We also used two

versions of the Gene Ontology6 which we call GO1 and GO2. The older GO1, published in 2006,

2http://www.b2international.com/portal/snow-owl
3http://www.ihtsdo.org/licensing/
4http://www.opengalen.org/sources/sources.html
5http://www.co-ode.org/galen/
6http://www.geneontology.org

57

http://www.b2international.com/portal/snow-owl
http://www.ihtsdo.org/licensing/
http://www.opengalen.org/sources/sources.html
http://www.co-ode.org/galen/
http://www.geneontology.org


C v D C ≡ D Disj(C,D) R v S R ≡ S Trans(R) R1 ◦ R2 v S
Complex:

SNOMED CT 227,961 66,507 - 11 - - 1
ANATOMY 17,551 21,831 - 4 - 3 2
GALEN-OWL 25,563 9,968 - 958 - 58 -
GALEN7 27,820 15,270 - 972 14 - 385
GALEN8 53,449 113,622 - 996 14 - 385
GO2 66,216 7,361 6 2 - 2 3

Simple:
GO1 28,896 - - - - 1 -
ChEBI 67,182 - - - - 2 -
EMAP 13,730 - - - - - -
FMA 126,544 - - 3 - 1 -
Fly Anatomy 19,137 - 61 10 - 3 -
Molecule Role 9,627 - - - - 2 -

Table 6.1: Ontology metrics: number of axioms

A pos. u neg. u pos. ∃ neg. ∃ R
Complex:

SNOMED CT 294,469 251,428 140,554 105,373 75,666 62
ANATOMY 37,757 49,092 4,729 25,880 21,387 10
GALEN-OWL 23,136 13,006 12,542 14,115 7,549 950
GALEN7 28,482 13,079 12,982 15,105 7,973 964
GALEN8 128,483 141,592 140,542 106,065 93,241 988
GO2 36,215 7,363 7,363 10,157 6,581 7

Simple:
GO1 20,465 - - 1,796 - 1
ChEBI 31,190 - - 14,053 - 9
EMAP 13,731 - - 4,821 - 1
FMA 80,469 - - 13,691 - 15
Fly Anatomy 7,797 - - 2,558 - 40
Molecule Role 9,217 - - 2,238 - 4

Table 6.2: Ontology metrics: number of concepts, roles, and constructors by occurrence polarities

has been used in many performance experiments [15, 31, 39, 60, 88, 116, 133]. GO2 is the version

of March 2012 and uses significantly more features than GO1, including negative occurrences of

conjunctions and existential restrictions, and even a few disjointness axioms. To obtain further test

data, we selected some of the largest ontologies listed at the OBO Foundry [122] and the Onto-

bee [141] websites that were in OWL EL but were not just plain taxonomies, i.e., included some

non-atomic concepts. This gave us the Chemical Entities of Biological Interest (ChEBI), the e-

Mouse Atlas Project (EMAP), the Foundational Model of Anatomy (FMA), the Fly Anatomy, and

the Molecule Role ontology. All ontologies that we are allowed to publish can be downloaded from

the ELK website.7

7http://code.google.com/p/elk-reasoner/wiki/TestOntologies

58

http://code.google.com/p/elk-reasoner/wiki/TestOntologies


Tables 6.1 and 6.2 show various statistics about the ontologies from our benchmark suite. Ta-

ble 6.1 shows the number of various axiom types; the only logical axiom not mentioned in the table

is one reflexive role axiom in ANATOMY. Table 6.2 shows the number of atomic concepts, roles,

and the number of positive and negative occurrences of conjunctions and existentials. It turns out

that many of the smaller ontologies in our suite contain only concept inclusion axioms of the very

simple form A v B and A v ∃R.B, where A and B are atomic concepts. We will refer to these

ontologies as simple and to other as complex as indicated in Tables 6.1 and 6.2. It is interesting to

note that the simple ontologies can be fully classified just by computing the transitive closure of the

told subsumptions A v B ignoring the remaining axioms. To the best of our knowledge, no reasoner

currently takes advantage of this fact. ELK also applies rule R+
∃

to the positive existentials in these

ontologies even though, due to lack of negative existentials, the resulting links can never participate

in rule R−
∃

.

All of our experiments are focused on terminological reasoning, which is currently the most

common reasoning problem used in applications involving EL ontologies [38, 50, 58, 99, 103]. Al-

though the OWL EL standard comprises many features, such as assertions, nominals, and datatypes,

these are difficult to find in existing OWL EL ontologies. One of the reason is that many ontologies

were not developed in OWL from the beginning, but have been converted to OWL from other for-

mats, such as OBO [30], Grail [104], or frame-like languages, which did not have those features.

In our previous experiments with nominals [65], we had to resort to synthetically generated data,

but, arguably, such experiments are of a limited value. For the same reason, we also do not evaluate

the optimized reasoning with disjointness axioms described in Section 5.3. For a quick (synthetic)

evaluation, we modified SNOMED CT by declaring all leaf concepts (i.e., concepts that do not sub-

sume other atomic concepts) disjoint, leading to a disjointness axiom with about 200,000 concepts.

This did not lead to any significant difference in ELK’s classification time compared to the original

ontology.

6.3 Performance Comparison with Other Reasoners

We compared ELK 0.3.1 to the specialized OWL EL reasoners CEL 1.1.2 [15], jcel 0.18.0 [87],

the REL reasoner from TrOWL 1.2 [130], and Snorocket 2.0.5 [78], to general OWL reasoners

59



FaCT++ 1.6.0 [132], HermiT 1.3.6 [94], JFact 0.9,8 Pellet 2.3.0 [121], and RacerPro 2.0 build

20121209 [47], and to experimental consequence-based reasoners CB r.12 [60] and ConDOR r.12

[120]. We ran all reasoners in their default settings.

CEL, jcel, REL, and Snorocket are typical OWL EL systems that implement completion-based

procedures [11]. CB and ConDOR are prototype implementations of consequence-based algorithms

for logics that are more expressive than EL. FaCT++, JFact, Pellet, and RacerPro use tableau algo-

rithms, and HermiT is based on a hypertableau calculus. The general OWL reasoners may also use

other more efficient reasoning methods when applied to EL ontologies. Section 7.1 provides further

details, and also discusses various other systems that we have not included in this evaluation. Recent

versions of Snorocket implement similar context-based concurrency techniques as we described in

Section 4.4; like ELK, on our architecture Snorocket defaults to using 8 concurrent workers. The

remaining reasoners do not take advantage of concurrency.

Due to the technical differences between the systems, we have used two different experimental

setups for our evaluation. Most reasoners could be evaluated using the standard interface of the

OWL API, which allows us to access the reasoners uniformly and facilitates fair comparison. For

the case of CB, CEL, ConDOR, and RacerPro, this general setup was not appropriate, for a variety

of reasons as explained below. The results obtained in these cases can still be useful indicators of

general performance, but some caution is needed when using them to compare systems.

In the first experimental setup, we parsed and loaded the ontologies using the OWL API 3.4. Ta-

ble 6.3 shows the wall-clock time each reasoner spent executing the OWL API classification method

precomputeInferences(CLASS_HIERARCHY). Note, however, that a reasoner may perform cer-

tain computations already during ontology loading before calling the classification method; these

typically include normalization and indexing of axioms. For this reason, in Table 6.4 we also show

the overall wall-clock time for loading and classification. Possible failures for a reasoner are time

(no result after 30min), mem (out-of-memory error), stack (stack overflow), N/A (reasoner rejects

the ontology due to non-regular role compositions), and exc (program error).

In our second experimental setup we measured classification times using a specific method

for each reasoner. We ran CB as a plugin in Protégé 4.2, ConDOR and CEL from the command

line, and RacerPro using its client RacerPorter. For CB, ConDOR, and RacerPro, these are the

8http://jfact.sourceforge.net/

60

http://jfact.sourceforge.net/


ELK jcel REL Snorocket FaCT++ HermiT JFact Pellet
SNOMED CT 5.1 651.4 116.2 25.8 425.2 time time mem
ANATOMY 4.0 180.0 stack 27.8 N/A N/A N/A N/A
GALEN-OWL 1.2 30.0 27.8 2.9 time time time mem
GALEN7 1.5 57.9 stack 7.9 N/A N/A N/A N/A
GALEN8 5.8 time stack mem N/A N/A N/A N/A
GO2 1.1 8.2 11.3 2.5 time 41.2 time 65.7
GO1 0.5 2.2 0.9 1.1 6.8 2.6 10.0 2.5
ChEBI 0.7 7.6 3.2 1.9 3.5 12.5 7.7 exc
EMAP 0.3 0.9 0.5 0.6 20.0 2.0 37.7 0.8
FMA 1.0 16.4 8.8 7.1 5.6 20.7 13.2 736.4
Fly Anatomy 0.4 2.2 1.0 0.8 0.7 1.8 2.8 23.1
Molecule Role 0.3 1.0 0.4 0.6 5.4 1.4 9.4 0.9

Table 6.3: Classification time in seconds, measured using the OWL API

ELK jcel REL Snorocket FaCT++ HermiT JFact Pellet
SNOMED CT 9.3 674.3 126.2 38.2 431.3 time time mem
ANATOMY 5.0 182.3 stack 29.2 N/A N/A N/A N/A
GALEN-OWL 2.0 32.3 29.2 4.3 time time time mem
GALEN7 2.3 60.2 stack 9.2 N/A N/A N/A N/A
GALEN8 11.1 time stack mem N/A N/A N/A N/A
GO2 2.1 9.9 12.1 3.8 time 44.0 time 67.9
GO1 1.0 3.0 1.2 1.7 7.3 3.7 10.3 3.6
ChEBI 1.3 8.8 3.6 2.7 4.2 13.9 8.2 exc
EMAP 1.0 1.6 0.7 1.0 20.4 3.0 38.0 1.8
FMA 2.2 18.6 9.3 8.4 7.4 23.1 14.0 741.8
Fly Anatomy 0.8 2.9 1.3 1.3 1.1 2.8 3.2 24.1
Molecule Role 0.6 1.6 0.5 1.0 5.7 2.1 9.6 1.5

Table 6.4: Loading + classification time in seconds, measured using the OWL API

setups suggested by the developers for most accurate evaluation. CEL requires a Unix-like operating

system; we used Linux Mint 13 on the same hardware as in all other experiments. CB, ConDOR, and

RacerPro were evaluated on the same Microsoft Windows 7 platform as all other systems. Table 6.5

shows the classification times as reported by the reasoners. The only form of role composition

supported by CB and ConDOR is transitivity, hence they are not applicable to any complex ontology

apart from GALEN-OWL. However, the single role composition in SNOMED CT is redundant in

the sense that rule R◦ is never applied during classification, so we decided to measure the running

times of CB and ConDOR on SNOMED CT even though they discard this role composition.

Overall, the results of the evaluation show that ELK compares favorably with the other reason-

ers. While many reasoners in our comparison show similar running times on the simple ontologies,

ELK has a significant advantage on the complex ontologies. In particular, ELK is the only reasoner

that can classify GALEN8. It can load and classify SNOMED CT in under 10 seconds. Since ELK

61



CB ConDOR CEL RacerPro
SNOMED CT 36.5 43.8 772.3 778.5
ANATOMY N/A N/A 144.0 N/A
GALEN-OWL 3.7 4.4 103.9 time
GALEN7 N/A N/A 88.0 N/A
GALEN8 N/A N/A time N/A
GO2 N/A N/A 24.0 mem
GO1 0.5 0.4 0.6 4.2
ChEBI 2.1 2.2 81.8 stack
EMAP 0.2 0.1 0.1 13.3
FMA 3.1 2.0 216.8 22.7
Fly Anatomy 0.3 0.2 1.5 mem
Molecule Role 0.2 0.1 0.1 3.5

Table 6.5: Classification time in seconds as reported by the reasoner

can update its index structure incrementally without having to reload the whole ontology, subse-

quent reclassification of SNOMED CT due to small changes in the ontology is likely to take only

about 5 seconds as reported in Table 6.3. Regarding memory requirements, we can report that in our

experiments ELK could classify SNOMED CT with only 2GB of heap space when used through

the OWL API, and with as little as 1GB of heap space when used standalone.

6.4 Optimizations of Inference Rules

In our next experiment we evaluated the effect of the optimizations Ou and O∃ from Section 5.1,

and the optimization O◦ from Section 5.2. We excluded the simple ontologies from this experiment:

they have no negative occurrences of conjunctions and existential restrictions, so Ou and O∃ do

not apply, and although some of the simple ontologies contain transitive roles, there are no subrole

relationships between transitive roles in these ontologies, so O◦ does not apply either.

We ran the classification algorithm on each complex ontology in five configurations: with none

of the three optimizations Ou, O∃, and O◦ (which corresponds to applying all the inference rules to

all applicable premises), with one of these optimizations turned on at a time, and with all the three

optimizations together (which is the default setting). We measured the overall classification time

with one concurrent worker, the number of derived axioms including multiplicity, and the number

of uniquely derived axioms. The results are shown in Table 6.6.

First, we observed that on SNOMED CT no link C R
→ D is derived more than once. This is

because, even though SNOMED CT contains one role composition axiom, the role composition

62



time derived C v D unique C v D derived C R
→ D unique C R

→ D
SNOMED CT
no optimization 26.31 47,435,318 13,840,227 3,969,744 3,969,744
with Ou 25.48 41,770,050 13,840,227 3,969,744 3,969,744
with O∃ 19.75 28,438,072 13,840,227 984,775 984,775
with O◦ 26.37 47,435,318 13,840,227 3,969,744 3,969,744
with Ou, O∃, O◦ 18.71 22,772,804 13,840,227 984,775 984,775
ANATOMY
no optimization 28.63 16,529,447 3,618,582 97,927,757 2,515,236
with Ou 29.01 16,495,539 3,618,582 97,927,757 2,515,236
with O∃ 16.38 12,045,017 3,618,582 46,301,813 1,511,399
with O◦ 21.83 16,529,447 3,618,582 62,674,413 2,515,236
with Ou, O∃, O◦ 11.70 12,011,440 3,618,582 25,295,665 1,511,418
GALEN-OWL
no optimization 3.31 2,860,224 1,147,483 759,473 405,955
with Ou 3.26 2,340,868 1,147,483 759,473 405,955
with O∃ 2.65 2,182,677 1,147,483 251,312 177,185
with O◦ 3.42 2,856,130 1,147,483 713,681 399,956
with Ou, O∃, O◦ 2.53 1,644,288 1,147,483 208,749 167,623
GALEN7
no optimization 6.84 7,277,608 2,058,039 5,045,114 941,723
with Ou 6.74 6,410,540 2,058,039 5,045,114 941,723
with O∃ 4.67 5,240,770 2,058,039 1,521,973 374,043
with O◦ 6.21 6,909,517 2,058,039 3,043,228 837,402
with Ou, O∃, O◦ 4.22 3,976,718 2,058,039 572,405 286,239
GALEN8
no optimization 50.39 69,138,922 14,248,354 46,241,197 7,443,869
with Ou 48.63 62,822,068 14,248,354 46,241,197 7,443,869
with O∃ 25.21 37,267,987 14,248,354 8,871,203 1,922,583
with O◦ 43.83 63,882,676 14,248,354 26,741,691 6,627,105
with Ou, O∃, O◦ 20.65 26,111,096 14,248,354 2,749,394 1,389,498
GO2
no optimization 2.02 1,992,627 718,866 315,633 199,001
with Ou 2.01 1,990,869 718,866 315,633 199,001
with O∃ 2.03 1,983,811 718,866 291,833 193,477
with O◦ 2.00 1,992,627 718,866 315,381 199,001
with Ou, O∃, O◦ 1.96 1,982,053 718,866 291,599 193,477

Table 6.6: Classification time in seconds (1 working thread) and number of derived axioms

63



rule R◦ is never applied on this ontology. The links are therefore derived only by rule R−
∃

which can

never produce the same link twice. Next, we discuss each individual optimization in turn.

The optimization Ou avoids the decomposition of C v D1 u D2 into C v Di for i = 1, 2 in

case the former subsumption has been obtained by the composition of the latter two. Thus, the

optimization can decrease the multiplicity but not the number of unique subsumptions, and it has

no effect on links at all. Furthermore, the optimization makes the multiplicity of subsumptions

sensitive to the order of rule applications: the decomposition of C v D1 u D2 is avoided only if the

subsumption is derived by rule R+
u before it is derived by any other rule. The optimization decreases

the multiplicity of subsumptions on each ontology in this experiment, albeit for ANATOMY and

GO2 the difference is small. In all cases, the differences in classification times were only marginal.

The optimization O∃ avoids the decomposition of C v ∃R.D into init(D) and C R
→ D in case the

first subsumption has been obtained by composition, but in this case it is possible that the avoided

conclusions will not be derived by the algorithm at all. Since the optimization can even avoid initial-

ization of concepts, it can decrease all the four numbers shown in Table 6.6; furthermore, it makes

all the four numbers sensitive to the order of rule applications. Even though for the classification

task each atomic concept is already initialized on input, the optimization can still avoid initialization

of complex concepts in existential restrictions. We have, however, not observed this on any of the

ontologies in this experiment, which is why we have obtained the same number of uniquely derived

subsumptions both with and without O∃. On the other hand, the optimization has substantially re-

duced the remaining three numbers in Table 6.6 on all the test ontologies apart from GO2, with

a reduction in classification time by 25% on SNOMED CT, by 43% on ANATOMY, by 20% on

GALEN-OWL, by 32% on GALEN7, and by 50% on GALEN8.

The optimization O◦ avoids the derivation of some links by rule R◦ without affecting the set

of subsumptions that are derivable by the algorithm. Therefore, the optimization can decrease the

multiplicity and the number of unique links, and then, due to R+
∃

, also the multiplicity of (but not

the number of unique) subsumptions. Indeed, the optimization decreases all these three numbers

on all the versions of GALEN, with some improvement in classification times for GALEN7 and

GALEN8. Since rule R◦ is never applicable on SNOMED CT, the optimization has no effect on this

ontology. Finally, for ANATOMY and GO2 we only see a decrease in the multiplicity of links: this

is negligible for GO2 but considerable for ANATOMY where it reduces the classification time by

64



24%. Unlike the previous two optimizations, R◦ is not sensitive to the order of rule applications.

Finally, we discuss the case of using all three optimizations together. Since there is no interac-

tion between Ou and the remaining two optimizations, adding Ou to O∃ and/or O◦ results in exactly

the same reduction in the multiplicity of subsumptions as with Ou alone. More interestingly, O∃ and

O◦ optimize the derivation of links in two different ways, and our experiments show their combined

effect can be considerably larger than the effect of either of the two optimizations alone.

Although all the three optimizations had only limited effect on GO2, they proved to be effective

on the remaining ontologies, altogether reducing the classification time by 29% on SNOMED CT

and by as much as 60% on ANATOMY and GALEN8. Out of the three optimizations considered

in this section, O∃ appears to be the most useful one, while Ou does not seem to be very significant

in practice. On the other hand, it is trivial to include Ou if one already implements O∃. The last

optimization O◦ is effective only on ontologies that have subrole relations between roles occurring

in role compositions, such as ANATOMY and the variants of GALEN in our experiments.

6.5 Concurrency

Next, we evaluated the effect of increasing the number of concurrent workers in ELK. Since the ma-

chine on which we performed the experiments has 4 physical cores which, due to hyper-threading,

appear to the operating system as 8 virtual cores, we experimented with up to 8 concurrent workers.

The measured classification times are shown in Table 6.7.9

The results show that increasing the number of workers improves the performance of ELK, and

that the improvement is more pronounced on the largest ontologies: while ELK achieves a speedup

for 8 workers by a factor of 3.83 on SNOMED CT and 3.40 on GALEN8, the speedups are below

2 on many of the smaller ontologies. To further test the hypothesis that the speedup improves

with increasing the size of an ontology, we repeated this experiment on the union of all the simple

ontologies. As shown in the last row of Table 6.7 under the name UNION, this resulted in a speedup

by a factor of 2.45 which is considerably higher than for any of the individual ontologies.

Our experiments confirm that concurrent processing can offer improvements for ontology clas-

9For a fair comparison with other reasoners, we ran ELK in the experiments in Section 6.3 through the OWL API. In
the remaining experiments, however, we accessed it directly using its own interfaces. This explains the slight difference
between the running times in the last column of Table 6.7 and those in Table 6.3.

65



workers
1 2 3 4 5 6 7 8

SNOMED CT time 18.62 10.07 7.37 6.35 5.76 5.49 5.09 4.85
speedup 1.00 1.85 2.53 2.93 3.23 3.39 3.66 3.84

ANATOMY time 11.58 7.27 5.51 4.63 4.34 4.03 3.80 3.64
speedup 1.00 1.59 2.10 2.50 2.67 2.88 3.04 3.18

GALEN-OWL time 2.49 1.64 1.32 1.27 1.27 1.28 1.25 1.23
speedup 1.00 1.51 1.88 1.95 1.96 1.94 1.98 2.02

GALEN7 time 4.12 2.57 2.05 1.85 1.74 1.68 1.60 1.67
speedup 1.00 1.60 2.01 2.23 2.36 2.45 2.58 2.46

GALEN8 time 20.56 12.73 9.21 7.67 7.13 6.71 6.32 6.06
speedup 1.00 1.62 2.23 2.68 2.88 3.07 3.26 3.40

GO2 time 1.97 1.21 1.05 1.13 1.14 1.11 1.16 1.14
speedup 1.00 1.63 1.88 1.74 1.73 1.76 1.70 1.72

GO1 time 0.78 0.53 0.52 0.54 0.54 0.54 0.52 0.56
speedup 1.00 1.47 1.48 1.44 1.44 1.43 1.50 1.38

ChEBI time 1.50 0.96 0.78 0.79 0.78 0.78 0.80 0.80
speedup 1.00 1.56 1.92 1.91 1.93 1.92 1.88 1.88

EMAP time 0.68 0.48 0.44 0.45 0.45 0.41 0.42 0.44
speedup 1.00 1.42 1.57 1.52 1.51 1.67 1.61 1.57

FMA time 1.72 1.09 0.95 0.89 0.93 0.90 0.94 0.85
speedup 1.00 1.58 1.81 1.94 1.85 1.91 1.84 2.02

Fly Anatomy time 0.71 0.52 0.47 0.47 0.50 0.48 0.47 0.49
speedup 1.00 1.36 1.52 1.49 1.41 1.48 1.49 1.45

Molecule Role time 0.62 0.46 0.39 0.41 0.38 0.34 0.37 0.36
speedup 1.00 1.37 1.59 1.52 1.63 1.81 1.70 1.72

UNION times 2.88 1.69 1.41 1.28 1.24 1.21 1.18 1.17
speedup 1.00 1.71 2.04 2.25 2.32 2.38 2.45 2.45

Table 6.7: Classification time in seconds and relative speedup for increasing number of concurrent
workers

sification on common computing hardware. On the other hand, the experiments demonstrate that the

improvement factor is far from linear, and that it appears to be higher on larger ontologies. There can

be many causes for this effect, such as dynamic CPU clocking, shared Java memory management

and garbage collection, or hardware bottlenecks in CPU caches and data transfer.

6.6 Transitive Reduction

Finally, we evaluated the difference between the ‘naive’ Algorithm 5.1 and the ‘better’ Algo-

rithm 5.2 for transitive reduction from Section 5.5. For this experiment, we implemented the two

algorithms exactly as shown in Section 5.5 even though the naive algorithm is incorrect in the pres-

ence of equivalent concepts. For each of the two algorithms, Table 6.8 shows the running time and

the number of passes through the inner for loop of the algorithm.

66



naive algorithm better algorithm
time passes time passes

SNOMED CT 4.11 35,745,244 1.61 6,723,839
ANATOMY 1.37 14,674,573 0.43 2,244,702
GALEN-OWL 0.42 3,012,583 0.26 614,103
GALEN7 0.84 89,951,79 0.31 1,535,003
GALEN8 2.92 27,208,529 1.24 4,789,837
GO2 0.28 2,172,161 0.20 474,042
GO1 0.24 782,504 0.23 177,966
ChEBI 0.45 4,322,716 0.22 843,412
EMAP 0.11 0 0.11 0
FMA 0.42 3,754,823 0.26 954,998
Fly Anatomy 0.22 335,522 0.21 78,209
Molecule Role 0.17 63,083 0.11 13,974

Table 6.8: Running time in seconds and the number of passes through the inner loop of the two
transitive reduction algorithms from Section 5.5

The experiments show that the better algorithm is about 2–3 times faster than the naive algo-

rithm on SNOMED CT, ANATOMY, GALEN7, and GALEN8. The better algorithm always re-

quires substantially fewer passes through the inner loop, with the exception of the EMAP ontology,

which entails no subsumptions between atomic concepts at all so that the transitive reduction task is

trivial. Interestingly, this reduced number of passes does not always translate into the correspond-

ing performance improvement, possibly because the ‘better’ algorithm also performs set removals,

which are more expensive than membership checks performed by the ‘naive’ algorithm.

67



68



There is no real ending. It’s just the place where you

stop the story.

—Frank Herbert

Chapter 7

Discussion

In this chapter we discuss related work for three different aspects of our contribution: OWL EL

reasoning (Section 7.1), rule- and saturation-based reasoning (Section 7.2), and concurrent and

distributed reasoning (Section 7.3). We conclude in Section 7.4.

7.1 Reasoning in OWL EL and Beyond

Favorable computational properties have long been an important motivation for the study of the EL

family of description logics [8, 13]. Most OWL EL implementations use variations of so-called

completion-based algorithms first proposed for ELH [25] and subsequently extended to EL++ [10].

Later works modify this approach to also cover reflexive roles and range restrictions [11], Boolean

role constructors [107], and local reflexivity [70]. The difference between completion-based and

consequence-based algorithms is subtle and mainly presentational: the first construct completion

graphs (canonical models), whereas the second derive consequences of axioms. As we have seen

in Section 3.2, one view can be converted into the other. Some consequence-based algorithms, like

the one presented here, do not require the input ontology to be normalized as for completion-based

algorithms [10, 11, 25]. One can, however, see close similarities between ontology normalization

and the indexing phase described in Section 4.2.1. The algorithm presented here is also closely

related to the proof-theoretic algorithm for EL [52], which does not require normalization either.

A number of reasoners have been implemented for the EL family. The first such system, CEL

[15], implemented a part of the EL++ classification algorithm [10]. Several optimization techniques

69



used in CEL, such indexing of side conditions of inference rules [14] and improved taxonomy con-

struction [16], are similar to those used in ELK. Various later systems have reimplemented the

‘CEL algorithm’1 in order to provide better compatibility with tools, such as the OWL API and Pro-

tégé, or to improve performance for some ontologies, such as SNOMED CT. These systems include

Snorocket [78], TrOWL REL [130], and jcel [86]. Recent prototype Cheetah was used to investigate

the application of linear-time algorithms for propositional Horn logic in EL+ reasoning [116]. The

results suggest that, at least for current EL ontologies, the performance gains of this optimization

do not outweigh the implementation overhead. We have arrived to similar conclusions when ex-

perimenting with prototype versions of ELK for reasoning with role chains [64] and (unrestricted)

nominals [65]. For example, it is hard to come up with examples that would require non-safe use

of nominals in OWL EL ontologies. Supporting safe nominals, as described in Appendix A, should

be, therefore, sufficient in most of the cases.

Other systems have experimented with alternative approaches to reasoning with EL ontologies.

The reasoners DB [31] and OREL [73] explored the use of relational database systems in EL rea-

soning. While feasible in principle, this approach does not match the performance or scalability of

the best in-memory EL reasoners. Another recent approach shows the applicability of Answer Set

Programming engines to OWL EL reasoning [35], using the DReW reasoner [142] to implement a

rule-based calculus for OWL EL [70]. The approach aims at providing efficient use of OWL EL

ontologies in dl-programs, thus enabling a form of rule-ontology integration. Most recently, a pro-

totype implementation for EL reasoning on embedded devices has been studied [45]. A particular

challenge in this context is the very low amount of available memory that allows only very small

ontologies to be classified.

Finally, a number of more general-purpose systems provide some dedicated optimizations for

(fragments of) OWL EL. FaCT++ [132] reduces the number of subsumption tests for completely

defined concepts, which frequently occur in GO1 and SNOMED CT [133]. An extension of this

optimization with structural pseudo-model embedding has been successfully used by RacerPro to

classify SNOMED CT [89]. HermiT [94] uses an optimization that can completely avoid subsump-

tion tests for deterministic ontologies (including EL) [39]: subsumptions can be just read out of the

models produced for concept satisfiability tests. The latest version of Pellet [121] can apparently

1http://www.w3.org/2007/OWL/wiki/Implementations

70

http://www.w3.org/2007/OWL/wiki/Implementations


switch to a specialized algorithm when the ontology is within a fragment of OWL EL.2 HermiT and

Pellet, however, were still unable to classify SNOMED CT in our experiments. The CB reasoner

uses a consequence-based algorithm for Horn-SHIF [60], which works similar to the algorithm

presented in this paper when restricted to EL (except for concurrency). A similar support for func-

tional and inverse roles (which are outside of OWL EL) has recently been added to jcel [87].

While most works focus on ontology classification and standard reasoning problems, EL-type

logics have also been considered for other reasoning tasks, notably conjunctive query answering [75,

68], least common subsumer computation [13, 17], unification [9], and interpolation [97]. These

reasoning services have yet to make it into common tools, although prototype implementations exist.

7.2 Rule- and Saturation-Based Reasoning

Inference rules are a versatile approach to automated deduction, and saturation under a set of in-

ference rules is prominently used in several areas. In databases, this is called materialization and

has applications in data integration, constraint repair, and query answering [1]. In theorem proving,

saturation is a key technique for many resolution-based calculi [18]. In production rule systems,

similar ideas are applied to forward-chaining of rules [37].

The abstract saturation procedure described in Section 4.1 is inspired by the given clause ap-

proach / set of support strategy in theorem proving [139], which is similar to the semi-naive evalua-

tion of Datalog queries [1]. Production rule systems typically employ a variant of the Rete algorithm

for applying rules, which largely avoids iterations over processed facts by creating more complex

structures in working memory [37]. Related methods are the linear evaluation strategy for Horn

rules studied in Cheetah [116], and ELK’s partial join computation described in Section 5.4. These

results show that this approach can be useful in OWL reasoning but does not pay off in all cases.

Rule-based approaches have also been extensively applied to reasoning in the OWL 2 Profiles

[72]. OWL EL was discussed in Section 7.1 before. Another common use of rule-based calculi is

instance retrieval in OWL RL [90] and its sublanguages, especially pD∗ (a.k.a. OWL-Horst) [128]

and RDFS [26]. These calculi include inference rules that are sound only under the RDF-Based

Semantics of OWL; sound calculi for the DL-based Direct Semantics of OWL are easily obtained

2http://weblog.clarkparsia.com/2009/11/16/pellet-20-release/

71

http://weblog.clarkparsia.com/2009/11/16/pellet-20-release/


by omitting these rules. Various (partial) implementations of OWL RL rule calculi have been used

in distributed reasoning, discussed in more detail below. It has also been argued that rule-based

reasoning is suitable for embedded devices that have very limited resources; this has been explored

for both OWL EL [45] and OWL RL [115, 127]. Most works on OWL RL reasoning focus on

instance retrieval. Sound and complete rule-based calculi for classification in OWL RL have been

developed only recently [71].

For further optimizing the application of rules, various works on OWL RL distinguish be-

tween static/pre-computed and dynamic/inferred premises of inference rules [54, 135]. This can

be compared to our distinction of side conditions and premises, which serves a similar purpose.

The OWL RL reasoner SAOR pre-instantiates static premises (side conditions) of rules to obtain

so-called rule templates, and indexes these templates for quick access based on the relevant dy-

namic premise [54]. While conceptually different, this method leads to indexing structures for rule

applications similar to the ones in ELK.

In general, the efficient implementation of rule-based computations is also related to the topic

of database query optimization, since rule bodies can be considered as conjunctive queries. General

methods of optimizing conjunctive queries (i.e., join-project-select queries) are thus applicable; see,

e.g., [1, Chapter 6]. Approaches that use a fixed set of rules like ELK can optimize join compu-

tation already when designing the algorithm, as done in Sections 5.2 and 5.4. Our concrete join

implementation in ELK corresponds to a nested loop join that uses hash-based indexing structures

to largely eliminate the inner loop. Selecting the smaller relation for the outer loop in Section 5.4 is

a simple form of join order optimization.

7.3 Concurrent, Distributed, and Parallel Reasoning

Our work is not the first to address the problem of concurrent OWL reasoning. Notable earlier works

include an approach for parallelizing (incomplete) structural reasoning algorithms [21], tableau al-

gorithms that explore non-deterministic choices concurrently [23, 80, 85, 140], a resolution calculus

for ALCHIQ where inferences are exchanged between distributed workers [109], and a distributed

classification algorithm that can be used to concurrently invoke (serial) OWL reasoners for checking

relevant subsumptions [6, 7]. Experimental evaluations in each case indicate potential advantages

72



on selected examples, but further implementation and evaluation is often needed to demonstrate a

clear performance advantage over state-of-the-art systems.

Several other works have studied concurrency in lightweight ontology languages. Closest to

our approach is a distributed MapReduce-based algorithm for EL+ [95]. However, this idea has not

been empirically evaluated, and it has been argued that it ignores several practical problems [110].

Saturation-based reasoning with shared memory has recently been explored for RDFS [49]. This

approach also investigates the use of alternative computation platforms, such as many-core GPUs,

which bears some challenges related to memory management.

Many other works focus on distributed reasoning using many machines, instead of shared-

memory parallelism using one machine. A direct approach for achieving this is to pre-partition

the input and to distribute the partitions to several processing nodes for reasoning. Some form

of message transfer between nodes is usually required to exchange certain inferences. Relevant

theoretical results have been developed for the general case of first-order deduction [2]. Several

works on partition-based ontology reasoning focus on (subsets of) OWL RL [96, 124]. Another

approach to partitioning in OWL is the computation of modules [28], which has also been considered

for distribution and related optimizations recently [4, 134].

Other prominent approaches to distributed reasoning use MapReduce as a computational frame-

work. Many related works focus on the distribution of reasoning with assertional data using weaker

schema-level modeling languages pD∗ and (fragments of) RDFS [53, 69, 136, 137]. These works

are distinguished from our approach by their goal to manage large-scale data (in the range of billions

of axioms), which is beyond the memory capacity of a single machine. Accordingly, computation

is distributed to many servers without memory sharing. Yet, we can find similarities in term-based

distribution strategies [53, 54, 95, 135, 136, 137] and indexing of rules [54] with our strategy of

assigning contexts to axioms.

Our abstract saturation procedure from Section 4.1 is closely related to saturation-based theorem

proving [18, 139], and it may seem that concurrent extensions of this procedure as described in

Section 4.3 should be known in this area. Surprisingly, this appears not to be the case. The closest

to our approach is the strategy used in the theorem prover ROO [81], in which several workers

apply inference and simplification rules in parallel and store the result in a shared fact database. It

is assumed, however, that the access to the database is serialized, which can be the main bottleneck

73



of the procedure when many facts are produced at the same time.

7.4 Conclusions and Future Work

We have described the main theoretical, algorithmic, and implementation techniques that make ELK

one of the most competitive ontology reasoners available today. Indeed, despite its relatively short

history, ELK has already been used in a variety of biomedical applications [50, 51, 99, 129]. Often,

ELK is the only reasoner that is able to deal with large volumes of data used in these applications.

From our experiments in Chapter 6, we can summarize that the most significant performance

improvement results from the concurrent saturation procedure (Section 4.4), achieving a speedup

factor as high as 3.8. This improvement, however, may depend on the number of processors / cores

available. The second most useful improvement comes from the optimization of inference rules,

in particular, avoiding decomposition of negative existential restrictions (Section 5.1). The speedup

factor here was reaching 2.5 (corresponding to 60% reduction). The combinations of these improve-

ments can result in more than 8 times speedup, such as in the case of GALEN8. It is difficult to

estimate how much of the good performance of ELK is due to other techniques, such as indexing

(Section 4.2.1) and efficient joint computation (Section 5.4), since those features cannot be easily

switched off.

In this presentation we have focused only on techniques that contribute to the performance of

ELK. This does not mean that there are no other interesting enhancements. For example, ELK

supports interrupting and restarting of reasoning tasks which was recently argued to be important

in certain applications [45]. There is a mechanism for batch processing of saturation jobs that lets

the system recognize when the saturation for an input concept is computed without waiting for all

input concepts to be processed. This is used to execute other tasks in a goal-directed way, such

as computation of direct subsumers for concepts. While not necessarily improving performance,

these features may certainly widen possible uses of ELK. Since ELK is currently under heavy

development, we do not present more specific application details, such as description of the API,

summary of the classes, or source code, as this information may quickly become outdated.

There are many interesting directions for future work. Not all OWL EL features are currently

covered by ELK. We have studied ‘pay-as-you-go’ extensions of our approach to nominals [65],

74



but there are some technical problems yet to be solved before this feature is fully integrated into the

mainstream. To support datatypes, we plan to integrate the rules for safe numerical datatypes [83].

This result can be used even with certain datatype restrictions outside of the OWL EL profile. The

notion of context introduced in Section 4.3 provides a natural way to localizing inferences. Apart

from performing inferences in parallel, this has been recently used for implementing incremental

reasoning in ELK [62], and can also be potentially useful for axiom pinpointing and debugging.

Tractable ontology reasoning algorithms are only a first step towards obtaining efficient rea-

soning systems. Careful design, optimization, and implementation, play an equally important role.

Similar to other reasoning approaches, such as tableau or resolution, implementation and optimiza-

tion techniques for consequence-based procedures are important research topics. This work makes

one of the first contributions to this area.

75



76



Part III

Beyond Horn DLs

77





Major flaws in government arise from a fear of

making radical internal changes even though a need is

clearly seen.

—Frank Herbert
Chapterhouse: Dune

Chapter 8

Consequence-Based Reasoning in ALCI

In this chapter we introduce a general consequence-based framework for subsumption reasoning in

the DL ALCI. Moreover, via well-known reductions of transitivity and role inclusion axioms, the

framework can also be applied in the DL SHI. The framework can be used to solve the following

reasoning task: given an ontology O and a finite set of subsumption queries Q, for each query q ∈ Q

determine whether O |= q. Note that this captures ontology classification, which involves queries of

the form A v B for A and B atomic concepts from O.

For convenience, unlike in the previous chapters, here we require that the input ontology O

is normalized as described in Section 8.1 below. In Section 8.2 we discuss the intuitions behind

our framework, and in Section 8.3 we introduce the framework formally. In Section 8.4 we dis-

cuss redundancy elimination techniques that can be used to optimize reasoning. In Section 8.5 we

discuss several concrete instantiations of our framework. Finally, in Section 8.6 we present first

experimental results.

8.1 Normal Form

In this section we present a suitable form of normalized axioms, inspired by clauses in first-order

logic, which we use throughout the rest of this thesis. A concrete normalization method based on

structural transformation can be found in Appendix B.

A literal is a concept of the form A, ∃R.A, or ∀R.A, for A an atomic concept and R a (possibly

inverse) role. The set of all literals is denoted ΣL. We reserve the letter L for literals, K for con-

79



junctions of literals, and M for disjunctions of literals. We identify conjunctions and disjunctions of

literals with sets of literals (i.e., conjunctions and disjunctions of literals are unordered and without

repeated literals) and we use them in standard set operations; furthermore, we identify the empty

conjunction and the empty disjunction with > and ⊥, respectively.

A clause is a concept inclusion of the form
�m

i=1 Li v
⊔n

i=m+1 Li where 0 ≤ m ≤ n and each Li

is a literal. The clause is normal if each Li with 1 ≤ i ≤ m is an atomic concept. The clause is

a query if each Li with m + 1 ≤ i ≤ n is an atomic concept. Conjunction K in a clause K v M is

the antecedent, and disjunction M is the consequent. A clause K v M is over a set of literals L if

K ∪ M ⊆ L. A clause K′ v M′ is a strengthening of a clause K v M if K′ ⊆ K and M′ ⊆ M; fur-

thermore, K v M ∈̂ N means that a set of clauses N contains at least one strengthening of K v M.

