
Datalog Rewritability of Disjunctive Datalog Programs
and Non-Horn OntologiesI

Mark Kaminski, Yavor Nenov, Bernardo Cuenca Grau

Department of Computer Science, University of Oxford, UK

Abstract

We study the problem of rewriting a Disjunctive Datalog program into an equiv-
alent plain Datalog program (i.e., one that entails the same facts for every
dataset). We show that a Disjunctive Datalog program is Datalog rewritable
if and only if it can be rewritten into a linear program (i.e., having at most
one IDB body atom in each rule), thus providing a novel characterisation of
Datalog rewritability in terms of linearisability. Motivated by this result, we
propose the class of markable programs, which extends both Datalog and linear
Disjunctive Datalog and admits Datalog rewritings of polynomial size. We show
that our results can be seamlessly applied to ontological reasoning and identify
two classes of non-Horn ontologies that admit Datalog rewritings of polynomial
and exponential size, respectively. Finally, we shift our attention to conjunctive
query answering and extend our results to the problem of computing a rewrit-
ing of a Disjunctive Datalog program that yields the same answers to a given
query w.r.t. arbitrary data. Our empirical results suggest that a fair number of
non-Horn ontologies are Datalog rewritable and that query answering over such
ontologies becomes feasible using a Datalog engine.

Keywords: Knowledge Representation and Reasoning, Rule Languages,
Disjunctive Datalog, Query Answering, Datalog Rewritability, Description
Logics, Ontologies.

1. Introduction

Disjunctive Datalog, which extends plain Datalog by allowing disjunction
in the head of rules, is a powerful knowledge representation formalism that
has found many applications in the areas of deductive databases, information
integration, and ontological reasoning [3, 4]. Expressiveness comes, however, at
the expense of computational cost: fact entailment is co-NExpTime-complete in

IThis is an extended version of two papers presented at AAAI 2014 [1] and RR 2014 [2].
Email addresses: mark.kaminski@cs.ox.ac.uk (Mark Kaminski),

yavor.nenov@cs.ox.ac.uk (Yavor Nenov), bernardo.cuenca.grau@cs.ox.ac.uk (Bernardo
Cuenca Grau)

Preprint submitted to Elsevier March 23, 2016

combined complexity and co-NP-complete with respect to data [3]. Thus, even
with the development of optimised implementations [5, 6], robust behaviour of
reasoners in data-intensive applications cannot be guaranteed.

Plain Datalog offers more favourable computational properties at the ex-
pense of a loss in expressive power, namely ExpTime-completeness in combined
complexity and PTime-completeness in data [4]. Tractability in data complex-
ity is an appealing property for data-intensive applications of ontologies. In
particular, the RL profile of the ontology language OWL 2 was designed so that
each ontology corresponds to a Datalog program [7]. Furthermore, Datalog
programs obtained from RL ontologies contain rules of a restricted shape, and
hence can be evaluated in polynomial time also in combined complexity, thus
providing the ground for robust implementations. The standardisation of OWL
2 RL has spurred the development of reasoning engines within industry and
academia, such as GraphDB [8] (formerly known as OWLIM), Oracle’s RDF
Semantic Graph [9], and RDFox [10].

In this paper, we study the problem of rewriting a Disjunctive Datalog pro-
gram into a Datalog program that entails the same facts for every dataset. By
computing such rewritings, not only can we ensure tractability in data, but also
exploit the highly optimised reasoning infrastructure available for Datalog.

Our first contribution is a novel characterisation of Datalog rewritability
based on linearity : a restriction that requires each rule to contain at most one
body atom with an IDB predicate (i.e., a predicate occurring in head position).
For plain Datalog, linearity is known to limit the effect of recursion and lead
to reduced data and combined complexity of reasoning [11]. For Disjunctive
Datalog programs the effects of the linearity restriction are, to the best of our
knowledge, unknown.

In Section 3, we show that every linear Disjunctive Datalog program admits
a Datalog rewriting of polynomial size; conversely, every Datalog program can
be polynomially rewritten into linear Disjunctive Datalog. We thus show that
linear Disjunctive Datalog and Datalog have the same computational proper-
ties, and linearisability of Disjunctive Datalog programs is equivalent to their
rewritability into Datalog. We establish these results by means of program
transposition—a novel polynomial transformation in which the rules of a given
Disjunctive Datalog program P are inverted by moving all IDB atoms between
head and body while at the same time replacing their corresponding predicates
with relevant auxiliary predicates of higher arity. If P is linear, transposition
yields a Datalog program; conversely, if P is Datalog, then transposition yields
a linear program.

Motivated by these results we propose in Section 4 the class of markable Dis-
junctive Datalog programs, which extends both Datalog and linear Disjunctive
Datalog while at the same time ensuring that polynomial Datalog rewritings
can be computed by a refinement of transposition. The idea behind markable
programs stems from a natural relaxation of the linearity requirement: instead
of applying to all IDB predicates, it applies only to a subset of marked IDB
predicates. We show that our extended class of programs is efficiently recog-
nisable via a reduction to 2-SAT and that each markable program admits a

2

polynomial Datalog rewriting. In this way, our language based on markability
is capable of capturing disjunctive information while retaining the favourable
computational properties of Datalog.

Unfortunately, in the case of programs that do not satisfy our markabil-
ity condition we have no algorithmic means to determine whether they can be
rewritten into Datalog; indeed, checking Datalog rewritability (or equivalently,
linearisability) of Disjunctive Datalog programs is undecidable. To go a step
farther and identify an even larger class of rewritable programs, we propose
in Section 5 a linearisation procedure based on program unfolding transforma-
tions [12, 13]. Our procedure picks a non-markable rule and a “culprit” body
atom and replaces it with markable rules by unfolding the selected atom. Our
procedure is sound but incomplete: if it succeeds, it outputs a markable program
that is then rewritten into Datalog; if it fails, no conclusion can be drawn.

In Section 6 we study the applicability of our results to ontology reason-
ing. We first consider the natural syntactic intersection between OWL 2 and
Disjunctive Datalog (which we call RLt), and show that fact entailment over
RLt ontologies corresponding to a markable program is tractable in combined
complexity (and hence no harder than in OWL 2 RL [7]). We then lift the
markability condition to ontologies with existentially quantified axioms, and
show that markable ontologies in the expressive Description Logic SHI admit
an exponential size Datalog rewriting.

In Section 7, we shift our attention to conjunctive query answering. In this
setting, it is no longer possible to obtain query-independent Datalog rewritings.
Lutz and Wolter [14] showed that for any program containing at least one
disjunctive rule there exists a conjunctive query such that answering the (fixed)
query with respect to the (fixed) program and an input dataset is co-NP-hard;
thus, under standard complexity-theoretic assumptions, no Datalog rewriting
for such query and program exists. We therefore propose classes of conjunctive
queries and Disjunctive Datalog programs that admit Datalog rewritings and
discuss the implications of these results for ontology reasoning.

We have implemented and evaluated our techniques on a wide range of on-
tologies. Our experiments indicate that a fair number of non-Horn ontologies
used in practice admit a Datalog rewriting. Additionally, our experiments also
demonstrate that our rewriting techniques can significantly improve reasoning
performance and robustness in practice.

2. Preliminaries

We assume standard first-order logic notions of terms, atoms, literals, for-
mulae, sentences, and entailment. We also consider basic notions in first-order
theorem proving such as substitution, unification, most general unifiers (MGUs),
clauses, and clause subsumption [15]. Positive factoring (PF) and binary reso-
lution (BR) are the following inference rules, where σ is an MGU of atoms A
and B:

PF:
C ∨A ∨B
Cσ ∨Aσ

BR:
C ∨A D ∨ ¬B

(C ∨D)σ

3

Rule languages such as Disjunctive Datalog typically support non-monotonic
negation as failure in the Logic Programming literature [4]. In this paper, how-
ever, our focus is on monotonic reasoning and hence we will restrict ourselves to
rules in the context of first-order logic, where negation as failure is not allowed.

2.1. Rule Languages

We assume a first-order signature Σ (with function symbols) where the set of
predicates is partitioned into extensional (or EDB) and intensional (or IDB).
We say that an atom is EDB (IDB) if so is its predicate.

A fact is a function-free ground EDB atom over Σ and a dataset is a finite
set of facts. A rule (or first-order clause) is a sentence over Σ of the form

∀~x∀~z.[ϕ(~x, ~z)→ ψ(~x)]

where tuples of variables ~x and ~z are disjoint, ϕ(~x, ~z) is a (possibly empty)
conjunction of distinct atoms over variables ~x∪~z, and ψ(~x) is a (possibly empty)
disjunction of distinct IDB atoms over ~x. Formula ϕ is the body of r, and ψ is
the head. Quantifiers in rules are omitted for brevity. We assume that rules are
safe, i.e., all variables in the head of a rule occur in the body.

We say that a rule is

• Horn if its head consists of at most one atom, and disjunctive otherwise;

• Disjunctive Datalog if it is function-free;

• Datalog if it is both Disjunctive Datalog and Horn; and

• linear if it contains at most one IDB atom in the body.

A program is a finite set of rules. Additionally, we say that a program is of one
of the aforementioned types if so are all of its rules.

We conclude this section with a few remarks on the structure of programs
that will allow us to substantially simplify later on the presentation of our
technical results. These considerations are without loss of generality.

1. The reader may have noticed that the restriction that IDB predicates do not
occur in datasets is not typically adopted in AI applications. This assumption
can be seamlessly lifted as explained next (see, e.g., [16]). Let θ be a predicate
substitution mapping each IDB predicate Q in P to a fresh predicate Q′. The
IDB expansion Pe of P is obtained by first applying θ to P and then adding
a rule Q(~x)→ Q′(~x) for each IDB predicate Q, where ~x is a vector of distinct
variables and where Q is now treated as an EDB predicate. Then, for each
dataset D and each formula ϕ over the signature of P, we have P ∪ D |= ϕ
iff Pe ∪ D |= ϕθ. Thus, we can lift all our results in this paper to allow for
IDB atoms in datasets by simply replacing P with its IDB expansion.