A SHI ontology O is normalized if each concept inclusion in O is a normal clause. Note that a

normalized ALCI ontology is simply a set of normal clauses, whereas a normalized SHI ontology

can additionally contain transitivity and role inclusion axioms. In Appendix B we show that, by

applying structural transformation and elimination of transitivity and role inclusion axioms, every

SHI ontology O can be transformed in polynomial time into a normalized ALCI ontology O′

such that O′ entails the same consequences as O over the atomic concepts occurring in O. The

algorithms presented in the rest of this thesis take a normalized ALCI ontology O and a finite set

of queries Q, and they compute the status of O |= q for each query q ∈ Q.

We observe that, when applied to an EL ontology, our normalization produces only clauses

of the form
�

i Ai v B, A v ∃T.B, and A v ∀T−.B, and when applied to a DL-Litehorn ontology, it

produces only clauses of the form
�

i Ai v B, A v ⊥, A v ∃R.C>, and > v ∀R.B. Here A(i) and B

are atomic concepts, T is an atomic role, R is a (possibly inverse) role, and C> is a distinguished

atomic concept produced by the structural transformation of the top concept. Note that all of these

clauses are Horn—that is, their consequents contain at most one literal.

8.2 Intuitions

In this section we fix the normalized ontology O and the query q as specified in Example 8.1 below,

and then we show how one can prove that O |= q holds using our framework.

Example 8.1. Let O be the ontology consisting of clauses (8.1)–(8.10), and let q = A v G; one can

80



readily verify that O |= q.

A v Ai for 1 ≤ i ≤ n (8.1)

Ai v Ci for 1 ≤ i ≤ n (8.2)

B v Bi for 1 ≤ i ≤ n (8.3)

Bi v Ci for 1 ≤ i ≤ n (8.4)

C1 u . . . uCn v C (8.5)

C v ∃R.B (8.6)

C v ∀R.D (8.7)

B u D v E t ∀R−.G (8.8)

E v ∀R−.F (8.9)

A u F v G (8.10)

Resolution decision procedures [36] can decide whether O |= A v G holds by transforming O

into a set of first-order clauses, adding clauses A(a) and ¬G(a) obtained from the negation of the

theorem A v G that is to be proved, and then saturating the result using a suitable first-order res-

olution variant [18]. Such algorithms are typically worst-case optimal, and they can solve many

practically-relevant problems; however, on complex ontologies they can easily run into a combina-

torial explosion [93]. In our example, from clauses (8.2)–(8.5) resolution can derive 3n clauses of

the form L1 u . . . u Ln v C with Li ∈ {Ai, Bi,Ci}, thus covering all possible combinations of atomic

concepts that might be relevant. In contrast, when applied to O, the hypertableau algorithm1 does

not run into this problem: the algorithm is initialized using the fact A(a), and then it derives Ai(a)

and Ci(a) for each 1 ≤ i ≤ n and C(a); thus, the algorithm does not consider the “irrelevant” combi-

nations of Ai, Bi, and Ci.

The hypertableau algorithm can thus be seen as being more “goal directed” than resolution.

However, the hypertableau algorithm can construct a very large tree of individuals most of which

are indirectly blocked, and can thus perform a lot of redundant computation since each indirectly-

blocked individual is a “copy” of a nonblocked or directly blocked individual. Resolution is not

susceptible to such problems: clauses introduced by resolution are universally quantified and are

(unlike individuals in the tableau algorithm) not localized to a specific part of a model. Resolution

can thus describe all relevant combinations of atomic concepts using exponentially many clauses,

thereby avoiding redundant computation.

Our consequence-based algorithm can be understood as a hybrid between resolution and the

hypertableau algorithm. It does not explicitly construct a model; instead, it uses resolution to com-

pute clauses that describe a model I of O refuting the relevant queries in Q. The inferences of
1A variant of the hypertableau algorithm for normalized ALCI ontologies is described in Appendix C.

81



v1

A

Initialization: > v A (11)
Hyper[8.1+11]: > v Ai for 1 ≤ i ≤ n (12)
Hyper[8.2+12]: > v Ci for 1 ≤ i ≤ n (13)
Hyper[8.5+13]: > v C (14)
Hyper[8.6+14]: > v ∃R.B (15)
Hyper[8.7+14]: > v ∀R.D (16)
Pred[15+17+26]: > v F tG (28)
Hyper[8.10+11+28]: > v G (30)

v2

B,D

Succ[15+16]: > v B (18)
Succ[15+16]: > v D (19)
Hyper[8.3+18]: > v Bi for 1 ≤ i ≤ n (20)
Hyper[8.4+20]: > v Ci for 1 ≤ i ≤ n (21)
Hyper[8.5+21]: > v C (22)
Hyper[8.6+22]: > v ∃R.B (23)
Hyper[8.7+22]: > v ∀R.D (24)
Hyper[8.8+18+19]: > v E t ∀R−.G (25)
Hyper[8.9+25]: > v ∀R−.F t ∀R−.G (26)
Pred[23+27+26]: > v F tG (29)

Succ[15+16]: ∃R.B (17)

Succ[23+24]: ∃R.B (27)

Figure 8.1: Example inferences of the consequence-based algorithm

the algorithm are not localized to a part of I, which allows our algorithm to avoid redundant com-

putation: although there are many technical differences, our algorithm is somewhat related to the

tableau algorithms with caching [43, 44]. To be goal oriented, our algorithm constructs a context

structure—a graph-like structure whose vertices are called contexts. Intuitively, each context de-

scribes one or more elements in the model I, and the edges between contexts capture the relations

between the corresponding elements of I. Each context v is associated with a set core(v) of core

atomic concepts. Intuitively, the concepts in core(v) hold for each element of I that corresponds to

v; hence, core(v) determines the “type” of v and the corresponding model elements. Furthermore,

each context v is associated with a set of clauses S(v) that, as in propositional resolution, describe

the domain elements in I that correspond to v. Each clause K v M ∈ S(v) is “relative” to core(v)

and should be interpreted as core(v) u K v M. In other words, since the concepts in core(v) hold in

all elements corresponding to v, we drop core(v) from the clauses in S(v) for the sake of clarity.

The derivation rules of our algorithm will be introduced formally in Table 8.1 in Section 8.3.

Here we demonstrate how to use these rules to prove O |= A v G. We will construct the context

structure shown in Figure 8.1; each context is shown as a circle, the core of each context is shown

above the circle, the clauses belonging to the context are shown below the circle, and the numbers

next to the clauses correspond to the order of inference rule applications. To avoid the drawbacks

outlined earlier, our algorithm does not perform inferences between the clauses in O; instead, each

inference involves either a single set of clauses S(v) and possibly the ontology O, or a pair of sets

82



of clauses S(v) and S(u). To initiate the inference process, we initialize the algorithm according

to the target query. Since our goal is to prove O |= A v G, we introduce a single context v1 with

core(v1) = {A}, and we add clause (11) to S(v1). Intuitively, this says that the model I must contain

at least one element in which A holds, which is similar to initializing the hypertableau algorithm

by A(a). We then use the Hyper rule to derive clauses (12)–(16). Since only A is assumed to hold

in context v1, we derive only a linear number of clauses: no Bi holds in v1, so we do not derive

clauses with irrelevant combinations of atomic concepts. These inferences are analogous to the

inferences of the Hyp-rule in the hypertableau algorithm, with the difference that the conclusions

are not localized: they hold for each element of I that corresponds to v1.

Clause (15) says that the elements in I corresponding to v1 must have a successor in which B

holds. To satisfy this requirement, we use the Succ rule to introduce context v2 and add the edge (17)

from v1 to v2; the edge is labeled with the concept ∃R.B that it satisfies. The Succ rule combines

the ∃-rule and the ∀+-rule from the hypertableau algorithm by means of sets of atomic concepts

Bk and Bp. Set Bk contains atomic concepts known to hold in v2 due to universal restrictions—

that is, those concepts L for which > v ∀R.L has been derived in v1. In our example, clause (16)

ensures that D holds in v2, and so we have Bk = {D}. Set {B} ∪ Bk = {B,D} thus provides us with

an “upper bound” on the core of the new context: both B and D necessarily hold in context v2, but

we can use an arbitrary subset of {B,D} as the core of v2. Choosing smaller cores might reduce

the number of contexts, but might also increase the number of clauses per context. The decision

which subset to use is determined by a strategy, which is supplied as parameter to our algorithm.

In this example we use the “eager” strategy that always uses the maximal subset and thus sets

core(v2) = {B,D}; however, we discuss other reasonable strategies in Section 8.5. The Succ rule

also initializes S(v2) with clauses (18) and (19) specifying that B and D hold in each element of I

that is represented by context v2. Set Bp contains atomic concepts that can possibly hold in v2 due to

universal restrictions—that is, those concepts L for which K v M t ∀R.L has been derived in v1 for

some K and M. Thus, set {B} ∪ Bp provides us with an “upper bound” on the concepts that might

need to be considered in v2. Since (16) is the only clause in S(v1) containing a universal restriction,

in our example we have Bp = Bk = {D}. Sets Bk and Bp need not coincide in general, and the Succ

rule adds a clause of the form L v L for each concept L from Bp that is not in the core of the new

context.

83



We next use the Hyper rule to derive clauses (20)–(26) in S(v2). As in the hypertableau algo-

rithm, since only B holds in context v2, we do not derive a clause involving Ai. Now clause (23)

requires an edge labeled with ∃R.B; due to clause (24), the core of the target context can be any

subset of {B,D}; and due to the “eager” strategy, the core of the target context will be {B,D}. But

then, there is no need to introduce a fresh context: our “eager” strategy can instruct the Succ rule to

reuse the existing context v2 since we already have core(v2) = {B,D}. Consequently, we introduce

edge (27) using the Succ rule. This “reuse” of v2 is similar to blocking in the hypertableau algo-

rithm, but is actually much more effective in eliminating redundant computations. First, we never

need more than exponentially many contexts, whereas the hypertableau algorithm can constructs

trees of doubly exponential size. Second, the clauses belonging to each context are not localized

to a specific place in I, and so our algorithm draws the inferences for a particular core only once.

In contrast, to ensure that the labels of s and s′ coincide and thus ensure the blocking condition,

the hypertableau algorithm must draw the same conclusions for s and s′; furthermore, an individual

can directly block exponentially many other individuals, so the potential for redundant work is even

higher.

Clause (26) says that each element in I corresponding to a predecessor of an element repre-

sented by v2 must satisfy F or G; hence, we apply the Pred rule to edge (17) and clauses (15) and

(26) to derive clause (28). Furthermore, we also apply the Pred rule to edge (27) and thus derive

clause (29). The Pred rule essentially “pulls” the information from the successor to the predeces-

sor; however, unlike the ∀−-rule in the hypertableau algorithm, it simultaneously deals with several

universal restrictions.

Finally, we use the Hyper rule to derive clause (30), at which point no further inferences are

possible. Since all clauses are “relative” to the core of the corresponding context, clause (30) ac-

tually corresponds to A v G, so we have proved O |= A v G. In fact, due to (30), we know that

O |= K v M for each query K v M such that A v G is a strengthening of K v M. Our algorithm

is thus not just refutationally complete: for each query K v M such that O |= K v M, it derives at

least one strengthening of K v M in each context that covers (cf. Definition 8.3) the query.

To further refine our algorithm, we use the ordered resolution variant [18]: we parameterize our

algorithm with an ordering on literals, and, for each clause K v M ∈ S(v), we apply the inference

rules only to literals that are maximal in M w.r.t. the ordering. This can, however, compromize

84



completeness: clause (30) can be derived in context v1 from (28) only if G is smaller than F in

the ordering. Therefore, to guarantee that the clause will indeed be derived in context v1, we use a

different ordering ≺v per context v and require that G is smallest in ≺v1 . Furthermore, the Pred rule

introduces a similar complication: clause (26), which is needed for the Pred rule, can be derived

from (25) only if ∀R−.G is smaller than E in ≺v2 . Therefore, to guarantee completeness, we require

that ≺v2 must be R-admissible (cf. Definition 8.2)—that is, each literal of the form ∀inv(R).A must

be smallest in ≺v2 .

8.3 Formalization

In this section we formalize the intuitions that we discussed in Section 8.2. We start by defining the

notion of a literal ordering, which we will use later to restrict applicability of our inference rules.

Definition 8.2. A literal ordering ≺ is a strict partial order (i.e., an irreflexive and transitive relation)

on the set ΣL of all literals. A literal L ∈ ΣL is ≺-minimal if no literal L′ ∈ ΣL exists such that L′ ≺ L;

moreover, a set of literals N is ≺-minimal if each literal in N is ≺-minimal. A literal L ∈ ΣL is ≺-

maximal w.r.t. a set of literals N, written L ⊀ N, if no literal L′ ∈ N exists such that L ≺ L′. Given a

role R, ordering ≺ is R-admissible if each literal of the form ∀inv(R).A is ≺-minimal.

Throughout the rest of this paper we fix a “global” countably infinite set of contexts X. Recall

that in Section 8.1 we introduced ΣL as the set of all literals (concepts of the form A, ∃R.A, ∀R.A); by

Σ∃L we denote the set of all literals of the form ∃R.A. Finally, recall that we often treat conjunctions

and disjunctions of literals as sets of their respective conjuncts and disjuncts. Sets X, ΣL, and Σ∃L

provide us with building blocks for the following definition of a context structure; the notions of

admissibility and covering were motivated at the end of Section 8.2.

Definition 8.3. A context structure is a tuple D = 〈V , E , core,≺〉, where V ⊆ X is a finite set of con-

texts, E ⊆ V × V × Σ∃L is a finite set of edges labeled by existential restrictions, function core : V →

2ΣL labels each context with a finite set of literals, and function ≺ assigns to each context v ∈ V a

literal ordering ≺v. Such D is admissible if, for each edge 〈v, u,∃R.A〉 ∈ E , the literal ordering ≺u

is R-admissible. Furthermore, D is over a set of literals L if all literals in D are contained in L.

Finally, given a context v, set core(v) is often treated as the conjunction of its atomic concepts, thus

85



allowing core(v) to occur in concepts and axioms.

Let v ∈ V be an arbitrary context of D; then, v is trivial if core(v) = ∅ and ≺v = ∅. In addition,

let K v M be an arbitrary query; then, v is sound for K v M if core(v) ⊆ K; v is complete for K v M

if M is ≺v-minimal; and v covers K v M if v is both sound and complete for K v M.

We next formalize the notion of a clause system as a family of sets of clauses indexed by the

contexts. As we discussed in Section 8.2, the output of our consequence-based algorithm consists

of a context structure and a clause system, and the latter can be used to decide the entailment of all

relevant queries.

Definition 8.4. A clause system for a context structure D = 〈V , E , core,≺〉 is a function S that

assigns to each context v ∈ V a finite set of clauses S(v).

To simplify the presentation, in the rest of this section we fix a normalized ALCI ontology O

and a finite set of queries Q—that is, we assume that all subsequent definitions and theorems in this

section are implicitly parameterized with O and Q. Furthermore, we fix L to be the set of literals

occurring in O ∪Q; since O and Q are finite sets, set L is finite as well.

As we explained in Section 8.2, our algorithm is based on the inference rules shown in Table 8.1.

The Hyper, Succ, and Pred rules are responsible for completeness, and we discussed the intuitions

behind these rules in Section 8.2. The Elim rule supports redundancy elimination and is not needed

for completeness; we discuss the intuitions behind this rule in Section 8.4. The completeness of

our algorithm is guaranteed by Theorem 8.5, the proof of which is given in Appendix D.1. The

theorem essentially says that, given a context structure D and a clause system S saturated under the

the Hyper, Pred, and Succ rules, we can read off the consequences of the form K v M from the

sets S(v) provided that K v M is a query, the context v is complete (cf. Definition 8.3) for K v M,

and set S(v) is appropriately initialized. The initialization is similar to asserting L(a) for each literal

L ∈ K at the beginning of a hypertableau test of O |= K v M. Note that Theorem 8.5 depends on the

Succ rule being not applicable, and so the exact definition of strategy used in the postcondition of

the Succ rule is not relevant for completeness. In the rest of this section we discuss how to initialize

the sets S(v) and how to satisfy the precondition of the Succ rule to obtain a sound and complete

algorithm.

86



H
yp

er
If

�n
i=1 Ai v M ∈ O,

Ki v Mi t Ai ∈ S(v) with Ai ⊀v Mi for 1 ≤ i ≤ n,
and
�n

i=1 Ki v M t
⊔n

i=1 Mi 6∈̂ S(v),
then add

�n
i=1 Ki v M t

⊔n
i=1 Mi to S(v).

Pr
ed

If 〈v, u,∃R.A〉 ∈ E ,
A u
�n

i=1 Bi v
⊔m

j=1 ∀inv(R).C j ∈ S(u) or
�n

i=1 Bi v
⊔m

j=1 ∀inv(R).C j ∈ S(u),
K0 v M0 t ∃R.A ∈ S(v) with ∃R.A ⊀v M0,
Ki v Mi t ∀R.Bi ∈ S(v) with ∀R.Bi ⊀v Mi for 1 ≤ i ≤ n,
and
�n

i=0 Ki v
⊔n

i=0 Mi t
⊔m

j=1 C j 6∈̂ S(v),
then add

�n
i=0 Ki v

⊔n
i=0 Mi t

⊔m
j=1 C j to S(v).

Su
cc

If K v M t ∃R.A ∈ S(v) with ∃R.A ⊀v M, and
for Bp B {B | K′ v M′ t ∀R.B ∈ S(v) and ∀R.B ⊀v M′},
no edge 〈v, u,∃R.A〉 ∈ E exists such that L v L ∈̂ S(u) for each L ∈ {A} ∪ Bp,

then let 〈u, core′,≺′〉 B strategy(∃R.A,Bk,D) where Bk B {B | > v ∀R.B ∈ S(v)};
if u ∈ V , then let ≺u B ≺u ∩ ≺

′, and
otherwise let V B V ∪ {u}, core(u) B core′, ≺u B ≺

′, and S(u) B {> v L | L ∈ core(u)};
add 〈v, u,∃R.A〉 to E ; and
for each L ∈ [{A} ∪ Bp] \ core(v) such that L v L 6∈̂ S(u), add L v L to S(u).

El
im

If K1 v M1 ∈ S(v),
K2 v M2 ∈ S(v), and
K1 v M1 is a strengthening of K2 v M2 and the two clauses are distinct,

then remove K2 v M2 from S(v).

Table 8.1: Consequence-based inference rules for ALCI

Theorem 8.5 (Completeness). Let D = 〈V , E , core,≺〉 be an admissible context structure, and let S

be a clause system for D such that the Hyper, Pred, and Succ rules from Table 8.1 are not applicable

to D and S. Then, K v M ∈̂ S(v) holds for each query K v M and each context v ∈ V that satisfy

all of the following three conditions:

• O |= K v M,

• context v is complete for query K v M, and

• K v L ∈̂ S(v) for each literal L ∈ K.

As we discussed in Section 8.2, our framework is parameterized by a function strategy, which

we formalize in Definition 8.6. Intuitively, when the Succ rule identifies a context v and an existential

restriction ∃R.A for which the rule’s precondition is not satisfied, strategy(∃R.A,Bk,D) returns a

triple 〈u, core′,≺′〉 that specifies how to modify D and S so that the precondition becomes satisfied.

The strategy has two options. First, the strategy can decide to extend D by returning a fresh context

87



u; in such a case, u is added to D, and core′ and ≺′ specify how to initialize core(u) and ≺u. Second,

the strategy can decide to reuse a context u that is already a part of D; if so, then ordering ≺u

is intersected with ≺′ to ensure R-admissibility, but also preserve admissibility for all other roles.

Definition 8.6 requires each strategy to be bounded: if the signature is finite, then the strategy should

return only finitely many different results on all possible inputs. Please note that a finite signature

does not necessarily bound the size of D, so the number of different arguments (and return values)

for strategy is not bounded. Bounded strategies can thus introduce only finitely many fresh contexts,

which ensures termination.

Definition 8.6. An expansion strategy is a function strategy computable in polynomial time that

takes a literal ∃R.A, a set of atomic concepts Bk, and a context structure D = 〈V , E , core,≺〉. The

result of strategy(∃R.A,Bk,D) is a triple 〈u, core′,≺′〉 where

• core′ is a subset of {A} ∪ Bk,

• ≺′ is an R-admissible literal ordering, and

• either u ∈ X \ V is a fresh context, or u ∈ V is a context in D such that core(u) = core′.

Each expansion strategy must be bounded: for each finite set of literals L, the number |strategy|L of

different values that strategy can return for all possible arguments over L must be finite.

We next define when a context structure D and a clause system S are sound for O. Recall

that, for a context v, clause K v M in S(v) is “relative” to core(v)—that is, the clause should be

interpreted as core(v) u K v M. Soundness for a clause simply means that O |= core(v) u K v M

should hold for each clause K v M ∈ S(v). To understand the notion of soundness for a context

structure, consider an arbitrary edge 〈v, u,∃R.A〉 in D. As we explained in Section 8.2, the Pred

rule “pulls” information from S(u) into S(v); however, the clauses in S(v) and S(u) are “relative” to

core(v) and core(u), respectively, so core(u) and core(v) must be related as specified in Definition 8.7

to make the Pred rule sound. Please remember that core(u) and core(v) should be understood as

conjunctions of the respective sets of atomic concepts.

Definition 8.7. A context structure D = 〈V , E , core,≺〉 is sound for O if each edge 〈v, u,∃R.A〉 ∈ E

satisfies O |= core(v) u ∃R.A v ∃R.[core(u) u A]. Furthermore, a clause system S is sound for O if

each context v ∈ V and each clause K v M ∈ S(v) satisfy O |= core(v) u K v M.

88



Proposition 8.8 shows that the inference rules in Table 8.1 preserve admissibility and soundness

of a context structure and a clause system. The former follows immediately from Definition 8.6,

and the proof of the latter is analogous to the soundness proof for first-order resolution [18]: we

show that each clause introduced by an inference rule is a logical consequence of O.

Proposition 8.8 (Soundness). Let D1 = 〈V , E , core,≺〉 be a context structure, let S1 be a clause

system for D1, and let D2 and S2 be the context structure and the clause system, respectively,

obtained by applying an inference rule from Table 8.1 to D1 and S1. If D1 is admissible, then D2 is

admissible. Furthermore, if both D1 and S1 are sound for O, then both D2 and S2 are sound for O.

Proof. Assume that D1 is admissible and that the Succ rule is applied to D1 as shown in Table 8.1.

By Definition 8.6, literal ordering ≺′ is R-admissible; furthermore, for arbitrary literal orderings ≺1

and ≺2 that are R- and S -admissible, respectively, set ≺1 ∩ ≺2 is a literal ordering that is both R-

and S -admissible. Therefore, regardless of whether context u is fresh or not, D2 is admissible. Now

assume that both D1 and S1 are sound; we next show that both D2 and S2 are sound as well. To

this end, let I = 〈∆I , ·I〉 be an arbitrary model of O, and consider all possible inference rules that

derive a clause in S2 or modify D2. In each case we assume that the rule is applied as in Table 8.1

(Hyper rule) We will show that O |= core(v) u
�n

i=1 Ki v M t
⊔n

i=1 Mi. To this end, consider

an arbitrary element δ ∈ ∆I such that δ ∈ (core(v) u
�n

i=1 Ki)I . Now S1 is sound for O so, for

each 1 ≤ i ≤ n, we have O |= core(v) u Ki v Mi t Ai, which implies δ ∈ (Mi t Ai)I . If δ ∈ MI
i

for some 1 ≤ i ≤ n, then clearly δ ∈ (
⊔n

i=1 Mi)I . Otherwise, we have δ ∈ (
�n

i=1 Ai)I , but then�n
i=1 Ai v M ∈ O implies δ ∈ MI . In either case, we have δ ∈ (M t

⊔n
i=1 Mi)I . Since δ was chosen

arbitrarily, I satisfies the conclusion of the rule, as required.

(Pred rule) We will show that O |= core(v) u
�n

i=0 Ki v
⊔n

i=0 Mi t
⊔m

j=1 C j. To this end, con-

sider an arbitrary element δ ∈ ∆I such that δ ∈ (core(v) u
�n

i=0 Ki)I . If δ ∈ MI
i for some 0 ≤ i ≤ n,

then clearly δ ∈ (
⊔n

i=0 Mi)I . Otherwise, as S1 is sound for O, we have δ ∈ (∃R.A)I and δ ∈ (∀R.Bi)I

for each 1 ≤ i ≤ n. Since 〈v, u,∃R.A〉 ∈ E and D1 is sound, O |= core(v) u ∃R.A v ∃R.[core(u) u A];

therefore, since δ ∈ [core(v) u ∃R.A]I , we have δ ∈ (∃R.[core(u) u A])I . Hence, an element γ ∈ ∆I

exists such that 〈δ, γ〉 ∈ RI and γ ∈ [core(u) u A u
�n

i=1 Bi]I . But then, due to either of the two al-

ternative premises of the rule, we also have γ ∈ [
⊔m

j=1 ∀inv(R).C j]I ; hence δ ∈ (
⊔m

j=1 C j)I . Since δ

was chosen arbitrarily, I satisfies the conclusion of the rule, as required.

89



(Succ rule) The rule introduces only clauses of the form L v L, and I |= core(u) u L v L clearly

holds. We next show that the new edge 〈v, u,∃R.A〉 introduced by the rule satisfies the condition in

Definition 8.7. For each atomic concept B ∈ Bk, we have> v ∀R.B ∈ S(v) by the rule preconditions,

so O |= core(v) v ∀R.B as S1 is sound for O; but then, we have O |= core(v) u ∃R.A v ∃R.[A u Bk].

Finally, since core(u) = core′ ⊆ A u Bk, we also have O |= core(v) u ∃R.A v ∃R.[core(u) u A], as

required. �

The following notion of a covering mapping maps each query q ∈ Q to a context in a context

structure. Intuitively, our algorithm will use such a mapping to find for each query q ∈ Q a context

that can be used to verify O |= q.

Definition 8.9. Let D = 〈V , E , core,≺〉 be a context structure. A covering mapping from Q to D is

a function ϑ : Q→ V such that each query q ∈ Q is covered in the context ϑ(q).

We are finally ready to formally define our consequence-based reasoning algorithm. Apart from

O and Q, the algorithm is parameterized by an expansion strategy strategy, a context structure

D with no edges, and a covering mapping ϑ. By passing D and ϑ as arguments, the algorithm’s

users can decide how to initialize the contexts necessary for checking the queries in Q; we discuss

reasonable possibilities in Section 8.5.1. Since the algorithm is given a context structure without

edges, D is trivially sound for O; by inductively applying Proposition 8.8, the resulting clause

system is sound for O. Furthermore, the algorithm is complete because steps 1 and 2 satisfy the

preconditions of Theorem 8.5.

Algorithm 8.10. The consequence-based algorithm for ALCI takes as input O, Q, a context struc-

ture D = 〈V , E , core,≺〉 over L with E = ∅, an expansion strategy strategy, and a covering mapping

ϑ from Q to D. The algorithm (nondeterministically) extends D and computes a clause system S

for the extended context structure as follows.

1. Set S(v) B {> v L | L ∈ core(v)} for each context v ∈ V .

2. For each query K v M ∈ Q, let v B ϑ(K v M); then, for each literal L ∈ K \ core(v), add L v L

to S(v).

3. Exhaustively apply inference rules from Table 8.1.

90



Please note that Algorithm 8.10 is nondeterministic: the conclusion of an inference rule is added

to S(v) only if S(v) does not contain a strengthening of the conclusion, and the order of inference

rule application is not predetermined; therefore, the resulting D and S are not unique. This, however,

is don’t-care nondeterminism: any order of inference rule applications suffices for soundness and

completeness.

In Proposition 8.12 we formalize the soundness and completeness argument outlined earlier.

Towards this goal, in Lemma 8.11 we show that the Elim rule never deletes the “relevant” conse-

quences derived by our algorithm: whenever a clause K v M is deleted from some set S(v), after

deletion the set still contains a strengthening of the deleted clause.

Lemma 8.11. If, at some point in the execution of Algorithm 8.10, K v M ∈̂ S(v) holds for some

clause K v M and context v, then K v M ∈̂ S(v) holds at all future points as well.

Proof. The proof is by a straightforward induction on the application of the rules. In particular,

rules Hyper, Pred, and Succ just add clauses, so their application clearly preserves this property.

Furthermore, the Elim rule removes a clause K2 v M2 from S(v) only if K1 v M1 ∈ S(v) where

K1 v M1 is a strengthening of K2 v M2; since the strengthening relation on clauses is transitive, an

application of the Elim rule clearly preserves this property as well. �

Proposition 8.12. Let S be a clause system obtained by applying Algorithm 8.10 to O, Q, a context

structure D, an expansion strategy strategy, and a covering mapping ϑ. Then, for each query q ∈ Q,

we have O |= q if and only if q ∈̂ S(ϑ(q)).

Proof. Consider an arbitrary query K v M ∈ Q and let v = ϑ(K v M). Context v covers K v M,

so v is sound for K v M and thus core(v) ⊆ K holds by Definition 8.3, and v is also complete for

K v M.

Assume that K v M ∈̂ S(v), so a clause K′ v M′ ∈ S(v) exists such that K′ ⊆ K and M′ ⊆ M.

For each clause > v L added to some S(u) in step 1, we have O |= core(u) v L since L ∈ core(u);

furthermore, for each clause L v L added to S(u) in step 2, we clearly have O |= core(u) u L v L;

finally, Algorithm 8.10 is applied to a sound context structure, so D and S are sound for O by

Proposition 8.8, and O |= core(v) u K′ v M′ holds. Finally, K′ ∪ core(v) ⊆ K and M′ ⊆ M imply

O |= K v M, as required.

91



Conversely, assume that O |= K v M. Consider an arbitrary literal L ∈ K; if L ∈ core(v), then

> v L is added to S(v) in step 1, and if L ∈ K \ core(v), then L v L is added to S(v) in step 2; in

either case, we have that K v L ∈̂ S(v) holds after step 2, and Lemma 8.11 ensures that this property

is preserved during the algorithm’s execution. But then, since v is complete for K v M, we have

K v M ∈̂ S(v) by Theorem 8.5, as required. �

Finally, we determine the complexity of our algorithm.

Proposition 8.13 (Termination). When applied to O, Q, a context structure D = 〈V , E , core,≺〉, an

expansion strategy strategy, and a covering mapping ϑ, Algorithm 8.10 terminates in time polyno-

mial in 4|L|
2
, |strategy|L + |V |, and ‖O‖ + ‖Q‖.

Proof. When applied to arguments over L, the result of the expansion strategy is clearly over L as

well; therefore, the context structure and the clause system computed using Algorithm 8.10 are over

L. The number of different clauses over L is bounded by c = 2|L| · 2|L| = 4|L| since each literal from

L can independently occur in the clause antecedent and/or the clause consequent. Algorithm 8.10

is applied to a context structure with |V | contexts, and the expansion strategy can introduce at most

|strategy|L additional contexts; hence, the total number of contexts introduced in the algorithm is

bounded by m = |strategy|L + |V |.

We call all objects needed to apply an inference rule from Table 8.1 premises; for the Succ

rule, this includes set Bp. We next show that, for the Hyper, Pred, and Succ rules, the number of

different premises is polynomial in c|L|, m, and ‖O‖ + ‖Q‖; recall that |L| ≤ ‖O‖ + ‖Q‖. For the

Hyper rule, context v ∈ V can be chosen in at most m ways, clause
�

i Ai v M ∈ O can be chosen

in at most |O| ways, and each of the n ≤ |L| clauses Ki v Mi t Ai ∈ S(v) can be chosen in at most

c ways, so there are at most c|L| ways of choosing such a set of clauses. For the Pred rule, edge

〈v, u,∃R.A〉 ∈ E can be chosen in at most m2 · |L| ways, clause A u
�

i Bi v
⊔

j ∀inv(R).C j ∈ S(u) or�
i Bi v

⊔
j ∀inv(R).C j ∈ S(u) can be chosen in at most c ways, and each of the n + 1 ≤ |L| clauses

K0 v M0 t ∃R.A ∈ S(v) and Ki v Mi t ∀R.Bi ∈ S(v) can be chosen in at most c ways, so there are

at most c|L| ways of choosing such a set of clauses. For the Succ rule, context v ∈ V can be chosen

in at most m ways, literal ∃R.A can be chosen in at most |L| ways, clause K v M t ∃R.A ∈ S(v) can

be chosen in at most c ways, and there are at most 2|L| different sets Bp.

92



Each rule in Table 8.1 adds a clause K v M to some S(v) only if K v M 6∈̂ S(v); thus, due to

Lemma 8.11, each such K v M can be added to some S(v) at most once; but then, the Elim rule

can eliminate such K v M from S(v) at most once as well. Thus, no inference rule is applied twice

to the same premises, so the number of inference rule applications is bounded by a number that is

polynomial in c|L|, m, and ‖O‖ + ‖Q‖. Moreover, strategy is computable in polynomial time, so each

inference rule can be applied to fixed premises in polynomial time. Consequently, the algorithm can

be implemented so that it runs in time polynomial in c|L|, m, and ‖O‖ + ‖Q‖. �

8.4 Redundancy Elimination

Resolution can often derive redundant clauses—that is, clauses that are not necessary for a proof.

Such clauses can give rise to a large number of other redundant clauses, so it is beneficial to detect

and eliminate redundant clauses whenever possible. To this end, modern first-order theorem provers

employ a number of redundancy elimination rules that eliminate or simplify certain clauses; Wei-

denbach [138] presents an overview of these techniques. Inspired by redundancy elimination in

first-order theorem provers, we equipped our consequence-based framework with analogous possi-

bilities, which we discuss in this section.

First, the completeness Theorem 8.5 only requires each set of clauses S(v) to contain a strength-

ening of each conclusion obtained by applying the inference rules from Table 8.1; therefore, our

inference rules derive a conclusion in S(v) only if S(v) does not already contain a strengthening of

the conclusion. This is analogous to forward subsumption in first-order theorem proving: a newly

derived clause is kept only if the clause is not redundant given the clauses derived thus far.

Second, the Elim rule deletes a clause K2 v M2 from S(v) if S(v) contains a clause K1 v M1 such

that K1 v M1 is a strengthening of K2 v M2 and the two clauses are distinct. Note that K2 v M2 can

be derived before K1 v M1, in which case the technique described in the previous paragraph will

not eliminate K2 v M2, and so K2 v M2 can potentially participate in further redundant inferences.

The Elim rule is thus analogous to backward subsumption in first-order theorem proving.

In the rest of this section we discuss certain aspects of our redundancy elimination techniques.

We first consider syntactic tautologies, which are clauses of the form K u L v M t L with either

K or M (or both) nonempty; note that this definition excludes clauses of the form L v L, which

93



are needed for completeness in Theorem 8.5 and are thus not redundant. Since our algorithm never

derives a clause whose strengthening is already present in the context, the following Proposition 8.14

implies that the algorithm never derives syntactic tautologies.

Proposition 8.14. If, at some point in the execution of Algorithm 8.10, K v M ∈̂ S(v) holds for

some clause K v M and context v, then L v L ∈̂ S(v) also holds at this point for each literal L ∈ K.

Proof. The proof is by induction on the application of inference rules. Each clause introduced in

steps 1 and 2 of Algorithm 8.10 or by the Succ rule obviously satisfies this property. Furthermore, an

application of the Elim rule preserves this property by Lemma 8.11. Now consider an application of

the Hyper or the Pred rule as shown in Table 8.1; then, for each literal L occurring in the antecedent

of the conclusion, integer i exists such that L ∈ Ki; but then, the premise corresponding to Ki satisfies

this property by the induction assumption, so L v L ∈̂ S(v) holds. �

The Elim rule can also be used to define more powerful redundancy elimination rules. Assume

that, for some context v, set S(v) contains clauses K1 v M1 t L and K2 u L v M2 with K1 ⊆ K2

and M1 ⊆ M2. Clause K1 u K2 v M1 t M2 = K2 v M2 is a logical consequence of S(v); but then,

although this clause is not derived by an inference rule from Table 8.1 (in particular, note that the

Hyper rule does not derive this clause), extending S(v) with K2 v M2 is sound. Thus, if we add

K2 v M2 to S(v), we can delete clause K2 u L v M2 from S(v) using the Elim rule; essentially, we

thus obtain a simplification rule that eliminates L from clause K2 u L v M2. Analogously, if the

clauses satisfy K2 ⊆ K1 and M2 ⊆ M1, then we can eliminate L from clause K1 v M1 t L. This is

closely related to the contextual literal cutting rule used in the first-order prover E [114].

Redundancy elimination may be difficult to implement fully in practice: even with complex

index structures, checking whether some S(v) contains a strengthening of some clause may be

inefficient. Please note, however, that both forms of redundancy elimination are optional—that

is, they are not needed for completeness. Therefore, instead of ∈̂, one can use ∈ to check rule

applicability, and one does not need to apply the Elim rule exhaustively. Furthermore, redundancy

checking can be restricted to clauses of the form > v A and L v L; since these clauses contain only

one literal, they can be indexed using a simple hash table. Finally, an advanced implementation can

“switch on” redundancy elimination only if set S(v) grows beyond a certain size. In most cases,

however, eliminating syntactic tautologies should not cause any noticeable overhead.

94



8.5 Initialization and Expansion Strategies

We next discuss ways of instantiating our consequence-based framework presented in Section 8.3.

In particular, in Section 8.5.1 we discuss possibilities for initializing the context structure and the

covering mapping that are given to Algorithm 8.10. Then, in Section 8.5.2 we discuss possible

expansion strategies.

8.5.1 Initializing the Context Structure and the Covering Mapping

Algorithm 8.10 takes as input a context structure D without any edges and a covering mapping ϑ,

and so the initialization of D and ϑ is deferred to the algorithm’s users. We next discuss several

reasonable approaches to initialization.

First possibility is to introduce just one trivial (cf. Definition 8.3) context v0. In such a case,

step 2 of Algorithm 8.10 initializes S(v0) with many clauses L v L; this may give rise to a large

number of inferences at context v0, and may be further exacerbated by the fact that ≺v0 is empty.

Hence, such an approach is unlikely to be efficient apart from in very simple cases.

Second possibility is to introduce a separate context vq = ϑ(q) for each query q = K v M ∈ Q,

define core(vq) B K, and define ≺vq such that M is ≺vq-minimal and the remaining literals are or-

dered arbitrarily. This has the opposite effect from the first approach: step 2 of Algorithm 8.10

initializes each set S(vq) with the least possible number of clauses L v L, and ordering ≺vq is as

fine-grained as possible, which maximally reduces the number of inferences at context vq. The

main drawback, however, is that the number of contexts needed is linear in the size of Q.

Third possibility is to introduce a context vK for each conjunction K occurring in the antecedent

of some query in Q, define core(vK) B K, and define ≺vK so that each literal occurring in the con-

sequent of some query in Q is ≺vK -minimal while all remaining literals are ordered arbitrarily. We

thus strike a balance between the number of contexts and the inferences performed.