2. We use the language of first-order rules to capture prominent Knowledge
Representation formalisms such as Description Logics. To this end, we re-
quire that signatures Σ contain the special predicates in first-order logic for

4

universal truth >, and falsehood ⊥. For convenience, however, we treat them
in a non-standard way as ordinary predicates and assume that their special
meaning is axiomatised. Specifically, we assume that > is unary and EDB,
whereas ⊥ is nullary and IDB. We will assume that every dataset D and
program P contain a fact >(a) for each constant in their signature. This
assumption allows us to treat > as a proper EDB predicate. Furthermore,
every program P is of the form P = P0 ∪ P⊥, where each rule in P0 has
a non-empty head and does not mention ⊥ in the body, and where P⊥ is
empty if ⊥ does not occur in P0 and it consists of a single rule with ⊥ in the
body and an empty head otherwise.

2.2. Hyperresolution

Reasoning w.r.t. programs can be realised by means of the hyperresolution
calculus (also referred to as forward chaining in the literature) [15–17]. Let
r =

∧n
i=1 βi → ϕ be a rule and, for each 1 ≤ i ≤ n, let ψi be a disjunction

of ground atoms ψi = χi ∨ αi with αi a single atom. Let σ be an MGU of
each βi, αi. Then, the disjunction of ground atoms ϕ′ = ϕσ ∨ χ1 ∨ · · · ∨ χn is a
hyperresolvent of r and ψ1, . . . , ψn.1

Let P be a program, let D be a dataset, and let ϕ be a disjunction of ground
atoms. A (hyperresolution) derivation of ϕ from P ∪ D is a pair ρ = (T, λ),
where T is a tree, λ a labeling function mapping each node in T to a disjunction
of ground atoms, and the following properties hold for each v ∈ T :

1. if v is the root of T then λ(v) = ϕ;

2. if v is a leaf in T then either λ(v) ∈ D or (→ λ(v)) ∈ P; and

3. if v has children w1, . . . , wn, then λ(v) is a hyperresolvent of a rule r ∈ P
and λ(w1), . . . , λ(wn).

We call a node in a derivation EDB (resp. IDB) if it is labeled by a single
EDB fact (resp. a disjunction of IDB atoms); it follows from the definition of a
derivation that every node is either EDB or IDB.

We write P ∪ D ` ϕ to denote that ϕ has a derivation from P ∪ D. Then,
hyperresolution is sound and complete in the following sense: P ∪ D is unsat-
isfiable iff P ∪ D ` ⊥; furthermore, if P ∪ D is satisfiable then P ∪ D |= α iff
P ∪ D ` α for every ground atom α.

2.3. Queries, Reasoning Problems, and Rewritings

A conjunctive query (CQ) q is a formula of the form ∃~y.ϕ(~x, ~y), with ϕ a
conjunction of function-free atoms. A CQ is Boolean if it is a sentence, and it
is atomic if ϕ(~x, ~y) consists of a single atom and ~y is empty.

1We treat disjunctions of atoms as sets and hence we do not allow for duplicated atoms in
a disjunction.

5

Let L be a class of programs. Fact entailment w.r.t. L is the problem of
deciding whether P ∪ D |= α when given as input a program P ∈ L, a dataset
D and a fact α. The set of all facts entailed by P ∪D is typically referred to as
the materialisation of P ∪ D. Similarly, CQ entailment w.r.t. L is the problem
of deciding whether P ∪ D |= q when given as input P ∈ L, a dataset D and a
Boolean CQ q. CQ entailment reduces to fact entailment if we require the input
query q to be atomic.

The computational properties of these problems are well-understood (e.g.,
see [4]). Both problems are undecidable already for the the class of Horn pro-
grams (which may contain function symbols). For Disjunctive Datalog, they
are co-NExpTime-complete in combined complexity and co-NP-complete w.r.t.
data. Finally, for plain Datalog they are ExpTime-complete in combined com-
plexity and PTime-complete w.r.t. data.

Finally, we say that a program P is a rewriting of a CQ q w.r.t. a set of
first-order sentences F if there exists a predicate Aq such that for each dataset
D over the signature of F and each tuple of constants ~a we have F ∪ D |= q(~a)
iff P ∪ D |= Aq(~a). Program P is a rewriting of F if it is a rewriting of every
atomic query over the signature of F . In particular, if F is a program, then
P ∪ D and F ∪ D are equisatisfiable for each dataset D.

3. A Characterisation of Datalog Rewritability

In this section we establish a strong correspondence between linear Disjunc-
tive Datalog and plain Datalog. This correspondence leads to a new charac-
terisation of Datalog rewritability: a Disjunctive Datalog program is Datalog
rewritable if and only if it is rewritable into linear Disjunctive Datalog.

Our results stem from the correctness of program transposition: a novel
polynomial transformation Ξ applicable to an arbitrary Disjunctive Datalog
program P in which the rules of P are inverted by moving all IDB atoms from
head to body and vice versa while at the same time replacing their corresponding
predicates by auxiliary predicates of higher arity. Intuitively, each fact over an
auxiliary predicate captures a relevant dependency in hyperresolution proofs
between the corresponding facts over predicates in P. Such dependencies are
then “propagated” by the transposed rules so that the derivation of each fact in
P ∪D can be captured by a derivation in Ξ(P)∪D, with Ξ(P) the transposition
of P. In this way, transposition preserves fact entailment: for every dataset D
and fact α over the predicates of the original program P, it holds that P ∪ D
entails α if and only if so does Ξ(P)∪D. Program transposition is presented in
Section 3.1 and its correctness is established in Section 3.2.

In Section 3.3, we exploit transposition to establish our characterisation of
Datalog rewritability of Disjunctive Datalog programs. It follows from the defi-
nition of transposition that Ξ(P) is Datalog whenever P is a linear Disjunctive
Datalog program; conversely, Ξ(P) is linear whenever P is Datalog. Conse-
quently, Ξ can be directly exploited to polynomially rewrite linear Disjunctive
Datalog programs into Datalog, and vice versa. In this way, we not only can

6

conclude that fact entailment over linear Disjunctive Datalog programs has ex-
actly the same data and combined complexity as over plain Datalog programs,
but also that a Disjunctive Datalog program admits a Datalog rewriting if and
only if it is linearisable. Datalog rewritability and linearisability of Disjunctive
Datalog programs are thus equivalent problems.

3.1. Program Transposition

To motivate program transposition, consider as an example the following
Disjunctive Datalog program P1, which we aim to rewrite into plain Datalog:

P1 = {C(x)→ B(x) ∨G(x), (1)

G(y) ∧ E(x, y)→ B(x), (2)

B(y) ∧ E(x, y)→ G(x) } (3)

Intuitively, this program encodes non-2-colourability: a property of graphs
which is expressible in plain Datalog [18]. Every dataset D encoding a graph
with (symmetric) edge relation E and vertex predicate C is non-2-colourable if
and only if P1 ∪ D entails any fact over the IDB predicates B and G.

We next construct the transposition Ξ(P1) of P1. The transposed program
Ξ(P1) will be a rewriting of P1: for any dataset D over the EDB predicates E
and C and fact α over the signature of P1, we have P1∪D |= α iff Ξ(P1)∪D |= α.

Since predicates C and E are EDB, their extension w.r.t. D depends solely
on the facts in D; as a result, the EDB atoms in P will remain unaffected
by the transposition. To ensure that P1 and Ξ(P1) entail the same IDB facts
we introduce in Ξ(P1) fresh binary predicates BG, BB , GB , and GG. The
intended meaning of these auxiliary predicates is as follows: if a fact XY (c, d)
holds in Ξ(P1)∪D, with X,Y ∈ {B,G}, then proving X(c) suffices for proving
Y (d) in P1 ∪ D; that is, P1 ∪ D logically entails the propositional implication
X(c) → Y (d). The key step in our transformation is then to flip the direction
of all rules in P1 by moving all IDB atoms from the head to the body and
vice versa while at the same time replacing their predicates with the relevant
auxiliary predicates of higher arity. Since P1 is linear, our transformation will
ensure that the resulting rules are Datalog and hence have a single atom in the
head. In particular, Rule (2) leads to the following two rules in Ξ(P1):

BX(x, z) ∧ E(x, y)→ GX(y, z) for each X ∈ {G,B} (2’)

These rules are natural consequences of Rule (2) under the intended meaning of
the auxiliary predicates: if we can prove a goal X(z) by proving first B(x) and
E(x, y), then by Rule (2) we deduce that proving G(y) suffices to prove X(z).

In contrast to (2), Rule (1) contains no IDB body atoms. We transpose this
rule in a slightly different way by introducing the following rules:

C(x) ∧BX(x, z) ∧GX(x, z)→ X(z) for each X ∈ {G,B} (1’)

Similarly to the previous case, this rule follows from Rule (1): if C(x) holds and
we can establish that X(z) can be proved from B(x) and also from G(x), then
X(z) must hold.

7

Finally, since D does not contain any facts over the auxiliary predicates,
Rules (2’) and (1’) are not applicable. Therefore, we introduce the following
rules in Ξ(P1) in order to “initialise” the extension of these auxiliary predicates:

>(x)→ XX(x, x) for each X ∈ {G,B} (4)

Rules (4) encode tautological information under the intended meaning of the
auxiliary predicates (a fact BB(c, c) intuitively means that B(c) suffices to prove
itself). The initialisation rules ensure that all auxiliary predicates are instanti-
ated and the remaining rules in the transposed program become applicable.