Description logic reasoners are often used to classify an ontology O, in which case Q contains

A v B for all pairs of atomic concepts A and B. The second possibility then requires a quadratic

number of contexts, which can be prohibitively large even on ontologies of moderate size. In con-

trast, the third possibility requires all atomic concepts in O to be minimal, which essentially “turns

off” most ordering constraints. To address the former problem in hypertableau-based reasoners,

95



Glimm et al. [39] developed a classification algorithm that gathers information about known and

possible subsumptions from the ABoxes encountered during the algorithm’s execution in order to

reduce the number of pairs of atomic concepts for which O |= A v B needs to be checked. This al-

gorithm can be adapted to the consequence-based framework as well. In particular, let S be a clause

system produced by Algorithm 8.10 such that > v ⊥ 6∈̂ S(v) holds for each context v—that is, O is

satisfiable. Then, if a context v exists such that core(v) ⊆ {A} and A v B ∈̂ S(v), by the soundness

of our algorithm we have that O |= A v B—in other words, subsumption A v B is known. Further-

more, Proposition 8.15, shown below, tells us how to identify subsumptions that are not possible. By

tightly integrating the consequence-based algorithm with the appropriately modified classification

algorithm, we can extend Q as needed, thus considerably reducing the size of this set. Furthermore,

whenever the classification algorithm adds a query A v B to Q, we have two options: we can intro-

duce a fresh context vAvB; or we can introduce or reuse context vA, keeping in mind that, whenever

we reuse an existing context, we must refine the literal ordering ≺vA so that B becomes ≺vA-minimal.

Proposition 8.15. Let S be a clause system obtained by applying Algorithm 8.10 to a normalized

ALCI ontology O and a finite set of queries Q. Then, O 6|= A v B holds for all atomic concepts A

and B for which there exists a context v such that A v A ∈̂ S(v), A v B 6∈̂ S(v), and no clause of the

form K v M t B ∈ S(v) exists that satisfies K ⊆ {A} and B ⊀v M.

Proof. The proof of this proposition relies on the proof of Theorem 8.5 presented in Appendix D.1,

the notion of pre-models introduced in Section D.1.1, and the symbol ` introduced in Section D.1.4.

Let S, A, B, and v be as specified in the proposition. Then, A v B 6∈̂ S(v) clearly implies

A v ⊥ 6∈̂ S(v); moreover, ⊥ is empty and therefore ≺v-minimal; together with A v A ∈̂ S(v), these

observations imply v 0 A v ⊥. Thus, the construction of a pre-model I = 〈∆, E, J〉 in Section D.1.4

introduces an element δv
Av⊥ ∈ ∆ whose literal interpretation J(δv

Av⊥) is constructed as specified in

Section D.1.2. Now consider an arbitrary clause K v M t B ∈ S(v): by our assumption, at least one

of K ⊆ {A} or B ⊀v M does not hold; thus, the conditions of Lemma D.6 are not satisfied, and so

clause K v M t B is not productive. Since this holds for all clauses in S(v) with B in the consequent,

we have B < J(δv
Av⊥). Furthermore, due to A v A ∈̂ S(v) and Lemma D.7, we have A ∈ J(δv

Av⊥).

Thus, we have I 6|= A v B, and so O 6|= A v B holds by Corollary D.3 and Claim D.14. �

96



8.5.2 Expansion Strategies

In this section we discuss reasonable expansion strategies. We use the ontology O and query q

defined in the following example to demonstrate how the choice of strategy affects the inferences of

our algorithm.

Example 8.16. Let O be the ontology containing axioms (8.31)–(8.38), and let q = A v E. Clearly,

O |= q holds due to (8.31)–(8.33).

A v ∃R.B (8.31)

A v ∀R.C1 (8.32)

B uC1 v ∀R−.E (8.33)

A v ∃S .B (8.34)

A v D t ∀S .C2 (8.35)

A u B v ∃T.F1 (8.36)

C1 uC2 v C (8.37)

B uC v ∃T.F2 (8.38)

Trivial Strategy: The simplest possibility is to always reuse the trivial context v0; thus, we

define trivial(∃R.A,Bk,D) = 〈v0, ∅, ∅〉; this strategy makes most sense if the trivial context v0 is also

used for initialization. The inferences of our algorithm on O with the trivial strategy are shown in

Figure 8.2. As one can see, the algorithm is prolific: inferences (47)–(57) are not needed in order

to derive (46). Such an algorithm resembles various resolution-based decision procedures for DLs

[18].

Cautious Strategy: To reduce the number of irrelevant inferences, we can introduce a con-

text vA for each atomic concept A, and define cautious(∃R.A,Bk,D) = 〈vA, {A},≺〉, where ≺ is an

arbitrary R-admissible ordering. The number of contexts is then limited to the number of atomic

concepts occurring in O and Q. Please remember that, whenever context vA is reused, its literal or-

dering must be refined so that it stays admissible for each relevant role. As one can see in Figure 8.3,

the cautious strategy considerably reduces the inferences of our algorithm; for example, it does not

derive clauses containing ∃T.F1. Nevertheless, due to the reuse of context vB to satisfy existential

restrictions (59) and (66), the algorithm derives clause (70), which then leads to the derivation of

(71) and the introduction of context vF2 .

Eager Strategy: To introduce even more contexts, we can consider a context vA for each set of

atomic concepts A, and define eager(∃R.A,Bk,D) = 〈v{A}∪Bk , {A} ∪ Bk,≺〉, where ≺ is an arbitrary

R-admissible ordering. As one can see in Figure 8.4, the algorithm now does not even derive clauses

containing ∃T.F2 and is considerably more efficient than in the previous two cases. In general,

97



v0

Initialization: A v A (39)
Hyper[8.31+39]: A v ∃R.B (40)
Hyper[8.32+39]: A v ∀R.C1 (41)
Succ[40+41]: B v B (43)
Succ[40+41]: C1 v C1 (44)
Hyper[8.33+43+44]: B uC1 v ∀R−.E (45)
Pred[40+41+45]: A v E (46)
Hyper[8.34+39]: A v ∃S .B (47)
Hyper[8.35+39]: A v D t ∀S .C2 (48)
Succ[47+48]: C2 v C2 (50)
Hyper[8.36+39+43]: A u B v ∃T.F1 (51)
Succ[51]: F1 v F1 (53)
Hyper[8.37+44+50]: C1 uC2 v C (54)
Hyper[8.38+43+44+50]: B uC1 uC2 v ∃T.F2 (55)
Succ[55]: F2 v F2 (57)

Succ[40+41]: ∃R.B (42)

Succ[47+48]: ∃S .B (49) Succ[51]: ∃T.F1 (52)

Succ[55]: ∃T.F2 (56)

Figure 8.2: Inferences with the trivial strategy

vA

A

Initialization: > v A (58)
Hyper[8.31+58]: > v ∃R.B (59)
Hyper[8.32+58]: > v ∀R.C1 (60)
Pred[59+60+64]: > v E (65)
Hyper[8.34+58]: > v ∃S .B (66)
Hyper[8.35+58]: > v D t ∀S .C2 (67)

vB

B

Succ[59+60]: > v B (62)
Succ[59+60]: C1 v C1 (63)
Hyper[8.33+62+63]: C1 v ∀R−.E (64)
Succ[66+67]: C2 v C2 (69)
Hyper[8.37+63+69]: C1 uC2 v C (70)
Hyper[8.38+62+70]: C1 uC2 v ∃T.F2 (71)

vF2

F2

Succ[71]: F2 v F2 (73)
Succ[59+60]: ∃R.B (61)

Succ[66+67]: ∃S .B (68)

Succ[71]: ∃T.F2 (72)

Figure 8.3: Inferences with the cautious strategy

v{A}

A

Initialization: > v A (74)
Hyper[8.31+74]: > v ∃R.B (75)
Hyper[8.32+74]: > v ∀R.C1 (76)
Pred[75+80]: > v E (81)
Hyper[8.34+74]: > v ∃S .B (82)
Hyper[8.35+74]: > v D t ∀S .C2 (83)

v{B,C1}

B,C1

Succ[75+76]: > v B (78)
Succ[75+76]: > v C1 (79)
Hyper[8.33+78+79]: > v ∀R−.E (80)

v{B}

B

Succ[75+83]: > v B (85)
Succ[82+83]: C2 v C2 (86)

Succ[75+76]: ∃R.B (77)

Succ[82+83]: ∃S .B (84)

Figure 8.4: Inferences with the eager strategy

98



however, the eager strategy can be problematic because the number of introduced contexts can be

exponential in the number of atomic concepts occurring in O and Q.

Refined Strategies: One can refine all of the strategies discussed above by using a different

context per role R. For example, the cautious strategy can be refined to use a context vR
A for each

atomic concept A and role R; thus, we define cautiousR(∃R.A,Bk,D) = 〈vR
A, {A},≺〉, where ≺ is an

arbitrary R-admissible ordering. A benefit of this strategy is that context vR
A is reused only to satisfy

existential restrictions of the form ∃R.A; thus, the literal ordering used in the context never needs to

be refined.

The cautious and the eager strategies appear to be most natural, striking a different balance

between the number of contexts and the number of inferences in each context. In Section 12.1 we

investigate the effectiveness of these strategies in practice. Our results suggest that, in most practical

cases, the eager strategy may be most appropriate because it does not introduce too many contexts;

however, we also identified cases in which the cautious strategy is more appropriate. This suggests

that a hybrid approach may be useful: one uses the eager strategy until some predetermined number

of contexts is introduced, after which one switches to the cautious strategy.

Although the eager strategy can, in general, introduce an exponential number of contexts, as

we argue next, on EL and DL-Litehorn ontologies the eager strategy introduces only linearly many

contexts. First, if O is an EL ontology, then all existential restrictions in O contain only atomic

roles, and all universal restrictions in O contain only inverse roles; hence, the Succ rule is applicable

only with Bk = ∅, and so the eager strategy coincides with the cautious strategy. Thus, similarly to

the EL algorithm from Section 4.4, the eager strategy introduces only one context for each atomic

concept. Second, if O is a DL-Litehorn ontology, then existential and universal restrictions occur in

O only in axioms of the form A v ∃R.C> and> v ∀R.B where C> is a distinguished atomic concept;

hence, if we apply the Hyper rule before the Succ rule, then all clauses > v ∀R.A will be eagerly

derived in each context, and so the Succ rule will be applicable to an existential restriction ∃R.C>

only with Bk = {B | > v ∀R.B ∈ O}; since this set is uniquely identified by R, the eager strategy will

introduce at most one context for each role occurring in an existential restriction. This is similar to

existing DL-Litehorn reasoning algorithms [5, 27]

99



8.6 Experimental Evaluation

The previous experiments in Chapter 6 suggest that, on EL ontologies, specialized consequence-

based reasoners often outperform the more general-purpose tableau-based reasoners. Moreover, the

good performance of consequence-based algorithms is known to extend to Horn-SHIQ ontolo-

gies [60]. The main goal of the evaluation presented in this section was to test whether this can

also be said about non-Horn ontologies, and whether the implementation overhead of supporting

disjunctions would impair the performance of a reasoner on Horn ontologies.

We have implemented the algorithm described in this chapter in a prototype reasoner ConDOR.2

The reasoner currently implements only the cautiousR expansion strategy and, since at the time

of the implementation our formulation of the algorithm did not include inverse roles [120], the

reasoner only supports the DL SH. Experiments with other expansion strategies and extensions of

the reasoner to more expressive logics (we have already started to extend the consequence-based

framework to SHIQ [119]) are left for future work.

We compared the performance of ConDOR r.12 with tableau-based reasoners FaCT++ 1.6.0

[132], HermiT 1.3.6 [94], and Pellet 2.3.0 [121], and the consequence-based Horn-SHIQ reasoner

CB r.12 [60]. The experiments were executed on a laptop with Intel Core i7-2630QM 2GHz quad-

core CPU and 6GB RAM running Microsoft Windows 7. We set a time-out of 1 hour and Java heap

space to 4GB. We ran ConDOR using its command-line interface, CB as a plugin in Protégé 4.2,

and we accessed the tableau-based reasoners through the OWL API 3.4. For all reasoners we only

measured the classification time, which excludes parsing and loading.

Many existing ontologies were either created by translations from less expressive knowledge-

representation formalisms, which do not support disjunctions, or designed directly in OWL and con-

tain many other constructors. Consequently, there are very few ontologies that contain disjunctions

but are still in SH. One example of a large SH ontology with a significant number of disjunctions is

the new SNOMED CT anatomical model mentioned in Section 1.2.2, which we call here SCT-SEP.3

It contains 54,973 concepts, of which 18,323 are defined using disjunctions, and 9 roles, including

one transitive role. Another prominent ontology with disjunctions is the NCI thesaurus, which is in

the DL SH(D). We experimented with NCI version 12.04e from which we discarded all axioms

2condor-reasoner.googlecode.com/
3SCT-SEP is available at http://condor-reasoner.googlecode.com/files/SCT-SEP.owl.

100

condor-reasoner.googlecode.com/
http://condor-reasoner.googlecode.com/files/SCT-SEP.owl


ConDOR FaCT++ HermiT Pellet CB
NCI 4.0 37.2 68.6 184.2 N/A
SCT-SEP 84.2 1509.0 time mem N/A
GALEN-OWL 4.4 time time mem 3.7
SNOMED CT 43.8 425.2 time mem 36.5

Table 8.2: Classification times in seconds

involving datatypes.4 Finally, in order to evaluate the performance of ConDOR on Horn ontologies,

we also included GALEN-OWL and SNOMED CT which were described already in Section 6.2.

The results of our experiments are shown in Table 8.2; possible failures for a reasoner are time

(no result after 1 hour), mem (out-of-memory error), and N/A (the CB reasoner does not support non-

Horn features). On the two Horn ontologies ConDOR shows similar improvement in performance

over tableau-based reasoners as CB. Moreover, ConDOR retains this improvement even on non-

Horn ontologies, reducing the classification time on SCT-SEP from over 25 minutes (for FaCT++)

to under 2 minutes.

4NCI version 12.04e is available at http://www.cs.ox.ac.uk/isg/ontologies/UID/00786.owl.

101

http://www.cs.ox.ac.uk/isg/ontologies/UID/00786.owl


102



Part IV

Parameterized Reasoning in DLs

103





Uproot your questions from their ground and the

dangling roots will be seen. More questions!

—Frank Herbert
Chapterhouse: Dune

Chapter 9

Analyzing And-Branching Using ε-Free

Decompositions

In the rest of this thesis we develop our framework for a parametric analysis of reasoning complexity.

As we mentioned in the introduction, and-branching and or-branching are two main sources of

reasoning complexity [12]. In this chapter we focus on quantifying the effects of and-branching,

whereas in the next chapter we turn our attention to or-branching.

Our framework is based on the central notion of a decomposition D of an ontology O and a

set of queries Q. Intuitively, D is a graph-like structure that summarizes the models of O relevant

for answering the queries in Q; each vertex of D identifies a propositional subproblem that could

occur in these models, and each edge of D identifies a pathway for the exchange of information

between such subproblems. We then show how to instantiate our consequence-based framework

from Part III so that it can be applied to D, and we identify the length and width of D as parameters

that characterize the and- and or-branching encountered in this process.

In Section 9.1 we first recapitulate several definitions from parameterized complexity [34]. We

present an intuitive explanation of decompositions in Section 9.2, and we formalize them in Sec-

tion 9.3. In Section 9.4 we give a practical algorithm for constructing decompositions. Finally, in

Section 9.5 we show that decompositions also explain to an extent the difficulty of tableau reason-

ing: decomposition width bounds the size of labels annotating tableau vertices, so length and width

bound the size of the constructed model representations.

105



9.1 Fixed-Parameter Tractable Problems

A parameterized problem is a set P ⊆ Σ∗ × N, where Σ is a finite alphabet and N is the set of

nonnegative integers. Each pair 〈x, k〉 ∈ Σ∗ × N is called a problem instance; x is called the input; k

called is the parameter; and ‖x‖ is the length of x. Problem P is fixed-parameter tractable (FPT) if

a computable function f : N→ N, a constant c, and an algorithm exist such that, given an arbitrary

pair 〈x, k〉 ∈ Σ∗ × N, the algorithm decides 〈x, k〉 ∈ P in at most f (k) · ‖x‖c steps. FPT is the class of

all fixed-parameter tractable problems.

Some authors use an alternative definition of parameterized complexity. Just like a regular

problem, a parameterized problem P is defined as a subset of Σ∗. Furthermore, a parameterization

is a function κ : Σ∗ → N. A problem P is fixed-parameter tractable w.r.t. a parameterization κ if

a computable function f : N→ N, a constant c, and an algorithm exist such that, for an arbitrary

x ∈ Σ∗, the algorithm decides x ∈ P in at most f (κ(x)) · ‖x‖c steps. The two definitions are clearly

equivalent if, for each x ∈ Σ∗, value κ(x) is computable in polynomial time. Furthermore, even if the

latter is not the case, the two definitions coincide if a computable function g and a constant d exist

such that, for each fixed k, one can check whether κ(x) ≤ k holds using at most g(k) · ‖x‖d steps; in

other words, checking κ(x) ≤ k must be fixed-parameter tractable as well. The results we present

in this paper involve the computation of a tree decomposition of a fixed width, which satisfies the

latter condition.

9.2 Intuitions

Let O and q be as specified in Example 8.16, and let L be the set of all literals occurring in O and

q; note that |L| = 13. Proposition 8.13 provides us with an estimate of the complexity of deciding

O |= q: we can introduce at most 2|L| = 213 contexts using the eager strategy, and each set S(v)

can contain at most 4|L| = 413 clauses, so the algorithm runs in time exponential in |L| = 13. This,

however, is a crude estimate because both the number of contexts and the sizes of sets S(v) are

vastly overestimated.

To obtain a better estimate of these values, in this section we extend the notion of a context

structure (cf. Definition 8.3) to a decomposition of an ontology and a set of queries; since decompo-

106



sitions are proper extensions of context structures, one can apply our consequence-based algorithm

to a decomposition by only slightly adapting the initialization phase of the algorithm. Apart from

∃R.A-edges, a decomposition can also contain ε-edges, which we will use in Chapter 10 to analyze

or-branching. In the rest of this chapter, however, we focus on and-branching and thus consider only

ε-free decompositions.

An ε-free decomposition D associates with each context v three sets of literals: core(v), knw(v),

and poss(v). These sets describe the clauses that the consequence-based algorithm can derive when

applied to O, Q, and D. Set core(v) serves the same purpose as in context structures—that is, the

literals in core(v) are assumed to hold for all model elements corresponding to v. Furthermore, set

knw(v) contains the known literals that are derived to hold for elements corresponding to v—that is,

for each literal L ∈ knw(v), the algorithm will derive > v L in S(v). Finally, set poss(v) contains the

possible literals that might hold for elements corresponding to v—that is, each clause K v M ∈ S(v)

will satisfy K ∪ M ⊆ poss(v). Clearly, all core literals are known, and all known literals are possi-

ble, so D should satisfy core(v) ⊆ knw(v) ⊆ poss(v) for each context v. To ensure that each clause

obtained by applying the consequence-based algorithm to D is a logical consequence of O, we re-

quire D to be sound: in addition to the condition on ∃R.A-edges from Definition 8.7, the known

literals in each context of D must logically follow from the context’s core—that is, O |= core(v) v L

should hold for each context v in D and each literal L ∈ knw(v). Furthermore, for completeness,

we require D to be admissible: roughly speaking, this notion requires D to contain all contexts that

might be needed during our algorithm’s execution, and sets core(v), knw(v), and poss(v) correctly

describe the types of clauses derived by our algorithm. This will ensure that (i) the Succ rule is never

applicable, and (ii) each clause in S(v) is of the form > v L with L ∈ knw(v), or of the form K v M

with K ∪ M ⊆ poss(v) \ knw(v). These observations allow us to capture the complexity of our al-

gorithm using the following two parameters: decomposition length ln(D), defined as the number

of contexts in D, captures the combinatorial difficulty due to (i); and decomposition width wd(D),

defined as the maximum cardinality of poss(v) \ knw(v), captures the combinatorial difficulty due

to (ii). We show that, when applied to D, our consequence-based algorithm runs in time polyno-

mial in ln(D) and 4wd(D)2
; the latter factor is due to the fact that each set S(v) can contain at most

|knw(v)| + 4|poss(v)\knw(v)| clauses.

An ontology and a set of queries can admit infinitely many sound and admissible decomposi-

107



tions. Ideally, a decomposition D with least ln(D) and wd(D) would provide us with a “general”

difficulty of reasoning with a particular ontology and a set of queries. This would be analogous to

propositional satisfiability, where the treewidth of a propositional problem is defined as the smallest

width over all tree decompositions of the problem. However, identifying such D is difficult for two

reasons. First, checking semantic conditions in the definition of soundness requires reasoning, so

verifying decomposition soundness can be as hard as the reasoning problem whose complexity we

aim to analyze. Second, ontologies and queries exist for which all decompositions of minimal width

have exponential length; we prove this claim for general (i.e., not only ε-free) decompositions, so

we postpone the formal treatment of this property until Section 11.3. Hence, unlike for proposi-

tional satisfiability, minimal width can require exponential length, which essentially prevents us

from obtaining a “general” characterization of reasoning difficulty.

As a practical solution to these challenges, in Section 9.4 we present an algorithm for construct-

ing some ε-free decomposition of O and Q. To address the first issue, our algorithm approximates

the entailment relation used in the definition of soundness. Thus, for some context v, set knw(v)

approximates the set of literals entailed by core(v), and for each literal in knw(v) the relevant entail-

ment can be established in polynomial time. To address the second issue, the algorithm is given a set

of parameters C called a control that consists of an expansion strategy, an integer mln that imposes

a bound on decomposition length, and two other parameters that determinize the decomposition

construction process. For each C, the ε-free decomposition of O and Q that is deterministically

constructed by our algorithm is called the C-decomposition of O and Q. Parameter mln bounds the

length of the C-decomposition, which determines decomposition width. Thus, the width and length

of a C-decomposition provide us with an account of the reasoning difficulty relative to C.

To illustrate these ideas, Figure 9.1 shows two ε-free decompositions of O and q from Exam-

ple 8.16 obtained using the cautious and the eager expansion strategy. We use the same notation as

for context structures, but show sets core(v), knw(v) \ core(v), and poss(v) \ knw(v) in a table below

each context.

The ε-free decomposition D1 constructed from O and q using the cautious strategy is shown in

Figure 9.1a. Since our goal is to check the entailment of q = A v E, we introduce context vA and add

A to core(vA), thus capturing the fact that the consequence-based algorithm initializes S(vA) with

(58). But then, from clauses (8.31), (8.32), and (8.34), the consequence-based algorithm can derive

108



vA

A
∃R.B, ∀R.C1, ∃S .B

D, E, ∀S .C2

vB

B

C1, C2, C, ∀R−.E, ∃T.F2

vF2

F2

∃R.B

∃S .B

∃T.F2

(a) cautious strategy

v{A}

A
∃R.B, ∀R.C1, E, ∃S .B

D, ∀S .C2

v{B,C1}

B, C1

∀R−.E

v{B}

B

C2

∃R.B ∃S .B

(b) eager strategy

Figure 9.1: Examples of ε-free decompositions

(59), (60), and (66); to reflect this, we add literals ∃R.B, ∀R.C1, and ∃S .B to knw(vA). Furthermore,

using clause (8.35), the consequence-based algorithm will derive (67); however, the consequent of

the clause contains a disjunction, so neither of the literals is derived deterministically, and therefore

we add D and ∀S .C2 to poss(vA). Next, we must satisfy existential restrictions ∃R.B and ∃S .B; since

we use the cautious strategy, we introduce a single context vB, add the two edges from vA to vB, and

initialize core(vB) to B; furthermore, due to universal restrictions ∀R.C1 and ∀S .C2 in poss(vA),

we add C1 and C2 to poss(vB). Note that, due to the reuse of vB, we cannot add C1 to knw(vB):

it is not the case that all domain elements represented by vB will necessarily satisfy C1. We now

continue our estimation for vB: literal ∀R−.E is possible due to (8.33), concept C is possible due to

(8.37), and literal ∃T.F2 is possible due to (8.38). Moreover, since ∀R−.E ∈ poss(vB), literal E is

possible for vA. Note that the consequence-based algorithm derives (65); however, ∀R−.E is not in

knw(vB) due to context reuse, so we do not have sufficient information to add E to knw(vA); in other

words, knw(vA) provides us only with a lower bound on “truly” known literals. Finally, we introduce

context vF2 to satisfy ∃T.F2 ∈ poss(vB) and thus obtain an admissible ε-free decomposition. Clearly,

wd(D1) = 5 and ln(D1) = 3 so, when applied to D1, our inference rules can derive 3 · 45 clauses,

which is a much more accurate estimate.

The ε-free decomposition D2 constructed from O and q using the eager strategy is shown in

Figure 9.1b. The main difference compared to the previous case is that, due to the eager strategy,

109



we now use distinct contexts, v{B,C1} and v{B}, to satisfy existential restrictions ∃R.B and ∃S .B at

context v{A}. Since literal ∀R.C1 is known at v{A}, we can now add C1 to the core of v{B,C1}, which

in turn allows us to make E known at v{A}. Furthermore, literal ∃T.F2 is now not possible at v{B}.

In this case, we have wd(D2) = 2 and ln(D1) = 3 so, when applied to D2, our inference rules can

derive at most 3 · 42 clauses; thus, we have obtained an even better estimate of the running time of

our consequence-based algorithm.

Reasoning with Horn-ALCI ontologies is generally easier in practice: such ontologies ad-

mit a single canonical model, which eliminates all or-branching; however, due to and-branching,

reasoning is still ExpTime-hard [74]. This is reflected in our notions of decompositions. In par-

ticular, if control C uses the eager expansion strategy and allows for “sufficiently many” contexts,

the C-decomposition D of a Horn ontology O has zero width. Then, all possible literals in D are

also known, no or-branching is required, and so D contains a complete solution to the reasoning

problem. By reducing the maximum number of contexts in C, however, we can “trade off” and-

branching for or-branching. Then, D does not necessarily have zero width, so further reasoning is

needed; moreover, when applied to D, our consequence-based algorithm derives only Horn clauses,

and the size of the antecedent of each clause is bounded by wd(D). Furthermore, as we discussed

in Section 8.5.2, if O is an EL or a DL-Litehorn ontology, the eager strategy introduces only linearly

many contexts. Therefore, if C uses the eager strategy, the C-decomposition of O has zero width

and linear length, thus explaining the tractability of subsumption reasoning in EL and DL-Litehorn.

9.3 Formalization

Throughout this section we fix a normalized ALCI ontology O and a finite set of queries Q; fur-

thermore, we let L be the set of literals that occur in O ∪Q, by L∃ we denote the set of all existential

restrictions from L, and we let ε be a special symbol not occurring in L. Please recall that X is the

countably infinite set of all contexts that was fixed in Section 8.3. We next formalize the notion of

decompositions and then generalize the notion of context structure soundness to decompositions. In

order to simplify the presentation, Definitions 9.1 and 9.2 both consider ε-edges that are used only

in Chapter 10 for the analysis of or-branching; however, in this section we subsequently consider

only decompositions without ε-edges.

110



Definition 9.1. A decomposition of O and Q is a tuple D = 〈V , E , core, knw, poss,≺, ϑ〉 where

V ⊆ X is a finite set of contexts, set E ⊆ V × V × (L∃ ∪ {ε}) contains edges labeled by existential

restrictions (an ∃R.A-edge) or by ε (an ε-edge), functions core, knw, poss : V → 2L label contexts

with sets of literals, function ≺ assigns to each context v ∈ V a literal ordering ≺v, and function

ϑ : Q→ V maps queries to contexts. For each vertex v ∈ V , let uknw(v) B poss(v) \ knw(v). The

length of D is ln(D) B |V |, and the width of D is wd(D) B maxv∈V |uknw(v)|. Decomposition D is

ε-free if it contains no ε-edges.

Definition 9.2. A decomposition D = 〈V , E , core, knw, poss,≺, ϑ〉 of O and Q is sound if it satisfies

all of the following conditions.

(N1) O |= core(v) u ∃R.A v ∃R.[core(u) u A] for each ∃R.A-edge 〈v, u,∃R.A〉 ∈ E .

(N2) core(v) = core(u) for each ε-edge 〈v, u, ε〉 ∈ E .

(N3) O |= core(v) v L for each context v ∈ V and each L ∈ knw(v).

Condition (N1) of Definition 9.2 is the same as in Definition 8.7; condition (N2) is relevant only

for decompositions that are not ε-free and will be explained in Chapter 10; and condition (N3) says

that known literals should hold in all domain elements represented by a specific context. Please

note that condition (N3) imposes only an upper bound on the known literals; thus, knw(v) can be

obtained using a sound but incomplete technique such as the one we present in Section 9.4.

Next, we extend the notion of context structure admissibility to decompositions. The ordering

condition is the same as in context structures. Furthermore, to encapsulate all relevant parameters for

the consequence-based algorithm, a decomposition contains a covering mapping, and the covering

condition restates Definition 8.9. The ontology condition says that, if O contains a clause K v M

and all of the literals in K are possible at context v, then the Hyper rule can derive M and so

all literals in M should be possible at v too. Finally, the structural condition (S1) captures the

intuitive relationship between the core, known, and possible literals; condition (S2) ensures that a

decomposition correctly estimates all consequences of the Pred rule; and condition (S3) ensures that

a decomposition contains sufficiently many contexts so that the Succ rule is never applicable.

Definition 9.3. Let D = 〈V , E , core, knw, poss,≺, ϑ〉 be an ε-free decomposition of O and Q. Let

v ∈ V be an arbitrary context of D, and let K v M be an arbitrary query; then, v is sound for K v M

111



if core(v) ⊆ K; v is complete for K v M if K ⊆ poss(v) and M is ≺v-minimal; and v covers K v M if

v is both sound and complete for K v M. Finally, D is admissible if all of the following conditions

are satisfied.

• Structural conditions:

(S1) For each context v ∈ V , we have core(v) ⊆ knw(v) ⊆ poss(v).

(S2) For each edge 〈v, u,∃R.A〉 ∈ E and each ∀inv(R).C ∈ poss(u), we have C ∈ poss(v).

(S3) For each literal ∃R.A ∈ poss(v), there exists an edge 〈v, u,∃R.A〉 ∈ E such that

poss(u) ⊇ {A} ∪ {B | ∀R.B ∈ poss(v)}.

• Ordering condition: For each edge 〈v, u,∃R.A〉 ∈ E , the literal ordering ≺u is R-admissible.

• Ontology condition: For each context v ∈ V and each clause K v M ∈ O with K ⊆ poss(v),

we have M ⊆ poss(v).

• Covering condition: Each query q ∈ Q is covered in the context ϑ(q).

We can apply the consequence-based algorithm to a sound, admissible, and ε-free decompo-

sition D as specified in Algorithm 9.4. Step 1 initializes each S(v) with a clause > v L for each

known literal L ∈ knw(v). This allows us to prove in Lemma 9.5 that the algorithm derives only

clauses of the form K v M with K ∪ M ⊆ uknw(v), which is central to our complexity argument in

Proposition 9.7. Please note that, if step 1 were to consider only the literals in core(v), our algorithm

would eventually derive a clause > v L for each known literal L ∈ knw(v), but this might involve

clauses containing combinations of literals in knw(v); thus, step 1 introduces derivation “shortcuts”

for the known literals, which can improve the algorithm’s performance in practice. Step 2 is analo-

gous to the way the Succ rule initializes contexts, and it ensures that each atomic concept B that can

be propagated to a context u through existential or universal quantification is relevant for u. Step 3

ensures that each query q ∈ Q is covered in context ϑ(q). Finally, step 4 applies exhaustively the

consequence-based inference rules, but without the Succ rule. The latter is possible because D is

admissible and thus contains all relevant contexts, which allows us to prove in Lemma 9.6 that the

112



Succ rule is never applicable during the algorithm’s execution. By combining this observation with

the fact that D is sound, in Proposition 9.7 we show that our algorithm is sound and complete.

Algorithm 9.4. The ε-free decomposition algorithm for ALCI takes as its argument a sound, ad-

missible, and ε-free decomposition D = 〈V , E , core, knw, poss,≺, ϑ〉 of O and Q. The algorithm

(nondeterministically) computes a clause system S for D as follows.

1. Set S(v) B {> v L | L ∈ knw(v)} for each context v ∈ V .

2. For each edge 〈v, u,∃R.A〉 ∈ E and each concept B ∈ uknw(u) such that B = A or ∀R.B ∈ poss(v),

add B v B to S(u).

3. For each query K v M ∈ Q, let v B ϑ(K v M); then, for each literal L ∈ K \ knw(u), add L v L

to S(v).

4. Exhaustively apply rules Hyper, Pred, and Elim from Table 8.1.

Lemma 9.5. Let S be an arbitrary clause system encountered during step 4 of Algorithm 9.4, and let

v ∈ V be an arbitrary context in D. Then, each clause in S(v) is of the form > v L with L ∈ knw(v),

or K v M with K ∪ M ⊆ uknw(v).

Proof. Let S be a clause system at the beginning of step 4, and let v ∈ V be an arbitrary context.

By Definition 9.3, if context v covers some query K v M, then K ⊆ poss(v) holds; thus, each clause

added to S(v) in steps 1–3 is clearly of the required form. We next show that this property is

preserved in step 4.

Assume that the Hyper rule is applicable to some clause
�n

i=1 Ai v M ∈ O. By the induc-

tion assumption, each premise from S(v) is of the form Ki v Mi t Ai with Ki ∪ Mi ⊆ uknw(v) and

Ai ∈ poss(v). Thus, un
i=1Ai ⊆ poss(v), so M ⊆ poss(v) by the ontology condition of Definition 9.3.

The Hyper rule produces the clause
�n

i=1 Ki v M t
⊔n

i=1 Mi. Now assume that there exists a literal

L ∈ M ∩ knw(v); then, > v L ∈̂ S(v) due to step 1 of Algorithm 9.4 and Lemma 8.11, which con-

tradicts the assumption that the Hyper rule is applicable. Hence, M ⊆ uknw(v), and the produced

clause is of the required form.

Assume that the Pred rule is applicable to an edge 〈v, u,∃R.A〉, ∈ E . By the induction assump-

tion, the premises are of the form K0 v M0 t ∃R.A and Ki v Mi t ∀R.Bi, where Ki ∪ Mi ⊆ uknw(v)

113



for each 0 ≤ i ≤ n. The Pred rule produces the clause
�n

i=0 Ki v
⊔n

i=0 Mi t
⊔m

j=1 C j. Now for each

1 ≤ j ≤ m, by the induction assumption we have ∀inv(R).C j ∈ poss(u), so C j ∈ poss(v) by condition

(S2) of Definition 9.3. Furthermore, if C j ∈ knw(v), then we have > v C j ∈̂ S(v) due to step 1 of

Algorithm 9.4 and Lemma 8.11, which contradicts the assumption that the Pred rule is applicable;

consequently, we have C j ∈ uknw(v). Hence, the clause produced by the rule is of the required

form. �

Lemma 9.6. The Succ rule is never applicable during step 4 of Algorithm 9.4.

Proof. Let S be a clause system encountered in step 4 of Algorithm 9.4; let v ∈ V be a context;

let K v M t ∃R.A ∈ S(v) be a clause; and let Bp be as specified in Table 8.1. By Lemma 9.5,

we have {B | ∀R.B ∈ poss(v)} ⊇ Bp and ∃R.A ∈ poss(v). Thus, by condition (S3) of Definition 9.3,

an edge 〈v, u,∃R.A〉 ∈ E exists with poss(u) ⊇ {A} ∪ {B | ∀R.B ∈ poss(v)} ⊇ {A} ∪ Bp; furthermore,

due to steps 1 and 2 of Algorithm 9.4 and Lemma 8.11, we have that L v L ∈̂ S(u) holds for each

L ∈ {A} ∪ Bp. Thus, the Succ rule is not applicable to context v and clause K v M t ∃R.A in S(v).

�

Proposition 9.7. Let S be a clause system obtained by applying Algorithm 9.4 to O, Q, and D.

Then, for each query q ∈ Q, we have O |= q if and only if q ∈̂ S(ϑ(q)).

Proof. Consider an arbitrary query q = K v M ∈̂ Q and let v = ϑ(q); context v covers q by the cov-

ering condition of Definition 9.3, Decomposition D is sound, so, by condition (N3) of Definition 9.2,

we have O |= core(u) v L for each clause > v L added to some S(u) in step 1 of Algorithm 9.4; fur-

thermore, clauses added in step 2 and 3 are tautologies; consequently, S is sound for O. But then,

since context v is sound for q, we have that K v M ∈̂ S(v) implies O |= K v M in the same way as

in the proof of Proposition 8.12. Furthermore, for an arbitrary literal L ∈ K, either > v L is added

to S(v) in step 1, or L v L is added to S(v) in step 3; either way, we have K v L ∈̂ S(v), and this

property is preserved during the algorithm’s execution by Lemma 8.11. Finally, Lemma 9.6 ensures

that S is closed under the Hyper, Pred, and Succ rules; but then, since context v is complete for q,

we have that O |= K v M implies K v M ∈̂ S(v) by Theorem 8.5. �

Proposition 9.8 provides us with our ultimate goal in this section: it shows that decomposi-

tion width and length provide us with a more accurate estimate of the complexity of subsumption

114



reasoning.

Proposition 9.8 (Termination). When applied to some O, Q, and a sound, admissible, and ε-free

decomposition D of O and Q, Algorithm 9.4 terminates in time polynomial in 4wd(D)2
, ln(D), and

‖O‖ + ‖Q‖.

Proof. Let d = wd(D) and m = ln(D), and recall that |L| ≤ ‖O‖ + ‖Q‖. We next show that the num-

ber of inferences is polynomial in 4d2
, m, and ‖O‖ + ‖Q‖; this observation implies the claim of this

proposition in the same way as in the proof of Proposition 8.13. By Lemma 9.5, for each context v,

each clause in S(v) is of the form

• > v L with L ∈ knw(v), and set S(v) can contain at most |L| such clauses, or

• K v M with K ∪ M ⊆ uknw(v), and set S(v) can contain at most c = 4d such clauses.

For the Hyper rule, a context v ∈ V can be chosen in at most m ways, and a clause
�

i Ai v M ∈ O

can be chosen in at most |O| ways. For each Ai ∈ uknw(v) there are at most c ways of choosing a

matching clause Ki v Mi t Ai ∈ S(v), and for each Ai ∈ knw(v) there is exactly one way of choosing

a matching clause > v Ai ∈ S(v). Consequently, there are at most cd ways of choosing premises

Ki v Mi t Ai ∈ S(v).

For the Pred rule, an edge 〈v, u,∃R.A〉 ∈ E can be chosen in at most m2 · |L| ways, and a

clause A u
�

i Bi v
⊔

j ∀inv(R).C j ∈ S(u) or
�

i Bi v
⊔

j ∀inv(R).C j ∈ S(u) can be chosen in at most

|L| + 4d ways. Analogously to the Hyper rule, there are at most cd ways of choosing premises

K0 v M0 t ∃R.A ∈ S(v) and Ki v Mi t ∀R.A ∈ S(v). �

We would like to point out that the factor 4wd(D)2
in Proposition 9.8 is due to the fact that the

Hyper and the Pred rules are based on hyperresolution: they fix one of the 4wd(D) clauses, and then

try to find matches for each of the wd(D) literals in the antecedent, which gives rise to 4wd(D)2

combinations. It is, however, possible to develop a binary version of these inference rules, in which

case the algorithm’s complexity would be polynomial in 4wd(D). In our experience, hyperresolution

tends to be more effective than binary resolution in practice, which is why we opted for this style of

presentation.

115



9.4 Constructing ε-Free Decompositions

We now present our algorithm for computing ε-free decompositions that we outlined in Section 9.2.

We first formalize the notion of a control, which encapsulates the parameters that guide our al-

gorithm in the construction process. Similarly to Algorithm 8.10, these include initialization and

expansion strategies, but also further parameters that ensure that the output of the algorithm is

uniquely determined.

Definition 9.9. A control is a tuple C = 〈mln, initialization, strategy, precedence〉 with the following

components.

• mln is a positive integer.

• initialization is a polynomial-time computable function taking a normalized ALCI ontology

O, a finite set of queries Q, and a positive integer mln. The result of initialization(O,Q,mln)

is a pair 〈D, ϑ〉 where

– D is a context structure over the literals occurring in O ∪Q such that D contains no

edges, ln(D) ≤ mln, and D contains a trivial context, and

– ϑ is a covering mapping from Q to D.

• strategy is a polynomial-time computable function taking an existential restriction ∃R.A, a

set of atomic concepts Bk, a decomposition D = 〈V , E , core, knw, poss,≺, ϑ〉 that contains a

trivial context, and a positive integer mln. The result of strategy(∃R.A,Bk,D,mln) is a triple

〈u, core′,≺′〉 where

– core′ is a subset of {A} ∪ Bk,

– ≺′ is an R-admissible literal ordering, and

– either u ∈ X \ V is a fresh context, or u ∈ V is a context in D such that core(u) = core′.

If |V | ≥ mln, then strategy must return a context u ∈ V from D; since D contains a trivial

context, a context satisfying the required conditions is guaranteed to exist.

• precedence is a strict total order on the set of all pairs of the form 〈∃R.A, v〉 with ∃R.A ∈ Σ∃L

and v ∈ X.

116



Hk
If K ⊆ knw(v), K v L ∈ O, and L < knw(v),
then add L to knw(v).

Hp
If K ⊆ poss(v), K v M ∈ O, and M * poss(v),
then add each literal in M to poss(v).

Pk
If 〈v, u,∃R.A〉 ∈ E , ∃R.A ∈ knw(v), ∀inv(R).C ∈ knw(u), and C < knw(v),
then add C to knw(v).

Pp
If 〈v, u,∃R.A〉 ∈ E , ∀inv(R).C ∈ poss(u), and C < poss(v),
then add C to poss(v).

S

If ∃R.A ∈ poss(v), and
for Bp = {B | ∀R.B ∈ poss(v)},
no edge 〈v, u,∃R.A〉 ∈ E exists such that poss(u) ⊇ {A} ∪ Bp,

then let 〈u, core′,≺′〉 B strategy(∃R.A,Bk,D,mln) where Bk = {B | ∀R.B ∈ knw(v)};
if u ∈ V , then let ≺u B ≺u ∩ ≺

′, and
otherwise let V B V ∪ {u}, core(u) B knw(u) B poss(u) B core′, and ≺u B ≺

′;
add 〈v, u,∃R.A〉 to E ; and
add each literal in {A} ∪ Bp to poss(u).

Table 9.1: ε-free decomposition construction rules

Intuitively, a control C specifies which contexts to introduce for a given ontology and a set of

queries. In particular, function initialization specifies how to assign the queries to contexts; the

function returns a context structure and a covering mapping that our algorithm will use as a starting

point for the construction of an ε-free decomposition: the algorithm will immediately extend the

given context structure into an ε-free decomposition by setting poss(v) B knw(v) B core(v) for each

context v. Furthermore, function strategy is analogous to an expansion strategy (cf. Definition 8.6)

and it specifies which contexts to introduce in order to satisfy existential and universal restrictions.

Moreover, as we discussed in Section 9.2, the width and the length of a decomposition are not

independent, and an exponential length may be needed to minimize the width. To overcome this

problem, mln imposes an upper bound on decomposition length, and initialization and strategy are

both required to honor this restriction. In particular, strategy is required to reuse a context whenever

this bound has been exceeded; the decomposition being constructed will always contain the trivial

context, so context reuse will always be possible. Apart from this modification, concrete instances

of initialization and strategy are analogous to the concrete initialization and expansions strategies

discussed in Section 8.5. Finally, precedence determines a unique order in which fresh contexts are

introduced, so that the resulting ε-free decomposition is uniquely determined by C, the ontology,

and the set of queries.

117



Throughout the rest of section we fix a normalized ALCI ontology O, a finite set of queries Q,

and a control C; furthermore, we let L be the set of literals that occur in O ∪Q. We are now ready

to present our decomposition construction algorithm.

Algorithm 9.10. The ε-free decomposition construction algorithm takes a normalized ALCI on-

tology O, a finite set of queries Q, and a control C = 〈mln, initialization, strategy, precedence〉, and

it constructs an ε-free decomposition D = 〈V , E , core, knw, poss,≺, ϑ〉 of O and Q as follows.

1. Let 〈〈V , E , core,≺〉, ϑ〉 B initialization(O,Q,mln), and then set poss(v) B knw(v) B core(v) for

each context v ∈ V .

2. For each query K v M ∈ Q, let v B ϑ(K v M); then, set poss(v) B poss(v) ∪ K.

3. Exhaustively apply all rules from Table 9.1 apart from rule S.

4. Stop and return D if rule S is not applicable.

5. Let 〈∃R.A, v〉 be the minimal pair w.r.t. precedence such that rule S is applicable to ∃R.A and v;

then, apply rule S to ∃R.A and v, and proceed to step 3.

A decomposition produced by this algorithm is called a C-decomposition of O and Q.

Algorithm 9.10 can be intuitively understood as follows. Step 1 uses function initialization to

introduce the contexts needed to cover the queries in Q, and then it initializes the sets of known

and possible literals for each context to be equal to the context’s core. Next, for each query

q = K v M ∈ Q and each literal L ∈ K, step 2 of Algorithm 9.10 adds L to poss(ϑ(q)) in order

to reflect the fact that step 3 of Algorithm 9.4 introduces a clause of the form L v L for each such

L. Finally, in steps 3–5, the algorithm applies the rules shown in Table 9.1. Rules Hk and Hp corre-

spond to the Hyper rule; rules Pk and Pp correspond to the Pred rule; and rule S corresponds to the

Succ rule. Rules Hk and Pk, however, are applied to the sets of known literals, and so they determine

a lower bound on the known consequences of rules Hyper and Pred, respectively. In contrast, rules

Hp and Pp are applied to the sets of possible literals, and so they determine an upper bound on the

possible consequences of rules Hyper and Pred, respectively. Finally, rule S introduces all possible

contexts that may be introduced by the Succ rule; the rule is applied with the lowest priority and in

accordance with the precedence precedence from C in order to make the algorithm deterministic. In

118



the rest of this section we prove the following theorem, which summarizes the formal properties of

Algorithm 9.10.

Theorem 9.11. When applied to O, Q, and C, Algorithm 9.10 terminates in time polynomial in mln

and ‖O‖ + ‖Q‖. The result is a unique, sound, admissible, and ε-free decomposition D of O and Q

satisfying ln(D) ≤ mln.

Let D = 〈V , E , core, knw, poss,≺, ϑ〉 be a decomposition obtained by the decomposition con-

struction algorithm. Clearly, D refers only to the literals occurring in O ∪Q, and it does not contain

ε-edges; hence, D is an ε-free decomposition of O and Q. We next prove the remaining claims of

Theorem 9.11.

Claim 9.12. The decomposition construction algorithm terminates in time polynomial in mln and

‖O‖ + ‖Q‖, and the resulting decomposition D satisfies ln(D) ≤ mln.

Proof. Since initialization is computable in polynomial time, steps 1 and 2 can be performed in time

polynomial in mln and ‖O‖ + ‖Q‖. By Definition 9.9, step 1 introduces at most mln contexts due to

the requirement on initialization, and rule S can introduce a new context in the call to strategy only

if the total number of contexts is smaller than mln; thus, |V | ≤ mln clearly holds. Since D refers

only to literals from L, we have |E | ≤ mln2 · |L| and, for each context v ∈ V , we have

|core(v)| ≤ |L|, |knw(v)| ≤ |L|, and |poss(v)| ≤ |L|.

The decomposition construction algorithm is monotonic—that is, it never removes elements

from the decomposition being constructed. Also, the precondition of each rule contains a negation

of the rule’s postcondition; thus, whenever a rule is applicable, its application actually modifies the

decomposition.

Now let mD = mln2 · |L| + mln · 3 · |L|. The decomposition construction algorithm can modify

the decomposition at most mD times: it can add each of the mln2 · |L| possible edges, and it can

add |L| concepts to core(v), knw(v), and poss(v) for each context v ∈ V . Thus, after at most mD

modifications, no rule can further modify the decomposition. Therefore, since each rule application

modifies the decomposition, the decomposition construction algorithm terminates after at most mD

rule applications. Furthermore, due to the fact that each rule precondition refers to a bounded

119



number of vertices, the preconditions of each rule instance can be checked in polynomial time.

Since strategy is computable in polynomial time, each rule can be applied in polynomial time as

well.

Thus, the algorithm requires a polynomial number of modifications of the decomposition, each

of which requires polynomial time. Since |L| < ‖O‖ + ‖Q‖, the algorithm can be implemented so

that it runs in time polynomial in mln and ‖O‖ + ‖Q‖. �

Claim 9.13. Decomposition D is unique.

Proof. In all rules apart from S, the negative precondition merely checks whether the rule’s post-

condition is satisfied. Therefore, the rules are monotonic and they have a unique least fixpoint—that

is, the order of rule applications is irrelevant. Furthermore, rule S is applied only if no other rule is

applicable, and precedence ensures that the rule is applied in a deterministic way. Thus, the result of

the decomposition construction algorithm is uniquely determined by O, Q, and C. �

Claim 9.14. Decomposition D is sound.

Proof. The proof is by induction on rule application. After the initial step 1, we have E = ∅ and

core(v) = knw(v) for each context v, so D is sound. We next consider all rules from Table 9.1.

(Hk) If K ⊆ knw(v) and K v L ∈ O, then, by the induction hypothesis, O |= core(v) v K; hence

O |= core(v) v L follows. Consequently, adding L to knw(v) preserves soundness.

(Pk) If 〈v, u,∃R.A〉 ∈ E , ∃R.A ∈ knw(v), and ∀inv(R).C ∈ knw(u), then, by the induction hypoth-

esis, all of the following entailments hold:

O |= core(v) u ∃R.A v ∃R.[core(u) u A] O |= core(v) v ∃R.A O |= core(u) v ∀inv(R).C

These entailments imply O |= core(v) v ∃R.∀inv(R).C, which then implies O |= core(v) v C. Con-

sequently, adding C to knw(v) preserves soundness.

(S) By the induction hypothesis, we have O |= core(v) v ∀R.B for each B ∈ Bk, which implies

O |= core(v) u ∃R.A v ∃R.[A u Bk]; then O |= core(v) u ∃R.A v ∃R.[core(u) u A] follows since we

have core(u) = core′ ⊆ {A} ∪ Bk by the requirement on strategy in Definition 9.9. Consequently,

adding the edge 〈v, u,∃R.A〉 to E preserves soundness.

Since no other rule affects E or knw, this concludes the proof of this claim. �

120



Claim 9.15. Decomposition D is admissible.

Proof. We check that D satisfies all conditions of Definition 9.3. The ontology condition and the

structural conditions (S2) and (S3) hold trivially since the construction is closed under rules Hp, Pp,

and S, respectively.

For condition (S1), we show that core(v) ⊆ knw(v) and knw(v) ⊆ poss(v) hold for each con-

text v ∈ V . The first inclusion holds because each set knw(v) is initialized in step 1 and in rule S

with knw(v) B core(v), and core(v) remains constant during the construction while knw(v) only in-

creases. The second inclusion holds because each set poss(v) is initialized with poss(v) B knw(v),

and the rules Hp and Pp extending poss(v) are applicable whenever the rules Hk and Pk extending

knw(v) are applicable.

The initial context structure produced by initialization contains no edges, and whenever an edge

〈v, u,∃R.A〉 is added to E in rule S, strategy ensures that ≺u is R-admissible. Thus, the ordering

condition holds throughout the construction.

Finally, for the covering condition, consider an arbitrary query K v M ∈ Q. After step 1, con-

text v = ϑ(K v M) covers K v M in the sense of Definition 8.6—that is, core(v) ⊆ K and M is

≺v-minimal. Then, step 2 ensures also that K ⊆ poss(v); thus, v covers K v M, as required by

Definition 9.3. �

We are now ready to combine all of the results presented thus far and formulate our first result

on fixed-parameter tractability of subsumption reasoning. We will further generalize this result in

Theorem 10.12 in the next chapter.

Theorem 9.16. For each control C, the following problem is fixed-parameter tractable:

• Inputs: a normalized ALCI ontology O and a set of queries Q

• Parameter: an integer mwd

• Problem: return “yes” if the C-decomposition of O and Q has width at most mwd, and if also

O |= K v M holds for each query K v M ∈ Q

Proof. Immediate by Theorem 9.11, and Propositions 9.7 and 9.8. �

121



9.5 Decompositions and the Hypertableau Algorithm

In this section we show that ε-free decompositions explain to an extent the performance of the

hypertableau algorithm (cf. Appendix C) and are thus not specific to consequence-based algorithms.

Since the hypertableau algorithm cannot answer several queries at once, we consider only the case

when set Q contains a single query of the form A v ⊥ for A an atomic concept—that is, when our

goal is to determine the satisfiability of an atomic concept. The following theorem provides us with

a key insight.

Theorem 9.17. Let O be a normalized ALCI ontology, let q = A v ⊥, let D be a derivation of the

hypertableau algorithm for O and the ABox {A(a)}, and let D = 〈V , E , core, knw, poss,≺, ϑ〉 be an

admissible and ε-free decomposition of O and {q}. Then, for each ABox A0 labeling a vertex of D,

there exists a mapping µ : ind(A0)→ V such that

(a) if L(s) ∈ A0, then L ∈ poss(µ(s)), and

(b) if R(s, t) ∈ A0, then there exists an atomic concept A such that 〈µ(s), µ(t),∃R.A〉 ∈ E .

Proof. We prove the claim by induction of the depth of D, but we strengthen property (b) to the

following property (b′):

(b′) if R(s, t) ∈ A0, then there exists an atomic concept A such that 〈µ(s), µ(t),∃R.A〉 ∈ E and

poss(µ(t)) ⊇ {A} ∪ {B | ∀R.B ∈ poss(µ(s))}.

For the induction base, let A0 = {A(a)} be the ABox labeling the root of D, and let µ(a) = ϑ(q).

Then LA0(a) = {A} ⊆ poss(µ(a)) holds by the covering condition from Definition 9.3, as required

for property (a); moreover, property (b′) holds vacuously. For the inductive step, let A0 be an ABox

satisfying the property for some µ, and consider an ABox obtained from A0 as follows.

Assume that the Hyp-rule derives L j(s) ∈ A j from premises A1 u . . . u Am v L1 t . . . t Ln ∈ O

and {A1(s), . . . , Am(s)} ⊆ A0. Then {A1, . . . , Am} ⊆ LA0(s) ⊆ poss(µ(s)) holds by the induction as-

sumption; since D satisfies the ontology condition from Definition 9.3, L j ∈ poss(µ(s)) follows, as

required for property (a).

122



Assume that the ∃-rule derives {R(s, t), A(t)} ⊆ A1 from ∃R.A(s) ∈ A0. Then ∃R.A ∈ poss(µ(s))

holds by the induction assumption, so a context u ∈ V exists that satisfies condition (S3) from Def-

inition 9.3. We extend µ by defining µ(t) B u. ABox A1 and the extended mapping µ then clearly

satisfy properties (a) and (b′).

Assume that the ∀+-rule derives B(t) ∈ A1 from {∀R.B(s), R(s, t)} ⊆ A0. By the induction as-

sumption, property (a) then implies ∀R.B ∈ poss(µ(s)), and property (b′) is satisfied for some atomic

concept A, which immediately implies B ∈ poss(µ(t)), as required for property (a).

Assume that the ∀−-rule derives B(s) ∈ A1 from {[∀inv(R).B](t), R(s, t)} ⊆ A0. By the induction

assumption, property (a) then implies ∀inv(R).B ∈ poss(µ(t)), and property (b′) is satisfied for some

atomic concept A. But then, condition (S2) from Definition 9.3 implies B ∈ poss(µ(s)), as required

for property (a). �

Intuitively, Theorem 9.17 says that each ABox A0 labeling a derivation vertex can be “embed-

ded” via some mapping µ into each admissible and ε-free decomposition D of O and Q. Thus,

for each individual s ∈ ind(A0), set poss(µ(s)) provides us with an upper bound on LA0(s)—a set

used in the definition of blocking. Now let ` = maxv∈V |poss(v)|; then, for each context in D we can

have at most 2` different labels, so the total number of different labels is bounded by ℘ = ln(D) · 2`;

in other words, ℘ provides us with an upper bound on the number of nonblocked individuals in

A0, which is analogous to Proposition 9.8. However, the number of indirectly blocked individuals

can be exponentially larger due to dynamic blocking, but our decompositions do not analyze the

computations caused by this effect.

Furthermore, assume that we modify the hypertableau algorithm in two ways: (i) we explicitly

maintain the mapping µ from Theorem 9.17, and (ii) whenever the ∃-rule introduces a new indi-

vidual t, we immediately derive L(t) for each literal L ∈ knw(µ(t)). Provided that D is sound, these

changes do not affect the soundness of the algorithm, but they ensure that also L(s) ∈ A0 holds in

Theorem 9.17 for each individual s ∈ ind(A0) and each literal L ∈ knw(µ(s)). Then, the number of

different labels for each context is bounded by 2wd(D), so the total number of labels and the number

of nonblocked individuals is bounded by ln(D) · 2wd(D). Please note that the standard hypertableau

algorithm would eventually derive all literals introduced in (ii), but since the order in which deriva-

tion rules are applied is don’t-care nondeterministic, this may occur only after a substantial amount

123



of work. In contrast, modification (ii) eagerly introduces all known facts, which, through “earlier”

blocking, can improve the algorithm’s performance.

One can analogously use decompositions to obtain an automata-based algorithm running in time

polynomial in ln(D) and 2wd(D), but we do not discuss the technical details any further for the sake

of brevity.

124



There are a million ways to ask the same question,

and a million ways to answer it.

—Brian Herbert and Kevin J. Anderson
Dune: The Machine Crusade

Chapter 10

Analyzing Or-Branching Using General

Decompositions

We now combine our framework with methods based on tree decompositions to also allow for a

quantitative analysis of or-branching. Roughly speaking, we introduce the notion of an ε-refinement

of an ε-free decomposition D, which is a obtained from D by replacing each context v in D with a

tree decomposition of the propositional problem associated with v.

In Section 10.1 we first recapitulate the notions of tree decompositions. We discuss the intuitions

behind our ideas in Section 10.2, and we formalize them in Section 10.3. Finally, in Section 10.4

we show how to construct an ε-refinement of an ε-free decomposition.

10.1 Tree Decompositions and Treewidth

Tree decompositions and treewidth [105] were extensively used to obtain FPT results for a number

of intractable graph-theoretic problems. For convenience, we extend these notions to hypergraphs

by treating each hyperedge as the clique of all of its vertices, but this does not alter the definitions

in any significant way.

Given a finite set N of nodes, an N-hypergraph H is a subset of 2N ; the elements of H are called

hyperedges. A tree decomposition of H is a tuple T = 〈V , E ,L〉 where V and E are sets of vertices

and edges, respectively, of an undirected tree, and L : V → 2N is a labeling of vertices with subsets

of N such that the following conditions hold:

125



(T1) for each hyperedge h ∈ H, a vertex v ∈ V exists such that h ⊆ L(v); and

(T2) for each element n ∈ N, the set {v ∈ V | n ∈ L(v)} is connected in E .

The width of T is wd(T ) B maxv∈V |L(v)|, and the treewidth of H is the minimum width over all tree

decompositions of H. In related literature width is actually defined as wd(T ) B maxv∈V |L(v)| − 1

in order to ensure that tree-like hypergraphs have width one, but we drop the term −1 from our defi-

nition for uniformity with Chapter 9. For a fixed integer mwd, a tree decomposition of width at most

mwd can be computed in linear time [22]. This result was originally formulated for tree decomposi-

tions of graphs; however, by treating hyperedges as cliques, this result can also be straightforwardly

applied to our definitions.

Lemma 10.1 ([22]). Let H be an N-hypergraph, and let mwd be an integer. One can compute a tree

decomposition of H of width at most mwd, or determine that such a tree decomposition does not

exist, in time O( f (mwd) · |N |) where f is a computable function. The resulting tree decomposition

has at most |H| vertices.

In the rest of this section we recapitulate an FPT procedure for propositional satisfiability [126]

based on these notions. To unify the notation throughout this thesis, we write propositional clauses

as implications K v M where K is a conjunction of atoms, and M is a disjunction of atoms; further-

more, we consider a propositional interpretation J to be a set of atoms; finally, we write J |= K v M

if K ⊆ J implies M ∩ J , ∅.

Let N be a set of propositional clauses. We define H as the hypergraph whose nodes are the

atoms occurring in N and that contains a hyperedge K ∪ M ∈ H for each clause K v M ∈ N . A

tree decomposition and the treewidth of N are defined as a tree decomposition and the treewidth,

respectively, of H. Now assume that the treewidth of N is bounded by some integer mwd. The

following procedure checks the satisfiability of N and is fixed-parameter tractable w.r.t. mwd.

1. Compute a tree decomposition T = 〈V , E ,L〉 of H of width at most mwd. By Lemma 10.1, this

step is FPT w.r.t. mwd.

2. Associate with each vertex v ∈ V a set Pv of propositional interpretations as follows: initially

set Pv B 2L(v), and then eliminate each J ∈ Pv for which a clause K v M ∈ N exists such that

126



K ∪ M ⊆ L(v) and J 6|= K v M. Since |L(v)| ≤ mwd, this step requires time polynomial in 2mwd

and |N |, and is thus FPT w.r.t. mwd.

3. Traversing through T in a bottom-up way starting from the leaves towards the root, for each

non-root vertex v and its parent v′, eliminate from Pv′ each J′ ∈ Pv′ for which no J ∈ Pv exists

such that J ∩ L(v) ∩ L(v′) = J′ ∩ L(v) ∩ L(v′). We can achieve this by iterating over all pairs

of J′ ∈ Pv′ and J ∈ Pv; since T has at most |N | vertices by Lemma 10.1, this step is FPT w.r.t.

mwd.

4. Set N is unsatisfiable if and only if Pr = ∅, where r is the root of T .

To see why this algorithm is correct, assume that Pr , ∅; we can then construct an interpretation

J for N as follows. Select an arbitrary propositional interpretation Jr ∈ Pr; since Jr has not been

deleted in step 3, for v1, . . . , vk the children of r, we can select interpretations Jv1 , . . . , Jvk such

that Jr ∩ L(r) ∩ L(vi) = Jvi ∩ L(r) ∩ L(vi) holds for each 1 ≤ i ≤ k. By inductively repeating this

argument from the root to the leaves, we associate with each vertex v ∈ V an interpretation Jv, and

then we define J =
⋃

v∈V Jv. Now since T satisfies properties (T1) and (T2), it is straightforward to

see that J |= N . The converse direction can be shown analogously, and we omit it for the sake of

brevity. Thus, the treewidth of N can be taken as an indicator of the “hardness” of N , and it shows

the size of the sets of atomic concepts that we need to consider to decide the satisfiability of N .

10.2 Intuitions

Example 10.2. Let O be the ontology consisting of axioms (10.1)–(10.7), and let q = A v E. One

can readily check that O |= q holds.

A v ∃R.B1 (10.1)

A v ∀R.B2 (10.2)

B1 u B2 v C0 t D0 (10.3)

Ci−1 v Ci t Di for 1 ≤ i ≤ n (10.4)

Di−1 v Ci t Di for 1 ≤ i ≤ n (10.5)

Cn v ∀R−.E (10.6)

Dn v ∀R−.E (10.7)

The C-decomposition D1 of O and q obtained using the eager strategy is shown in Figure 10.1a,

and the inferences of Algorithm 9.4 on D1 are shown in Figure 10.1b. Clause (14) stands for clauses

with M ⊆ {C0, . . . ,Cn,D0, . . . ,Dn,∀R−.E}; exactly which clauses of this form are derived depends

127



v1

A
∃R.B1, ∀R.B2

E

v2

B1, B2

C0, . . . , Cn,
D0, . . . , Dn,
∀R−.E

∃R.B

(a) Decomposition D1

v1

A

Initialization: > v A (8)
H[10.1+8]: > v ∃R.B1 (11)
H[10.2+8]: > v ∀R.B2 (12)
P[15]: > v E (16)

v2

B1, B2

Initialization: > v B1 (9)
Initialization: > v B2 (10)
H[10.3+9+10]: > v C0 t D0 (13)

. . .
H: > v M (14)

. . .
H: > v ∀R−.E (15)

∃R.B

(b) Inferences

Figure 10.1: An ε-free decomposition of O and q and the related inferences

on the literal ordering ≺v2 . For example, with ∀R−.E ≺v2 Cn ≺v2 Dn ≺v2 . . . ≺v2 C0 ≺v2 D0 we de-

rive a linear number of clauses, and with ∀R−.E ≺v2 C0 ≺v2 D0 ≺v2 . . . ≺v2 Cn ≺v2 Dn we derive an

exponential number of clauses. In practice, it is difficult to identify a literal ordering that minimizes

the number of derived clauses, so the only guarantee on the algorithm’s performance is exponential

in n; this is in agreement with the fact that wd(D1) = 2n + 3.

Clauses in S(v2) essentially solve a propositional problem consisting of clauses (10.3)–(10.7)

and clause α = B1 u B2 v ∀R−.E: the antecedent of α captures the information that can be propa-

gated from v1 to v2, and the consequent of α captures the information that can be propagated from v2

to v1. As we explained in Section 10.1, the treewidth of propositional problems serves as a measure

of the difficulty of such problems, and the bottom-up algorithm provides an FPT decision procedure

for propositional satisfiability. Thus, to explain the difficulty of or-branching in description logics,

we next incorporate tree decompositions into our framework. To this end, we replace context v2

with a tree decomposition of the mentioned propositional problem, where we label the newly in-

troduced edges by a special symbol ε; similarly to edges in a tree decomposition, our ε-edges will

always be symmetric. Decomposition D2 obtained in this way is shown in Figure 10.2a. The set of

128



contexts {v0
2, . . . , v

n
2} obtained by replacing v2 is called an ε-component of D2. Intuitively, each ε-

component W of D2 corresponds to one or more domain elements in a model of O, and each context

v ∈W provides a partial interpretation for the literals in poss(v). Condition (N2) of Definition 9.2

requires all contexts in an ε-component W of a sound decomposition to have the same core; thus,

all partial descriptions of the elements represented by W must coincide on the “assumed” literals.

However, the contexts in W can differ on known and possible literals, which will allow us to reduce

decomposition width.

We will extend the notion of decomposition admissibility so that it guarantees completeness of

a modified consequence-based algorithm shown in Table 10.1. The Hyper and Pred rules are as in

Table 8.1, but modified so that a clause is added to some S(v) only if all of its literals are possible at

context v. In addition, we introduce a new Epsilon rule, which essentially performs hyperresolution

across ε-edges: given an edge 〈v, u, ε〉, a clause in
�n

i=1 Li v M ∈ S(u) is chosen such that all literals

in M are possible at context v, each literal Li is resolved away using a clause in S(v), and the result

is added to S(v). The Epsilon rule can be seen as a practical variant of the bottom-up algorithm for

propositional satisfiability described in Section 10.1.

The inferences of our new algorithm on O, q, and D2 are shown in Figure 10.2b. As before,

we first initialize each S(v) with > v L for each literal L known at context v, thus obtaining clauses

(17)–(27). Moreover, for each edge 〈v, u, ε〉 and each literal L that is possible at both u and v, we

initialize S(u) and S(v) with L v L, thus obtaining clauses (28)–(39). Finally, using rules from Ta-

ble 10.1, we derive clauses (40)–(52). At each context vi
2 with 0 ≤ i < n, inferences follow the same

pattern: using clauses (10.4) and (10.5) from O, we derive a clause of the form > v Ci+1 t Di+1,

which the Epsilon rule then “transfers” over an ε-edge into context vi+1
2 . Finally, in context vn

2 we

derive clause (51), and then by the Pred rule we derive the goal clause (52). In order to ensure

that the Epsilon rule derives all relevant consequences, our notion of decomposition admissibility

imposes an additional restriction on the literal orderings of contexts. For example, clause (42) is

relevant for the Epsilon rule and is derived using the Hyper rule from clause (41); however, to facil-

itate the latter derivation, concepts D1 and C1 must not be larger in ≺v0
2

than concept D0. Thus, the

new restriction on literal orderings is analogous to R-admissibility for ∃R.A-edges, but adapted to

ε-edges. To estimate the complexity of our algorithm, we note that wd(D2) = 4; hence, the number

of clauses derived at each context is bounded by 4wd(D2) = 44, and this bound does not depend on

129



v 1 A
∃

R
.B

1,
∀

R
.B

2

E

vn 2

B
1,

B
2

C
n,

D
n,

∀
R
−
.E

vn−
1

2

B
1,

B
2

C
n,

D
n,

C
n−

1,
D

n−
1

..
.

v1 2

B
1,

B
2

C
2,

D
2,

C
1,

D
1

v0 2

B
1,

B
2

C
1,

D
1,

C
0,

D
0

∃
R
.B

ε
ε

ε
ε

(a
)D

ec
om

po
si

tio
n
D

2

v 1A

I:
>
v

A
(2

5)
I:

>
v
∃

R
.B

1
(2

6)
I:

>
v
∀

R
.B

2
(2

7)
P[

51
]:
>
v

E
(5

2)

vn 2

B
1,

B
2

I:
>
v

B
1

(2
3)

I:
>
v

B
2

(2
4)

I:
C

n
v

C
n

(3
8)

I:
D

n
v

D
n

(3
9)

E[
48

]:
>
v

C
n
t

D
n

(4
9)

H
[1

0.
6+

49
]:
>
v
∀

R
−
.E
t

D
n

(5
0)

H
[1

0.
7+

50
]:
>
v
∀

R
−
.E

(5
1)

vn−
1

2

B
1,

B
2

I:
>
v

B
1

(2
1)

I:
>
v

B
2

(2
2)

I:
C

n−
1
v

C
n−

1
(3

4)
I:

D
n−

1
v

D
n−

1
(3

5)
I:

C
n
v

C
n

(3
6)

I:
D

n
v

D
n

(3
7)

E[
..
.]:

>
v

C
n−

1
t

D
n−

1
(4

6)
H

[1
0.

4+
46

]:
>
v

C
n
t

D
n
t

D
n−

1
(4

7)
H

[1
0.

5+
47

]:
>
v

C
n
t

D
n

(4
8)

..
.

..
.

v1 2

B
1,

B
2

I:
>
v

B
1

(1
9)

I:
>
v

B
2

(2
0)

I:
C

1
v

C
1

(3
0)

I:
D

1
v

D
1

(3
1)

I:
C

2
v

C
2

(3
2)

I:
D

2
v

D
2

(3
3)

E[
42

]:
>
v

C
1
t

D
1

(4
3)

H
[1

0.
4+

43
]:
>
v

C
2
t

D
2
t

D
1

(4
4)

H
[1

0.
5+

44
]:
>
v

C
2
t

D
2

(4
5)

v0 2

B
1,

B
2

I:
>
v

B
1

(1
7)

I:
>
v

B
2

(1
8)

I:
C

1
v

C
1

(2
8)

I:
D

1
v

D
1

(2
9)

H
[1

0.
3+

17
+

18
]:
>
v

C
0
t

D
0

(4
0)

H
[1

0.
4+

40
]:

>
v

C
1
t

D
1
t

D
0

(4
1)

H
[1

0.
5+

41
]:

>
v

C
1
t

D
1

(4
2)

∃
R
.B

ε
ε

ε
ε

(b
)I

nf
er

en
ce

s

Fi
gu

re
10

.2
:A

de
co

m
po

si
tio

n
of

O
an

d
q

w
ith

ε-
ed

ge
s

an
d

th
e

re
la

te
d

in
fe

re
nc

es

130



the literal ordering or the number n. In this way, wd(D2) provides us with a better estimate of the

or-branching involved in deciding O |= q.

As in Chapter 9, the definitions of soundness and admissibility for general decompositions do

not directly provide us with an algorithm for computing decompositions. As a possible remedy, in

Section 10.4 we introduce the notion of an ε-refinement, which is obtained from an ε-free decompo-

sition by replacing each context v with a tree decomposition of the propositional problem associated

with v. In our example, D2 is an ε-refinement of D1. We will show that computing an ε-refinement

involves determining a linear number of tree decompositions and is thus fixed-parameter tractable

w.r.t. decomposition width.

10.3 Formalization

Decompositions and decomposition soundness (with or without ε-edges) were already introduced

in Section 9.3, so we next focus on admissibility of decompositions with ε-edges. In the rest of this

section we fix a normalized ALCI ontology O and a finite set of queries Q; furthermore, we let L

be the set of literals that occur in O ∪Q.

Definition 10.3. Let D = 〈V , E , core, knw, poss,≺, ϑ〉 be a decomposition of O and Q, and let W

be an arbitrary set such that W ⊆ V . Then, let poss(W) B
⋃

w∈W poss(w), and let knw(W) and

core(W) be defined analogously. The ε-projection of D w.r.t. W , written DW , is the graph whose

set of vertices is W and that contains the undirected edge {u, v} for each 〈u, v, ε〉 ∈ E with u, v ∈W .

Set W is ε-connected if DW is connected; furthermore, W is an ε-component of D if W is ε-

connected, and no ε-connected set of vertices W ′ exists such that W (W ′ ⊆ V .

Let v ∈ V be an arbitrary context of D, let W be the ε-component of D such that v ∈W , and let

K v M be an arbitrary query; then, v is sound for K v M if core(v) ⊆ K; v is complete for K v M if

K ⊆ poss(v), M ∩ poss(W) ⊆ poss(v), and M is ≺v-minimal; and v covers K v M if v is both sound

and complete for K v M. Finally, D is admissible if all of the following conditions are satisfied.

• Epsilon conditions:

(E1) For each 〈w, u, ε〉 ∈ E , we have 〈u,w, ε〉 ∈ E .

(E2) For each ε-component W of D, graph DW is an undirected tree.

131



(E3) For each ε-component W of D and each literal L ∈ poss(W), set {w ∈W | L ∈ poss(w)}

is ε-connected.

• Structural conditions:

(S1) For each context v ∈ V , we have core(v) ⊆ knw(v) ⊆ poss(v).

(S2) For each ε-component U of D, each edge 〈w, u,∃R.A〉 ∈ E with u ∈ U , and each literal

∀inv(R).C ∈ poss(U), we have C ∈ poss(w) and ∀inv(R).C ∈ poss(u).

(S3) For each ε-component W of D and each literal ∃R.A ∈ poss(W), there exists an edge

〈w, u,∃R.A〉 ∈ E with w ∈W such that

– poss(w) ⊇ {∃R.A} ∪ {∀R.B | ∀R.B ∈ poss(W)}, and

– poss(u) ⊇ {A} ∪ {B | ∀R.B ∈ poss(W)}.

• Ordering conditions:

(P1) For each ∃R.A-edge 〈w, u,∃R.A〉 ∈ E , literal ordering ≺u is R-admissible.

(P2) For each ε-edge 〈w, u, ε〉 ∈ E , set poss(w) ∩ poss(u) is ≺u-minimal.

• Ontology condition: For each ε-component W of D and each clause K v M ∈ O satisfying

K ⊆ poss(W), there exists a context w ∈W such that K ∪ M ⊆ poss(w).

• Covering condition: Each query q ∈ Q is covered in the context ϑ(q).

Definition 10.3 can be intuitively understood as follows. The set of contexts in D can be parti-

tioned into ε-components—maximal sets of contexts connected by ε-edges. Each ε-component can

be understood as a tree decomposition of a propositional problem, so conditions (E1)–(E3) require

the contexts in the ε-component to form an undirected tree satisfying the connectedness condition

(T2) of tree decompositions. Structural conditions (S1)–(S3) extend the respective conditions from

Definition 9.3. To understand condition (S2), let 〈w, u,∃R.A〉 be an arbitrary edge of D, let U be

the ε-component of D that u belongs to, and assume that ∀inv(R).C is possible at some context

u′ ∈ U different from u. Since u′ and u describe the same elements in a model of O, the elements

represented by context v might need to satisfy C, which is taken care of by the Pred rule. To ensure

that the rule can be applied to edge 〈w, u,∃R.A〉, condition (S2) requires ∀inv(R).C to be possible

132



H
yp

er

If
�n

i=1 Ai v M ∈ O with M ⊆ poss(v),

Ki v Mi t Ai ∈ S(v) with Ai ⊀v Mi for 1 ≤ i ≤ n,
and
�n

i=1 Ki v M t
⊔n

i=1 Mi 6∈̂ S(v),
then add

�n
i=1 Ki v M t

⊔n
i=1 Mi to S(v).

Pr
ed

If 〈v, u,∃R.A〉 ∈ E ,
A u
�n

i=1 Bi v
⊔m

j=1 ∀inv(R).C j ∈ S(u) or
�n

i=1 Bi v
⊔m

j=1 ∀inv(R).C j ∈ S(u)
with C j ∈ poss(v) for each 1 ≤ j ≤ m,

K0 v M0 t ∃R.A ∈ S(v) with ∃R.A ⊀v M0,
Ki v Mi t ∀R.Bi ∈ S(v) with ∀R.Bi ⊀v Mi for 1 ≤ i ≤ n,
and
�n

i=0 Ki v
⊔n

i=0 Mi t
⊔m

j=1 C j 6∈̂ S(v),
then add

�n
i=0 Ki v

⊔n
i=0 Mi t

⊔m
j=1 C j to S(v).

Ep
sil

on

If 〈v, u, ε〉 ∈ E ,�n
i=1 Li v M ∈ S(u) with M ⊆ poss(v),

Ki v Mi t Li ∈ S(v) with Li ⊀v Mi for 1 ≤ i ≤ n,
and
�n

i=1 Ki v M t
⊔n

i=1 Mi 6∈̂ S(v),
then add

�n
i=1 Ki v M t

⊔n
i=1 Mi to S(v).

Table 10.1: Consequence-based rules for decompositions with ε-edges

at u, and C to be possible at v (just like in Definition 9.3). To understand condition (S3), let W be

an arbitrary ε-component of D, assume that ∃R.A is possible at some context w′ ∈W , and assume

that D contains an edge 〈w, u,∃R.A〉 with w different from w′. Contexts w and w′ jointly describe

elements of a model of O, so the existential restriction ∃R.A also “applies” to w and the mentioned

edge as well; thus, all literals ∀R.B possible at W must be possible at w, and all corresponding

concepts B must be possible at u in order to satisfy the semantics of ∃R.A-edges. The ontology con-

dition is modified in similar vein; in particular, assume that D contains an ε-component W such that

each antecedent literal of a clause K v M ∈ O is possible at some context in W; then, the domain

elements represented by W may satisfy K; but then, we must find a context w ∈W in which we

can apply the Hyper rule to K v M. The notion of covering is extended analogously. Finally, the

ordering condition restricts the literal ordering as we discussed in Section 10.2. Please note that the

notions of admissibility introduced in Definitions 9.3 and 10.3 coincide on ε-free decompositions.

To generalize our consequence-based algorithm as described in Section 10.2, we modify the

Hyper and the Pred rules as shown in Table 10.1 (the modifications are underlined), and we add a

new Epsilon rule. Theorem 10.4 provides us with the completeness claim for the new algorithm; the

proof is technically involved, so we defer it to Appendix D.2. In addition, Proposition 10.5 provides

133



us with a matching soundness claim.

Theorem 10.4 (Completeness). Let D = 〈V , E , core, knw, poss,≺, ϑ〉 be an admissible decomposi-

tion of O and Q, and let S be a clause system for D such that

(I1) no inference rule in Table 10.1 is applicable to S,

(I2) > v L ∈̂ S(v) for each context v ∈ V and each literal L ∈ knw(v),

(I3) B v B ∈̂ S(u) for each edge 〈v, u,∃R.A〉 ∈ E and each concept B ∈ poss(u) such that either

B = A or ∀R.B ∈ poss(v), and

(I4) L v L ∈̂ S(u) for each edge 〈v, u, ε〉 ∈ E and each literal L ∈ poss(v) ∩ poss(u).

Then, K v M ∈̂ S(v) holds for each query K v M and each context v ∈ V that satisfy all of the

following three conditions:

• O |= K v M,

• context v is complete for query K v M, and

• K v L ∈̂ S(v) for each literal L ∈ K.