In sum, Ξ(P1) is the following Datalog program, where each rule mentioning
X stands for one rule where X = B and one where X = G:

Ξ(P1) = {C(x) ∧BX(x, z) ∧GX(x, z)→ X(z), (1’)

BX(x, z) ∧ E(x, y)→ GX(y, z), (2’)

GX(x, z) ∧ E(x, y)→ BX(y, z), (3’)

>(x)→ XX(x, x) } (4)

Let us now consider the following Datalog program P2, which encodes path
system accessibility (a canonical PTime-complete problem [19]):

P2 = {V (x)→ A(x), (5)

R(x, y, z) ∧A(y) ∧A(z)→ A(x) } (6)

Note that P2 is not linear since Rule (6) contains two IDB atoms in the body.
Furthermore, reasoning in linear Datalog is NLogSpace-complete in data and
hence, under standard complexity-theoretic assumptions, P2 cannot be lin-
earised within plain Datalog. In contrast, we can exploit transposition to rewrite
P2 into the following linear Disjunctive Datalog program Ξ(P2):

Ξ(P2) = {V (x) ∧AA(x, y)→ A(y), (5’)

R(x, y, z) ∧AA(x, u)→ AA(y, u) ∨AA(z, u), (6’)

>(x)→ AA(x, x) } (7)

As in the previous example, the predicate AA is fresh and carries the same
intended meaning as before: if Ξ(P2)∪D entails a disjunction

∨
iA

A(ci, d), then
P2 ∪ D entails the implication (

∧
iA(ci)) → A(d). The initialisation rule (7)

is again used to instantiate the auxiliary predicate, whereas Rules (5’) and (6’)
are obtained by transposing (5) and (6), respectively. Rules (5’) and (6’) in
Ξ(P2) are natural consequences of their counterparts in P2 under the intended
meaning of the fresh predicate. For example, to justify Rule (6’), assume that
R(a, b, c) holds and A(d) follows from A(a); then, by Rule (6) we can conclude
that A(d) also follows from A(b) ∧A(c).

We are now ready to define program transposition formally. Transposition
is a quadratic transformation and the arity of predicates is at most doubled.

8

B(a)

G(b) ∨B(a)

B(c) ∨B(a)

B(c) ∨G(c)

C(c)

(1)

E(a, c)

E(b, c)

E(a, b)

(2)

(3)

(2)

(a)

B(a)

BB(c, a)

GB(b, a)

BB(a, a)

>(a)

(4)

E(a, b)

E(b, c)

C(c)

(1’)

GB(c, a)

BB(a, a)

>(a)

(4)

E(a, c)
(3’)

(2’)

(2’)

(b)

Figure 1: (a) derivation of B(a) from P1 ∪ D1; (b) derivation of B(a) from Ξ(P1) ∪ D1

Definition 1. Let P be a Disjunctive Datalog program. For each pair (P,Q)
of IDB predicates in P, let PQ be a fresh predicate of arity arity(P) + arity(Q).
The transposition of P is the smallest program Ξ(P) containing all Rules 1–3
given next, where ξ> is the least conjunction of >-atoms needed to make a rule
safe, ϕ is the conjunction of all EDB atoms in a rule, all predicates Pi are IDB,
and ~y = y1 . . . yarity(R) is a vector of distinct fresh variables:

1. ξ> → RR(~y, ~y) for each IDB predicate R;

2. ξ> ∧ ϕ ∧
∧
i P

R
i (~si, ~y) →

∨
j Q

R
j (~tj , ~y) for each IDB predicate R and rule

in P of the form ϕ ∧
∧
j Qj(~tj)→

∨
i Pi(~si) for

∧
j Qj(~tj) nonempty; and

3. ϕ ∧
∧
i P

R
i (~si, ~y) → R(~y) for each IDB predicate R and each rule in P of

the form ϕ→
∨
i Pi(~si). 3

It follows from Definition 1 that program transposition can be used to transform
linear Disjunctive Datalog programs into plain Datalog, and vice versa.

Proposition 2. Let P be a Disjunctive Datalog program. Then:

1. Ξ(P) is Datalog if and only if P is linear;

2. Ξ(P) is linear if and only if P is Datalog.

Proof. Given a rule s, we write |s|h for the number of atoms in the head of s
and |s|b for the number of IDB atoms in the body of s. Let r ∈ P and let r′ be
the transposition of r in Ξ(P). Both claims follow since (i) |r′|h = max{1, |r|b},
(ii) |r′|b = |r|h, and (iii) all rules in Ξ(P) that are not derived from rules in P
are both Datalog and linear. 2

3.2. Correctness of Transposition

In this section we show the key property of transposition, namely that it
preserves fact entailment for every dataset. Let us sketch the main intuitions on

9

our example program P1 consisting of Rules (1)–(3) andD1 = {C(a), C(b), C(c),
E(a, b), E(b, a) E(b, c), E(c, b) E(a, c), E(c, a)}.2 Figure 1(a) shows a derivation
ρ1 of B(a) from P1 ∪ D1 while 1(b) shows a derivation ρ2 of the same fact
from Ξ(P1)∪D1. Recall that we represent derivations as trees whose nodes are
labeled with disjunctions of facts and where each inner node is derived from
its children using a rule of the program. In particular, to derive B(a) in ρ1 we
start from fact C(c) and use Rule (1) to obtain B(c) ∨ G(c); since fact E(a, c)
holds in D1, we can apply hyperresolution to the previously derived disjunction
B(c) ∨ G(c), fact E(a, c) and Rule (2) to derive B(c) ∨ B(a). Similarly, we
can then obtain the disjunction G(b)∨B(a) using the fact E(b, c) and Rule (3).
Finally, Rule (2) allows us to resolve away fact E(a, b) from D1 with the disjunct
G(b) from G(b) ∨B(a) and derive B(a) ∨B(a), which simplifies to B(a).

We first show that if B(a) is provable in P1 ∪D1 via a derivation such as ρ1,
then it is entailed by Ξ(P1) ∪ D1. The crux of the proof is to show that each
(disjunction of) IDB fact(s) in ρ1 corresponds to (disjunctions of) facts over
the auxiliary predicates entailed by Ξ(P1)∪D1. These facts about the auxiliary
predicates must be of the form XB(u, a), where B(a) is the goal, u is a constant,
and X ∈ {B,G}. For example, B(c) ∨G(c) in ρ1 corresponds to facts BB(c, a)
and GB(c, a), which are provable from Ξ(P1) ∪ D1, as witnessed by ρ2.

Finally, we show the converse: if B(a) is provable from Ξ(P1) ∪ D1 by a
derivation such as ρ2 then it follows from P1 ∪D1. For this, we show that each
fact in ρ2 about an auxiliary predicate carries the intended meaning, e.g., for
GB(b, a) we must have P1 ∪ D1 |= G(b)→ B(a).

Theorem 3. Let P be a Disjunctive Datalog program. Then, program Ξ(P) is
a rewriting of P of polynomial size.

Proof. We show the claim in two steps, which we outline next. For the rest
of the proof, we fix an arbitrary dataset D over the EDB predicates of P and
an IDB fact P (~a) (if P is EDB, then the claim is immediate).

1. In the first step, we show that P ∪D ` P (~a) implies Ξ(P)∪D |= P (~a). To
this end, we consider an arbitrary derivation ρ of P (~a) from P∪D and show

that Ξ(P) ∪ D entails P (~a) ∨
∧
{
∨n
i=1Q

P
i (~bi,~a) | Qi(~bi) ∈ λ(vi) }, where

{v1, . . . , vn} is the set of all IDB leaves in ρ. We use this intermediate
result to establish an inductive argument that proves Ξ(P) ∪ D |= P (~a).

2. In the second step, we show that Ξ(P)∪D ` P (~a) implies P ∪D |= P (~a).
We first observe that, given the form of the rules in Ξ(P), each derivation
of P (~a) from Ξ(P) ∪ D is focused on P (~a); that is, it contains only IDB

atoms of the form P (~a) and QP (~b,~a), for some Q and ~b. Thus, every
node v in a derivation of P (~a) from Ξ(P) ∪ D is labeled by a disjunction

ϕ ∨
∨
iQ

P
i (~bi,~a), where ϕ implies P (~a). The claim then follows from the

observation that P ∪ D |=
∧
iQ(~bi)→ P (~a) for every such disjunction.

2In this and the following examples, we omit facts about > when enumerating the contents
of a dataset.

10

The statement of the theorem follows directly from the properties shown in
Steps 1 and 2 and the completeness of hyperresolution. We next show each step.

Step 1. Suppose P ∪D ` P (~a) and let ρ = (T, λ) be a derivation of P (~a) from
P ∪ D. We show Ξ(P) ∪ D |= P (~a).

We call a nonempty subtree U of T an upper portion of T if (i) T and U
have the same root and (ii) for each node in U , U contains all or none of its
children in T . We begin by showing the following claim, where Ψ(v1, . . . , vn)

denotes the set {
∨n
i=1Q

P
i (~bi,~a) | Qi(~bi) ∈ λ(vi) }.

Claim (♦). Let U be an upper portion of T and let {v1, . . . , vn} be the IDB
leaves of U . Then

Ξ(P) ∪ D |= P (~a) ∨
∧

Ψ(v1, . . . , vn)

We show the claim inductively. For the base case, suppose U consists of a
single node. Then the claim reduces to Ξ(P) ∪ D |= P (~a) ∨ PP (~a,~a), which
follows since ξ> → PP (~y, ~y) ∈ Ξ(P) and Ξ(P) ∪ D |= ξ>(~a).

For the inductive step, assume that U contains at least two nodes and let
{v1, . . . , vn} be the IDB leaves of U . Then, U has a node w of height 1. W.l.o.g.,
let v1, . . . , vk (0 ≤ k ≤ n) be the IDB and u1, . . . , ul the EDB children of w in

U and let r = ϕ∧
∧k
i=1Ri(~si)→

∨m
j=1 Sj(~tj) ∈ P (for some m) be the rule used

in ρ to derive λ(w) from λ(v1), . . . , λ(vk), λ(u1), . . . , λ(ul) with substitution σ.
We distinguish two cases:

• If k = 0, then we can observe the following:

1. U\{u1, . . . , ul} is an upper portion of T with IDB leaves {w, v1, . . . , vn};
2. λ(w) =

∨m
j=1 Sj(~tjσ);

3. ϕ ∧
∧m
j=1 S

P
j (~tj , ~y)→ P (~y) ∈ Ξ(P), by the definition of Ξ and the fact

that r ∈ P, where for k = 0 rule r is of the form ϕ→
∨m
j=1 Sj(~tj);

4. Ξ(P) ∪ D |= ϕσ since P ∪ D |= ϕσ, ϕσ is a conjunction of EDB facts,
and P ∪ D and Ξ(P) ∪ D entail the same EDB facts.

By the first two observations and the inductive hypothesis, Ξ(P)∪D entails
P (~a)∨SPj (~tjσ,~a)∨ψ for every Sj(~tjσ)∈λ(w) and ψ ∈Ψ(v1, . . . , vn). The
claim follows by the third and fourth observations.

• If k ≥ 1, then we can observe the following:

1. U \ {v1, . . . , vk, u1, . . . , ul} is an upper portion of T with IDB leaves
{w, vk+1, . . . , vn};

2. (a)
∨m
j=1 Sj(~tjσ) ⊆ λ(w) and (b) λ(vi) ⊆ λ(w) ∪ {Ri(~siσ)} for each

i ∈ [1, k];

3. ξ> ∧ ϕ ∧
∧m
j=1 S

P
j (~tj , ~y)→

∨k
i=1R

P
i (~si, ~y) ∈ Ξ(P);

4. Ξ(P) ∪ D |= ξ>σ and Ξ(P) ∪ D |= ϕσ.

11

W.l.o.g., let Ξ(P) ∪ D 6|= P (~a) (otherwise the claim is immediate), and

let ψ =
∨n
i=1Q

P
i (~bi,~a) ∈ Ψ(v1, . . . , vn) be arbitrary. It suffices to show

Ξ(P)∪D |= ψ. By 1 and the inductive hypothesis, Ξ(P)∪D |= QP (~b,~a)∨∨n
i=k+1Q

P
i (~bi,~a) for every Q(~b) ∈ λ(w). Hence, by 2(b), the claim is

immediate unless Qi(~bi) = Ri(~siσ) for every i ∈ [1, k], i.e., it suffices

to show Ξ(P) ∪ D |= (
∨k
i=1R

P
i (~siσ,~a)) ∨

∨n
i=k+1Q

P
i (~bi,~a). This follows

by 3 and 4 since, by the inductive hypothesis and 2(a), Ξ(P) ∪ D entails

SPj (~tjσ,~a) ∨
∨n
i=k+1Q

P
i (~bi,~a) for every j ∈ [1,m].

This concludes the proof of Claim (♦).

We next use (♦) to show Ξ(P) ∪ D |= P (~a). Let {v1, . . . , vn} be the IDB
leaves of T . By (♦), Ξ(P) ∪ D |= P (~a) ∨

∧
Ψ(v1, . . . , vn).3 Thus, it suffices to

show Ξ(P) ∪ D ∪Ψ(v1, . . . , vn) |= P (~a).
We show Ξ(P) ∪D ∪Ψ(v1, . . . , vi) |= P (~a) for each i ≤ n by induction on i.

If i = 0 (base case), the claim is immediate. For the inductive step, let i ≥ 1.

Then Ψ(v1, . . . , vi) = {ψ ∨ QP (~b,~a) | ψ ∈ Ψ(v1, . . . , vi−1), Q(~b) ∈ λ(vi) }.
By the inductive hypothesis, Ξ(P) ∪ D ∪ Ψ(v1, . . . , vi−1) |= P (~a), and hence

Ξ(P) ∪ D ∪ Ψ(v1, . . . , vi) |= P (~a) ∨ QP (~b,~a) for each Q(~b) ∈ λ(vi). Hence, it

suffices to show Ξ(P) ∪ D ∪ {QP (~b,~a) | Q(~b) ∈ λ(vi) } |= P (~a). For this, note

that λ(vi) is a leaf in T obtained by a rule (→ λ(vi)) where λ(vi) =
∨m
j=1Qj(

~bj).

Then
∧m
j=1Q

P
j (~bj , ~y)→ P (~y) ∈ Ξ(P) and the claim follows.

Step 2. We show that Ξ(P) ∪ D ` P (~a) implies P ∪ D |= P (~a). For this,
we first show that derivations from Ξ(P) ∪ D have a certain shape, which we

define next. We call a disjunction of facts ϕ focused on an IDB fact Q(~b), with

Q occurring in P, if every disjunct in ϕ is either Q(~b) or a fact of the form

RQ(~c,~b) for some R and ~c. Let ρ = (T, λ) be a derivation. We call ρ focused on

Q(~b) if so is the label of each IDB node in T .

Claim (♣). Every derivation of a nonempty disjunction from Ξ(P)∪D is focused
on some fact.

Let ρ = (T, λ) be a derivation of a nonempty disjunction from Ξ(P) ∪ D.
We show that ρ is focused on some fact by induction on ρ. Let v be the root
of T . For the base case, suppose v is the only node in T . We distinguish the
following cases:

• λ(v) ∈ D. Then, v is EDB and the claim is vacuous.

• arity(Q) = 0 and λ(v) is obtained by a rule of the form (→ RQ) ∈ Ξ(P)
for some IDB predicate Q in P and R ∈ {Q,⊥}. Then ρ is focused on Q.

3Note that if P has no rules with an empty body, all leaves of T are EDB and hence n = 0.
Thus, the claim follows directly from (♦).

12

For the inductive step, let v1, . . . , vm be the successors of v. We distinguish
cases depending on the shape of the rule r ∈ Ξ(P) used to derive λ(v) from
λ(v1), . . . , λ(vm).

• r = ξ> ∧ ϕ ∧
∧k
j=1R

Q
j (~tj , ~y) →

∨n
i=1 P

Q
i (~si, ~y) (n ≥ 1 and k ≤ m).

Let σ be the substitution used in the hyperresolution step. W.l.o.g., let
RQj (~tjσ, ~yσ) ∈ λ(vj) for j ∈ [1, k]. Then λ(vj) ∈ ξ> ∪ ϕ for j ∈ [k + 1,m].
Moreover, by the inductive hypothesis, the subderivations rooted at
v1, . . . , vk are focused on Q(~yσ). The claim follows since we have λ(v) ⊆
λ(v1) ∪ · · · ∪ λ(vk) ∪ {PQi (~siσ, ~yσ) | i ∈ [1, n] }.

• r = ϕ ∧
∧k
j=1R

Q
j (~tj , ~y) → Q(~y). The argument is analogous to the pre-

ceding case.

• r = ξ> → RQ(~t, ~y) where R ∈ {Q,⊥}. Let σ be the substitution used in
the hyperresolution step. Then ρ is focused on Q(~yσ).

This concludes the proof of Claim (♣).

Let ρ = (T, λ) be a derivation of P (~a) from Ξ(P) ∪ D. By (♣), ρ is focused
on P (~a) since the root w of ρ is labeled with P (~a). Given v ∈ T , we write

λbase(v) to denote the set {Q(~b) | QP (~b,~a) ∈ λ(v) }. We conclude our proof by
showing the following property, which implies P ∪D |= P (~a) since λbase(w) = ∅.

P ∪ D |= (
∧

α∈λbase(v)

α)→ P (~a) for every IDB node v in T

We show this property by induction on the height of v in T . Note that we
only need to consider cases that can occur in a derivation focused on P (~a). For
the base case, suppose v is a leaf in T . Since v is IDB, we have λ(v) /∈ D. Thus,
we distinguish the following cases.

• λ(v) is obtained by a rule of the form → ⊥P where arity(P) = 0. Then
the claim reduces to P ∪ D |= ⊥ → P , which is tautological.

• λ(v) is obtained by a rule of the form → PP where arity(P) = 0. Then
the claim reduces to P ∪ D |= P → P , which is tautological.

For the inductive step, let v1, . . . , vm be the successors of v in T . We distinguish
cases depending on the shape of the rule r ∈ Ξ(P) used to obtain λ(v) from
λ(v1), . . . , λ(vm):

• r = ξ> ∧ ϕ ∧
∧k
j=1Q

P
j (~tj , ~y) →

∨n
i=1R

P
i (~si, ~y) such that k ≤ m, n ≥ 1

and r′ = ϕ ∧
∧n
i=1Ri(~si) →

∨k
j=1Qj(~tj) ∈ P. Let σ be the substi-

tution used in the corresponding hyperresolution step and let, w.l.o.g.,
QPj (~tjσ, ~yσ) ∈ λ(vj) for each j ∈ [1, k]. By the inductive hypothesis,
P ∪ D |= (

∧
α∈λbase(vj)

α) → P (~a) for j ∈ [1, k]. Moreover, we have⋃k
j=1(λbase(vj) \ {Qj(~tjσ)}) ∪

⋃n
i=1{Ri(~siσ)} ⊆ λbase(v). The claim fol-

lows since P∪D |= ϕσ and hence P∪D |= (
∧
α∈λbase(v)

α)→
∨k
j=1Qj(~tjσ)

by rule r′.

13

• r = ϕ ∧
∧k
j=1Q

P
j (~tj , ~y) → P (~y) such that r′ = ϕ →

∨k
j=1Q(~t) ∈ P. Let

σ be the relevant substitution and QPj (~tjσ, ~yσ) ∈ λ(vj) for each j ∈ [1, k].
By induction, P ∪ D |= (

∧
α∈λbase(vj)

α) → P (~a). Moreover, we have⋃k
j=1(λbase(vj)\{Qj(~tjσ)}) ⊆ λbase(v). The claim holds since P∪D |= ϕσ

and hence, by rule r′, P ∪ D |= (
∧
α∈λbase(v)

α)→
∨k
j=1Qj(~tjσ).

• r = ξ> → ⊥P (~y). Since ρ is focused on P (~a), the claim reduces to the
tautology P ∪ D |= ⊥ → P (~a).

• r = ξ> → PP (~y, ~y). Since ρ is focused on P (~a), the claim reduces to the
tautology P ∪ D |= P (~a)→ P (~a).

This completes the proof of Theorem 3. 2

3.3. Correspondence between Datalog and Linear Disjunctive Datalog

Theorem 3 and Proposition 2 have the following direct implication. On the
one hand, if P is a linear Disjunctive Datalog program, then its transposition
results in a polynomial-size Datalog rewriting of P. On the other hand, if P
is Datalog, then its transposition is a polynomial-size rewriting of P in linear
Disjunctive Datalog.