Proposition 10.5 (Soundness). Let D = 〈V , E , core,≺〉 be a sound decomposition of O and Q, and

let S1 be a clause system for D sound for O. Then, each clause system S2 obtained by applying an

inference rule from Table 10.1 to D and S1 is sound for O.

Proof. Rules Hyper and Pred in Table 10.1 are more restrictive than the corresponding rules in Ta-

ble 8.1, so the proof of Proposition 8.8 applies. Assume that the Epsilon rule is applied as shown in

Table 10.1, so we show that O |= core(v) u
�n

i=1 Ki v M t
⊔n

i=1 Mi. To this end, let I = 〈∆I , ·I〉 be

an arbitrary model of O and consider an arbitrary element δ ∈ ∆I such that δ ∈ [core(v) u
�n

i=1 Ki]I .

Now S1 is sound for O, so, for each 1 ≤ i ≤ n, we have I |= core(v) u Ki v Mi t Li, which together

with our assumption implies δ ∈ (Mi t Li)I . If δ ∈ MI
i for some 1 ≤ i ≤ n, then δ ∈ (

⊔n
i=1 Mi)I .

Otherwise, we have δ ∈ LI
i for each 1 ≤ i ≤ n; but then, I |= core(u) u

�n
i=1 Li v M holds by the in-

duction assumption and the fact that S1 is sound for O, and core(v) = core(u) holds by the soundness

condition (N2); together, these observations imply δ ∈ MI . Either way, δ ∈ (M t
⊔n

i=1 Mi)I holds.

Since δ was chosen arbitrarily, we have I |= core(v) u
�n

i=1 Ki v M t
⊔n

i=1 Mi, as required. �

134



We next extend the consequence-based algorithm for ε-free decompositions (i.e., Algorithm 9.4)

so that it can be applied to decompositions with ε-edges. Apart from applying the modified rules

from Table 10.1, the only other difference is in step 3 which is needed for the Epsilon rule. The Elim

rule and redundancy elimination are the same as in Section 8.4.

Algorithm 10.6. The decomposition algorithm for ALCI takes O, Q, and a sound and admissible

decomposition D of O and Q. The algorithm (nondeterministically) computes a clause system S

for D as follows.

1. Set S(v) B {> v L | L ∈ knw(v)} for each context v ∈ V .

2. For each edge 〈v, u,∃R.A〉 ∈ E and each concept B ∈ uknw(u) such that B = A or ∀R.B ∈ poss(v),

add B v B to S(u).

3. For each ε-edge 〈v, u, ε〉 ∈ E and each literal L ∈ poss(v) ∩ uknw(u), add L v L to S(u).

4. For each query K v M ∈ Q, let v B ϑ(K v M); then, for each literal L ∈ K \ knw(v), add L v L

to S(v).

5. Exhaustively apply rules Hyper, Pred, and Epsilon from Table 10.1 and rule Elim from Table 8.1.

Lemma 8.11 (showing that if K v M ∈̂ S(v) holds at some point during algorithm’s execution,

then this also holds at all future points) clearly applies to Algorithm 10.6 as well: the Epsilon

rule only adds clauses, and the Elim rule is the same as in Section 8.3. Furthermore, the proof

of Lemma 9.5 (showing that each clause in S(v) is of the form > v L with L ∈ knw(v) or of the

form K v M with K ∪ M ⊆ uknw(v)) can be straightforwardly extended to Algorithm 10.6. This

allows us to establish in Proposition 10.7 the soundness and completeness of our algorithm, and

then determine in Proposition 10.8 the algorithm’s complexity.

Proposition 10.7. Let S be a clause system obtained by applying Algorithm 10.6 to O, Q, and D.

Then, for each query q ∈ Q, we have O |= q if and only if q ∈̂ S(ϑ(q)).

Proof. By Lemma 8.11, steps 2–4 ensure conditions (I2)–(I4) and step 5 ensures the required condi-

tion on the queries in Theorem 10.4; then, the claim of this proposition follows from Theorem 10.4

and Proposition 10.5 as in the proof of Proposition 9.7. �

135



Proposition 10.8 (Termination). Algorithm 10.6 terminates in time polynomial in 4wd(D)2
, ln(D),

and ‖O‖ + ‖Q‖.

Proof. Analogous to the proof of Proposition 9.8. �

10.4 Constructing Decompositions via ε-Refinement

We next formalize the notion of ε-refinement of an ε-free decomposition D that we described in

Section 10.2.

Definition 10.9. Let D = 〈V , E , core, knw, poss,≺, ϑ〉 be an ε-free decomposition of O and Q. For

each edge 〈v, u,∃R.A〉 ∈ E , sets δ∃R.A
v,u and %∃R.A

v,u are defined as follows:

δ∃R.A
v,u B {∃R.A} ∪ {∀R.B | ∀R.B ∈ poss(v)} ∪ {C | ∀inv(R).C ∈ poss(u)}

%∃R.A
v,u B {A} ∪ {B | ∀R.B ∈ poss(v)} ∪ {∀inv(R).C | ∀inv(R).C ∈ poss(u)}

Function H for D maps each context v ∈ V to an L-hypergraph Hv such that each Hv is the

smallest set satisfying all of the following conditions:

(R1) (K ∪ M) ∩ uknw(v) ∈ Hv for each v ∈ V and each K v M ∈ O satisfying K ∪ M ⊆ poss(v),

(R2) δ∃R.A
v,u ∩ uknw(v) ∈ Hv and %∃R.A

v,u ∩ uknw(u) ∈ Hu for each edge 〈v, u,∃R.A〉 ∈ E , and

(R3) (K ∪ M) ∩ uknw(v) ∈ Hv for each query q = K v M ∈ Q and context v = ϑ(q).

A decomposition D′ = 〈V ′, E ′, core′, knw′, poss′,≺′, ϑ′〉 of O and Q is an ε-refinement of D if

there exists a function T mapping each context v ∈ V to a tree decomposition Tv = 〈Vv, Ev,Lv〉 of

Hv such that Vv ∩ Vw = ∅ and Vv ⊆ X for all v,w ∈ V with v , w, and all of the following conditions

are satisfied.

(R4) V ′ =
⋃

v∈V Vv.

(R5) For each context v ∈ V and each vertex w ∈ Vv, we have

core′(w) = core(v), knw′(w) = knw(v), and poss′(w) = knw(v) ∪ Lv(w).

136



(R6) For all v, u ∈ V , each w ∈ Vv, and each z ∈ Vu, we have 〈w, z, ε〉 ∈ E ′ if and only if v = u and

{w, z} ∈ Ev.

(R7) For all v, u ∈ V , each w ∈ Vv, each z ∈ Vu, and each ∃R.A ∈ L, we have 〈w, z,∃R.A〉 ∈ E ′ if

and only if

〈v, u,∃R.A〉 ∈ E , δ∃R.A
v,u ∩ uknw(v) ⊆ Lv(w), and %∃R.A

v,u ∩ uknw(u) ⊆ Lu(z).

(R8) For each context v ∈ V , each vertex w ∈ Vv, and all literals L1, L2 ∈ L, we have L1 ≺
′
w L2 if

and only if L1 ≺v L2 and no ε-edge 〈u,w, ε〉 ∈ E ′ exists such that L2 ∈ poss′(u) ∩ poss′(w).

(R9) For each query q = K v M ∈ Q, context v = ϑ(q), and context w = ϑ′(q), we have w ∈ Vv and

(K ∪ M) ∩ uknw(v) ⊆ Lv(w).

Definition 10.9 can be intuitively understood as follows. Each hypergraph Hv captures the

structure of a propositional problem that must be solved at context v: condition (R1) ensures that,

for each context v of D, hypergraph Hv contains the “unknown part” of each clause K v M ∈ O

for which all literals are possible at v; furthermore, condition (R2) ensures that, for each edge

〈v, u,∃R.A〉 of D, hypergraphs Hv and Hu contain all unknown literals that might be needed to

apply the Pred rule; and finally, condition (R3) ensures that, for each query q ∈ Q and v = ϑ(q),

hypergraph Hv contains the “unknown part” of q. Conditions (R4)–(R9) then essentially capture

the intuition that each context v of D is replaced by a tree decomposition Tv of Hv. Please note that,

for each edge 〈v, u,∃R.A〉 of D, by condition (R2) and property (T1) of tree decompositions, there

exists at least one pair of w and z satisfying condition (R7). Furthermore, for each query q ∈ Q and

v = ϑ(q), context ϑ′(q) can be an arbitrary vertex w ∈ Vv satisfying (K ∪ M) ∩ uknw(v) ⊆ Lv(w);

due to condition (R3) and property (T1) of tree decompositions, such w is guaranteed to exist.

Finally, please note that decomposition D can admit many ε-refinements; however, by the following

theorem, if D is sound and admissible, then each ε-refinement of D is sound and admissible too.

Theorem 10.10. For each sound, admissible, and ε-free decomposition D of O and Q, each ε-

refinement D′ of D is also a sound and admissible decomposition of O and Q.

Proof. We first show that D′ is sound. Consider arbitrary contexts w, z ∈ V , and let v, u ∈ V be

137



such that w ∈ Vv and z ∈ Vu. By condition (R5), we have core′(w) = core(v), knw′(w) = knw(v),

core′(z) = core(u), and knw′(z) = knw(u).

Consider an arbitrary ∃R.A-edge 〈w, z,∃R.A〉 ∈ E ′. By condition (R7), then D contains the

edge 〈v, u,∃R.A〉 ∈ E . Since D is sound, O |= core(v) u ∃R.A v ∃R.[core(u) u A] holds; but then,

O |= core′(w) u ∃R.A v ∃R.[core′(z) u A] holds as well.

Consider an arbitrary ε-edge 〈w, z, ε〉 ∈ E ′. By condition (R6), we have v = u, which clearly

implies core′(w) = core′(z), as required.

Finally, since D is sound, we have O |= core(v) v A for each A ∈ knw(v), so O |= core′(w) v A

for each A ∈ knw′(w) clearly holds as well.

We next show that D′ is admissible. Clearly, D′ refers only to the literals occurring in O ∪Q,

so D′ is a decomposition of O and Q. Furthermore, for each context v ∈ V the following conditions

are satisfied.

knw′(Vv) =
⋃

w∈Vv

knw′(w) = knw(v) (10.53)

poss′(Vv) =
⋃

w∈Vv

poss′(w) ⊆ poss(v) (10.54)

Finally, for each ε-component W of D′, a context v ∈ V exists such that W = Vv; conversely, for

each context v ∈ V , set Vv is an ε-component of D. We next check that D′ satisfies all the admissi-

bility conditions listed in Definition 10.3.

Epsilon conditions:

(Condition E1) This property follows immediately from (R6) and the fact that the edges in Ev

are undirected.

(Condition E2) By (R6), for each ε-component Vv of D′, we have that D′Vv
is equal to the graph

〈Vv, Ev〉, and the latter, being a tree decomposition, is an undirected tree.

(Condition E3) Consider an arbitrary ε-component Vv of D′ and a literal L ∈ poss′(Vv), and let

Γ B {w ∈ Vv | L ∈ poss′(w)}. We have L ∈ poss(v) by (10.54), so either L ∈ knw(v) or L ∈ uknw(v).

In the former case, we have L ∈ poss′(w) for each w ∈ Vv, so Γ = Vv and Γ is clearly ε-connected.

In the latter case, we have Γ = {w ∈ Vv | L ∈ Lv(w)}, so Γ is ε-connected by property (T2) of tree

decompositions.

138



Structural conditions:

(Condition S1) By (R5), for each v ∈ V and each w ∈ Vv, we have core′(w) = core(v) and

knw′(w) = knw(v) ⊆ poss′(w). Furthermore, core(v) ⊆ knw(v) holds since D satisfies (S1), so we

have core′(w) ⊆ knw′(w) ⊆ poss′(w).

(Condition S2) Consider an arbitrary ε-component Vu of D′, an arbitrary edge 〈w, z,∃R.A〉 ∈ E ′

such that z ∈ Vu, and an arbitrary literal ∀inv(R).C ∈ poss′(Vu); furthermore, let v ∈ V be the context

of D such that w ∈ Vv. By condition (R7) and 〈w, z,∃R.A〉 ∈ E ′, we have

〈v, u,∃R.A〉 ∈ E , δ∃R.A
v,u ∩ uknw(v) ⊆ Lv(w), and %∃R.A

v,u ∩ uknw(v) ⊆ Lu(z). (10.55)

Now, by property (10.54) and ∀inv(R).C ∈ poss′(Vu), we have ∀inv(R).C ∈ poss(u); hence, by ad-

missibility condition (S2) for D, we have C ∈ poss(v). Hence C ∈ δ∃R.A
v,u and ∀inv(R).C ∈ %∃R.A

v,u ;

together with (10.55), these conditions imply (10.56), so D′ clearly satisfies admissibility condition

(S2).

C ∈ Lv(w) ∪ knw(v) = poss′(w) ∀inv(R).C ∈ Lu(z) ∪ knw(u) = poss′(z) (10.56)

(Condition S3) Consider an arbitrary ε-component Vv of D′ and a literal ∃R.A ∈ poss′(Vv). By

property (10.54), we have ∃R.A ∈ poss(v), so, by admissibility condition (S3) for D, an ∃R.A-edge

〈v, u,∃R.A〉 ∈ E exists satisfying (10.57).

poss(u) ⊇ {A} ∪ {B | ∀R.B ∈ poss(v)} (10.57)

Since Tv and Tu are tree decompositions of Hv and Hu, respectively, by property (R2) of Defini-

tion 10.9 and property (T1) of tree decompositions, contexts w ∈ Vv and z ∈ Vu exist such that the

following two properties hold.

δ∃R.A
v,u ∩ uknw(v) ⊆ Lv(w) (10.58)

%∃R.A
v,u ∩ uknw(u) ⊆ Lu(z) (10.59)

But then, by condition (R7), we have 〈w, z,∃R.A〉 ∈ E ′. We next show that this edge satisfies condi-

139



tion (S3)—that is, that

(i) poss′(z) ⊇ {A} ∪ {B | ∀R.B ∈ poss′(Vv)}, and

(ii) poss′(w) ⊇ {∃R.A} ∪ {∀R.B | ∀R.B ∈ poss′(Vv)}.

By Definition 10.9 we have ∃R.A ∈ δ∃R.A
v,u and A ∈ %∃R.A

v,u ; furthermore, for each ∀R.B ∈ poss′(Vv),

we have ∀R.B ∈ poss(v) by (10.54), and B ∈ poss(u) by (10.57), which imply ∀R.B ∈ δ∃R.A
v,u and

B ∈ %∃R.A
v,u . But then, by (10.58) and (10.59), we have

{A} ∪ {B | ∀R.B ∈ poss′(Vv)} ⊆ Lu(z) ∪ knw(u) = poss′(z) which proves (i), and

{∃R.A} ∪ {∀R.B | ∀R.B ∈ poss′(Vv)} ⊆ Lv(w) ∪ knw(w) = poss′(w) which proves (ii).

Ontology condition:

Consider an arbitrary ε-component Vv of D′ and a clause K v M ∈ O with K ⊆ poss′(Vv). By

property (10.54), K ⊆ poss′(Vv) implies K ⊆ poss(v), so by the ontology condition for D we have

M ⊆ poss(v). By condition (R1) and property (T1) of tree decompositions, a context w ∈ Vv exists

such that (K ∪ M) ∩ uknw(v) ⊆ Lv(w). But then, K ∪ M ⊆ Lv(w) ∪ knw(v) = poss′(w) holds, so D′

satisfies the ontology condition.

Ordering conditions:

(Condition P1) Consider an arbitrary ∃R.A-edge 〈w, z,∃R.A〉 ∈ E ′. By condition (R7), then

v, u ∈ V exist such that w ∈ Vv, z ∈ Vu, and 〈v, u,∃R.A〉 ∈ E . Since D satisfies admissibility con-

dition (P1), each literal ∀inv(R).C ∈ L is ≺u-minimal. But then, by condition (R8), each such

∀inv(R).C is also ≺′z-minimal; hence, ≺′z is R-admissible.

(Condition P2) For each ε-edge 〈u,w, ε〉 ∈ E ′, all literals in poss′(u) ∩ poss′(w) are ≺′w-minimal

by condition (R8).

Covering condition:

Consider an arbitrary query q = K v M ∈ Q, and let v = ϑ(q) and w = ϑ′(q). By the cover-

ing condition for D, context v covers K v M, so core(v) ⊆ K ⊆ poss(v) and M is ≺v-minimal. By

condition (R9), we have w ∈ Vv and (K ∪ M) ∩ uknw(v) ⊆ Lv(w). This and condition (R5) imply

that

core′(w) = core(v) ⊆ K ⊆ knw(v) ∪ Lv(w) = poss′(w).

140



Furthermore, by (10.54) and condition (R5), we have

M ∩ poss′(Vv) ⊆ M ∩ poss(v) = M ∩ [knw(v) ∪ uknw(v)]

⊆ knw(v) ∪ [M ∩ uknw(v)] ⊆ knw(v) ∪ Lv(w) = poss′(w).

Finally, by condition (R8), disjunction M is ≺′w-minimal because M is ≺v-minimal. Thus, context

w covers K v M in D′. �

Definition 10.9 can be straightforwardly turned into an algorithm for computing an ε-refinement

D′ of D: first, we compute all hypergraphs satisfying conditions (R1)–(R3); second, we compute

a tree decomposition Tv for each hypergraph Hv; third, we construct decomposition D′ so that

conditions (R4)–(R9) are satisfied; and fourth, for each context v of D and each w ∈ Vv, we define

≺′w by modifying ≺v to ensure condition (R8). As explained earlier, in condition (R9) we can don’t-

care nondeterministically choose ϑ(q), and at least one suitable context is guaranteed to exist. Such

an algorithm is fixed-parameter tractable, as shown by the following theorem.

Theorem 10.11. For every integer mwd, one can construct an ε-refinement D′ of D satisfying

wd(D′) ≤ mwd, or determine that such D′ does not exist, in time polynomial in f (mwd), ln(D), and

‖O‖ + ‖Q‖, for f a computable function.

Proof. The L-hypergraphs Hv from conditions (R1)–(R3) of Definition (10.9) can clearly be con-

structed in time polynomial in ln(D) and ‖O‖ + ‖Q‖.

An ε-refinement D′ with wd(D′) ≤ mwd exists if and only if, for each v ∈ V , hypertraph Hv

admits a tree decomposition Tv with wd(Tv) ≤ mwd. For each v ∈ V , all literals occurring in Nv are

contained in O ∪Q, so by Lemma 10.1, computing one Tv with wd(Tv) ≤ mwd, or determining that

one does not exist can be done in time O( f (mwd) · (‖O‖ + ‖Q‖)).

Decomposition D′ can be obtained from D by simply following conditions (R4)–(R8). Fur-

thermore, for each query q ∈ Q, one can define ϑ′(q) as an arbitrary element of Vϑ(q) satisfy-

ing condition (R9); due to condition (R3) and property (T1) of tree decomposition, such an ele-

ment is guaranteed to exist. This construction is polynomial in ln(D′) and ‖O‖ + ‖Q‖. Since the

length of each Dv is bounded by the time it takes to compute it, the length of D′ is bounded by

O(ln(D) · f (mwd) · (‖O‖ + ‖Q‖)), so the entire construction runs in time polynomial in f (mwd),

141



ln(D), and ‖O‖ + ‖Q‖. �

This allows us to generalize our Theorem 9.16 on fixed-parameter tractability of subsumption

reasoning from Section 9.4.

Theorem 10.12. For each control C, the following problem is fixed-parameter tractable:

• Inputs: a normalized ALCI ontology O and a set of queries Q

• Parameter: an integer mwd

• Problem: return “yes” if an ε-refinement D of the C-decomposition of O and Q exists with

wd(D) ≤ mwd, and if also O |= K v M holds for each query K v M ∈ Q

Proof. Immediate by Theorems 9.11, 10.10, and 10.11, and Propositions 10.7 and 10.8. �

142



Beyond a critical point within a finite space, freedom

diminishes as numbers increase. This is as true of

humans as it is of gas molecules in a sealed flask.

—Frank Herbert
Dune

Chapter 11

Bounds on Decomposition Length

In this chapter we establish bounds on the sizes of decompositions of O and Q. Towards this goal,

in Section 11.1, we first present several soundness- and admissibility-preserving transformations

for decompositions that can be used to eliminate redundant information. Then, for the upper bound

(Section 11.2), we use these transformations to show that O and Q always admit a decomposition

of minimal width and at most exponential length. For the lower bound (Section 11.3), we show that

ontologies exist for which all decompositions of minimal width have exponential length.

11.1 Decomposition Transformations

In this section we present several soundness- and admissibility-preserving decomposition trans-

formations that, under certain conditions, can delete edges and/or contexts from decompositions.

These transformations can be useful in practice as they can reduce the number inferences of the

consequence-based algorithm; moreover, we use these transformations in Section 11.2 to estab-

lish an exponential upper bound on decomposition size. Throughout this section, we fix a nor-

malized ALCI ontology O, a finite set of queries Q, and a sound and admissible decomposition

D = 〈V , E , core, knw, poss,≺, ϑ〉 of O and Q.

Definition 11.1 introduces the notion of ε-edge contraction, which extends edge contraction

from graph theory: given an edge 〈v1, v2, ε〉 in D, we merge contexts v1 and v2 into a new context v,

eliminate the self-loop from v to v in order to preserve the tree shape of the enclosing ε-component,

and define the core, known, and possible literals and the literal ordering of v to reflect both v1 and v2.

143



This transformation clearly preserves soundness and admissibility, but it can increase decomposition

width. If, however, the ε-edge is redundant according to the criterion in Definition 11.1, then context

v1 is superfluous and so ε-edge contraction can only decrease or preserve decomposition width, but

never increase it.

Definition 11.1. An ε-edge 〈v1, v2, ε〉 ∈ E is redundant in D if uknw(v1) ⊆ poss(v2). The result of

contracting a (not necessarily redundant) ε-edge 〈v1, v2, ε〉 ∈ E is obtained as follows.

1. Remove v1 and v2 from V , and add a fresh context v to V .

2. Replace each occurrence of v1 and v2 in ϑ and in E by v, and then remove 〈v, v, ε〉 from E .

3. Set core(v) B core(v1), knw(v) B knw(v1) ∪ knw(v2), poss(v) B poss(v1) ∪ poss(v2),

and ≺v B ≺v1 ∩ ≺v2 .

Lemma 11.2. Contracting an ε-edge preserves soundness and admissibility of a decomposition.

Contracting a redundant ε-edge does not increase the width of a decomposition.

Proof. It is straightforward to check that contracting an ε-edge preserves all conditions of Def-

initions 9.2 and 10.3. Assume now that a redundant ε-edge 〈v1, v2, ε〉 ∈ E is contracted. Then,

uknw(v1) ⊆ poss(v2) implies

uknw(v) = poss(v) \ knw(v) = [poss(v1) ∪ poss(v2)] \ [knw(v1) ∪ knw(v2)]

⊆ [[poss(v1) \ knw(v1)] ∪ poss(v2)] \ knw(v2) = [uknw(v1) ∪ poss(v2)] \ knw(v2)

= poss(v2) \ knw(v2) = uknw(v2).

Consequently, the width of a decomposition can only decrease as a result of contraction. �

Definition 11.3 specifies when a context w is broader than a context u in D; roughly speaking,

w is then “less specific” regarding core literals, but allows “more” possible literals. Given such w

and u, we can then redirect each ∃R.A-edge ending at u so that the edge ends at w. That this opera-

tion preserves decomposition soundness and admissibility follows immediately from Lemma 11.4;

moreover, this transformation manipulates only edges, so it clearly preserves decomposition width

and length.

144



Definition 11.3. A context w ∈ V of D is broader than a context u ∈ V of D if core(w) ⊆ core(u),

poss(w) ⊇ poss(u), ≺w ⊆ ≺u, and poss(W) ⊆ poss(U), where W and U are the ε-components of D

such that w ∈W and u ∈ U . For such w and u, the result of redirecting u to w in D is obtained by

replacing each edge 〈v, u,∃R.A〉 in E with 〈v,w,∃R.A〉, and by replacing u with w in ϑ.

Lemma 11.4. Let w, u ∈ V be contexts of D such that w is broader than u. Then,

(i) replacing an arbitrary ∃R.A-edge 〈v, u,∃R.A〉 in E with 〈v,w,∃R.A〉 preserves soundness and

admissibility, and

(ii) each query q that is covered in u is also covered in w.

Proof. Claim (i): Assume that some 〈v, u,∃R.A〉 in E is replaced with 〈v,w,∃R.A〉. Only condi-

tions (S2), (S3), and (P1) of Definition 10.3 concern ∃R.A-edges. To show that the “new” edge

satisfies (S2), consider an arbitrary literal ∀inv(R).C ∈ poss(W); then poss(W) ⊆ poss(U) implies

∀inv(R).C ∈ poss(U); hence, by applying condition (S2) to the “old” edge 〈v, u,∃R.A〉, we have

C ∈ poss(v) and ∀inv(R).C ∈ poss(u) ⊆ poss(w), as required. Condition (S3) is clearly preserved due

to poss(u) ⊆ poss(w). Condition (P1) is preserved since ≺w ⊆ ≺u and a subset of an R-admissible

literal ordering is R-admissible.

Claim (ii): Consider an arbitrary query K v M that is covered in u; so, core(u) ⊆ K ⊆ poss(u),

M ∩ poss(U) ⊆ poss(u), and M is ≺u-minimal. Since context w is broader than context u, we have

core(w) ⊆ K ⊆ poss(w), M ∩ poss(W) ⊆ poss(w), and M is ≺w-minimal; but then, K v M is also

covered in w. �

Definition 11.5 introduces a notion of redundancy for ∃R.A-edges. Intuitively, an ∃R.A-edge

〈v, u,∃R.A〉 is redundant in D if either ∃R.A is not possible in the ε-component of v so condition (S3)

of Definition 10.3 is satisfied vacuously, or D contains another ∃R.A-edge that satisfies condition

(S3) for ∃R.A. It is obvious that deleting a redundant ∃R.A-edge in D preserves soundness and

admissibility; moreover, doing so can be particularly useful if D is an ε-refinement of an ε-free

decomposition. In particular, for each v, u ∈ V in condition (R7) of Definition 10.9, decomposition

D then contains an ∃R.A-edge from each w ∈ Vv to each z ∈ Vu that satisfy δ∃R.A
v,u ∩ uknw(v) ⊆ Lv(w)

and %∃R.A
v,u ∩ uknw(u) ⊆ Lu(z); however, only one such edge may be needed to satisfy admissibility

condition (S3), so deleting the redundant ∃R.A-edges might be beneficial in practice.

145



Definition 11.5. An ∃R.A-edge 〈v, u,∃R.A〉 ∈ E is redundant in D if either ∃R.A < poss(W), or an-

other ∃R.A-edge 〈w, z,∃R.A〉 ∈ E with w ∈W exists that satisfies condition (S3) of Definition 10.3

for ∃R.A ∈ poss(W), where W is the ε-component containing v.

Definition 11.6 says that an entire ε-component U of D may be redundant if, for each context

u ∈ U , either (i) there is no ∃R.A-edge from another ε-component to u, and u is not used to cover a

query in Q, or (ii) u can be redirected to a context in another ε-component. In such a case, we can

redirect appropriately all contexts satisfying condition (ii) to obtain a decomposition in which no

context in U has an incoming ∃R.A-edge from another ε-component; but then, we can clearly delete

all contexts in U and all the related edges without affecting decomposition admissibility.

Definition 11.6. An ε-component U of D is redundant in D if at least one of the following holds

for each context u ∈ U :

• v ∈ U for each ∃R.A-edge 〈v, u,∃R.A〉 ∈ E , and ϑ(q) , u for each query q ∈ Q; or

• a context w ∈ V \ U exists that is broader than u.

A result of eliminating such U from D is obtained from D as follows.

1. For each context u ∈ U such that either there exists an edge ∃R.A-edge 〈v, u,∃R.A〉 ∈ E with

v < U , or there exists a query q ∈ Q with ϑ(q) = u, redirect u to some context w ∈ V \ U that is

broader than u.

2. Remove from the result of the previous step all contexts in U and all edges that are incident to a

context in U .

Lemma 11.7. Eliminating a redundant ε-component preserves soundness and admissibility, and it

does not increase the width.

Proof. By Lemma 11.4, step 1 preserves soundness and admissibility. Furthermore, by the defini-

tion of when U is redundant in D, after step 1 each context u ∈ U neither occurs in an ∃R.A-edge

〈v, u,∃R.A〉 with v < U , nor is it used to cover a query from Q; hence, step 2 preserves decompo-

sition admissibility. Furthermore, removal of edges and contexts clearly preserves decomposition

soundness. Finally, steps 1 and 2 clearly do not increase the width of a decomposition. �

146



Please note that context redirection, elimination of ∃R.A-edges, and elimination of redundant ε-

components also apply to context structures (with obvious modifications), and they can be applied

during execution of Algorithm 8.10. In this way, we obtain “structural” redundancy elimination

rules that can further improve the performance of the consequence-based algorithm.

11.2 Upper Bound

In this section we show that, for each ontology O and each set of queries Q, a sound and admis-

sible decomposition of O and Q exists that has minimum width and at most exponential length.

Intuitively, this is because, given an arbitrary decomposition of minimal width, we can obtain the

required decomposition as follows. First, we repeatedly eliminate redundant ε-edges; this ensures

that each ε-component contains at most a polynomial number of contexts (cf. Lemma 11.8), so the

number of distinct ε-components is exponential. Second, we eliminate “duplicates” by repeatedly

eliminating redundant ε-components. We thus obtain a decomposition of O and Q of at most ex-

ponential length; since none of these transformations increases decomposition width, the resulting

decomposition is of minimal width as well (cf. Theorem 11.9).

Lemma 11.8. Let O be a normalized ALCI ontology, let Q be a finite set of queries, and let

D = 〈V , E , core, knw, poss,≺, ϑ〉 be an admissible decomposition of O and Q that has no redundant

ε-edges. Then, for each ε-component W of D, we have |W | ≤ max(|U |, 1) for U =
⋃

w∈W uknw(w).

Proof. Let W be an arbitrary ε-component of D and let n B |W |. If there exists a context v ∈W

with uknw(v) = ∅, since D has no redundant ε-edges, then v is the only context in W , so |W | = 1

and the lemma holds. Thus, in the rest of the proof, we assume that uknw(v) , ∅ for each context

v ∈W .

Let v1, . . . , vn be an arbitrary ordering of W obtained by an arbitrary depth-first traversal of

the tree DW . We define a function λ : U → {1, . . . , n} by setting λ(L) B min{i | L ∈ uknw(vi)}. We

claim that λ is surjective—that is, for each 1 ≤ i ≤ n, a literal L exists such that λ(L) = i. For i = 1,

since uknw(v1) , ∅, a literal L ∈ uknw(v1) exists such that λ(L) = 1. Consider now an arbitrary i

with 1 < i ≤ n, and let v j be the parent of vi in the depth-first traversal. Since D has no redundant

ε-edges, we have uknw(vi) * poss(v j), so a literal L exists such that L ∈ uknw(vi) \ poss(v j). Now

if λ(L) < i, then vλ(L) is visited in the depth-first traversal before vi; thus, the unique path between

147



vλ(L) and vi goes through v j, so, by the connectedness condition (E3) of admissibility, we have

L ∈ poss(v j); however, this contradicts our choice of L. Consequently, we have λ(L) = i, and so λ is

surjective from U onto {1, . . . , n}. But then, |W | = n ≤ |U |. �

Theorem 11.9. Let O be a normalized ALCI ontology, let Q be a finite set of queries, and let L be

the set of literals occurring in O ∪Q. For each sound and admissible decomposition D′ of O and

Q, there exists a sound and admissible decomposition D of O and Q such that wd(D) ≤ wd(D′)

and ln(D) ≤ 2O(|L|2).

Proof. Let D′ be an arbitrary sound and admissible decomposition of O and Q, and let D =

〈V , E , core, knw, poss,≺, ϑ〉 be an arbitrary decomposition obtained from D′ by applying the fol-

lowing (nondeterministic) transformations.

1. Set ≺v B ∅ for each context v ∈ V .

2. While there are redundant ε-edges, pick one such ε-edge and contract it.

3. While there are redundant ε-components, pick one such ε-component and eliminate it.

By Lemmas 11.2 and 11.7, steps 2 and 3 preserve soundness and admissibility, and they do not

increase the width; furthermore, step 1 trivially satisfies the two properties as well. To conclude our

proof, we next show that ln(D) ≤ 2O(|L|2).

Due to step 2, decomposition D contains no redundant ε-edges; hence, by Lemma 11.8, the

cardinality of each ε-component of D is bounded by |L|. We define the type of an ε-component

W of D to be the pair 〈core(W), {poss(v) | v ∈W}〉. Now assume that U and W are two different

ε-components of D with the same type; then, for each context u ∈ U , we can find a context w ∈W

with poss(u) = poss(w); such w is broader than u because

• ≺w = ∅ = ≺u by step 1,

• core(w) = core(W) = core(U) = core(u) by soundness condition (N2), and

• poss(W) =
⋃

v∈W poss(v) =
⋃

v∈U poss(v) = poss(U).

Consequently, such U is redundant in D; however, due to step 3, decomposition D contains no

redundant ε-components, so we obtain a contradiction. Therefore, all distinct ε-components of D

are of a different type.

148



Thus, we can bound the number of ε-components of D by computing the number of possible

types. For each ε-component W of D, set core(W) is a subset of L, so there are at most 2|L| such

subsets; furthermore, set {poss(v) | v ∈W} is a subset of 2L of cardinality at most |L|, so the number

of such subsets is bounded by

|L|∑
k=0

(
2|L|

k

)
≤

|L|∑
k=0

(2|L|)k ≤ (2|L|)(|L|+1).

Consequently, the number of ε-components in D is bounded by 2|L| · (2|L|)(|L|+1). Since each ε-

component contains at most |L| contexts, we have ln(D) ≤ |L| · 2|L|(|L|+2), as required. �

11.3 Lower Bound

In this section we show that a family of ontologies {On} and a fixed set of queries Q exist such that

each sound and admissible decomposition of On and Q of minimum width necessarily has expo-

nential length. Intuitively, this is because each ontology On has a “canonical” model I containing

exponentially many domain elements, each of which satisfies a distinct combination of atomic con-

cepts. Therefore, to obtain a decomposition of On and Q of minimal width, we must introduce a

context for each domain element of I, and thus such a decomposition will actually reflect the struc-

ture of I. This is interesting because it shows that, in general, one cannot minimize decomposition

width and still expect to obtain a practically useful decomposition (i.e., a decomposition of poly-

nomial size). We use this observation as a justification for our practical approach to decomposition

construction that we presented in Sections 9.4 and 10.4.

Theorem 11.10. Let Q = {C0 v ⊥}. A family of ALCI ontologies {On} exists such that, for each

On,

(i) a sound, admissible, and ε-free decomposition of On and Q of width 0 exists, and

(ii) each sound and admissible decomposition of On and Q of width 0 has length at least expo-

nential in ‖On‖.

For readability, we split the proof of Theorem 11.10 into several claims. Let Q = {C0 v ⊥},

let n be a positive integer, and let On be the ontology (of size linear in n) containing the following

149



axioms for each 1 ≤ i ≤ n.

Ci−1 v ∃R.Ci (11.1)

Ci−1 v ∀R.Ai (11.2)

Ai v ∀R.Ai (11.3)

Bi v ∀R.Bi (11.4)

Ci−1 v ∃S .Ci (11.5)

Ci−1 v ∀S .Bi (11.6)

Ai v ∀S .Ai (11.7)

Bi v ∀S .Bi (11.8)

Let L = {C0} ∪ {Ci, Ai, Bi,∃R.Ci,∃S .Ci,∀R.Ai,∀S .Ai,∀R.Bi,∀S .Bi | 1 ≤ i ≤ n} be the set of lit-

erals that occur in On and Q. An ABC-number is a set of the form X = {X1, . . . , Xk,Ck}, where

0 ≤ k ≤ n and each Xi is either Ai or Bi. By a slight abuse of notation, we often treat X as the con-

junction of the atomic concepts contained in X; furthermore, the rank of X is k; finally, XR and XS

are ABC-numbers of rank k + 1 defined as

XR B {X1, . . . , Xk, Ak+1,Ck+1} and XS B {X1, . . . , Xk, Bk+1,Ck+1}.

Note that On |= X v ∃R.XR and On |= X v ∃S .XS . Finally, for each ABC-number X, we define the

set Γ(X) of told subsumees of X w.r.t. On as follows:

Γ(X) B X ∪ {L ∈ L | an atomic concept D ∈ X exists such that D v L ∈ On}

One can readily check that On entails only told subsumptions—that is, for each ABC-number X and

each L ∈ L, we have

On |= X v L if and only if L ∈ Γ(X); (11.9)

On |= X v ∃R.L if and only if L ∈ Γ(XR); (11.10)

On |= X v ∃S .L if and only if L ∈ Γ(XS ). (11.11)

The following claim proves the first item of Theorem 11.10.

Claim 11.11. There exists a sound, admissible, and ε-free decomposition D of On and Q such that

wd(D) = 0.

150



Proof. Let D = 〈V , E , core, knw, poss,≺, ϑ〉 be defined as follows:

V B {vX | X is an ABC-number}

core(vX) B X

knw(vX) B poss(vX) B Γ(X)

≺vX B ∅

ϑ(C0 v ⊥) B v{C0}

E B {〈vX , vXR ,∃R.Ck+1〉, 〈vX , vXS ,∃S .Ck+1〉 | for each ABC-number X of rank k < n}

Clearly, D is an ε-free decomposition of On and Q. Furthermore, it is straightforward to check

that D is sound. Finally, D satisfies all the admissibility conditions of Definition 9.3: conditions

(S1) and (S2) hold trivially, the definition of E ensures that condition (S3) is satisfied, the defini-

tion of poss ensures that the ontology condition is satisfied, the trivial literal ordering ≺vX always

satisfies the ordering condition, and the query C0 v ⊥ is covered in context v{C0}. Finally, since

knw(vX) = poss(vX) for each context vX ∈ V , we have wd(D) = 0, as required. �

To prove the second item of Theorem 11.10, let D = 〈V , E , core, knw, poss,≺, ϑ〉 be an arbitrary

sound and admissible decomposition of On and Q such that wd(D) = 0. Every ε-edge in a decom-

position of width 0 is redundant in the sense of Definition 11.1, so we can assume without loss of

generality that D is ε-free. We prove in Claim 11.13 that, for each ABC-number X, there exists a

context vX ∈ V such that poss(vX) = Γ(X). Since Γ(X) is distinct for each ABC-number X, that V

clearly contains at least 2n contexts, which concludes the proof of Theorem 11.10. Towards proving

Claim 11.13, we first prove the following auxiliary claim.

Claim 11.12. Let v ∈ V be a context and X an ABC-number. If core(v) ⊆ Γ(X) and poss(v) ⊇ X,

then poss(v) = Γ(X).

Proof. Let v ∈ V be a context and X an ABC-number such that core(v) ⊆ Γ(X) and poss(v) ⊇ X. By

the ontology condition of Definition 9.3, set poss(v) is closed under Γ; thus, poss(v) ⊇ X implies

poss(v) ⊇ Γ(X). To show that poss(v) ⊆ Γ(X) holds as well, consider an arbitrary literal L ∈ poss(v).

Since wd(D) = 0, we have L ∈ knw(v). But then, by soundness condition (N3) of Definition 9.2,

151



we have On |= core(v) v L. Furthermore, we have On |= X v Γ(X) by (11.9), and core(v) ⊆ Γ(X)

clearly implies On |= Γ(X) v core(v). Together, all these observations imply that On |= X v L holds,

which, by (11.9), implies L ∈ Γ(X). Consequently, we have poss(v) = Γ(X), as required. �

Claim 11.13. For each ABC-number X, a context vX ∈ V exists such that poss(vX) = Γ(X).