A characterisation of Datalog rewritability immediately becomes apparent: a
Disjunctive Datalog program is Datalog rewritable if and only if it is linearisable.
But not only that, the fact that program transposition is a polynomial transfor-
mation also means that linear Disjunctive Datalog enjoys the same favourable
computational properties as plain Datalog, such as tractability of reasoning in
data complexity.

Theorem 4. A Disjunctive Datalog program P is Datalog rewritable if and only
if it is rewritable into linear Disjunctive Datalog. Moreover, fact entailment
w.r.t. linear Disjunctive Datalog programs is ExpTime-complete in combined
complexity and PTime-complete w.r.t. data.

4. Markable Programs

We have established that every linear Disjunctive Datalog program can be
polynomially rewritten into Datalog. It is, however, rather straightforward to
come up with disjunctive programs that are syntactically non-linear, but also
admit a polynomial Datalog rewriting. In this section, we introduce markable
programs: a larger class of Disjunctive Datalog programs that admit polynomial
Datalog rewritings by means of a generalisation of transposition.

To illustrate the main ideas behind markable programs, we will start by first
introducing in Section 4.1 a more restricted (but also more intuitive) class of
weakly linear (WL) programs. We will then exploit these intuitions to motivate
in Section 4.2 the notions of marking and markable program. In Section 4.3 we
show that markable programs can be efficiently recognised by means of a reduc-
tion into 2-SAT. Finally, in Sections 4.4 and 4.5 we show how transposition can
be extended in order to polynomially rewrite markable programs into Datalog.

14

4.1. Weakly Linear Programs

Consider the following program P3, which extends our example program P1

in Section 3 with the following rules:

A(x, y)→ E(x, y) (8) E(y, x)→ E(x, y) (9)

Since E is IDB in P3, Rules (2) and (3) have two IDB atoms, which breaks the
linearity condition. The main idea behind weak linearity is simple: instead of
requiring rule bodies to contain at most one occurrence of an IDB predicate, we
require at most one occurrence of a disjunctive predicate—a predicate whose
extension for some dataset could depend on the application of a disjunctive rule.
In particular, the extension of predicate E in P3 depends only on the newly
introduced Datalog rules (8) and (9), and hence E would not be disjunctive.

This intuition is formalised as follows using the standard notion of a depen-
dency graph in Logic Programming [20, 21].

Definition 5. The dependency graph of a program P is the smallest edge-
labeled digraph GP = (V,E, µ) such that

1. V contains every predicate occurring in P;

2. r ∈ µ(P,Q) whenever P,Q ∈ V , r ∈ P, P occurs in the body of r, and Q
occurs in the head of r; and

3. (P,Q) ∈ E whenever µ(P,Q) is nonempty.

A predicate Q depends on a rule r ∈ P if GP has a path that ends in Q and
involves an r-labeled edge. Predicate Q is Horn if it only depends on Horn
rules; otherwise, Q is disjunctive. An atom is Horn (resp., disjunctive) if so is
its predicate. A program is weakly linear (WL) if each of its rules has at most
one disjunctive body atom. 3

Note that, if P is Datalog, then all its predicates are Horn and P is WL; fur-
thermore, every disjunctive predicate is IDB and hence every linear Disjunctive
Datalog program is also WL. Thus, the class of WL programs extends both
Datalog and linear Disjunctive Datalog.

The dependency graph GP3
of our example program P3 is then as given next.

We can observe that predicates A and C are EDB and hence do not depend on
any rule. As already mentioned, predicate E depends only on Datalog rules and
hence is Horn. Finally, B and G depend on Rule (1) and hence are disjunctive.
Consequently, P3 is WL.

B

C E A

G

(1)

(1)

(2)

(3)

(3)(2)

(9)

(8)

15

Transposition can be easily adapted to polynomially rewrite WL programs
into plain Datalog. Rather than moving all IDB atoms between head and body,
it suffices to move only disjunctive atoms. In this way, rules that contain only
Horn predicates remain unaffected by the transformation. In particular, the
refined transposition of our example program P3 would consist of the following
rules, where, once again, each rule mentioning X stands for one rule where
X = B and one where X = G:

Ξ′(P3) = {C(x) ∧BX(x, z) ∧GX(x, z)→ X(z), (1’)

BX(x, z) ∧ E(x, y)→ GX(y, z), (2’)

GX(x, z) ∧ E(x, y)→ BX(y, z), (3’)

>(x)→ XX(x, x), (4)

A(x, y)→ E(x, y), (8)

E(y, x)→ E(x, y) } (9)

Note that Rules (1’)–(4) are the same as in Ξ(P1) whereas Rules (8) and (9)
are copied from P3 since they contain only Horn predicates.

4.2. Markings and Markable Programs

The class of markable programs is obtained by further relaxing the weak
linearity requirement to apply only to a subset of marked disjunctive predicates
in a program P. These predicates, however, must be chosen in such a way that
the transposition of P where only marked atoms are transposed between head
and body results in a Horn program. A program can admit many different
markings, and markable programs are those that admit at least one marking.

Definition 6. A marking of a program P is a set M of disjunctive predicates
in P with the following properties, where we say that a predicate is marked if
it is in M and an atom is marked if so is its predicate:

1. each rule in P has at most one marked body atom;

2. each rule in P has at most one unmarked head atom; and

3. if Q is marked and P is reachable from Q in GP , then P is marked.

We say that a program is markable if it admits a marking. 3

Condition 1 in Definition 6 ensures that at most one atom is moved from body
to head during transposition. Condition 2 ensures that all but possibly one head
atom are moved to the body. Finally, Condition 3 requires that all predicates
depending on a marked predicate are also marked. Markability generalises weak
linearity: a program is WL if and only if the set of all its disjunctive predicates
constitutes a marking. Consider now program P4, which extends our example
program P3 with the following rules:

V (x)→ C(x) ∨ U(x) (10) C(x) ∧ U(x)→ ⊥ (11)

16

The dependency graph is given next. Note that C, U , B, G, and ⊥ are
disjunctive as they depend on Rule (10). Thus, (11) has two disjunctive body
atoms and P4 is not WL. The program, however, has two different markings:
{C,B,G,⊥} and {U,B,G,⊥}.

V B

U C E A

⊥ G

(10)(10)

(11) (11)

(1)

(1)

(2)

(3)

(3)(2)

(9)

(8)

4.3. Checking Markability

We next show that markability can be efficiently checked via a quadratic
reduction to 2-SAT. The reduction assigns to each predicate Q in P a distinct
propositional variableXQ; it then encodes directly the constraints in Definition 6
as binary clauses. Furthermore, our reduction provides tight complexity bounds
for markability checking since 2-SAT is NLogSpace-complete.

Proposition 7. Markability is NLogSpace-complete and can be checked in
time quadratic in the size of the input P.

Proof. For each rule in P of the form ϕ ∧
∧n
i=1 Pi(~si) →

∨m
j=1Qj(~tj), where

ϕ is the conjunction of all its Horn atoms, we obtain the following clauses:

1. ¬XPi
∨ ¬XPj

for all 1 ≤ i < j ≤ n ;

2. ¬XPi ∨XQj for all 1 ≤ i ≤ n and 1 ≤ j ≤ m; and

3. XQi
∨XQj

for all 1 ≤ i < j ≤ m.

Clauses of the form (1) indicate that at most one body atom may be marked.
By (2), if a body atom is marked, then so must be all head atoms. Finally, (3)
ensures that at most one head atom may be unmarked. The resulting set N of
propositional clauses is satisfiable iff P has a marking, and every model I of N
yields a marking. Furthermore, the reduction is clearly feasible in LogSpace
and hence markability is in NLogSpace. Finally, |N | is quadratic in |P| and
hence markability can be checked in quadratic time (2-SAT is feasible in linear
time). To establish NLogSpace-hardness, we argue that any 2-SAT instance
N can be reduced to markability of a program P. For this, we define P as a
(propositional) Disjunctive Datalog program consisting of the following rules:

• → Pp ∨ Pq for every clause p ∨ q ∈ N ;

• Pp → Pq for every clause ¬p ∨ q ∈ N ;

• Pp ∧ Pq → P for every clause ¬p ∨ ¬q ∈ N , where P is a fresh predicate.

It is easily seen that P has a marking iff N is satisfiable. 2

17

4.4. Rewriting Markable Disjunctive Datalog Programs into Datalog

We finally show how transposition can be refined in order to polynomially
rewrite markable programs into Datalog.

Consider program P4 and the marking M = {U,B,G,⊥}. The transposition
of P4 will depend on the particular marking under consideration, so let us denote
the M -transposed program as ΞM (P4). We introduce fresh binary predicates
XY , where X and Y are disjunctive and X is required to be marked. Such
predicates XY carry the same intended meaning as in the original notion of
transposition: if a fact BG(c, d) holds in ΞM (P4)∪D then proving B(c) suffices
for proving G(d) in P4∪D (i.e., P4∪D |= B(c)→ G(d)). The extension of these
predicates is again initialised with rules >(x)→ XX(x, x) for each X ∈M .

For each unmarked disjunctive predicate X and each disjunctive predicate
Y (marked or not) we now introduce a fresh predicate XY that comes with a
different intuitive interpretation: if a fact CU (c, d) holds in ΞM (P4) ∪ D then
P4 ∪ D entails C(c) ∨ U(d).

As usual in transposition, the key step is to transpose atoms between head
and body while replacing their predicates with auxiliary ones. Now, however,
we do this only for those rules that involve the marked predicates B, G and U .
For example, Rule (2) leads to the following rules in ΞM (P4), for each unary
disjunctive predicate Y as well as for ⊥:

BY (x, z) ∧ E(x, y)→ GY (y, z) B⊥(x) ∧ E(x, y)→ G⊥(y)

Unmarked disjunctive atoms are also modified by replacing their predicate
with an auxiliary one; however, in contrast to marked atoms, they are not
moved from one side of the rule to the other. Thus, Rules (10) and (11) yield
the following rules for the ⊥ predicate and each unary disjunctive predicate Y :

V (x) ∧ UY (x, y)→ CY (x, y) CY (x, y) ∧ ⊥Y (y)→ UY (x, y)

V (x) ∧ U⊥(x)→ C⊥(x) C⊥(x) ∧ ⊥⊥ → U⊥(x)

Indeed, these rules are consequences of (10) and (11), respectively, under the
intended meaning of the auxiliary predicates corresponding to unmarked dis-
junctive predicates: V (a) and U(a) → Y (b) imply C(a) ∨ Y (b) by (10), while
C(a) ∨ Y (b), ⊥ → Y (b) (a tautology), and U(a) imply Y (b) by (11).

We are now ready to define our transformation. As in the previous case, the
transformation is quadratic and the arity of predicates is at most doubled.

Definition 8. Let P be a Disjunctive Datalog program and let M be a marking
of P. For each pair (P,Q) of disjunctive predicates in P, let PQ and PQ be fresh
predicates of arity arity(P) + arity(Q). The M -transposition of P is the smallest
program ΞM (P) containing each rule in P with no disjunctive predicates and
all Rules 1–5 given next, where ξ> is the least conjunction of >-atoms needed
to make a rule safe, ϕ is the conjunction of all Horn atoms in a rule, predicates
Pi, Qj are disjunctive, and ~y, ~z are vectors of distinct fresh variables:

1. ξ> → RR(~y, ~y) for each disjunctive predicate R ∈M ;

18

2. ξ> ∧ϕ∧
∧
j Q

R
j (~tj , ~y)∧

∧
i P

R
i (~si, ~y)→ QR(~t, ~y) for each rule r ∈ P of the

form ϕ∧Q(~t)∧
∧
j Qj(~tj)→

∨
i Pi(~si) and each disjunctive predicate R in

P, where Q(~t) is the (unique) marked body atom of r;

3. ϕ ∧
∧
j Q

R
j (~tj , ~y) ∧

∧
i P

R
i (~si, ~y) → R(~y) for each rule r ∈ P of the form

ϕ∧
∧
j Qj(~tj)→

∨
i Pi(~si) and each disjunctive predicate R in P, where r

has no marked body atoms and no unmarked head atoms;

4. ξ> ∧ϕ∧
∧
j Q

R
j (~tj , ~y)∧

∧
i P

R
i (~si, ~y)→ PR(~s, ~y) for each rule r ∈ P of the

form ϕ ∧
∧
j Qj(~tj) → P (~s) ∨

∨
i Pi(~si) and each disjunctive predicate R,

where r has no marked body atoms and P (~s) is the only unmarked head
atom; and

5. RR(~y, ~y)→ R(~y) for each disjunctive predicate R /∈M . 3

Rules 1–3 are analogous to those in Definition 1, with the difference that rules
of type 1 are generated only for marked predicates, different auxiliary predicates
are used depending on whether the relevant base predicates are marked or not,
and only marked atoms are moved in rules of type 2 and 3. Rules of type 4 are
analogous to those of type 2, but deal with the case where the relevant rule in P
contains no marked body atom. Finally, rules of type 5 ensure that unmarked
predicates R are instantiated with constants ~a whenever rules of type 4 yield
facts RR(~a,~a); thus, these rules encode a tautology under the intended meaning
of the auxiliary predicates RR.

4.5. Correctness of the Rewriting

The rest of this section is devoted to showing that ΞM (P) is indeed a Datalog
rewriting of a Disjunctive Datalog program P whenever M is a marking of P.
The correctness argument is similar in structure to the proof of Theorem 3 but it
is more involved, as it requires a separate treatment for the auxiliary predicates
depending on whether or not the relevant base predicate is marked.

Theorem 9. Let P be a Disjunctive Datalog program and let M be a marking
of P. Then ΞM (P) is a polynomial-size Datalog rewriting of P.

Proof. As in the proof of Theorem 3, we proceed in two steps, which together
imply the theorem. We fix an arbitrary markable program P, a marking M of
P, a dataset D over the EDB predicates of P, and a fact P (~a) with P disjunctive
in P (if P is Horn the claim is immediate).

1. In Step 1, we show that P ∪ D ` P (~a) implies ΞM (P) ∪ D |= P (~a).
To this end, we consider a derivation ρ of P (~a) from P ∪ D and show

that for every disjunctive atom Q(~b) in the label of a node in ρ, we have

ΞM (P) ∪ D |= QP (~b,~a) if Q ∈ M and ΞM (P) ∪ D |= QP (~b,~a) otherwise.
This claim, in turn, is shown by first showing a more general statement
and then instantiating it with ρ.

19

2. In Step 2, we show that ΞM (P)∪D ` P (~a) implies P ∪D |= P (~a). Again,
we first prove a general claim that holds for any derivation from ΞM (P)∪D
and then instantiate the claim with a derivation of P (~a).

In both steps we use that P and ΞM (P) entail the same facts over Horn pred-
icates for every dataset. As in the proof of Theorem 3, the statement in the
theorem follows from these steps and the completeness of hyperresolution.

Step 1. Suppose P ∪ D ` P (~a). We show ΞM (P) ∪ D |= P (~a). We begin by
proving the following claim.

Claim (♦). Let ϕ = Q1(~b1) ∨ · · · ∨Qn(~bn) be a non-empty disjunction of facts

satisfying the following properties: (i) ΞM (P)∪D |= QPi (~bi,~a) for each Qi ∈M .
(ii) ϕ is derivable from P ∪ D. Then, for each derivation ρ of ϕ from P ∪ D
and each atom R(~c) with R disjunctive in the label of a node in ρ we have
ΞM (P) ∪ D |= RP (~c,~a) if R ∈M and ΞM (P) ∪ D |= RP (~c,~a) otherwise.

The claim is proved by induction on ρ = (T, λ). W.l.o.g., the root v of T
has a disjunctive predicate in its label (otherwise, the claim is vacuous). Since
disjunctive predicates are IDB, we have ϕ /∈ D and hence it is obtained by a
rule application.

For the base case, suppose v has no children labeled with disjunctive pred-
icates. Thus, ϕ is obtained by a rule ψ → ϕ′ ∈ P where ψ is a conjunction of
Horn atoms and, for some σ, ϕ = ϕ′σ and P ∪ D |= ψσ. If {Q1, . . . , Qn} ⊆M ,
then the claim is immediate by assumption (i), so let us assume w.l.o.g. that
Q1 /∈ M . By the definition of a marking, we then have {Q2, . . . , Qn} ⊆ M ,

and hence it suffices to show ΞM (P) ∪ D |= QP1 (~b1,~a). For this, note that
ψ → ϕ′ ∈ P, {Q2, . . . , Qn} ⊆ M , and Q1 /∈ M implies r′ = ξ> ∧ ψ ∧∧n
i=2Q

P
i (~xi, ~y) → QP1 (~x1, ~y) ∈ ΞM (P) for some variables ~xi such that ~xi = ~bi.

Moreover, by assumption (i), we have ΞM (P) ∪ D |=
∧n
i=2Q

P
i (~bi,~a). Finally,

since ΞM (P)∪D and P∪D entail the same Horn facts, we have ΞM (P)∪D |= ψσ
and ΞM (P) ∪ D |= ξ>σ. Thus, the claim follows with r′.

For the inductive step, let v have children w1, . . . , wm in T labeled with dis-
junctive predicates. W.l.o.g., there is a rule r = ψ ∧

∧m
i=1Ri(~ti)→

∨k
j=1Qj(~sj)

in P (with ψ a conjunction of Horn atoms, 0 ≤ k ≤ n, and all Ri disjunctive
in P) such that λ(v) is obtained by a hyperresolution step using r from ψσ
and λ(w1), . . . , λ(wm) where σ is a substitution mapping every atom Ri(~ti) to

a disjunct in λ(wi). In particular, we have ~sjσ = ~bj , Ri(~tiσ) ∈ λ(wi), and
P ∪ D |= ψσ. We distinguish three cases:

• {Q1, . . . , Qk} ⊆M and {R1, . . . , Rm} ∩M = ∅. For each i ∈ [1,m], every
marked atom in λ(wi) also occurs in λ(v); furthermore, every unmarked
atom in λ(v) occurs in λ(wi) for some i ∈ [1,m]. By the latter statement,
it suffices to show the claim for the subderivations rooted at w1, . . . , wm.

Let i ∈ [1,m]. By the fact that every marked atom in λ(wi) also occurs in

λ(v) and assumption (i), we have ΞM (P)∪D |= SP (~d,~a) for every marked

disjunct S(~d) in λ(wi). Then, we can apply the inductive hypothesis to
the subderivation rooted at wi and the claim follows.

20

• {Q1, . . . , Qk} ⊆ M , R1 ∈ M , and {R2, . . . , Rm} ∩ M = ∅ (note that
R1 ∈M implies {R2, . . . , Rm}∩M = ∅ sinceM is a marking). Then (a) for
every i ∈ [1,m], every marked atom in λ(wi) except for possibly R1(t1σ)
in λ(w1) also occurs in λ(v), and (b) every unmarked atom in λ(v) occurs
in λ(wi) for some i ∈ [1,m]. Also, we have (c) ξ> ∧ ψ ∧

∧m
i=2R

P
i (~ti, ~y) ∧∧k

j=1Q
P
j (~sj , ~y)→ RP1 (~t1, ~y) ∈ ΞM (P). As in the preceding case, by (b), it

suffices to show the claim for the subderivations rooted at w1, . . . , wm. For
w2, . . . , wn, we proceed as follows. Let i ∈ [2,m]. By (a) and assumption

(i), we have ΞM (P) ∪ D |= SP (~d,~a) for every marked disjunct S(~d) in
λ(wi). Thus, we can apply the inductive hypothesis to the subderivation
rooted at wi. In particular, we obtain ΞM (P) ∪ D |= RPi (~tiσ,~a). In
the case of w1, we need to show ΞM (P) ∪ D |= RP1 (~t1σ,~a) in order to
apply the inductive hypothesis. This follows by (c) and assumption (i)
since ΞM (P) ∪ D |= ψσ, {Q1(~s1σ), . . . , Qk(~skσ)} ⊆ λ(v), ΞM (P) ∪ D |=
RPi (~tiσ,~a) for i ∈ [2,m], and ΞM (P) ∪ D |= ξ>σ.