Proof. The proof is by induction on the rank of X. For the base case, we have X = {C0}. Since

X v ⊥ ∈ Q, query X v ⊥ is covered in the context vX = ϑ(X v ⊥); hence core(vX) ⊆ X ⊆ poss(vX)

by the definition of covering. But then, Claim 11.12 implies that poss(vX) = Γ(X), as required.

For the induction step, assume that the claim holds for each ABC-number of rank k−1, and con-

sider an arbitrary ABC-number of the form Y = {X1, . . . , Xk−1, Xk,Ck}. Let X = {X1, . . . , Xk−1,Ck−1}.

By the induction hypothesis, a context vX ∈ V exists such that poss(vX) = Γ(X). We now consider

the two possible forms of Xk.

Assume that Xk = Ak, which implies Y = XR. By applying admissibility condition (S3) of Defi-

nition 9.3 to the existential restriction ∃R.Ck ∈ Γ(X) = poss(vX), an edge 〈vX , vY ,∃R.Ck〉 ∈ E exists

such that

poss(vY ) ⊇ {Ck} ∪ {D | ∀R.D ∈ poss(vX)} = XR.

Soundness condition (N1) of Definition 9.2 implies On |= core(vX) u ∃R.Ck v ∃R.[core(vY ) uCk].

Furthermore, we have On |= X v Γ(X) by (11.9), and [core(vX) u ∃R.Ck] ⊆ poss(vX) = Γ(X), which

holds by the assumption, clearly implies On |= Γ(X) v [core(vX) u ∃R.Ck]. Together, all these obser-

vations imply On |= X v ∃R.[core(vY ) uCk]; but then, core(vY ) ⊆ Γ(XR) holds by (11.10). Thus, for

Y = XR, we have core(vY ) ⊆ Γ(XR) and poss(vY ) ⊇ XR, so poss(vY ) = Γ(XR) = Γ(Y) by Claim 11.12,

as required.

The analysis for the case Xk = Bk is analogous to the one above, with the difference that role S

is used instead of role R. �

152



Any road followed precisely to its end leads precisely

nowhere.

—Frank Herbert
Dune

Chapter 12

Discussion

In this chapter we discuss the practical value of our results by measuring decomposition width and

length of realistic ontologies using several different expansion strategies (Section 12.1), and we

conclude with suggestions for future work (Section 12.2).

12.1 Decomposition Width and Length in Practice

All ontologies used in this experiment were taken from the repository maintained by the Knowl-

edge Representation and Reasoning Group at the University of Oxford.1 The repository contains a

diverse set of ontologies, including standard benchmark ontologies and numerous ontologies from

the life sciences domain. To obtain our test corpus, we focused mostly on those ontologies in the

repository that contain more than 1000 axioms and are not expressed in EL or DL-Litehorn: on-

tologies expressed in one of these two languages have a decomposition of polynomial length and

zero width, so we did not consider such ontologies interesting. However, we also included several

smaller “toy” ontologies, such as Pizza and Wine, which were developed to demonstrate various on-

tology modeling constructs. In this way we obtained a corpus of 44 ontologies shown in Table 12.1.

Since our framework is applicable only to normalized ALCI ontologies, we further transformed

each ontology as follows. First, we eliminated from the ontology all axioms that are not supported

in SHI. Second, we transformed the result into a normalized ALCI ontology using the normal-

ization procedure from Appendix B. For each test ontology, Table 12.1 shows (i) the number of

1An ontology with ID XXXXX can be downloaded from http://www.cs.ox.ac.uk/isg/ontologies/UID/
XXXXX.owl, and a general description of the repository is available at http://www.cs.ox.ac.uk/isg/ontologies/.

153

http://www.cs.ox.ac.uk/isg/ontologies/


terminological axioms in the original ontology, (ii) the number of atomic concepts, atomic roles,

and axioms in the SHI ontology after elimination of unsupported axioms, and (iii) the number of

literals, roles, and clauses in the final ALCI ontology after normalization; ontologies are grouped

to match Table 12.2, and the rationale behind the grouping will be explained shortly. For each nor-

malized ontology O, we defined the set QO to contain a query A v B for all pairs of atomic concepts

A and B in O that were not introduced during normalization; thus, QO contains all queries relevant

for ontology classification.

We developed three controls, C1, C2, and C3, that use the cautious, cautiousR, and eager expansion

strategies, respectively, described in Section 8.5.2. Each control Ci used mln = ∞—that is, we

did not restrict the number of contexts introduced by the strategies. Although this is not formally

allowed in our presentation of the algorithm, it allowed us to see how the strategies perform when

run freely without being forced to reuse contexts. The maximum number of contexts that could be

introduced by C1 and C2 was thus polynomial, but for C3 it was exponential in the ontology size.

Finally, each Ci used an initialization function that, for each atomic concept A occurring in QO,

introduces a single context vA with core(vA) = {A} to cover all queries of the form A v B. Please

note that the expansion strategies of C1 and C3 can reuse these “initial” contexts, but the expansion

strategy of C2 cannot since a context of the form vA is distinct from the contexts of the form vR
A (with

an incoming role R) introduced by the cautiousR expansion strategy.

For each normalized ontology O, we conducted the following experiments. First, for each

1 ≤ i ≤ 3, we computed the Ci-decomposition Di of O and QO using the decomposition construction

algorithm from Section 9.4. Second, for each 1 ≤ i ≤ 3, we computed the width of an ε-refinement

D′i of Di using the approach from Section 10.4. We computed tree decompositions of the relevant

hypergraphs using the TreeD library.2 Since our hypergraphs were large, we used a heuristic mode

in which the library returns only an approximation of the treewidth, without the actual tree decom-

position. Thus, we were able to establish only an upper bound on the width, but not the length of

D′i ; however, by Lemma 11.8, we know that the size of each ε-component of D′i is at most wd(Di),

so an upper bound on ln(D′i ) is given by ln(Di) · wd(Di).

Table 12.2 summarizes the results of our experiments. For readability, the ontologies were

grouped into three subtables: Table 12.2a contains those ontologies for which all three strategies

2http://www.itu.dk/people/sathi/treed/

154

http://www.itu.dk/people/sathi/treed/


Original Reduced to SHI Normalized
Ontology ID logic TBox A T axioms L R clauses

acgt 00001 SROIQ(D) 5,457 1,750 247 4,981 3,851 417 9,039
fma-cons 00285 ALCOIF (D) 123,090 41,646 139 116,270 85,576 243 121,833
go-anatomy-importer 00040 SRIQ 130,480 58,193 209 130,411 177,934 356 279,928
nif-gross 00354 SROIF (D) 6,630 4,042 62 6,580 6,126 79 9,493
uberon 00658 SRIQ 23,644 7,838 82 23,575 42,960 118 77,373
envo-xp 00448 SRIF 74,103 35,702 95 74,065 50,836 51 75,154
galen7 00792 ALERIF (D) 45,260 28,447 964 44,531 341,544 1,610 370,519
go-xp-all 00483 SRI 115,252 89,926 191 115,214 238,923 319 295,029
pato 00762 SHIF 7,616 2,307 24 2,820 1,737 34 2,641
plant-trait-xp 00573 SRIF 127,603 60,968 96 127,559 85,831 46 130,235

cdao 00410 SROIQ(D) 3,175 890 106 3,056 2,934 192 6,152
dolce-all 00024 SHOIN (D) 1,544 204 313 1,502 10,679 626 16,442
ero 00450 SHOIF (D) 3,277 2,397 103 3,146 3,965 189 5,075
gardiner-wafa 00055 SHIN 246 152 20 242 277 27 317
influenza-ontology 00507 SROIN (D) 1,552 745 66 1,504 3,739 116 5,963
obi 00350 SHOIN (D) 9,926 2,634 69 9,866 6,009 125 19,626
lipid 00512 ALCHIN 2,375 710 46 2,192 3,055 92 6,470
pizza 00793 SHOIN 701 97 7 686 391 14 1,355
propreo 00772 SHIN 565 474 30 548 994 48 1,086
sweet-space 00788 SHOIN (D) 2,430 1,514 123 2,132 2,774 210 3,658
sweet-numerics 00789 SHOIN (D) 2,499 1,499 137 2,185 2,768 239 3,599
sweet-phenomena 00790 SHOIN (D) 2,658 1,721 112 2,367 2,871 191 3,734
fly-anatomy 00460 SRI 19,477 7,798 21 19,466 10,391 27 19,534
galen-doctored 00029 ALEHIF+ 4,762 2,748 413 4,586 11,447 534 13,769
galen-undoctored 00032 ALEHIF+ 5,005 2,748 413 4,828 11,767 535 14,158
go 00764 SRIF 76,286 36,495 13 76,279 82,191 22 123,506
worm-phenotype-xp 00675 SHIF 90,522 51,413 113 90,497 74,594 95 100,966

aeo 00002 SHIF(D) 20,317 759 47 3,372 1,487 92 5,598
mammalian-phenotype-xp 00518 SR 6,684 9,809 24 6,680 32,111 48 38,994
nci-thesaurus 00554 SH(D) 127,739 91,226 123 127,729 157,186 244 226,658
nif-cell 00352 SROIF (D) 3,482 2,770 61 3,431 3,212 62 4,366
pharmacogenomics 00566 SHOIN (D) 52,813 45,000 201 52,616 48,056 279 53,797
protein 00791 S 37,266 35,196 7 37,266 46,240 10 61,424
sao 00624 SHIN (D) 2,802 764 36 2,608 1,231 58 4,595
sct-sep 00778 SH 54,978 54,974 9 54,977 333,067 13 503,379
software 00636 SHOIQ(D) 2,661 903 27 2,501 1,721 31 3,064
vaccine 00668 SRIQ 12,516 5,410 137 12,470 12,412 201 20,730
wine 00783 SHOIN (D) 395 98 17 159 302 30 388
bams-simplified 00004 SHIF 18,822 1,110 12 18,818 4,413 14 19,575
iedm 00293 ALUN (D) 4,310 395 888 1,877 4,821 1,771 4,532
molecular-function-xp 00533 SRIF 84,408 42,165 82 84,368 73,981 20 106,124
neuron-ontology 00006 ALEHI+ 1,260 1,119 25 1,245 1,419 1 1,208
sequence 00627 SHI 2,812 2,136 24 3,029 3,179 26 4,074
world-fact-book 00104 ALCHOI(D) 1,158 1,080 4 1,122 1,090 1 1,120

Table 12.1: Statistics for test ontologies

155



produce decompositions of different widths; Table 12.2b contains those ontologies for which the

cautious and the cautiousR strategies produce decompositions of equal widths; and Table 12.2c

contains those ontologies for which the choice of a strategy does not affect decomposition width.

Moreover, each subtable is split into two parts, where the bottom part contains ontologies for which

wd(D3) = 0: these are all Horn ontologies on which the decomposition construction algorithm with

the eager strategy fully solves the reasoning problem. On the “go-anatomy-importer” ontology,

strategies cautious and cautiousR produce decompositions of very large width, which the TreeD

library was unable to process. On the “nif-gross” ontology, the eager strategy seems to produce

a decomposition of very large length, and our decomposition construction algorithm ran out of

memory after introducing about five million contexts.

Our experiments show that decomposition length, even with the eager strategy, is in most cases

commensurate with the number of atomic concepts. This is the main reason why consequence-based

algorithms perform well in practice: our test ontologies do not seem to incur a substantial amount

of and-branching; moreover, unlike the hypertableau algorithms, consequence-based algorithms do

not suffer from unnecessary and-branching. The only outlier is the “nif-gross” ontology, on which

the eager strategy produces very large decompositions; the cautious strategy, however, produces

a decomposition of reasonably small width. This suggests that some sort of a hybrid strategy as

discussed in Section 8.5.2 might be useful in practice.

The refined strategy cautiousR does not seem to provide much practical benefit over the cautious

strategy: there are only ten ontologies (all shown in Table 12.2a) on which wd(D1) > wd(D2) holds,

and in all cases the difference between wd(D1) and wd(D2) is negligible. Furthermore, only four

decompositions satisfy wd(D′1) > wd(D′2)—that is, in all other cases, computing an ε-refinement

of D1 and D2 produces decompositions of equal width. The cautiousR strategy, however, can still

be useful in practice: as we discussed in more detail in Section 8.5.2, contexts introduced by this

strategy can have more refined literal orderings, but our framework cannot estimate the effects of a

literal ordering on reasoning performance.

Interesting are also the results in the bottom part of Table 12.2c: all ontologies shown there

contain universal restrictions and/or inverse roles, but they “behave” like EL ontologies in that there

is no interaction between existential and universal restrictions and/or inverse roles; this is reflected

by the fact that the cautious and the eager strategy introduce in most cases the same numbers of

156



cautious cautiousR eager
Ontology ln(D1) wd(D1) wd(D′1) ln(D2) wd(D2) wd(D′2) ln(D3) wd(D3) wd(D′3)

(a) wd(D1), wd(D2), and wd(D3) are all different:
acgt 1,754 235 11 1,883 151 9 1,851 162 9
fma-cons 41,646 418 22 80,606 389 22 84,647 387 22
go-anatomy-importer 58,192 12,909 ? 79,533 12,582 ? 94,915 491 28
nif-gross 4,069 686 178 4,653 589 152 > 5 · 106 ? ?
uberon 7,383 4,931 369 10,966 4,600 115 10,241 199 18
envo-xp 35,702 2 1 50,247 1 1 35,704 0 0
galen7 30,472 3,850 47 43,521 3,833 47 49,344 0 0
go-xp-all 89,926 1,456 76 107,797 1,404 49 92,801 0 0
pato 2,306 2 1 2,331 1 1 2,308 0 0
plant-trait-xp 60,968 2 1 84,271 1 1 60,973 0 0

(b) wd(D1) = wd(D2) > wd(D3) and wd(D′1) = wd(D′2) ≥ wd(D′3):
cdao 890 369 90 1,203 369 90 1,449 82 25
dolce-all 236 2,180 72 336 2,180 72 453 1,819 62
ero 2,399 100 11 2,479 100 11 2,456 99 11
gardiner-wafa 158 34 6 169 34 6 1167 33 6
influenza-ontology 842 554 32 1,032 554 32 1,060 237 12
obi 2,826 293 39 3,249 293 39 3,287 233 17
lipid 860 1,010 186 983 1,010 186 3,561 1,008 186
pizza 101 101 34 147 101 34 392 41 10
propreo 478 147 22 483 147 22 561 75 13
sweet-space 1,517 60 6 1,522 60 6 1,540 38 5
sweet-numerics 1,503 44 5 1,508 44 5 1,518 34 5
sweet-phenomena 1,723 44 5 1,728 44 5 1,739 43 5
fly-anatomy 7,798 5 2 10,356 5 2 7,873 0 0
galen-doctored 3,020 139 14 3,824 139 14 3,364 0 0
galen-undoctored 3,042 139 14 4,091 139 14 3,460 0 0
go 36,494 140 16 46,813 140 16 36,859 0 0
worm-phenotype-xp 51,413 6 2 66,320 6 2 51,421 0 0

(c) wd(D1) = wd(D2) = wd(D3) and wd(D′1) = wd(D′2) = wd(D′3):
aeo 851 32 6 1,124 32 6 963 32 6
mammalian-phenotype-xp 9,809 16 5 13,668 16 5 9,809 16 5
nci-thesaurus 91,226 48 11 107,788 48 11 103,977 48 11
nif-cell 2,769 48 7 2,796 48 7 2,771 48 7
pharmacogenomics 45,015 321 26 46,844 321 26 45,348 321 26
protein 35,196 22 5 36,636 22 5 35,196 22 5
sao 769 108 9 843 108 9 856 108 9
sct-sep 54,973 2,602 278 76,545 2,602 278 54,973 2,602 278
software 1,120 9 5 1,422 9 5 1,234 9 5
vaccine 5,691 1,137 246 7,087 1,137 246 6,584 1,137 246
wine 121 122 27 122 122 27 698 122 27
bams-simplified 1,187 0 0 3,424 0 0 3,154 0 0
iedm 395 0 0 395 0 0 395 0 0
molecular-function-xp 42,165 0 0 60,140 0 0 42,165 0 0
neuron-ontology 1,119 0 0 1,419 0 0 1,119 0 0
sequence 2,136 0 0 2,446 0 0 2,136 0 0
world-fact-book 1,080 0 0 1,080 0 0 1,080 0 0

Table 12.2: Decomposition width and length for test ontologies

157



contexts. The only exception is the “bams-simplified” ontology on which there is some interaction

between existential and universal restrictions; however, even in this case, the cautious strategy can

produce a decomposition of zero width. To understand how this can happen, consider the ontology

{A v ∃R.B, A v ∀R.C, B v C}: with the cautious strategy we get a context vB with core(vB) = {B},

whereas with the eager strategy we get a context v{B,C} with core(v{B,C}) = {B,C}; however, in the

former case C is a known consequence of B, so introducing a context with a “suboptimal” core does

not increase decomposition width.

Our experiments further show that computing an ε-refinement can substantially reduce decom-

position width: wd(D′i ) is substantially lower than wd(Di) in all cases except when wd(Di) is already

very small. Moreover, the eager strategy seems to produce decompositions of least width: with the

exception of four ontologies (“dolce-all”, “lipid”, “sct-sep”, and “vaccine”), decomposition D′3 has

width below 30, and often much less than 30.

In all cases, decomposition width is substantially smaller than the number of literals in the on-

tology, so our results provide a tighter estimate of the algorithm’s complexity than that obtained

from the usual complexity arguments. This is particularly true for Horn ontologies: decomposition

length on such ontologies is manageable and decomposition width is zero, which explains why such

ontologies are generally easier to reason with. On non-Horn ontologies, however, the upper com-

plexity bound obtained using our results may still be very large; for example, for a decomposition

of width 30, the number of clauses derived in each context is bounded by 430 ≈ 1.15 · 1018—clearly,

no algorithm deriving that many clauses can be deemed practical. This bound, however, only an-

alyzes what could happen in the worst case and, similarly to propositional resolution, such worst

cases are unlikely to occur in practice. We observed that decomposition widths of our test ontolo-

gies are mainly determined by universal restrictions involving inverse roles: in order to guarantee

that all clauses needed to apply the Pred rule are derived, sets %∃R.A
v,u are needed in condition (R7)

of Definition 10.9, and these sets can be large. In our experience, however, clauses with many lit-

erals of the form ∀inv(R).C are rarely derived during reasoning, which is why most ontologies can

still be handled in practice. Therefore, a small decomposition width provides an indication, but not

a definite guarantee, that reasoning with a particular ontology is easy. In contrast, decomposition

length measures directly the number of contexts constructed in the consequence-based algorithm,

so length is generally a good measure of ontology hardness.

158



12.2 Conclusions and Future Work

In Part III of this thesis we presented a very general framework for consequence-based reasoning

in description logics ALCI and SHI. Then, in Part IV, we used this framework to introduce the

notion of decomposition that allows us to quantify the effects of and- and or-branching during rea-

soning. Finally, we presented what we believe to be the first results on fixed-parameter tractability

of description logic reasoning. We see several theoretical and practical challenges for future work.

On the theoretical side, one can try to extend our results to expressive description logics with

number restrictions and nominals and thus obtain a consequence-based algorithm that can handle all

of OWL DL. Number restrictions have already been successfully integrated into resolution-based

procedures so, while not trivial, incorporating them into consequence-based algorithms should be

possible. We have already started to extend the consequence-based framework to SHIQ [119], but

this work is still at a very early stage. In contrast, the combination of nominals, number restrictions,

and inverse roles is notoriously difficult: the complexity of subsumption checking in SHOIQ rises

to coNExpTime [131], and it is currently unclear whether and how this combination of constructs

can be handled in a deterministic consequence-based framework.

On the practical side, our results suggest several possible improvements to existing consequence-

based reasoners. First, context reuse may allow reasoners to handle ontologies on which the eager

strategy introduces a large number of contexts. Second, redundancy elimination techniques may

turn out to further reduce the search space. Third, although computing tree decompositions in ad-

vance may incur significant overhead, we believe that computing ε-refinements “on demand” for

contexts with large widths has the potential to further reduce the number of clauses derived. It will

be interesting to incorporate these ideas into a consequence-based reasoner and try to determine the

extent to which they help in practice.

159



160



Appendices

161





Do not count what you have lost. Count only what

you still have.

—Brian Herbert and Kevin J. Anderson
Dune: The Machine Crusade

Appendix A

ABoxes and Safe Nominals in EL+
⊥

Up to now we have only considered TBox reasoning. In this appendix we demonstrate how general

EL+
⊥ reasoning involving assertional axioms can be reduced to reasoning with only terminological

axioms. We also demonstrate that this reduction works for a restricted but quite commonly used

patterns of nominals in OWL EL ontologies.

Recall that a nominal is a concept of the form C = {a} where a is an individual, which is inter-

preted by the singleton set CI = {aI}. We denote by ELO+
⊥ the extension of EL+

⊥ in which concepts

can be constructed using nominals. Note that the assertions C(a) and R(a, b) are semantically equiv-

alent to concept inclusions with nominals {a} v C and {a} v ∃R.{b} respectively.

We assume that the set of atomic concepts contains a distinguished atomic concept Na for every

individual a in our vocabulary. For x an ELO+
⊥ concept, axiom, or an ontology, we define N(x) to

be the result of replacing each occurrence of each nominal {a} in x by Na. The next lemma shows

that this reduction provides us with a sufficient condition for checking entailment in O.

Lemma A.1. Let O be an ELO+
⊥ ontology and α an ELO+

⊥ axiom that do not contain atomic

concepts of the form Na. Then N(O) |= N(α) implies O |= α.

Proof. Suppose to the contrary that N(O) |= N(α) but O 6|= α. Then there exists an interpretation

I such that I |= O but I 6|= α. Let us define an interpretation J by setting ∆J = ∆I , Na
J = {aI},

AJ = AI for A , Na, and RJ = RI . Since the transformation N(·) merely replaces each {a} by

Na and we have {a}I = Na
J , for every axiom β that does not contain concepts Na we have I |= β

iff J |= N(β). Since I |= O and I 6|= α, in particular, we have J |= N(O) and J 6|= N(α), which

163



contradicts our assumption N(O) |= N(α). �

As a particular case of the previous lemma, we can have the following sufficient condition for

checking unsatisfiability of ontologies with assertions.

Corollary A.2. Let O be an ELO+
⊥ ontology that does not contain atomic concepts of the form Na.

If N(O) |= Na v ⊥ for some Na, then O is inconsistent.

Proof. Take α := {a} v ⊥. Clearly, α does not contain any atomic concepts of the form Na. Since

N(α) = Na v ⊥, we have N(O) |= N(α). Therefore, by Lemma A.1, O |= α. Since I |= α for no

interpretation I, this is only possible if O is inconsistent. �

The converses of Corollary A.2 and Lemma A.1 do not hold in general, but they hold if the

occurrence of nominals is restricted in the following way.

Definition A.3 (Nominal Safety). An ELO+
⊥ concept C is safe if C does not contain atomic concepts

of the form Na and all occurrences of nominals in C are in subconcepts of the form ∃R.{a}; C is

negatively safe (short n-safe) if C is either safe or a nominal. A concept inclusion C v D is safe if

C is n-safe and D is safe. An ELO+
⊥ ontology is safe if all its concept inclusions are safe.

The restricted use of nominals still allows to express assertion axioms C(a) and R(a, b) since

the corresponding concept inclusions {a} v C and {a} v ∃R.{b} are safe. It also captures another

common constructor in OWL EL ontologies ObjectHasValue( R a ), which corresponds to the

concept ∃R.{a}.

The key property of safety is that if O is safe, then the canonical model for N(O) interprets

every initialized and satisfiable Na with a singleton set {xNa}. We will use the single instance xNa of

this set to define the interpretation of the individual a, and thus obtain a model of O.

Lemma A.4. Let O be a safe ELO+
⊥ ontology, let Input be a set of expressions of the form init(N(C))

where C is an n-safe concept, let Closure be the closure of Input under the rules in Fig. 3.1 w.r.t.

N(O), and let J be the canonical model of N(O) w.r.t. Closure. Then, for every Na such that

init(Na) ∈ Closure and Na v ⊥ < Closure, we have Na
J = {xNa}.

Proof. By induction over rule applications in Fig. 3.1, it is easy to show that Closure can contain

only expressions of the form

164



• N(init(C)) such that C is n-safe,

• Na v Na,

• N(C v D) such that C v D is safe,

• N(C R
→ D) such that both C and D are n-safe.

Consider an arbitrary Na such that init(Na) ∈ Closure and Na v ⊥ < Closure. By Corollary 3.6, we

have xNa ∈ Na
J . On the other hand, by the definition of the canonical model, if xC ∈ Na

J , then C v

Na ∈ Closure; from the above invariant, this is only possible if C = Na. Hence Na
J = {xNa}. �

We are now ready to prove the converse of Corollary A.2 and Lemma A.1 for safe occurrences

of nominals.

Theorem A.5. Let O be a safe ELO+
⊥ ontology. Assume that N(O) 6|= Na v ⊥ for every Na.

Then O is consistent. Furthermore, for every safe concept inclusion C v D, if O |= C v D, then

N(O) |= N(C v D).

Proof. Take Input = {init(N(C)) | C is an n-safe ELO+
⊥ concept} (note that this is an infinite set)

and let Closure be the closure of Input under the rules in Fig. 3.1 w.r.t. N(O).

For every individual a, since {a} is n-safe, we have init(Na) ∈ Input ⊆ Closure and, since

N(O) 6|= Na v ⊥ by the assumption and the inference rules are sound, we have Na v ⊥ < Closure.

Therefore, the canonical model J of N(O) w.r.t. Closure is well-defined and, for every individual

a, we have Na
J = {xNa} by Lemma A.4.

Let us define an interpretation I by setting ∆I = ∆J , AI = AJ for atomic concepts, RI = RJ

for roles, and aI = xNa for individuals. Since the transformation N(·) merely replaces each {a} by

Na and we have {a}I = {aI} = {xNa} = Na
J , for every ELO+

⊥ axiom β we have I |= β iff J |= N (β).

Thus, since J is a model of N(O), I is a model of O. In particular, O is consistent.

Finally, we consider any safe concept inclusion C v D and show that O |= C v D implies

N(O) |= N(C v D). By the definition of safety, C is n-safe and D is safe. Note that, without loss

of generality, it is enough to consider the case when D is atomic: once we prove the theorem for

atomic concepts D, it is then trivial to extend it to arbitrary safe concepts D by passing to the (safe)

ontology O′ B O ∪ {D ≡ AD} for a fresh atomic concept AD. Thus, we assume that C is n-safe and

165



D is atomic (not of the form Na). For the sake of contradiction, assume that O |= C v D and N(O) 6|=

N(C v D) = N(C) v D. Since the inference rules are sound, we have N(C) v D < Closure and also

N(C) v ⊥ < Closure. Furthermore, since C is n-safe, we have init(N(C)) ∈ Input ⊆ Closure. Then,

by Corollary 3.6, we have xN(C) ∈ N(C)J and, by the definition of DJ , we have xN(C) < DJ . This

shows that J 6|= N(C) v D = N(C v D). It then follows that I 6|= C v D which, since I is a model

of O, contradicts the assumption O |= C v D. �

Remark A.6. Note that if Na does not occur in N(O), then N(O) |= Na v ⊥ iff N(O) |= > v ⊥.

Therefore, in Theorem A.5 it is sufficient to test if N(O) 6|= Na v ⊥ only for the individuals a

occurring in O or, if O contains no individuals, if N(O) 6|= > v ⊥.

Using Theorem 3.2 and Theorem A.5, we can now describe a ‘one pass’ ontology realization

procedure for computing all entailed instances of atomic concepts occurring in safe ELO+
⊥ ontology

O. This can be accomplished by computing the closure of Input containing init(Na) for every

individual a occurring in O under the rules in Fig. 3.1 w.r.t. N(O). If Na v ⊥ is derived for at

least one individual a, then O is inconsistent. Otherwise, for every atomic concept A, the derived

subsumptions of the form Na v A correspond exactly to the entailed instances A(a). As in the case

of ontology classification, this procedure can be implemented in polynomial time.

Finally, we demonstrate that Theorem A.5 fails if the use of nominals is not safe. Take, for

example, the ontology O = {A v {a}, B v {a}, A v ∃R.B}. Then O is consistent and O |= A v B

since for every model I of O we have either AI = ∅ or AI = BI = {aI}. However, for N(O) =

{A v Na, B v Na, A v ∃R.B}, we have N(O) 6|= A v B = N(A v B). Reasoning in ELO+
⊥ with un-

restricted occurrences of nominals is still possible (and tractable), but the procedure is significantly

more complicated as it requires multiple saturation phases and/or complex types of axioms [65, 70].

166



One learns from books and example only that certain

things can be done. Actual learning requires that you

do those things.

—Frank Herbert
Children of Dune

Appendix B

Normalization of SHI Ontologies

In this appendix we show how to transform an arbitrary SHI ontology O into a normalized (cf.

Section 8.1) ALCI ontology O′ such that O′ entails the same consequences as O over the atomic

concepts occurring in O. To prove correctness of our transformation, we use the framework of

conservative extensions [82].

Definition B.1. Let O and O′ be SHI ontologies, and let A and T be the sets of atomic concepts

and atomic roles that occur in O.

• O′ is conservative over O if for every model I of O a model I′ of O′ exists such that I and

I′ have the same domain and coincide on the interpretation of A and T, and vice versa.

• O′ is concept-conservative over O if for every model I of O a model I′ of O′ exists such

that I and I′ have the same domain and coincide on the interpretation of A, and vice versa.

Note that, unlike more standard notions of conservative extensions, we do not require that O′

contains all axioms from O. It is well-known and easy to show that the above model-theoretic

notion of conservativity (resp. concept-conservativity) implies that the two ontologies entail the

same consequences over A and T (resp. over A).

Our normalization method consists of two steps. Firstly, given an arbitrary SHI ontology O,

we apply structural transformation to produce a normalized SHI ontology O′ that is conservative

over O. Secondly, having the normalized SHI ontology O′, we eliminate transitivity and role

inclusion axioms to produce a normalized ALCI ontology O′′ that is concept-conservative over

167



O′. Since in our case O′ contains at least all atomic concepts that occur in O, it follows that O′′

is also concept-conservative over O. We describe the two normalization steps in more detail in

Propositions B.2 and B.3 below. Both of them are well-known in the DL community.

Proposition B.2. For every SHI ontology O there exists a normalized SHI ontology O′ that is

conservative over O. Moreover, the size of O′ is linear in the size of O and O′ can be computed

from O in polynomial time.

Proof. In our formulation of structural transformation we use the standard notions of positive and

negative occurrences of concepts in concepts and axioms. For SHI, these can be defined induc-

tively as follows: C occurs positively in C. If C occurs positively (resp. negatively) in C′, then C

also occurs positively (resp. negatively) in C′ u D, D u C′, C′ t D, D t C′, ∃R.C′, ∀R.C′, and

D v C′, and C occurs negatively (resp. positively) in ¬C′ and C′ v D. Finally, C occurs positively

(resp. negatively) in an ontology O if it occurs positively (resp. negatively) in some axiom in O.

Note that a concept can occur both positively and negatively in an ontology.

Let O be a SHI ontology. Introduce a fresh (not yet in O) atomic concept [C] for each concept

C occurring in O. The structural transformation of C, denoted by st(C), is defined as follows:

st(A) := A st(C u D) := [C] u [D]

st(>) := > st(C t D) := [C] t [D]

st(⊥) := ⊥ st(∃R.C) := ∃R.[C]

st(¬C) := ¬[C] st(∀R.C) := ∀R.[C]

The structural transformation of O is a new ontology O′ containing the same transitivity and role

inclusion axioms as O and

• st(C) v [C] for every concept C occurring negatively in O,

• [D] v st(D) for every concept D occurring positively in O,

• [C] v [D] for each concept inclusion C v D in O.

Note that ‖O′‖ is linear in ‖O‖ and O′ can be computed from O in polynomial time.

168



We now prove that O′ is conservative over O. For one direction, it is easy to see that every

model I of O can be extended into a model I′ of O′ by interpreting the new concepts [C] by

[C]I
′

B CI . For the other direction, we consider an arbitrary model I of O′ and show that I is

already a model of O. Towards this goal, it is easy to show by structural induction on concepts C

and D that

(i) if C occurs negatively in O, then CI ⊆ [C]I ;

(ii) if D occurs positively in O, then [D]I ⊆ DI .

Let now C v D be an arbitrary concept inclusion in O. Then C occurs negatively in O, D occurs

positively in O, and [C] v [D] ∈ O′. By (i), (ii), and since I is a model of O′, we have CI ⊆ [C]I ,

[D]I ⊆ DI , and [C]I ⊆ [D]I . These three set inclusions imply CI ⊆ DI , thus I |= C v D. Since

C v D was arbitrary, I is model of O. This proves that O′ is conservative over O.

Finally, note that O′ is not yet fully normalized: its concept inclusions are of the form st(C) v

[C], [D] v st(D), and [C] v [D], which includes axioms such as [C u D] v [C] u [D] that are not

normal clauses. Fortunately, all such axioms can be easily rewritten into normal clauses as follows:

[>] v >{ this is a tautology and can be removed from O′

⊥ v [⊥]{ this is a tautology and can be removed from O′

[C u D] v [C] u [D]{ [C u D] v [C] and [C u D] v [D]

[C] t [D] v [C t D]{ [C] v [C t D] and [D] v [C t D]

[¬C] v ¬[C]{ [¬C] u [C] v ⊥

¬[C] v [¬C]{ > v [¬C] t [C]

∃R.[C] v [∃R.C]{ [C] v ∀inv(R).[∃R.C]

∀R.[C] v [∀R.C]{ > v [∀R.C] t ∃R.[¬C] and [¬C] u [C] v ⊥ �

Proposition B.3. For every normalized SHI ontology O there exists a normalized ALCI ontology

O′ that is concept-conservative over O. Moreover, O′ can be computed from O in polynomial time.

Proof. A normalized SHI ontology O can be transformed into a normalized ALCI ontology by

eliminating all role inclusions and role transitivity axioms. Towards this goal, let vO be the smallest

169



reflexive and transitive binary relation on roles such that R vO S and inv(R) vO inv(S ) for each role

inclusion R v S ∈ O; furthermore, for each role R and each atomic concept C occurring in O, let

AR,C and BR,C be fresh atomic concepts unique for R and C. The elimination proceeds in three

steps: step 1 ensures that universal restrictions occur only in clauses of the form A v ∀R.C, step 2

encodes transitivity axioms using the well-known “box pushing” method, and step 3 eliminates role

inclusions by expanding the role hierarchy into universal restrictions. We capture these steps by

defining three ontologies obtained by transforming O as follows:

1. For each clause K v M ∈ O, ontology O1 contains the clause obtained from K v M by replacing

each literal ∀R.C ∈ M with AR,C; furthermore, for each literal ∀R.C occurring in a clause in O,

ontology O1 contains the axiom AR,C v ∀R.C.

2. Ontology O2 contains each clause in O1; furthermore, for each clause A v ∀R.C ∈ O1 and each

role S such that S vO R and either Tra(S ) ∈ O or Tra(inv(S )) ∈ O, ontology O2 contains clauses

A v ∀S .BS ,C and BS ,C v ∀S .BS ,C and BS ,C v C.

3. Ontology O3 contains each clause in O2; furthermore, for each clause A v ∀R.C ∈ O2 and each

role S such that S vO R, ontology O3 contains clause A v ∀S .C.

The resulting ontology O′ B O3 is a normalized ALCI ontology that is concept-conservative

over O (for a proof see, e.g., [118]). Observe that step 1 is not needed in case the input ontology

O was obtained by the method in Proposition B.2 since that already produces universal restrictions

only in clauses of the form A v ∀R.C. �

170



For all their computerized precision, thinking

machines can be confused in many different ways.

—Brian Herbert and Kevin J. Anderson
Dune: The Machine Crusade

Appendix C

The Hypertableau Algorithm

Most OWL DL reasoners are currently based on variants of tableau algorithms. To relate our tech-

niques to the state of the art in ontology reasoning, in this appendix we present a variant of the

hypertableau algorithm by Motik et al. [94] for normalized (cf. Section 8.1) ALCI ontologies.

We assume the existence of a countably infinite set of named individuals. An individual is a

finite string of the form a.i1. . . . in where a is a named individual and i1. . . . in is a possibly empty

sequence of integers. An individual of the form s.i is unnamed, and it is a successor of individual

s; predecessor is the inverse of successor; and ancestor and descendant are transitive closures of

predecessor and successor, respectively. An ABox A is a finite set of facts of the form ⊥, L(s), or

R(s, t), for L a literal, R a role, and s and t individuals; furthermore, ind(A) is the set of individuals

occurring in A.

Termination of the algorithm is ensured via anywhere blocking; for ALCI, the single anywhere

variant suffices. Let C be an arbitrary strict order (i.e., an irreflexive and transitive relation) on the

set of all individuals compatible with the ancestor relation (i.e., s C t holds whenever s is an ancestor

of t). The label of an individual s in an ABox A is defined as LA(s) = {L | L(s) ∈ A}. By induction

on C, each individual s occurring in A is assigned a status as follows:

• s is directly blocked by an individual s′ in A if both s and s′ are unnamed, no ancestor of s′

is blocked, LA(s) = LA(s′), and s′ C s;

• s is indirectly blocked if s is unnamed and some ancestor of s is directly blocked; and

• s is blocked if it is directly or indirectly blocked.

171



Hyp-rule

If A1 u . . . u Am v L1 t . . . t Ln ∈ O, and
an individual s ∈ ind(A0) exists that is not indirectly blocked such that
Ai(s) ∈ A0 for each 1 ≤ i ≤ m and L j(s) < A0 for each 1 ≤ j ≤ n,

then A1 B A0 ∪ {⊥} if n = 0; and A j B A0 ∪ {L j(s)} for 1 ≤ j ≤ n if n > 0.

∃-rule

If an individual s exists that is not blocked such that
∃R.A(s) ∈ A0 and
no individual t exists such that {R(s, t), A(t)} ⊆ A0,

then A1 B A0 ∪ {R(s, u), A(u)} for u a fresh successor of s.

∀+-rule
If individuals s and t exist that are not indirectly blocked such that

{∀R.B(s), R(s, t)} ⊆ A0 and B(t) < A0,
then A1 B A0 ∪ {B(t)}.

∀−-rule
If individuals s and t exist that are not indirectly blocked such that

{[∀inv(R).B](t), R(s, t)} ⊆ A0 and B(s) < A0,
then A1 B A0 ∪ {B(s)}.

Table C.1: Derivation rules of the hypertableau algorithm

Given a normalized ALCI ontology O and an ABox A containing only named individuals, the

hypertableau algorithm constructs a derivation D = (V, E, ρ) for O and A, where V and E are the

vertices and edges of a finite tree, and ρ labels each vertex with an ABox. A vertex v ∈ V is closed

if ⊥ ∈ ρ(v); otherwise, v is open. Labeling ρ must satisfy the following conditions:

• ρ(v) = A for v the root of the tree;

• vertex v is a leaf if v is closed or no derivation rule from Table C.1 is applicable to A0 = ρ(v);

• in all other cases, the children v1, . . . , vn of vertex v are labeled by ABoxes A1, . . . ,An ob-

tained by applying one (arbitrarily chosen) derivation rule from Table C.1 to A0 = ρ(v).

The algorithm is sound and complete: for each derivation D, we have that O ∪A is satisfiable if and

only if D contains an open leaf. Thus, checking whether O |= A v B holds can be solved using the

hypertableau algorithm by constructing a derivation for O ∪ {C v A, B uC v ⊥} and {C(a)} where

C is a fresh atomic concept, and then checking whether each derivation leaf is closed.

Due to inverse roles, blocking is dynamic: an individual can change its blocking status more

than once as the inference rules are applied, which is why individuals can be indirectly blocked.

The algorithm runs in N2ExpTime: it nondeterministically constructs a tree of individuals that can

have exponential depth and a linear branching factor. Hence, although the number of nonblocked

and directly blocked individuals is at most exponential, the number of indirectly blocked individuals

in the tree can be doubly exponential; Motik et al. [94] discuss these issues in more detail.

172



Most men go through life unchallenged, except at the

final moment.

—Frank Herbert
God Emperor of Dune

Appendix D

Completeness Proofs

In this appendix we prove Theorems 8.5 and 10.4.

D.1 Proof of Theorem 8.5

Throughout Appendix D.1 we fix a normalized ALCI ontology O, an admissible context structure

D = 〈V , E , core,≺〉, and a clause system S for D such that no inference rule from Table 8.1 is

applicable to S; furthermore, we fix L to be the set of all literals that occur in O, D, or S. We prove

Theorem 8.5 by showing the following contrapositive claim: O 6|= K v M holds for each query

K v M for which a context v ∈ V exists such that

• v is complete for K v M,

• K v L ∈̂ S(v) for each literal L ∈ K, and

• K v M 6∈̂ S(v).

To this end, we construct a model I of O that refutes each query satisfying the above conditions.

The construction is organized as follows. Instead of directly constructing a model, for simplicity

we construct a pre-model—a graph-like structure with nodes labeled by sets of literals. We intro-

duce this notion in Section D.1.1, and we explain how to convert a pre-model into a model. In

Section D.1.2 we show how to construct a propositional interpretation satisfying a set of clauses

closed under hyperresolution. In Section D.1.3 we prove certain properties of our inference rules

173



that will allow us to use the construction from Section D.1.2. Finally, in Section D.1.4 we use these

propositional interpretations to construct the desired pre-model of O.

D.1.1 Pre-Interpretations and Pre-Models

In this section we introduce the notions of a pre-interpretation and a pre-model of an ontology,

which we use to simplify the presentation of the subsequent proofs.

Definition D.1. A set of literals J satisfies a clause K v M, written J |= K v M, if K ⊆ J implies

M ∩ J , ∅; otherwise, J refutes K v M, written J 6|= K v M.

A pre-interpretation is a labeled graph I = 〈∆, E, J〉 where ∆ is a nonempty set of nodes,

E ⊆ ∆ × ∆ × ΣR is a set of role-labeled edges, and J : ∆→ 2ΣL is a labeling of nodes by sets of

literals satisfying the following two conditions.

(I∃) For each node x ∈ ∆ and each literal ∃R.A ∈ J(x), an edge 〈x, y,R〉 ∈ E exists such that

A ∈ J(y).

(I∀) For each edge 〈x, y,R〉 ∈ E and all literals ∀R.B and ∀inv(R).C, we have that

– ∀R.B ∈ J(x) implies B ∈ J(y), and

– ∀inv(R).C ∈ J(y) implies C ∈ J(x).

Pre-interpretation I = 〈∆, E, J〉 satisfies a clause K v M, written I |= K v M, if J(x) |= K v M for

each node x ∈ ∆; otherwise, I refutes K v M, written I 6|= K v M. Finally, I is a pre-model of O if

I satisfies each (normal) clause in O.

Given a pre-interpretation I = 〈∆, E, J〉, we can construct an interpretation I for all atomic con-

cepts A ∈ ΣA and all atomic roles T ∈ ΣT as follows.

∆I B ∆ (D.1)

AI B {x | A ∈ J(x)} (D.2)

TI B {〈x, y〉 | 〈x, y,T 〉 ∈ E} ∪ {〈y, x〉 | 〈x, y,T−〉 ∈ E} (D.3)

174



Interpretation I satisfies the following property for each literal L ∈ ΣL and each node x ∈ ∆:

L ∈ J(x) implies x ∈ LI . (D.4)

For atomic concepts, property (D.4) holds by the definition of AI ; furthermore, for literals of the

form ∃R.A and ∀R.A, property (D.4) holds due to conditions (I∃) and (I∀), respectively. The converse

of property (D.4), however, holds only for atomic concepts, which is why all clauses in O must have

only atomic concepts in their antecedents, and all queries must have only atomic concepts in their

consequents. We next show that the interpretation I obtained as specified above is indeed a model

of O.

Lemma D.2. Let I = 〈∆, E, J〉 be a pre-interpretation, and let I be the interpretation obtained from

I as specified in (D.1)–(D.3). If I satisfies a normal clause α, then I |= α. Furthermore, if I refutes

a query q, then I 6|= q.

Proof. Let
�m

i=1 Ai v
⊔n

j=1 L j be an arbitrary normal clause that is satisfied in I, and consider an

arbitrary node x ∈ ∆ such that x ∈ AI
i for each 1 ≤ i ≤ m. By (D.2), we have Ai ∈ J(x) for each

1 ≤ i ≤ m; but then, since I satisfies the clause by the assumption, we have L j ∈ J(x) for some

1 ≤ j ≤ n; hence, we have x ∈ LI
j for some 1 ≤ j ≤ n by (D.4). Since this holds for arbitrary x ∈ ∆,

we have I |=
�m

i=1 Ai v
⊔n

j=1 L j.

Let
�m

i=1 Li v
⊔n

j=1 A j be an arbitrary query that is refuted in I. There exists a node x ∈ ∆

such that Li ∈ J(x) for each 1 ≤ i ≤ m, and A j < J(x) for each 1 ≤ j ≤ n. But then, x ∈ LI
i for each

1 ≤ i ≤ m by (D.4), and x < AI
j for each 1 ≤ j ≤ n by (D.2); hence I 6|=

�m
i=1 Li v

⊔n
j=1 A j. �

Corollary D.3. If a pre-model I of O exists that refutes a query K v M, then O 6|= K v M.

D.1.2 Constructing Literal Interpretations

In this section we show how the sets of clauses S(v) and the corresponding literal orderings ≺v can

be used to construct the sets J(x) of a pre-model I = 〈∆, E, J〉 that satisfies O but refutes a query

K v M. Our construction is independent from the selected context v; therefore, in the first part of

this section we consider just a single set of clauses N .

175



Throughout Section D.1.2 we fix a literal ordering ≺, a set of clauses N over L, and a clause

K v M over L satisfying the following conditions:

M is ≺-minimal, (D.5)

K v L ∈̂ N for each literal L ∈ K, and (D.6)

K v M 6∈̂ N . (D.7)

Next, in Definition D.4 we introduce a notion that determines when set N contains “sufficiently

many” hyperresolution consequences w.r.t. literal ordering ≺.

Definition D.4. Set N is closed under ≺-hyperresolution with a clause
�n

i=1 Li v M′ (not neces-

sarily contained in N ) if, for each choice of n clauses Ki v Mi t Li ∈ N , 1 ≤ i ≤ n, each satisfying

Li ⊀ Mi, we have
�n

i=1 Ki v M′ t
⊔n

i=1 Mi ∈̂ N .

The next lemma follows trivially from Definition D.4 and the notion of clause strengthening.

Lemma D.5. Let α1 and α2 be arbitrary clauses such that α1 is a strengthening of α2. If N is

closed under ≺-hyperresolution with α1, then N is also closed under ≺-hyperresolution with α2.

For ≺, N , and K v M fixed as specified above, we next construct a set of literals J that refutes

K v M, but that satisfies each clause
�n

i=1 Li v M′ for which N is closed under ≺-hyperresolution.

We achieve this by essentially adapting the standard techniques from resolution theorem proving

[18] to our setting. Towards this goal, we proceed as follows: we first present the construction of J;

in Lemma D.6 we prove certain properties of the productive clauses in N ; in Lemma D.7 we show

that J satisfies each clause K′ v M′ for which a strengthening is contained in N and that satisfies

K′ ⊆ K; in Lemma D.8 we show that J refutes K v M; and finally in Lemma D.9 we prove the

desired result.

Let L1, L2, . . . , L` be an arbitrary total ordering of L that extends ≺ such that the elements of M

precede all the remaining literals from L—that is, for all i and j, we have that

Li ≺ L j implies i < j, and (D.8)

i < j and L j ∈ M imply Li ∈ M. (D.9)

176



Since M is ≺-minimal by (D.5) and set L is finite, at least one such total ordering exists. For each

0 ≤ k ≤ `, let Lk B {L1, . . . , Lk}, and let Jk be an inductively defined set of literals such that J0 B ∅

and, for each 0 < k ≤ `, we have

Jk B



Jk−1 ∪ {Lk} if there exists a clause K′ v M′ t Lk ∈ N such that

K′ ⊆ K, M′ ∩ Jk−1 = ∅, and M′ ⊆ Lk−1,

Jk−1 otherwise.

(D.10)

Let J B J`. Each set J that can be obtained by such a construction (which is nondeterministic due

to the choice of the total ordering) is called a literal interpretation of L w.r.t. N and ≺ refuting

K v M. Each clause K′ v M′ t Lk ∈ N that satisfies the first condition in (D.10) for some k is said

to be a productive clause, and the clause is said to produce the literal Lk in J. Clearly, each literal in

J is produced by at least one productive clause in N .

Lemma D.6. Each productive clause K′ v M′ t Lk ∈ N has K′ ⊆ K, M′ ∩ J = ∅, and Lk ⊀ M′.

Proof. Let K′ v M′ t Lk ∈ N be an arbitrary clause producing literal Lk in J for some integer k.

By (D.10), we have K′ ⊆ K, M′ ∩ Jk−1 = ∅, and M′ ⊆ Lk−1. Clearly Jk−1 = J ∩ Lk−1, so we have

M′ ∩ J = ∅. Finally, by (D.8), we have Lk ⊀ L for each L ∈ Lk−1; hence, due to M′ ⊆ Lk−1, we have

Lk ⊀ M′. �

Lemma D.7. For each clause K′ v M′ such that K′ v M′ ∈̂ N and K′ ⊆ K, we have M′ ∩ J , ∅.

Proof. Let K′ v M′ be an arbitrary clause satisfying K′ v M′ ∈̂ N and K′ ⊆ K. Then, a clause

K1 v M1 ∈ N exists such that K1 ⊆ K′ ⊆ K and M1 ⊆ M′ hold. Clause K1 v ⊥ is thus a strength-

ening of K v M, but K v M 6∈̂ N by assumption (D.7); thus, M1 , ∅. Let k be the largest integer

for which Lk ∈ M′ holds; hence, clause K1 v M1 is of the form K1 v M2 t Lk where M2 ⊆ Lk−1.

The claim of this lemma holds trivially if M2 ∩ J , ∅. Furthermore, if M2 ∩ J = ∅, then by (D.10)

clause K1 v M2 t Lk produces Lk ∈ J, so we again have M′ ∩ J , ∅, as required. �

Lemma D.8. We have J 6|= K v M—that is, K ⊆ J and M ∩ J = ∅.

Proof. (K ⊆ J) Consider an arbitrary literal L ∈ K. Then K v L ∈̂ N by assumption (D.6), so a con-

junction K′ ⊆ K exists such that K′ v ⊥ ∈ N or K′ v L ∈ N . The former contradicts K v M 6∈̂ N ,

177



which is assumption (D.7); hence, we have K′ v L ∈ N , so by (D.10) this clause produces L ∈ J.

(M ∩ J = ∅) Assume that a literal Lk ∈ M ∩ J exists, and let K′ v M′ t Lk ∈ N be a clause that

produces Lk ∈ J. By (D.10), we have M′ ⊆ Lk−1 and K′ ⊆ K; furthermore, by (D.9) and Lk ∈ M,

we have M′ ∪ {Lk} ⊆ M. But then, K′ v M′ t Lk ∈ N contradicts K v M 6∈̂ N , which is assumption

(D.7). �

Lemma D.9. For each clause α such that N is closed under ≺-hyperresolution with α, we have

J |= α.

Proof. Assume that α =
�n

i=1 Li v M′ and that Li ∈ J for each 1 ≤ i ≤ n. For each 1 ≤ i ≤ n, let

Ki v Mi t Li be some clause that produces Li in J ; by Lemma D.6, Ki ⊆ K, Mi ∩ J = ∅, and

Li ⊀ Mi. Since N is closed under ≺-hyperresolution with α, we have
�n

i=1 Ki v M′ t
⊔n

i=1 Mi ∈̂ N .

By (
�n

i=1 Ki) ⊆ K and Lemma D.7, we have (M′ t
⊔n

i=1 Mi) ∩ J , ∅. Finally, since Mi ∩ J = ∅

holds for each 1 ≤ i ≤ n, we have M′ ∩ J , ∅. Consequently, we have J |= α, as required. �

D.1.3 Properties of the Consequence-Based Inference Rules

To apply the construction from Section D.1.2 to our clause system S and the context structure D

(which were fixed at the beginning of Appendix D.1), we next prove the following two auxiliary

lemmas about the consequence-based inference rules. Lemma D.10 shows that, for each context

v ∈ V , the set of literals obtained by applying the above construction to S(v) satisfies each clause in

O; the lemma follows trivially from Definition D.4 and the fact that the Hyper rule is not applicable

to S . Lemma D.11 shows a similar property for the clauses that participate in the Pred rule.

Lemma D.10. For each context v ∈ V and each clause K v M ∈ O, set S(v) is closed under ≺v-

hyperresolution with K v M.

Lemma D.11. For each edge 〈v, u,∃R.A〉 ∈ E and each clause α = A u
�n

i=1 Bi v
⊔m

j=1 ∀inv(R).C j

such that α ∈̂ S(u), set S(v) is closed under ≺v-hyperresolution with ∃R.A u
�n

i=1 ∀R.Bi v
⊔m

j=1 C j.

Proof. Consider an arbitrary edge 〈v, u,∃R.A〉 ∈ E and a clause α = A u
�n

i=1 Bi v
⊔m

j=1 ∀inv(R).C j

such that α ∈̂ S(u). By the definition of ∈̂, a subset {B′i}
n′
i=1 of {Bi}

n
i=1 and a subset {C′j}

m′
j=1 of {C j}

m
j=1

178



exist such that

A u
n′�

i=1

B′i v
m′⊔
j=1

∀inv(R).C′j ∈ S(u) or
n′�

i=1

B′i v
m′⊔
j=1

∀inv(R).C′j ∈ S(u).

The Pred rule is not applicable to clause system S; thus, for each clause K0 v M0 t ∃R.A ∈ S(v)

satisfying ∃R.A ⊀v M0, and for each choice of n′ clauses Ki v Mi t ∀R.B′i , 1 ≤ i ≤ n′, satisfying

∀R.B′i ⊀v Mi, we have

K0 u

n′�
i=1

Ki v M0 t

n′⊔
i=1

Mi t

m′⊔
j=1

C′j ∈̂ S(v).

Thus, S(v) is closed under ≺v-hyperresolution with the clause ∃R.A u
�n′

i=1 ∀R.B′i v
⊔m′

j=1 C′j. Then,

by Lemma D.5, S(v) is also closed under ≺v-hyperresolution with ∃R.A u
�n

i=1 ∀R.Bi v
⊔m

j=1 C j

since the former clause is a strengthening of the latter clause. �

D.1.4 The Completeness Claim

We now complete the proof of Theorem 8.5 by constructing a pre-interpretation that satisfies O but

refutes the relevant queries. To simplify the presentation, given a context v ∈ V and a clause K v M,

we write v 0 K v M if and only if

• M is ≺v-minimal (i.e., v is complete for K v M),

• K v L ∈̂ S(v) for each literal L ∈ K, and

• K v M 6∈̂ S(v).

Claim D.12. For each context v ∈ V and each clause K v M, if K v L ∈̂ S(v) for each L ∈ K and

K v M 6∈̂ S(v), then K ⊆ L.

Proof. Assume that there exists a literal L ∈ K \ L; then, L does not occur in S(v), so K v L ∈̂ S(v)

implies K v ⊥ ∈̂ S(v), which contradicts the assumption that K v M 6∈̂ S(v). Hence K ⊆ L. �

Theorem 8.5 holds vacuously if no context v ∈ V and no query K v M exist such that v 0 K v M.

Thus, we assume that v 0 K v M holds for at least one context v ∈ V and at least one query K v M;

by the definition of clause strengthening, we then also have v 0 K v M′ for M′ = M ∩ L; the latter

clause is over L by Claim D.12. Let I = 〈∆, E, J〉 be defined as follows.

179



• Set ∆ is the smallest set that contains a distinguished element δv
KvM for each context v ∈ V

and each clause K v M over L such that v 0 K v M. Set ∆ is not empty due to the above

assumption.

• For each δv
KvM ∈ ∆, let J(δv

KvM) be an arbitrary literal interpretation of L w.r.t. S(v) and ≺v

refuting K v M.

• Set E is the smallest set containing 〈δv
K1vM1

, δu
AuK2vM2

,R〉 for each element δv
K1vM1

∈ ∆, each

literal ∃R.A ∈ J(δv
K1vM1

), and each edge 〈v, u,∃R.A〉 ∈ E such that u 0 A u K2 v M2, where

K2 and M2 are as specified below.

K2 =
�
{B | ∀R.B ∈ J(δv

K1vM1
)} (D.11)

M2 =
⊔
{∀inv(R).C ∈ L | C < J(δv

K1vM1
)} (D.12)

In the last item, we have K2 ∪ M2 ⊆ L and A ∈ L; thus, u 0 A u K2 v M2 ensures δu
AuK2vM2

∈ ∆,

and so E is correctly defined. Next, in Claim D.13 we show that I is a pre-interpretation, in

Claim D.14 we show that I is a pre-model of O, and in Claim D.15 we show that I refutes the

relevant queries. The claim of Theorem 8.5 then follows from Claims D.14 and D.15, and Corol-

lary D.3.

Claim D.13. Structure I satisfies conditions (I∃) and (I∀) of pre-interpretations from Definition D.1.

Proof. (Property I∃) Consider an arbitrary element δv
K1vM1

∈ ∆ and a literal ∃R.A ∈ J(δv
K1vM1

); we

next show that an edge 〈δv
K1vM1

, γ,R〉 ∈ E exists such that A ∈ J(γ). The Succ rule is not applicable

to S, so an edge 〈v, u,∃R.A〉 ∈ E exists satisfying

L v L ∈̂ S(u) for each L ∈ {A} ∪ Bp, where Bp = {B | K′ v M′ t ∀R.B ∈ S (v) and ∀R.B ⊀v M′}.

(D.13)

Let K2 and M2 be as in (D.11) and (D.12). The following observations establish u 0 A u K2 v M2.

• Admissibility of D and 〈v, u,∃R.A〉 ∈ E imply, by Definition 8.3, that ≺u is R-admissible, so

M2 is ≺u-minimal.

180



• Consider an arbitrary literal L ∈ A u K2; we show that A u K2 v L ∈̂ S(u). Assume that

L ∈ K2, so L is an atomic concept L = B. Then, by (D.11), we have ∀R.B ∈ J(δv
K1vM1

); thus,

there exists at least one clause K′ v M′ t ∀R.B ∈ S (v) with ∀R.B ⊀v M′ that produces ∀R.B

in J(δv
K1vM1

); hence B ∈ Bp. But then L v L ∈̂ S(u) holds by (D.13), which is stronger than

the required A u K2 v L ∈̂ S(u). The case when L = A follows directly from (D.13).

• Assume for contradiction that A u K2 v M2 ∈̂ S(u). By Lemma D.11, set S(v) is closed under

≺v-hyperresolution with clause

∃R.A u
�
{∀R.B | ∀R.B ∈ J(δv

K1vM1
)} v

⊔
{C | ∀inv(R).C ∈ L and C < J(δv

K1vM1
)}.

Recall that ∃R.A ∈ J(δv
K1vM1

), so the above clause is clearly refuted in J(δv
K1vM1

). However,

by Lemma D.9, the clause is satisfied in J(δv
K1vM1

), which is a contradiction. Consequently,

we have A u K2 v M2 6∈̂ S(u), as required.

Thus, we have u 0 A u K2 v M2, which implies 〈δv
K1vM1

, δu
AuK2vM2

,R〉 ∈ E by the definition of E.

Finally, A ∈ J(δu
AuK2vM2

) holds by Lemma D.8. All of these observations prove that I satisfies

property (I∃) of Definition D.1.

(Property I∀) Consider an arbitrary edge 〈δv
K1vM1

, δu
AuK2vM2

,R〉 ∈ E as in the definition of E, as

well as arbitrary literals ∀R.B and ∀inv(R).C.

• Assume that ∀R.B ∈ J(δv
K1vM1

). Then B ∈ K2 holds by (D.11); but then, Lemma D.8 implies

J(δu
AuK2vM2

) 6|= A u K2 v M2. Consequently, we have B ∈ J(δu
AuK2vM2

), as required.

• Assume that ∀inv(R).C ∈ J(δu
AuK2vM2

). Then, we have ∀inv(R).C ∈ L since J(δu
AuK2vM2

) is a

literal interpretation of L. If C < J(δv
K1vM1

), then ∀inv(R).C ∈ M2 by (D.12), so ∀inv(R).C <

J(δu
AuK2vM2

) by Lemma D.8, which contradicts our assumption. Consequently, we have

C ∈ J(δv
K1vM1

), as required. �

Claim D.14. Pre-interpretation I is a pre-model of O.

Proof. Consider an arbitrary element δv
KvM ∈ ∆ and an arbitrary normal clause α ∈ O. By Lemma

D.10, set S(v) is closed under ≺v-hyperresolution with α, so J(δv
KvM) |= α by Lemma D.9. This

181



holds for arbitrary δv
KvM ∈ ∆, so we have I |= α. Finally, the latter holds for arbitrary α ∈ O, so I is

a pre-model of O. �

Claim D.15. Pre-interpretation I refutes each query K v M for which there exists a context v ∈ V

such that v is complete for K v M, K v L ∈̂ S(v) for each L ∈ K, and K v M 6∈̂ S(v).

Proof. Let K v M be a query satisfying the preconditions of the claim, and let M′ = M ∩ L. Then

v 0 K v M′ holds as well, and this clause is over L by Claim D.12. But then, J(δv
KvM′) 6|= K v M′

by Lemma D.8. Finally, each literal from M \ M′ is not from L and so it cannot occur in J(δv
KvM′);

thus, J(δv
KvM′) 6|= K v M holds as well, so I refutes K v M, as required. �

D.2 Proof of Theorem 10.4

We proceed similarly as in the proof of Theorem 8.5 in Section D.1.4. Throughout Appendix D.2 we

fix a normalized ALCI ontology O, an admissible decomposition D = 〈V , E , core, knw, poss,≺, ϑ〉

of O and an arbitrary finite set of queries, and a clause system S for D satisfying the preconditions

of Theorem 10.4; furthermore, we fix L to be the set of all literals that occur in O, D, or S. We prove

Theorem 10.4 by constructing a pre-interpretation that satisfies O but refutes the relevant queries.

To simplify the presentation, given an ε-component W of D, a context v ∈W , and a clause K v M,

we write v 0 K v M if and only if

• K ⊆ poss(v), M ∩ poss(W) ⊆ poss(v), and M is ≺v-minimal (i.e., v is complete for K v M),

• K v L ∈̂ S(v) for each literal L ∈ K, and

• K v M 6∈̂ S(v).

The theorem holds vacuously if no context v ∈ V and no query K v M exist such that v 0 K v M.

Thus, we assume that v 0 K v M holds for at least one context v ∈ V and query K v M; by the

definition of clause strengthening, we then also have v 0 K v M′ for M′ = M ∩ L; the latter clause

is over L by Claim D.12. Let I = 〈∆, E, J〉 be defined as follows.

• Set ∆ is the smallest set that contains a distinguished element δv
KvM for each context v ∈ V

and each clause K v M over L such that v 0 K v M. Set ∆ is not empty due to the above

assumption.

182



• The value of function J is defined on each element δv
KvM ∈ ∆ as follows. Let W be the ε-

component of D that contains v, and let w0,w1, . . . ,wn be an ordering of the elements of

W obtained by an arbitrary depth-first traversal of DW starting from w0 = v. Conjunctions

K0,K1, . . . ,Kn, disjunctions M0,M1, . . . ,Mn, and literal interpretations J0, J1, . . . , Jn are de-

fined inductively as follows.

– Case i = 0. Let K0 B K, let M0 B M, and let J0 be an arbitrary literal interpretation of

L w.r.t. S(w0) and ≺w0 refuting K0 v M0.

– Case i > 0. Let w j be the parent of wi in the depth-first traversal of DW ; since w j is

considered before wi in the depth-first traversal, K j, M j, and J j have been defined. Let

Ki and Mi be as follows:

Ki B
�
{C ∈ poss(w j) ∩ poss(wi) | C ∈ J j} (D.14)

Mi B
⊔
{C ∈ poss(w j) ∩ poss(wi) | C < J j} (D.15)

Furthermore, let Ji be an arbitrary literal interpretation of L w.r.t. S(wi) and ≺wi refuting

Ki v Mi.

Based on these definitions for J0, J1, . . . , Jn, the value of function J on element δv
KvM is

defined by

J(δv
KvM) B poss(W) ∩

 n⋃
i=0

Ji

 . (D.16)

• Set E is the smallest set containing 〈δv
K1vM1

, δu
AuK2vM2

,R〉 for all ε-components W and U

of D, each element δv
K1vM1

∈ ∆ with v ∈W , each literal ∃R.A ∈ J(δv
K1vM1

), and each edge

〈v, u,∃R.A〉 ∈ E with u ∈ U such that u 0 A u K2 v M2, where K2 and M2 are as specified

below.

K2 =
�
{B | ∀R.B ∈ J(δv

K1vM1
)} (D.17)

M2 =
⊔
{∀inv(R).C ∈ poss(U) | C < J(δv

K1vM1
)} (D.18)

183



In the last item, we have K2 ∪ M2 ⊆ L and A ∈ L; thus, u 0 A u K2 v M2 ensures δu
AuK2vM2

∈ ∆,

and so E is correctly defined. In contrast, the definition of J(δv
KvM) relies on the existence of literal

interpretations that refute certain clauses, and it is not obvious that these literal interpretations exist;

hence, the following lemma proves that this is the case.

Claim D.16. The value of J(δv
KvM) is correctly defined for each element δv

KvM ∈ ∆.

Proof. Consider arbitrary δv
KvM, and let W , w0,w1, . . . ,wn, K0,K1, . . . ,Kn, M0,M1, . . . ,Mn, and

J0, J1, . . . , Jn be as specified above. We next inductively prove that wi 0 Ki v Mi for each 0 ≤ i ≤ n;

this is sufficient to guarantee existence of the corresponding literal interpretation Ji. For i = 0, we

have w0 0 K0 v M0 immediately from the facts that K0 = K, M0 = M, and δv
KvM ∈ ∆. Consider now

an arbitrary integer i > 0, and let w j be the parent of wi in the depth-first traversal of DW . Since

the ε-edges of D are symmetric by admissibility condition (E1), the presence of the undirected

edge {w j,wi} in DW implies that 〈w j,wi, ε〉 ∈ E . Now wi 0 Ki v Mi follows from the following

observations.

• Ki ⊆ poss(wi) holds trivially by the definition of Ki.

• Mi ∩ poss(W) ⊆ poss(wi) holds trivially since Mi ⊆ poss(wi) by the definition of Mi.

• Disjunction Mi is ≺wi-minimal by admissibility condition (P2) since 〈w j,wi, ε〉 ∈ E and we

have Mi ⊆ poss(w j) ∩ poss(wi).

• Consider an arbitrary literal L ∈ Ki; we show Ki v L ∈̂ S(wi). By the definition of Ki, we

have L ∈ poss(w j) ∩ poss(wi); hence, 〈w j,wi, ε〉 ∈ E implies L v L ∈̂ S(wi) by condition (I4)

of Theorem 10.4, which is stronger than Ki v L ∈̂ S(wi).

• Assume for contradiction that Ki v Mi ∈̂ S(wi). Since 〈w j,wi, ε〉 ∈ E and S is closed un-

der the Epsilon rule, S(w j) is closed under ≺w j-hyperresolution with some strengthening of

Ki v Mi. By Lemmas D.5 and D.9, we then have J j |= Ki v Mi; however, by the definition

Ki and Mi we clearly have J j 6|= Ki v Mi. Thus, Ki v Mi 6∈̂ S(wi) holds, as required. �

Next, we prove several important properties of J.

Claim D.17. Let δv
KvM ∈ ∆ be an arbitrary element, and let W be the ε-component of D such that

v ∈W . Then,

184



1. knw(W) ⊆ J(δv
KvM) ⊆ poss(W),

2. J(δv
KvM) 6|= K v M, and

3. J(δv
KvM) |= K′ v M′ for each clause K′ v M′ for which there exists a context w ∈W such that

K′ ∪ M′ ⊆ poss(w) and S(w) is closed under ≺w-hyperresolution with K′ v M′.

Proof. Consider an arbitrary element δv
KvM ∈ ∆; clearly, we have v 0 K v M. Furthermore, let W

be the ε-component of D such that v ∈W , and let w0,w1, . . . ,wn, K0,K1, . . . ,Kn, M0,M1, . . . ,Mn,

and J0, J1, . . . , Jn be as specified in the definition of the pre-interpretation I. Before proceeding, we

first prove the following auxiliary property (∗).

For all integers 0 ≤ i, j ≤ n and each literal L ∈ poss(wi) ∩ poss(w j), we have L ∈ Ji if

and only if L ∈ J j.

Since DW is a tree by admissibility condition (E2), the shortest path between wi and w j is unique;

we now prove (∗) by induction on the length of this path. Towards this goal, consider an arbitrary

literal L ∈ poss(wi) ∩ poss(w j); we have the following cases.

• If i = j, then Ji = J j, so clearly L ∈ Ji if and only if L ∈ J j.

• Assume that w j is the parent of wi in the traversal of DW . Then Ki∪Mi = poss(wi)∩poss(w j)

by the definition of Ki and Mi, which implies L ∈ Ki ∪ Mi. Furthermore, by Lemma D.8, we

have Ji 6|= Ki v Mi. But then, if L ∈ Ki, then by the definition of Ki we have L ∈ J j, and

Ji 6|= Ki v Mi implies L ∈ Ji. Analogously, if L ∈ Mi, then by the definition of Mi we have

L < J j, and Ji 6|= Ki v Mi implies L < Ji.

• The case when wi is the parent of w j is symmetric to the previous one.

• The remaining possibility is that the length of the shortest path between wi and w j is greater

than one, so let wk be an arbitrary vertex on this path different from wi and w j. By admissi-

bility condition (E3), we have L ∈ poss(wk). Furthermore, the paths between wi and wk, and

between wk and w j are both shorter than the path between wi and w j, so property (∗) holds for

i and k, and for k and j. But then, property (∗) clearly holds for i and j as well.

185



Property (∗) clearly implies that, for each integer 0 ≤ i ≤ n and each literal L ∈ poss(wi), we have

L ∈ J(δv
KvM) if and only if L ∈ Ji; we call this property (†). We are now ready to prove Properties

1–3 of this claim.

(Property 1) The definition of J(δv
KvM) in (D.16) clearly implies J(δv

KvM) ⊆ poss(W). In order

to prove knw(W) ⊆ J(δv
KvM), consider an arbitrary literal L ∈ knw(W); clearly, a context wi ∈W

exists such that L ∈ knw(wi). By condition (I2) of Theorem 10.4, we have > v L ∈̂ S(wi); hence

L ∈ Ji by Lemma D.7. Consequently, L ∈ J(δv
KvM) holds by property (†), as required.

(Property 2) By Lemma D.8, K0 = K, and M0 = M, we have J0 6|= K v M—that is, K ⊆ J0 and

M ∩ J0 = ∅. Now v 0 K v M implies K ⊆ poss(v) and M ∩ poss(W) ⊆ poss(v), so property (†) im-

plies K ⊆ J(δv
KvM) and [M ∩ poss(W)] ∩ J(δv

KvM) = ∅; since poss(W) ∩ J(δv
KvM) = J(δv

KvM), we

have M ∩ J(δv
KvM) = ∅. Hence J(δv

KvM) 6|= K v M holds, as required.

(Property 3) Let K′ v M′ be a clause and let wi ∈W be a context such that K′ ∪ M′ ⊆ poss(wi)

and set S(wi) is closed under ≺wi-hyperresolution with K′ v M′. By Lemma D.9, Ji |= K′ v M′.

But then, since K′ ∪ M′ ⊆ poss(wi), property (†) implies J(δv
KvM) |= K′ v M′, as required. �

To complete the proof of Theorem 10.4, the following claims show that structure I is a pre-

interpretation, and that it satisfies O but refutes the relevant queries.

Claim D.18. Structure I satisfies conditions (I∃) and (I∀) of pre-interpretations from Definition D.1.

Proof. (Condition I∃) Consider an arbitrary element δv
K1vM1

∈ ∆ and a literal ∃R.A ∈ J(δv
K1vM1

); we

show that an edge 〈δv
K1vM1

, γ,R〉 ∈ E exists such that A ∈ J(γ). Let W be the ε-component of D

such that v ∈W . By admissibility condition (S3), an edge 〈w, u,∃R.A〉 ∈ E exists such that w ∈W

and conditions (D.19) and (D.20) are both satisfied.

poss(u) ⊇ {A} ∪ {B | ∀R.B ∈ poss(W)} (D.19)

poss(w) ⊇ {∃R.A} ∪ {∀R.B | ∀R.B ∈ poss(W)} (D.20)

Let U be the ε-component of D such that u ∈ U , and let K2 and M2 be as in (D.17) and (D.18). The

following observations establish u 0 A u K2 v M2.

• A u K2 ⊆ poss(u) follows from (D.17), Property 1 of Claim D.17, and (D.19).

186



• Admissibility condition (S2) implies M2 ∩ poss(U) ⊆ poss(u).

• Disjunction M2 is ≺u-minimal since, by admissibility condition (P1), 〈w, u,∃R.A〉 ∈ E implies

that ≺u is R-admissible.

• Consider an arbitrary literal L ∈ A u K2; we show that A u K2 v L ∈̂ S(u). Assume that

L ∈ K2, so L is an atomic concept L = B. Then, we have ∀R.B ∈ J(δv
K1vM1

) ⊆ poss(W)

by (D.17) and Property 1 of Claim D.17. Thus, we have B ∈ poss(u) and ∀R.B ∈ poss(w)

by (D.19) and (D.20), and then B v B ∈̂ S(u) by condition (I3) of Theorem 10.4, which is

stronger than the required A u K2 v B ∈̂ S(u). The proof for the case L = A is analogous.

• Assume for contradiction that A u K2 v M2 ∈̂ S(u). By admissibility condition (S2), we have

C ∈ poss(w) for each ∀inv(R).C ∈ M2. Thus, since the Pred rule from Table 10.1 is not appli-

cable to S(v), the Pred from Table 8.1 is not applicable to S(v) either. Hence, by Lemma D.11,

set S(w) is closed under ≺w-hyperresolution with the clause

∃R.A u
�
{∀R.B | ∀R.B ∈ J(δv

K1vM1
)} v

⊔
{C | ∀inv(R).C ∈ poss(U) and C < J(δv

K1vM1
)}.

Recall that ∃R.A ∈ J(δv
K1vM1

), so the above clause is clearly refuted in J(δv
K1vM1

). However,

all literals on the left-hand side of this clause are contained in poss(w) by (D.20), and each

concept C on its right-hand side is contained in poss(w); but then, Property 3 of Claim D.17

implies that this clause is satisfied in J(δv
K1vM1

), which is a contradiction. Consequently, we

have A u K2 v M2 6∈̂ S(u), as required.

Thus, we have u 0 A u K2 v M2, which implies 〈δv
K1vM1

, δu
AuK2vM2

,R〉 ∈ E by the definition of E.

Finally, A ∈ J(δu
AuK2vM2

) holds by Property 2 of Claim D.17. This concludes the proof of condition

(I∃).

(Condition I∀). Consider an arbitrary edge 〈δv
K1vM1

, δu
AuK2vM2

,R〉 ∈ E and arbitrary literals ∀R.B

and ∀inv(R).C, and let U be the ε-component of D such that u ∈ U .

• Assume that ∀R.B ∈ J(δv
K1vM1

). Then B ∈ K2 by (D.17); hence Property 2 of Claim D.17

implies J(δu
AuK2vM2

) 6|= A u K2 v M2; therefore B ∈ J(δu
AuK2vM2

), as required.

187



• Assume that ∀inv(R).C ∈ J(δu
AuK2vM2

). Then, we have ∀inv(R).C ∈ poss(U) by Property 1 of

Claim D.17. If C < J(δv
K1vM1

), then ∀inv(R).C ∈ M2 by (D.18), so ∀inv(R).C < J(δu
AuK2vM2

)

by Property 2 of Claim D.17, which contradicts the assumption. Consequently, we have

C ∈ J(δv
K1vM1

), as required. �

Claim D.19. Pre-interpretation I is a pre-model of O.

Proof. Consider an arbitrary element δv
KvM ∈ ∆ and an arbitrary normal clause K′ v M′ ∈ O; we

show that J(δv
KvM) satisfies K′ v M′. This is obvious if K′ * J(δv

KvM), so assume K′ ⊆ J(δv
KvM).

Let W be the ε-component of D such that v ∈W . Then, by Property 1 of Claim D.17, we have

K′ ⊆ poss(W). Furthermore, by the ontology condition of Definition 10.3, a context w ∈W exists

such that K′ ∪ M′ ⊆ poss(w). Since S is closed under the Hyper rule from Table 10.1, set S(w)

is closed under ≺w-hyperresolution with K′ v M′. But then, Property 3 of Claim D.17 implies

J(δv
KvM) |= K′ v M′, as required. �

Claim D.20. Pre-interpretation I refutes each query K v M for which there exists a context v ∈ V

such that v is complete for K v M, K v L ∈̂ S(v) for each L ∈ K, and K v M 6∈̂ S(v).

Proof. Let K v M be a query satisfying the preconditions of the claim, and let M′ = M ∩ L. Then

v 0 K v M′ holds as well, and this clause is over L by Claim D.12. But then, J(δv
KvM′) 6|= K v M′

by Property 2 of Claim D.17. Finally, each literal from M \ M′ is not from L so it cannot occur in

J(δv
KvM′); thus, J(δv

KvM′) 6|= K v M holds as well, so I refutes K v M, as required. �

188



Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison Wes-
ley, 1994.

[2] Eyal Amir and Sheila A. McIlraith. Partition-based logical reasoning for first-order and
propositional theories. Artificial Intelligence, 162(1-2):49–88, 2005.

[3] Hajnal Andréka, István Németi, and Johan van Benthem. Modal languages and bounded
fragments of predicate logic. J. of Philosophical Logic, 27(3):217–274, 1998.

[4] Ana Armas Romero, Bernardo Cuenca Grau, and Ian Horrocks. MORe: modular combina-
tion of OWL reasoners for ontology classification. In Philippe Cudré-Mauroux, Jeff Heflin,
Evren Sirin, Tania Tudorache, Jérôme Euzenat, Manfred Hauswirth, Josiane Xavier Parreira,
Jim Hendler, Guus Schreiber, Abraham Bernstein, and Eva Blomqvist, editors, Proc. 11th
Int. Semantic Web Conf. (ISWC’12), volume 7649 of LNCS, pages 1–16. Springer, 2012.

[5] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev. The
DL-Lite family and relations. J. of Artificial Intelligence Research, 36:1–69, 2009.

[6] Mina Aslani and Volker Haarslev. Parallel TBox classification in description logics – first
experimental results. In Helder Coelho, Rudi Studer, and Michael Wooldridge, editors, Proc.
19th European Conf. on Artificial Intelligence (ECAI’10), volume 215 of Frontiers in Artifi-
cial Intelligence and Applications, pages 485–490. IOS Press, 2010.

[7] Mina Aslani and Volker Haarslev. Concurrent classification of OWL ontologies – An empiri-
cal evaluation. In Yevgeny Kazakov, Domenico Lembo, and Frank Wolter, editors, Proc. 25th
Int. Workshop on Description Logics (DL’12), volume 846 of CEUR Workshop Proceedings,
pages 400–410. CEUR-WS.org, 2012.