• Q1 /∈ M , {Q2, . . . , Qk} ⊆ M , and {R1, . . . , Rm} ∩ M = ∅ (note that
Q1 /∈ M implies {Q2, . . . , Qk} ⊆ M and {R1, . . . , Rm} ∩M = ∅). Then
(a) for every i ∈ [1,m], every marked atom in λ(wi) also occurs in λ(v), and

(b) every unmarked atom in λ(v) except for possibly Q1(~b1) (but including
Q2(b2), . . . , Qm(bm)) occurs in λ(wi) for some i ∈ [1,m]. By (b), it suffices
to show the main claim for the subderivations rooted at w1, . . . , wm and
also that ΞM (P) ∪ D |= QP1 (~b1,~a). Let i ∈ [1,m]. The main claim for
the subderivations follows from (a) and assumption (i), which imply that

ΞM (P)∪D |= SP (~d,~a) for every marked disjunct S(~d) in λ(wi); as a result,
we can apply the inductive hypothesis to the subderivation rooted at wi.
Finally, ξ> ∧ ψ ∧

∧m
i=1R

P
i (~ti, ~y) ∧

∧k
j=2Q

P
j (~sj , ~y) → QP1 (~s1, ~y) ∈ ΞM (P)

(since r ∈ P). Then, ΞM (P) ∪ D |= QP1 (~b1,~a) follows from ΞM (P) ∪ D |=
ψσ, the inductive hypothesis (which implies ΞM (P) ∪ D |= RPi (~tiσ,~a)),
and the assumption (i) (which implies ΞM (P) ∪ D |= QPj (~sjσ,~a)).

This concludes the proof of Claim (♦).

We next instantiate (♦) to show the claim in Step 1. Let ϕ = P (~a). We have
assumed in Step 1 that P (~a) is derivable from P ∪ D, and hence condition (ii)
in (♦) holds. Furthermore, ΞM (P) ∪ D |= PP (~a,~a) since ξ>(~y) → PP (~y, ~y) ∈
ΞM (P) and ΞM (P) ∪ D |= ξ>(~a); hence, condition (i) in (♦) also holds.

Now, let ρ = (T, λ) be a derivation of P (~a) from P ∪ D. We exploit (♦)
applied to ρ to show that ΞM (P) ∪ D |= P (~a). We distinguish two cases:

• P /∈ M . Since P (~a) labels the root of ρ we can apply (♦) to obtain
ΞM (P)∪D |= PP (~a,~a); the claim follows since PP (~y, ~y)→ P (~y) ∈ ΞM (P).

• P ∈ M . Then, there is an IDB node v in ρ such that: λ(v) contains
only marked atoms and v has no successor w in T such that all atoms in
λ(w) are marked. Since v is IDB, it has successors v1, . . . , vn (n ≥ 0) in
T such that λ(v) is a hyperresolvent of λ(v1), . . . , λ(vn) and a rule in P of

21

the form
∧n
i=1Qi(~si)→

∨m
j=1Rj(~tj), where the atoms Qi(~si) are resolved

with λ(vi). Since λ(v) contains only marked atoms but λ(v1), . . . , λ(vn) all
contain Horn or unmarked atoms, all Qi must be Horn or unmarked and all
Rj must be marked. Hence, ΞM (P) contains a rule r = (

∧k
i=1Qi(~si)) ∧

(
∧n
l=k+1Q

P
l (~sl, ~y)) ∧

∧m
j=1R

P
j (~tj , ~y) → P (~y) where, w.l.o.g., Q1, . . . , Qk

are Horn and Qk+1, . . . , Qn are disjunctive and unmarked. Let σ be the
substitution used in the hyperresolution step deriving λ(v). By (♦), we
then have ΞM (P)∪D |= QPl (~slσ,~a) for every l ∈ [k+1, n] and ΞM (P)∪D |=
RPj (~tjσ,~a) for every j ∈ [1,m]. Moreover, we have λ(vi) = Qi(~siσ) and
hence ΞM (P)∪D |= Qi(~siσ) for every i ∈ [1, k]. The claim follows with r.

Step 2. Let ΞM (P)∪D ` P (~a) with ρ a derivation of P (~a) from ΞM (P)∪D.
The fact that P ∪ D |= P (~a) follows directly from Statement 2 in Claim (♣),
which we show next.

Claim (♣). Let ρ be a derivation from ΞM (P) ∪ D with root v. Then:

1. The label λ(v) of v has one of the following forms:

• Q(~b) where Q occurs in P,

• QR(~b,~c) where Q,R are disjunctive in P and Q ∈M ; and

• QR(~b,~c) where Q,R are disjunctive in P and Q /∈M .

2. If λ(v) = Q(~b) where Q occurs in P, then P ∪ D |= Q(~b).

3. If λ(v) = QR(~b,~c), then P ∪ D |= Q(~b)→ R(~c).

4. If λ(v) = QR(~b,~c), then P ∪ D |= Q(~b) ∨R(~c).

We begin with Statement 1. Since ΞM (P) is Datalog λ(v) contains only
one atom. The claim follows since D contains only predicates in P and the
rules of ΞM (P) can only infer facts of one of the three forms. We next show
the remaining statements by simultaneous induction on ρ. For the base case,
suppose v is the only node in ρ. We distinguish the following four cases:

• If λ(v) ∈ D, then D |= λ(v) holds and the claim is immediate.

• If λ(v) = Q(~b), where Q is Horn in P and r = (→ Q(~b)) ∈ ΞM (P), then
r ∈ P and the claim follows.

• If λ(v) = ⊥Q, arity(Q) = 0, ⊥ ∈ M , and (→ ⊥Q) ∈ ΞM (P), then the
claim reduces to the tautology P |= ⊥ → Q.

• If λ(v) = QQ where Q is disjunctive in P and arity(Q) = 0, then the claim
reduces to the tautology P ∪ D |= Q→ Q.

For the inductive step, suppose v has children v1, . . . , vn and, λ(v) is a hyperre-
solvent of λ(v1), . . . , λ(vn) and a rule r ∈ ΞM (P). We distinguish the following
six cases:

22

• If r contains no disjunctive predicates, then the claim follows since P ∪D
and ΞM (P) ∪ D entail the same facts over a Horn predicate.

• If r = ξ> → RR(~y, ~y) where R is disjunctive in P, then α = RR(~b,~b) for

some ~b, and the claim (P ∪ D |= R(~b)→ R(~b)) is immediate.

• If r = RR(~y, ~y) → R(~y), then λ(v) = R(~b) for some ~b. By the inductive

hypothesis, P ∪ D |= R(~b) ∨R(~b), and the claim is immediate.

• If r = ξ>∧ϕ∧
∧m
j=1Q

R
j (~tj , ~y)∧

∧n
i=1 P

R
i (~si, ~y)→ QR(~t, ~y) where ξ>∧ϕ is

the conjunction of all Horn atoms in r and r′ = ϕ∧Q(~t)∧
∧m
j=1Qj(~tj)→∨n

i=1 Pi(~si) ∈ P, then λ(v) = QR(~b,~c) for some ~b and ~c. For some σ, we

have P ∪ D |= ϕσ, ~tσ = ~b and, for each i, j, ΞM (P) ∪ D |= PRi (~siσ,~c)
and ΞM (P) ∪ D |= QRj (~tjσ,~c). Then, by the inductive hypothesis, P ∪
D |= Pi(~siσ) → R(~c) and P ∪ D |= Qj(~tjσ) ∨ R(~c). With r′, we obtain

P ∪ D |= Q(~b)→ R(~c).

• If r = ϕ∧
∧m
j=1Q

R
j (~tj , ~y)∧

∧n
i=1 P

R
i (~si, ~y)→ R(~y) where ϕ is the conjunc-

tion of all Horn atoms in r and r′ = ϕ ∧
∧m
j=1Qj(~tj)→

∨n
i=1 Pi(~si) ∈ P,

then λ(v) = R(~b) for some ~b. For some σ, we then have P ∪ D |= ϕσ

and, for each i, j, ΞM (P)∪D |= PRi (~siσ,~b) and ΞM (P)∪D |= QRj (~tjσ,~b).

Then, by the inductive hypothesis, P ∪D |= Pi(~siσ)→ R(~b) and P ∪D |=
Qj(~tjσ) ∨R(~b). With r′, we obtain P ∪ D |= R(~b).

• If r = ξ> ∧ϕ∧
∧m
j=1Q

R
j (~tj , ~y)∧

∧n
i=1 P

R
i (~si, ~y)→ P ′

R
(~s, ~y) where ξ> ∧ϕ

is the conjunction of all Horn atoms in r and r′ = ϕ ∧
∧m
j=1Qj(~tj) →

P ′(~s) ∨
∨n
i=1 Pi(~si) in P, then λ(v) = P ′

R
(~b,~c) for some ~b and ~c. For

some σ we then have P ∪ D |= ϕσ, ~sσ = ~b and, for each i, j, ΞM (P) ∪
D |= PRi (~siσ,~c) and ΞM (P) ∪ D |= QRj (~tjσ,~c). Then, by the inductive

hypothesis, P ∪ D |= Pi(~siσ)→ R(~c) and P ∪ D |= Qj(~tjσ) ∨R(~c). With

r′, we obtain P ∪ D |= P ′(~b) ∨R(~c).

This concludes the proofs of Claim (♣), Step 2, and thus Theorem 9. 2

5. Rewriting Programs via Unfolding

Unfortunately, in the case of programs that do not satisfy the markabil-
ity condition we have no algorithmic means to determine whether they can
be rewritten into Datalog. Indeed, Bienvenu et al. [22] showed that Datalog
rewritability of atomic queries is undecidable w.r.t. ontologies in the Description
Logic ALCF . Since each ALCF ontology admits a Disjunctive Datalog rewrit-
ing [23], we can conclude that checking Datalog rewritability (or, equivalently,
linearisability) of Disjunctive Datalog programs is an undecidable problem.

In this section, we present a rewriting procedure that combines our results
in Section 4 with the work of Gergatsoulis [13] on program transformation for

23

Procedure 1 Unfold
Input: P: a Disjunctive Datalog program; r: a rule; α: a body atom of r
Output: a Disjunctive Datalog program.