[8] Franz Baader. Terminological cycles in a description logic with existential restrictions. In
Georg Gottlob and Toby Walsh, editors, Proc. 18th Int. Joint Conf. on Artificial Intelligence
(IJCAI’03), pages 325–330. Morgan Kaufmann, 2003.

[9] Franz Baader, Stefan Borgwardt, and Barbara Morawska. Extending unification in EL to-
wards general TBoxes. In Gerhard Brewka, Thomas Eiter, and Sheila A. McIlraith, editors,
Proc. 13th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’12),
pages 568–572. AAAI Press, 2012.

[10] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In Leslie
Pack Kaelbling and Alessandro Saffiotti, editors, Proc. 19th Int. Joint Conf. on Artificial
Intelligence (IJCAI’05), pages 364–369. Professional Book Center, 2005.

189



[11] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope further. In
Kendall G. Clark and Peter F. Patel-Schneider, editors, Proc. OWLED 2008 DC Workshop
on OWL: Experiences and Directions, volume 496 of CEUR Workshop Proceedings. CEUR-
WS.org, 2008.

[12] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Ap-
plications. Cambridge University Press, second edition, 2007.

[13] Franz Baader, Ralf Küsters, and Ralf Molitor. Computing least common subsumers in de-
scription logics with existential restrictions. In Thomas Dean, editor, Proc. 16th Int. Joint
Conf. on Artificial Intelligence (IJCAI’99), pages 96–103. Morgan Kaufmann, 1999.

[14] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. Is tractable reasoning in ex-
tensions of the description logic EL useful in practice? In In Proceedings of the 2005
International Workshop on Methods for Modalities (M4M’05), 2005.

[15] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. CEL—a polynomial-time rea-
soner for life science ontologies. In Ulrich Furbach and Natarajan Shankar, editors, Proc. 3rd
Int. Joint Conf. on Automated Reasoning (IJCAR’06), volume 4130 of LNCS, pages 287–291.
Springer, 2006.

[16] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. Efficient reasoning in EL+. In
Bijan Parsia, Ulrike Sattler, and David Toman, editors, Proc. 19th Int. Workshop on Descrip-
tion Logics (DL’06), volume 189 of CEUR Workshop Proceedings. CEUR-WS.org, 2006.

[17] Franz Baader, Baris Sertkaya, and Anni-Yasmin Turhan. Computing the least common sub-
sumer w.r.t. a background terminology. J. of Applied Logics, 5(3):392–420, 2007.

[18] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John Alan Robinson
and Andrei Voronkov, editors, Handbook of Automated Reasoning (in 2 volumes), volume I,
chapter 2, pages 19–99. Elsevier and MIT Press, 2001.

[19] Matteo Baldoni, Laura Giordano, and Alberto Martelli. A tableau calculus for multimodal
logics and some (un)decidability results. In Proc. Int. Conf. on Automatic Reasoning with
Analytic Tableaux and Related Methods (TABLEAUX’98), pages 44–59. Springer, 1998.

[20] Dave Beckett, editor. RDF/XML Syntax Specification (Revised). W3C Recommendation, 10
February 2004. Available at http://www.w3.org/TR/rdf-syntax-grammar/.

[21] Frank W. Bergmann and Joachim Quantz. Parallelizing description logics. In Ipke
Wachsmuth, Claus-Rainer Rollinger, and Wilfried Brauer, editors, Proc. 19th Annual Ger-
manConf. on Artificial Intelligence (KI’95), volume 981 of LNCS, pages 137–148. Springer,
1995.

[22] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

[23] Loris Bozzato, Martin Homola, and Luciano Serafini. Towards more effective tableaux rea-
soning for CKR. In Yevgeny Kazakov, Domenico Lembo, and Frank Wolter, editors, Proc.
25th Int. Workshop on Description Logics (DL’12), volume 846 of CEUR Workshop Pro-
ceedings, pages 114–124. CEUR-WS.org, 2012.

190

http://www.w3.org/TR/rdf-syntax-grammar/


[24] Ronald J. Brachman and Hector J. Levesque. The tractability of subsumption in frame-based
description languages. In Ronald J. Brachman, editor, Proc. 4th National Conf. on Artificial
Intelligence (AAAI’84), pages 34–37. AAAI Press, 1984.

[25] Sebastian Brandt. Polynomial time reasoning in a description logic with existential restric-
tions, GCI axioms, and – What else? In Ramon López de Mántaras and Lorenza Saitta,
editors, Proc. 16th European Conf. on Artificial Intelligence (ECAI’04), pages 298–302. IOS
Press, 2004.

[26] Dan Brickley and Ramanathan V. Guha, editors. RDF Vocabulary Description Language
1.0: RDF Schema. W3C Recommendation, 10 February 2004. Available at http://www.
w3.org/TR/rdf-schema/.

[27] Diego Calvanese, Guiseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query answering in description logics: The
DL-Lite family. J. of Automated Reasoning, 39(3):385–429, 2007.

[28] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. Modular reuse
of ontologies: Theory and practice. J. of Artificial Intelligence Research, 31:273–318, 2008.

[29] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter Patel-Schneider, and
Ulrike Sattler. OWL 2: The next step for OWL. J. of Web Semantics, 6:309–322, 2008.

[30] John Day-Richter, editor. The OBO Flat File Format Specification, version 1.2. The Gene
Ontology Consortium, 2006. Available at http://www.geneontology.org/GO.format.
obo-1_2.shtml.

[31] Vincent Delaitre and Yevgeny Kazakov. Classifying ELH ontologies in SQL databases.
In Peter F. Patel-Schneider and Rinke Hoekstra, editors, Proc. OWLED 2009 Workshop on
OWL: Experiences and Directions, volume 529 of CEUR Workshop Proceedings. CEUR-
WS.org, 2009.

[32] Stéphane Demri and Hans Nivelle. Deciding regular grammar logics with converse through
first-order logic. J. of Logic, Language and Information, 14(3):289–329, 2005.

[33] Sebastian Derriere, Alexandre Richard, and Andrea Preite-Martinez. An ontology of astro-
nomical object types for the virtual observatory. In Proc. 26th meeting of the IAU: Virtual
Observatory in Action: New Science, New Technology, and Next Generation Facilities, pages
17–18, 2006.

[34] Rod G. Downey and Michael R. Fellows. Parameterized Complexity. Springer, 1999.

[35] Thomas Eiter, Thomas Krennwallner, Patrik Schneider, and Guohui Xiao. Uniform evalua-
tion of nonmonotonic DL-programs. In Thomas Lukasiewicz and Attila Sali, editors, Proc.
7th Int. Symposium on Foundations of Information and Knowledge Systems (FoIKS’12), vol-
ume 7153 of LNCS, pages 1–22. Springer, 2012.

[36] Christian G. Fermüller, Alexander Leitsch, Ullrich Hustadt, and Tanel Tammet. Resolution
decision procedures. In John Alan Robinson and Andrei Voronkov, editors, Handbook of
Automated Reasoning (in 2 volumes), volume II, chapter 25, pages 1791–1849. Elsevier and
MIT Press, 2001.

191

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.geneontology.org/GO.format.obo-1_2.shtml
http://www.geneontology.org/GO.format.obo-1_2.shtml


[37] Charles Forgy. Rete: A fast algorithm for the many pattern/many object pattern match prob-
lem. Artificial Intelligence, 19:17–37, 1982.

[38] Georgios V. Gkoutos, Paul N. Schofield, and Robert Hoehndorf. Computational tools for
comparative phenomics: the role and promise of ontologies. Mammalian Genome, 23(9–
10):669–679, 2012.

[39] Birte Glimm, Ian Horrocks, Boris Motik, Rob Shearer, and Giorgos Stoilos. A novel ap-
proach to ontology classification. J. of Web Sementics, 14:84–101, 2012.

[40] Christine Golbreich, Songmao Zhang, and Oliver Bodenreider. The foundational model of
anatomy in OWL: Experience and perspectives. J. of Web Semantics, 4(3):181–195, 2006.

[41] Rafael S. Gonçalves, Bijan Parsia, and Ulrike Sattler. Performance heterogeneity and ap-
proximate reasoning in description logic ontologies. In Philippe Cudré-Mauroux, Jeff Heflin,
Evren Sirin, Tania Tudorache, Jérôme Euzenat, Manfred Hauswirth, Josiane Xavier Parreira,
Jim Hendler, Guus Schreiber, Abraham Bernstein, and Eva Blomqvist, editors, Proc. 11th
Int. Semantic Web Conf. (ISWC’12), volume 7649 of LNCS, pages 82–98. Springer, 2012.

[42] John Goodwin. Experiences of using OWL at the Ordnance Survey. In Bernardo Cuenca
Grau, Ian Horrocks, Bijan Parsia, and Peter F. Patel-Schneider, editors, Proc. OWLED 2005
Workshop on OWL: Experiences and Directions, volume 188 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2005.

[43] Rajeev Goré and Linh Anh Nguyen. EXPTIME tableaux with global caching for description
logics with transitive roles, inverse roles and role hierarchies. In Nicola Olivetti, editor,
Proc. 16th Int. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods,
volume 4548 of LNCS, pages 133–148. Springer, 2007.

[44] Rajeev Goré and Linh Anh Nguyen. ExpTime tableaux for ALC using sound global caching.
Journal of Automated Reasoning, 50(4):355–381, 2013.

[45] Stephan Grimm, Michael Watzke, Thomas Hubauer, and Falco Cescolini. Embedded EL+

reasoning on programmable logic controllers. In Philippe Cudré-Mauroux, Jeff Heflin, Evren
Sirin, Tania Tudorache, Jérôme Euzenat, Manfred Hauswirth, Josiane Xavier Parreira, Jim
Hendler, Guus Schreiber, Abraham Bernstein, and Eva Blomqvist, editors, Proc. 11th Int.
Semantic Web Conf. (ISWC’12), volume 7649 of LNCS, pages 66–81. Springer, 2012.

[46] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description logic
programs: combining logic programs with description logic. In Proc. 12th Int. Conf. on
World Wide Web (WWW’03), pages 48–57. ACM, 2003.

[47] Volker Haarslev and Ralf Möller. Racer system description. In Rajeev Goré, Alexander
Leitsch, and Tobias Nipkow, editors, Proc. 1st Int. Joint Conf. on Automated Reasoning (IJ-
CAR’01), volume 2083 of LNCS, pages 701–705. Springer, 2001.

[48] Patrick Hayes, editor. RDF Semantics. W3C Recommendation, 10 February 2004. Available
at http://www.w3.org/TR/rdf-mt/.

[49] Norman Heino and Jeff Z. Pan. RDFS reasoning on massively parallel hardware. In
Philippe Cudré-Mauroux, Jeff Heflin, Evren Sirin, Tania Tudorache, Jérôme Euzenat, Man-
fred Hauswirth, Josiane Xavier Parreira, Jim Hendler, Guus Schreiber, Abraham Bernstein,

192

http://www.w3.org/TR/rdf-mt/


and Eva Blomqvist, editors, Proc. 11th Int. Semantic Web Conf. (ISWC’12), volume 7649 of
LNCS, pages 133–148. Springer, 2012.

[50] Robert Hoehndorf, Michel Dumontier, and Georgios V. Gkoutos. Identifying aberrant
pathways through integrated analysis of knowledge in pharmacogenomics. Bioinformatics,
28(16):2169–2175, 2012.

[51] Robert Hoehndorf, Midori A. Harris, Heinrich Herre, Gabriella Rustici, and Georgios V.
Gkoutos. Semantic integration of physiology phenotypes with an application to the cellular
phenotype ontology. Bioinformatics, 28(13):1783–1789, 2012.

[52] Martin Hofmann. Proof-theoretic approach to description-logic. In Proc. 20th Annual IEEE
Symposium on Logic in Computer Science (LICS’05), pages 229–237. IEEE Computer Soci-
ety, 2005.

[53] Aidan Hogan, Andreas Harth, and Axel Polleres. Scalable authoritative OWL reasoning for
the Web. Int. J. of Semantic Web Inf. Syst., 5(2):49–90, 2009.

[54] Aidan Hogan, Jeff Z. Pan, Axel Polleres, and Stefan Decker. SAOR: template rule optimisa-
tions for distributed reasoning over 1 billion linked data triples. In Peter F. Patel-Schneider,
Yue Pan, Birte Glimm, Pascal Hitzler, Peter Mika, Jeff Pan, and Ian Horrocks, editors, Proc.
9th Int. Semantic Web Conf. (ISWC’10), volume 6496 of LNCS, pages 337–353. Springer,
2010.

[55] Matthew Horridge and Sean Bechhofer. The OWL API: A Java API for working with OWL
2 ontologies. In Peter F. Patel-Schneider and Rinke Hoekstra, editors, Proc. OWLED 2009
Workshop on OWL: Experiences and Directions, volume 529 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2009.

[56] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ. In
Patrick Doherty, John Mylopoulos, and Christopher A. Welty, editors, Proc. 10th Int. Conf.
on Principles of Knowledge Representation and Reasoning (KR’06), pages 57–67. AAAI
Press, 2006.

[57] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for expressive descrip-
tion logics. In Harald Ganzinger, David A. McAllester, and Andrei Voronkov, editors, Proc.
6th Int. Conf. on Logic Programming and Automated Reasoning (LPAR’99), volume 1705 of
LNCS, pages 161–180. Springer, 1999.

[58] Simon Jupp, Robert Stevens, and Robert Hoehndorf. Logical gene ontology annotations
(GOAL): exploring gene ontology annotations with OWL. J. of Biomedical Semantics,
3(Suppl 1)(S3):1–16, 2012.

[59] Yevgeny Kazakov. RIQ and SROIQ are harder than SHOIQ. In Gerhard Brewka and
Jérôme Lang, editors, Proc. 11th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR’08), pages 274–284. AAAI Press, 2008.

[60] Yevgeny Kazakov. Consequence-driven reasoning for Horn SHIQ ontologies. In Craig
Boutilier, editor, Proc. 21st Int. Joint Conf. on Artificial Intelligence (IJCAI’09), pages 2040–
2045. IJCAI, 2009.

193



[61] Yevgeny Kazakov. An extension of regularity conditions for complex role inclusion axioms.
In Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, and Ulrike Sattler, editors, Proc. 22nd
Int. Workshop on Description Logics (DL’09), volume 477 of CEUR Workshop Proceedings.
CEUR-WS.org, 2009.

[62] Yevgeny Kazakov and Pavel Klinov. Incremental reasoning in OWL EL without bookkeep-
ing. Technical report, University of Ulm, 2013. Available at http://code.google.com/
p/elk-reasoner/.

[63] Yevgeny Kazakov, Markus Krötzsch, and František Simančík. Concurrent classification of
EL ontologies. In Lora Aroyo, Chris Welty, Harith Alani, Jamie Taylor, Abraham Bernstein,
Lalana Kagal, Natasha Noy, and Eva Blomqvist, editors, Proc. 10th Int. Semantic Web Conf.
(ISWC’11), volume 7032 of LNCS, pages 305–320. Springer, 2011.

[64] Yevgeny Kazakov, Markus Krötzsch, and František Simančík. Unchain my EL reasoner.
In Riccardo Rosati, Sebastian Rudolph, and Michael Zakharyaschev, editors, Proc. 24th Int.
Workshop on Description Logics (DL’11), volume 745 of CEUR Workshop Proceedings,
pages 202–212. CEUR-WS.org, 2011.

[65] Yevgeny Kazakov, Markus Krötzsch, and František Simančík. Practical reasoning with nom-
inals in the EL family of description logics. In Gerhard Brewka, Thomas Eiter, and Sheila A.
McIlraith, editors, Proc. 13th Int. Conf. on Principles of Knowledge Representation and Rea-
soning (KR’12), pages 264–274. AAAI Press, 2012.

[66] Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, and Mark A. Musen. The Protégé
OWL Plugin: An open development environment for Semantic Web applications. In Sheila A.
McIlraith, Dimitris Plexousakis, and Frank van Harmelen, editors, Proc. 3rd Int. Semantic
Web Conf. (ISWC’04), volume 3298 of LNCS, pages 229–243. Springer, 2004.

[67] Vladimir Kolovski, Zhe Wu, and George Eadon. Optimizing enterprise-scale OWL 2 RL
reasoning in a relational database system. In Peter F. Patel-Schneider, Yue Pan, Birte Glimm,
Pascal Hitzler, Peter Mika, Jeff Pan, and Ian Horrocks, editors, Proc. 9th Int. Semantic Web
Conf. (ISWC’10), volume 6496 of LNCS, pages 436–452. Springer, 2010.

[68] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Zakharyaschev.
The combined approach to ontology-based data access. In Toby Walsh, editor, Proc. 22nd
Int. Joint Conf. on Artificial Intelligence (IJCAI’11), pages 2656–2661. AAAI Press/IJCAI,
2011.

[69] Spyros Kotoulas, Eyal Oren, and Frank van Harmelen. Mind the data skew: distributed
inferencing by speeddating in elastic regions. In Proc. 19th Int. Conf. on World Wide Web
(WWW’10), WWW’10, pages 531–540. ACM, 2010.

[70] Markus Krötzsch. Efficient rule-based inferencing for OWL EL. In Toby Walsh, editor,
Proc. 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI’11), pages 2668–2673. AAAI
Press/IJCAI, 2011.

[71] Markus Krötzsch. The not-so-easy task of computing class subsumptions in OWL RL. In
Philippe Cudré-Mauroux, Jeff Heflin, Evren Sirin, Tania Tudorache, Jérôme Euzenat, Man-
fred Hauswirth, Josiane Xavier Parreira, Jim Hendler, Guus Schreiber, Abraham Bernstein,
and Eva Blomqvist, editors, Proc. 11th Int. Semantic Web Conf. (ISWC’12), volume 7649 of
LNCS, pages 279–294. Springer, 2012.

194

http://code.google.com/p/elk-reasoner/
http://code.google.com/p/elk-reasoner/


[72] Markus Krötzsch. OWL 2 Profiles: An introduction to lightweight ontology languages. In
Thomas Eiter and Thomas Krennwallner, editors, Proc. 8th Reasoning Web Summer School,
Vienna, Austria, September 3–8 2012, volume 7487 of LNCS, pages 112–183. Springer, 2012.

[73] Markus Krötzsch, Anees Mehdi, and Sebastian Rudolph. Orel: Database-driven reasoning
for OWL 2 profiles. In Volker Haarslev, David Toman, and Grant Weddell, editors, Proc. 23rd
Int. Workshop on Description Logics (DL’10), volume 573 of CEUR Workshop Proceedings,
pages 114–124. CEUR-WS.org, 2010.

[74] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Complexity boundaries for Horn
description logics. In Proc. 22nd AAAI Conf. on Artificial Intelligence (AAAI’07), pages
452–457. AAAI Press, 2007.

[75] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Conjunctive queries for a tractable
fragment of OWL 1.1. In Karl Aberer, Key-Sun Choi, Natasha Noy, Dean Allemang, Kyung-
Il Lee, Lyndon Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi,
Guus Schreiber, and Philippe Cudré-Mauroux, editors, Proc. 6th Int. Semantic Web Conf.
(ISWC’07), volume 4825 of LNCS, pages 310–323. Springer, 2007.

[76] Markus Krötzsch, František Simančík, and Ian Horrocks. A description logic primer. CoRR,
abs/1201.4089, 2012.

[77] Lee Lacy, Gabriel Aviles, Karen Fraser, William Gerber, Alice M. Mulvehill, and Robert
Gaskill. Experiences using OWL in military applications. In Bernardo Cuenca Grau, Ian
Horrocks, Bijan Parsia, and Peter F. Patel-Schneider, editors, Proc. OWLED 2005 Workshop
on OWL: Experiences and Directions, volume 188 of CEUR Workshop Proceedings. CEUR-
WS.org, 2005.

[78] Michael J. Lawley and Cyril Bousquet. Fast classification in Protégé: Snorocket as an OWL
2 EL reasoner. In Kerry Taylor, Thomas Meyer, and Mehmet Orgun, editors, Proc. 6th
Australasian Ontology Workshop (IAOA’10), volume 122 of Conferences in Research and
Practice in Information Technology, pages 45–49. Australian Computer Society Inc., 2010.

[79] Fritz Lehmann. Semantic networks. In Fritz Lehmann, editor, Semantic Networks in Artificial
Intelligence, pages 1–50. Pergamon Press, 1992.

[80] Thorsten Liebig and Felix Müller. Parallelizing tableaux-based description logic reasoning.
In Robert Meersman, Zahir Tari, and Pilar Herrero, editors, Proceedings of OTM Workshops
2007, Part II, volume 4806 of LNCS, pages 1135–1144. Springer, 2007.

[81] Ewing L. Lusk, William McCune, and John K. Slaney. Roo: A parallel theorem prover. In
Deepak Kapur, editor, Proc. 11th Conf. on Automated Deduction (CADE’92), volume 607 of
LNCS, pages 731–734. Springer, 1992.

[82] Carsten Lutz, Dirk Walther, and Frank Wolter. Conservative extensions in expressive descrip-
tion logics. In Manuela M. Veloso, editor, Proc. 20th Int. Joint Conf. on Artificial Intelligence
(IJCAI’07), pages 453–458. IJCAI, 2007.

[83] Despoina Magka, Yevgeny Kazakov, and Ian Horrocks. Tractable extensions of the descrip-
tion logic EL with numerical datatypes. J. of Automated Reasoning, 47(4):427–450, 2011.

195



[84] Frank Manola and Eric Miller, editors. Resource Description Framework (RDF): Primer.
W3C Recommendation, 10 February 2004. Available at http://www.w3.org/TR/
rdf-primer/.

[85] Adam Meissner. Experimental analysis of some computation rules in a simple parallel rea-
soning system for the ALC description logic. Int. J. of Applied Mathematics and Computer
Science, 21(1):83–95, 2011.

[86] Julian Mendez. jcel: A modular rule-based reasoner. In Ian Horrocks, Mikalai Yatske-
vich, and Ernesto Jimenez-Ruiz, editors, Proc. OWL Reasoner Evaluation Workshop 2012
(ORE’12), volume 858 of CEUR Workshop Proceedings. CEUR-WS.org, 2012.

[87] Julian Mendez, Andreas Ecke, and Anni-Yasmin Turhan. Implementing completion-based
inferences for the EL-family. In Riccardo Rosati, Sebastian Rudolph, and Michael Za-
kharyaschev, editors, Proc. 24th Int. Workshop on Description Logics (DL’11), volume 745
of CEUR Workshop Proceedings, pages 334–344. CEUR-WS.org, 2011.

[88] Julian Mendez and Boontawee Suntisrivaraporn. Reintroducing CEL as an OWL 2 EL rea-
soner. In Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, and Ulrike Sattler, editors,
Proc. 22nd Int. Workshop on Description Logics (DL’09), volume 477 of CEUR Workshop
Proceedings. CEUR-WS.org, 2009.

[89] Ralf Möller, Volker Haarslev, and Sebastian Wandelt. The revival of structural subsump-
tion in tableau-based reasoners. In Franz Baader, Carsten Lutz, and Boris Motik, editors,
Proc. 21st Int. Workshop on Description Logics (DL’08), volume 353 of CEUR Workshop
Proceedings. CEUR-WS.org, 2008.

[90] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten
Lutz, editors. OWL 2 Web Ontology Language: Profiles. W3C Recommendation, 27 October
2009. Available at http://www.w3.org/TR/owl2-profiles/.

[91] Boris Motik, Peter F. Patel-Schneider, and Bernardo Cuenca Grau, editors. OWL 2 Web
Ontology Language: Direct Semantics. W3C Recommendation, 27 October 2009. Available
at http://www.w3.org/TR/owl2-direct-semantics/.

[92] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia, editors. OWL 2 Web Ontology Lan-
guage: Structural Specification and Functional-Style Syntax. W3C Recommendation, 27
October 2009. Available at http://www.w3.org/TR/owl2-syntax/.

[93] Boris Motik and Ulrike Sattler. A comparison of reasoning techniques for querying large
description logic ABoxes. In Miki Hermann and Andrei Voronkov, editors, Proc. 13th Int.
Conf. on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’06), volume
4246 of LNCS, pages 227–241. Springer, 2006.

[94] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau reasoning for description logics.
J. of Artificial Intelligence Research, 36:165–228, 2009.

[95] Raghava Mutharaju, Frederick Maier, and Pascal Hitzler. A MapReduce algorithm for EL+.
In Volker Haarslev, David Toman, and Grant Weddell, editors, Proc. 23rd Int. Workshop on
Description Logics (DL’10), volume 573 of CEUR Workshop Proceedings, pages 464–474.
CEUR-WS.org, 2010.

196

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-syntax/


[96] Sivaramakrishnan Narayanan, Ümit V. Çatalyürek, Tahsin M. Kurç, and Joel H. Saltz. Par-
allel materialization of large ABoxes. In Sung Y. Shin and Sascha Ossowski, editors, Proc.
ACM Symposium on Applied Computing (SAC’09), pages 1257–1261. ACM, 2009.

[97] Nadeschda Nikitina and Sebastian Rudolph. ExpExpExplosion: uniform interpolation in
general EL terminologies. In Luc De Raedt, Christian Bessière, Didier Dubois, Patrick Do-
herty, Paolo Frasconi, Fredrik Heintz, and Peter J. F. Lucas, editors, Proc. 20th European
Conf. on Artificial Intelligence (ECAI’12), volume 242 of Frontiers in Artificial Intelligence
and Applications, pages 618–623. IOS Press, 2012.

[98] Magdalena Ortiz, Sebastian Rudolph, and Mantas Simkus. Worst-case optimal reasoning for
the Horn-DL fragments of OWL 1 and 2. In Fangzhen Lin, Ulrike Sattler, and Miroslaw
Truszczynski, editors, Proc. 12th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR’10), pages 269–279. AAAI Press, 2010.

[99] David Osumi-Sutherland, Simon Reeve, Christopher J. Mungall, Fabian Neuhaus, Alan Rut-
tenberg, Gregory S. X. E. Jefferis, and J. Douglas Armstrong. A strategy for building neu-
roanatomy ontologies. Bioinformatics, 28(9):1262–1269, 2012.

[100] W3C OWL Working Group. OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation, 27 October 2009. Available at http://www.w3.org/TR/
owl2-overview/.

[101] Antonella Poggi, Diego Calvanese, De Giacomo, Giuseppe, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Linking data to ontologies. J. of Data Semantics, X:133–
173, 2008.

[102] Alan Rector, Also Gangemi, Elena Galeazzi, Andrzej J. Glowinski, and Aangelo Rossi-
Mori. The GALEN CORE model schemata for anatomy: Towards a re-usable application-
independent model of medical concepts. In Pedro Barahona, Mario Veloso, and Jeremy
Bryant, editors, Proc. 12th Int. Congress of the European Federation for Medical Informatics
(MIE’94), pages 229–233, 1994.

[103] Alan Rector and Luigi Iannone. Lexically suggest, logically define: Quality assurance of the
use of qualifiers and expected results of post-coordination in SNOMED CT. J. of Biomedical
Informatics, 45:199–209, 2012.

[104] Alan L. Rector, Sean Bechhofer, Carole A. Goble, Ian Horrocks, W. A. Nowlan, and W. D.
Solomon. The grail concept modelling language for medical terminology. Artificial Intelli-
gence in Medicine, 9(2):139–171, 1997.

[105] Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. J. of Combina-
torial Theory, Series B, 36(1):49–64, 1984.

[106] Jeremy E. Rogers. Quality assurance of medical ontologies. Methods Inf Med., 45(3):267–
274, 2006.

[107] Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. Cheap Boolean role constructors
for description logics. In Steffen Hölldobler, Carsten Lutz, and Heinrich Wansing, editors,
Proc. 11th European Conf. on Logics in Artificial Intelligence (JELIA’08), volume 5293 of
LNAI, pages 362–374. Springer, 2008.

197

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/


[108] Klaus Schild. A correspondence theory for terminological logics: Preliminary report. In John
Mylopoulos and Raymond Reiter, editors, Proc. 12th Int. Joint Conf. on Artificial Intelligence
(IJCAI’91), pages 466–471. Morgan Kaufmann, 1991.

[109] Anne Schlicht and Heiner Stuckenschmidt. Peer-to-peer reasoning for interlinked ontologies.
Int. J. of Semantic Computing, 4(1):27–58, 2010.

[110] Anne Schlicht and Heiner Stuckenschmidt. MapResolve. In Sebastian Rudolph and Claudio
Gutierrez, editors, Proc. 5th Int. Conf. on Web Reasoning and Rule Systems (RR’11), volume
6902 of LNCS, pages 294–299. Springer, 2011.

[111] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with comple-
ments. J. of Artificial Intelligence, 48:1–26, 1991.

[112] Michael Schneider, editor. OWL 2 Web Ontology Language: RDF-Based Seman-
tics. W3C Recommendation, 27 October 2009. Available at http://www.w3.org/TR/
owl2-rdf-based-semantics/.

[113] Stefan Schulz, Ronald Cornet, and Kent A. Spackman. Consolidating SNOMED CT’s onto-
logical commitment. Applied Ontology, 6(1):1–11, 2011.

[114] Stepahn Schulz. System description: E 0.81. In David A. Basin and Michael Rusinowitch,
editors, Proc. 2nd Int. Joint Conf. on Automated Reasoning (IJCAR’04), volume 3097 of
LNCS, pages 223–228. Springer, 2004.

[115] Christian Seitz and René Schönfelder. Rule-based OWL reasoning for specific embedded
devices. In Lora Aroyo, Chris Welty, Harith Alani, Jamie Taylor, Abraham Bernstein,
Lalana Kagal, Natasha Noy, and Eva Blomqvist, editors, Proc. 10th Int. Semantic Web Conf.
(ISWC’11), volume 7032 of LNCS, pages 237–252. Springer, 2011.

[116] Baris Sertkaya. In the search of improvements to the EL+ classification algorithm. In Ric-
cardo Rosati, Sebastian Rudolph, and Michael Zakharyaschev, editors, Proc. 24th Int. Work-
shop on Description Logics (DL’11), volume 745 of CEUR Workshop Proceedings, pages
389–399. CEUR-WS.org, 2011.

[117] Eep S. Sidhu, Tharam S. Dillon, Elizabeth Chang, and Baldev S. Sidhu. Protein ontology
development using OWL. In Bernardo Cuenca Grau, Ian Horrocks, Bijan Parsia, and Peter F.
Patel-Schneider, editors, Proc. OWLED 2005 Workshop on OWL: Experiences and Direc-
tions, volume 188 of CEUR Workshop Proceedings. CEUR-WS.org, 2005.

[118] František Simančík. Elimination of complex RIAs without automata. In Yevgeny Kazakov,
Domenico Lembo, and Frank Wolter, editors, Proc. 25th Int. Workshop on Description Log-
ics (DL’12), volume 846 of CEUR Workshop Proceedings, pages 334–344. CEUR-WS.org,
2012.

[119] František Simančík and Andrew Bate. Consequence-based reasoning for SHIQ. Technical
report, University of Oxford, 2013. Available at http://www.cs.ox.ac.uk/isg/people/
frantisek.simancik/.

[120] František Simančík, Yevgeny Kazakov, and Ian Horrocks. Consequence-based reasoning
beyond Horn ontologies. In Toby Walsh, editor, Proc. 22nd Int. Joint Conf. on Artificial
Intelligence (IJCAI’11), pages 1093–1098. AAAI Press/IJCAI, 2011.

198

http://www.w3.org/TR/owl2-rdf-based-semantics/
http://www.w3.org/TR/owl2-rdf-based-semantics/
http://www.cs.ox.ac.uk/isg/people/frantisek.simancik/
http://www.cs.ox.ac.uk/isg/people/frantisek.simancik/


[121] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. Pellet:
A practical OWL-DL reasoner. J. of Web Semantics, 5(2):51–53, 2007.

[122] Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug, Werner
Ceusters, Louis J. Goldberg, Karen Eilbeck, Amelia Ireland, Christopher J. Mungall,
The OBI Consortium, Neocles Leontis, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-
Assunta Sansone, Richard H. Scheuermann, Nigam Shah, Patricia L. Whetzeland, and
Suzanna Lewis. The OBO Foundry: coordinated evolution of ontologies to support biomed-
ical data integration. Nature Biotechnology, 25:1251–1255, 2007.

[123] Dagobert Soergel, Boris Lauser, Anita C. Liang, Frehiwot Fisseha, Johannes Keizer, and
Stephen Katz. Reengineering thesauri for new applications: The AGROVOC example. J. of
Digital Information, 4(4), 2004.

[124] Ramakrishna Soma and Viktor K. Prasanna. Parallel inferencing for OWL knowledge bases.
In Proc. Int. Conf. on Parallel Processing (ICPP’08), pages 75–82. IEEE Computer Society,
2008.

[125] Boontawee Suntisrivaraporn, Franz Baader, Stefan Schulz, and Kent A. Spackman. Replac-
ing SEP-triplets in SNOMED CT using tractable description logic operators. In AIME, vol-
ume 4594 of LNCS, pages 287–291. Springer, 2007.

[126] Stefan Szeider. On fixed-parameter tractable parameterizations of SAT. In Enrico Giunchiglia
and Armando Tacchella, editors, Proc. 6th Int. Conf. on Theory and Applications of Satisfi-
ability Testing (SAT 2003), Selected Revised Papers, volume 2919 of LNCS, pages 188–202.
Springer, 2003.

[127] Wei Tai, John Keeney, and Declan O’Sullivan. COROR: A composable rule-entailment
OWL reasoner for resource-constrained devices. In Nick Bassiliades, Guido Governatori,
and Adrian Paschke, editors, Proc. 5th Int. Conf. on Rule-Based Reasoning, Programming,
and Applications (RuleML Europe’11), volume 6826 of LNCS, pages 212–226. Springer,
2011.

[128] Herman J. ter Horst. Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. J. of Web Semantics, 3(2–
3):79–115, 2005.

[129] The Gene Ontology Consortium. Gene ontology annotations and resources. Nucleic Acids
Res, 2012.

[130] Edward Thomas, Jeff Z. Pan, and Yuan Ren. TrOWL: Tractable OWL 2 reasoning infras-
tructure. In Lora Aroyo, Grigoris Antoniou, Eero Hyvönen, Annette ten Teije, Heiner Stuck-
enschmidt, Liliana Cabral, and Tania Tudorache, editors, Proc. 7th Extended Semantic Web
Conf. (ESWC’10), volume 6089 of LNCS, pages 431–435. Springer, 2010.

[131] Stephan Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge Rep-
resentation. PhD thesis, RWTH Aachen, Germany, 2001.

[132] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System description.
In Ulrich Furbach and Natarajan Shankar, editors, Proc. 3rd Int. Joint Conf. on Automated
Reasoning (IJCAR’06), volume 4130 of LNCS, pages 292–297. Springer, 2006.

199



[133] Dmitry Tsarkov, Ian Horrocks, and Peter F. Patel-Schneider. Optimizing terminological rea-
soning for expressive description logics. J. of Automated Reasoning, 39(3):277–316, 2007.

[134] Dmitry Tsarkov and Ignazio Palmisano. Chainsaw: a metareasoner for large ontologies. In
Ian Horrocks, Mikalai Yatskevich, and Ernesto Jimenez-Ruiz, editors, Proc. OWL Reasoner
Evaluation Workshop 2012 (ORE’12), volume 858 of CEUR Workshop Proceedings. CEUR-
WS.org, 2012.

[135] Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van Harmelen, and Henri Bal.
WebPIE: a Web-scale parallel inference engine using MapReduce. J. of Web Semantics,
pages 59–75, 2012.

[136] Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and Frank van Harmelen. Scalable distributed
reasoning using MapReduce. In Abraham Bernstein, David R. Karger, Tom Heath, Lee
Feigenbaum, Diana Maynard, Enrico Motta, and Krishnaprasad Thirunarayan, editors, Proc.
8th Int. Semantic Web Conf. (ISWC’09), volume 5823 of LNCS, pages 634–649. Springer,
2009.

[137] Jesse Weaver and James A. Hendler. Parallel materialization of the finite RDFS closure for
hundreds of millions of triples. In Abraham Bernstein, David R. Karger, Tom Heath, Lee
Feigenbaum, Diana Maynard, Enrico Motta, and Krishnaprasad Thirunarayan, editors, Proc.
8th Int. Semantic Web Conf. (ISWC’09), volume 5823 of LNCS, pages 682–697. Springer,
2009.

[138] Christoph Weidenbach. Combining superposition, sorts and splitting. In John Alan Robinson
and Andrei Voronkov, editors, Handbook of Automated Reasoning (in 2 volumes), volume II,
chapter 27, pages 1965–2013. Elsevier and MIT Press, 2001.

[139] Larry Wos, Ross Overbeek, Ewing Lusk, and Jim Boyle. Automated Reasoning: Introduction
and Applications. McGraw-Hill, Inc., New York, NY, USA, second edition, 1992.

[140] Kejia Wu and Volker Haarslev. A parallel reasoner for the description logic ALC. In Yevgeny
Kazakov, Domenico Lembo, and Frank Wolter, editors, Proc. 25th Int. Workshop on Descrip-
tion Logics (DL’12), volume 846 of CEUR Workshop Proceedings, pages 378–388. CEUR-
WS.org, 2012.

[141] Z. Xiang, C. Mungall, A. Ruttenberg, and Y. He. Ontobee: A linked data server and browser
for ontology terms. In International Conference on Biomedical Ontologies (ICBO), pages
279–281, 2011.

[142] Guohui Xiao, Stijn Heymans, and Thomas Eiter. DReW: a reasoner for Datalog-rewritable
description logics and dl-programs. In Thomas Eiter, Adil El Ghali, Sergio Fernández,
Stijn Heymans, Thomas Krennwallner, and François Lévy, editors, Proc. 1st Int. Workshop
on Business Models, Business Rules and Ontologies (BuRO’10), pages 1–14. ONTORULE
Project, 2010.

200


	I Foundations
	Introduction
	Consequence-Based Reasoning
	Contributions

	Description Logics
	Syntax and Semantics
	The DL Family
	Relationship to OWL
	Roadmap


	II ELK System Description
	Consequence-Based Calculus for EL+
	Inference Rules
	Canonical Models

	Saturation Procedures
	Abstract Saturation Procedure
	Saturation Procedure for EL+
	Abstract Concurrent Saturation Procedure
	Concurrent Saturation Procedure for EL+

	Optimization Techniques
	Optimization of Decomposition Rules
	Optimization of the Role Composition Rule
	Disjointness Axioms
	Efficient Join Computation
	Taxonomy Construction

	Experimental Evaluation
	System Overview
	Experimental Setup
	Performance Comparison with Other Reasoners
	Optimizations of Inference Rules
	Concurrency
	Transitive Reduction

	Discussion
	Reasoning in OWL EL and Beyond
	Rule- and Saturation-Based Reasoning
	Concurrent, Distributed, and Parallel Reasoning
	Conclusions and Future Work


	III Beyond Horn DLs
	Consequence-Based Reasoning in ALCI
	Normal Form
	Intuitions
	Formalization
	Redundancy Elimination
	Initialization and Expansion Strategies
	Experimental Evaluation


	IV Parameterized Reasoning in DLs
	Analyzing And-Branching Using e-Free Decompositions
	Fixed-Parameter Tractable Problems
	Intuitions
	Formalization
	Constructing e-Free Decompositions
	Decompositions and the Hypertableau Algorithm

	Analyzing Or-Branching Using General Decompositions
	Tree Decompositions and Treewidth
	Intuitions
	Formalization
	Constructing Decompositions via e-Refinement

	Bounds on Decomposition Length
	Decomposition Transformations
	Upper Bound
	Lower Bound

	Discussion
	Decomposition Width and Length in Practice
	Conclusions and Future Work


	Appendices
	ABoxes and Safe Nominals in EL+
	Normalization of SHI Ontologies
	The Hypertableau Algorithm
	Completeness Proofs
	Proof of Theorem 8.5
	Proof of Theorem 10.4

	Bibliography