1: S0 := { (s, β) | s ∈ P, β a head atom in s unifiable with α }
2: i := 0
3: repeat
4: Si+1 := ∅
5: for each (s, β) ∈ Si do
6: (s′, θ) := ElemUnfold(r, α, s, β)
7: Si+1 := Si+1 ∪ { (s′, β′θ) | (s, β′) ∈ Si, β 6= β′ }
8: i := i+ 1
9: until Si 6= ∅

10: return (P \ {r}) ∪ { s | (s, β) ∈ Sj , for 1 ≤ j < i }

Disjunctive Datalog programs. Our procedure iteratively applies the unfolding
transformation to eliminate rules that preclude markability; it stops when the
program becomes markable, in which case it outputs a Datalog program as in
Section 4. The procedure is sound: if it succeeds, the output is a Datalog rewrit-
ing. It is, however, both incomplete (linearisability cannot be semi-decided just
by unfolding) and non-terminating. Nevertheless, our experiments suggest that
unfolding can be effective in practice since a number of non-markable Disjunc-
tive Datalog programs obtained from realistic ontologies can be rewritten into
Datalog after just a few unfolding steps.

5.1. The Unfolding Transformation

Given a Disjunctive Datalog program P, a rule r in P, and a body atom α
of r, Gergatsoulis defines the unfolding of r at α in P as a transformation that
replaces r in P with a set of resolvents of r with other rules in the program,
where resolution is applied over α. We next recapitulate this notion.

Definition 10. Let r = α∧ϕr → ψr and s = ϕs → β∨ψs be rules such that α
is unifiable with β with MGU θ. The elementary unfolding ElemUnfold(r, α, s, β)
of r at α using s at β is the pair ((ϕr ∧ ϕs → ψr ∨ ψs)θ, θ). 3

Elementary unfolding thus amounts to resolving the relevant rules over the
given predicates. Unfolding is then a transformation where a rule is replaced
with a sequence of elementary unfoldings in an equivalence-preserving way.

Definition 11. Let P be a Disjunctive Datalog program, let r ∈ P and let α
be a body atom in r; then the unfolding of r at α in P, denoted Unfold(P, r, α),
is the result of applying Procedure 1 to P, r, and α. 3

As shown by Gergatsoulis, performing all possible elementary unfoldings of
r at α using rules in P does not suffice to eliminate r. Instead, given r and α,
Procedure 1 computes a “closure” under elementary unfoldings. Gergatsoulis

24

shows that Procedure 1 terminates (each s′ introduced in iteration i occurs in
fewer tuples in Si+1 than the rule it was obtained from does in Si), and its
output is unique up to variable renaming. The termination argument yields an
exponential bound on the size of Unfold(P, r, α) in the number of head atoms in
P unifiable with α. Gergatsoulis also shows that unfolding preserves all entailed
disjunctions of facts.

The result of Gergatsoulis, however, applies to a fixed program and dataset
(where the data is incorporated in the program as ground rules). To compute
Datalog rewritings via unfolding we need a stronger, data-independent result.

Theorem 12. Let P be a Disjunctive Datalog program, r a rule in P, and α
an IDB body atom of r. Then, for every dataset D over the EDB predicates
in P and every disjunction of facts ϕ, we have P ∪ D |= ϕ if and only if
Unfold(P, r, α) ∪ D |= ϕ.

Proof. Assume that Unfold(P, r, α) ∪ D |= ϕ. By soundness of resolution,
P |= Unfold(P, r, α) and hence P ∪ D |= ϕ.

Assume now that P ∪ D |= ϕ. W.l.o.g., let r be of the form
∧n
i=1 αi → ψ,

where n ≥ 1 and α = α1. We show the following claim (♠), which we then
exploit to obtain Unfold(P, r, α) ∪ D |= ϕ.

Claim (♠). Let σ be a ground substitution and let χα1
, . . . χαn

be disjunctions
of facts such that Unfold(P, r, α) ∪ D |= αiσ ∨ χαi

for every i ∈ [1, n]. Then
Unfold(P, r, α) ∪ D |= ψσ ∨ χα1 ∨ · · · ∨ χαn .

Let ρ = (T, λ) be a derivation, rooted at v, of ασ∨χ′α from Unfold(P, r, α)∪D
for some χ′α ⊆ χα (ρ exists by completeness of hyperresolution). Let s be the
rule used to derive the label of v (i.e., ασ ∨ χ′α) from the labels of its children
v1, . . . , vm, and let τ be substitution used in the respective hyperresolution
step. Then, s =

∧m
j=1 βj → α′1 ∨ · · · ∨ α′l ∨ ψα′ with λ(vj) = βjτ ∨ χβj for each

j ∈ [1,m], ασ = α′1τ = · · · = α′lτ and χ′α = ψα′τ ∨ χβ1
∨ · · · ∨ χβm

. Let r1
be the rule obtained by elementary unfolding of r at α using s at α′1, and let
rk (2 ≤ k ≤ l) be the rule obtained by elementary unfolding of r at α using
rk−1 at α′k. Then (

∧m
j=1 βjτ)∧ (

∧n
i=2 αiσ) is a substitution instance of the body

of rl and ψα′τ ∨ ψσ is the corresponding instance of the head of rl. Hence,
since Unfold(P, r, α) ∪ D |= αiσ ∨ χαi

for every i ∈ [2, n] and, by soundness of
hyperresolution, Unfold(P, r, α)∪D |= βjτ ∨χβj

for every j ∈ [1,m], with rl we
obtain Unfold(P, r, α) ∪ D |= ψα′τ ∨ ψσ ∨ χβ1

∨ · · · ∨ χβm
∨ χα2

∨ · · · ∨ χαn
=

ψσ ∨ χ′α ∨ χα2 ∨ · · · ∨ χαn ⊆ ψσ ∨ χα ∨ χα2 ∨ · · · ∨ χαn = ψσ ∨ χα1 ∨ · · · ∨ χαn .
This concludes the proof of Claim (♠).

We now use Claim (♠) to show Unfold(P, r, α) ∪ D |= ϕ. W.l.o.g., let ρ =
(T, λ) be a derivation of ϕ from P ∪D (the claim easily adapts if ρ derives some
ϕ′ ⊆ ϕ) and let v be the root of ρ. We proceed by induction on ρ.

For the base case, suppose v is the only node in ρ. Then either λ(v) ∈ D,
in which case the claim is immediate, or ϕ is derived by a rule s ∈ P with an
empty body. Then the claim follows since s 6= r and hence s ∈ Unfold(P, r, α).

For the inductive step, let v1, . . . , vn be the successors of v. By the induction
hypothesis, Unfold(P, r, α) ∪ D |= λ(vi) for every i ∈ [1, n]. We distinguish two

25

Procedure 2 Rewrite
Input: P: a Disjunctive Datalog program
Output: a Datalog rewriting of P

1: while P not markable do
2: compute a minimal pseudo-marking M ′ of P
3: select r∈P with more than one body atom marked by M ′

4: select a body atom α ∈ r marked by M ′

5: P := DeleteRed(Unfold(P, r, α))

6: compute a marking M of P
7: return ΞM (P)

cases, depending on the rule s ∈ P used to derive λ(v) from λ(v1), . . . , λ(vn). If
s 6= r, we have s ∈ Unfold(P, r, α), and the claim follows with s. If s = r, the
claim follows by (♠). 2

Theorem 12 implies that Unfold(P, r, α) is a rewriting of P for every r and α.

5.2. The Rewriting Procedure

Our rewriting procedure exploits unfolding to iteratively eliminate rules that
violate markability. To identify such culprit rules we exploit a relaxed notion of
a marking, in which the first condition in Definition 6 is no longer required.

Definition 13. A pseudo-marking of P is a set M of disjunctive predicates
in P satisfying conditions (2) and (3) in Definition 6. Pseudo-marking M is
minimal if P has no pseudo-marking M ′ such that M ′ (M . 3

The set of all disjunctive predicates in P is a pseudo-marking of P; thus, every
program has a pseudo-marking, and hence also a minimal one. Moreover, if P
is not markable, then for every pseudo-marking M of P there is a rule in P with
more than one marked body atom (otherwise M would be a marking of P).

In each iteration, our procedure Rewrite computes a minimal pseudo-marking
of the current program, finds a rule with more than one marked body atom, and
unfolds it on one such atom. The process is repeated (maybe indefinitely) until
the program becomes markable. To obtain smaller rewritings and ensure ter-
mination in more cases, our procedure employs redundancy elimination. Given
a program P, we write DeleteRed(P) for the program obtained from P by re-
moving all tautologous rules as well as all rules properly subsumed by other
rules in P. Note that for every program P we have DeleteRed(P) ⊆ P and
DeleteRed(P) |= P, and thus P ≡ DeleteRed(P).

Correctness of Rewrite is established by the following theorem.

Theorem 14. Let P be a Disjunctive Datalog program. If Rewrite terminates
on P with output P ′, then P ′ is a Datalog rewriting of P.

Proof. By Theorem 12, Unfold(P, r, α) is a rewriting of P, and so is the logi-
cally equivalent program DeleteRed(Unfold(P, r, α)). Since the property of being

26

a rewriting is transitive, we conclude that the program obtained in Step 6 of
Rewrite is, on the one hand, a rewriting of P and, on the other hand, a markable
program. The claim then follows directly from Theorem 9. 2

To conclude this section let us consider as an example the following program
P5, which admits no marking.

P5 = {H(x)→ P (x), (12)

P (x)→M(x) ∨W (x), (13)

M(x)→ P (x), (14)

W (x)→ P (x), (15)

M(x) ∧W (x)→ ⊥} (16)

The set {M,P,W,⊥} is the only pseudo-marking of P5. Thus, Rewrite must
unfold Rule (16) as it is the only rule containing several marked body atoms.
We choose to unfold on atom M(x) and replace (16) with the following rule:

P (x) ∧W (x)→W (x) ∨ ⊥ (17)

Rule (17) is a tautology and hence it is eliminated by DeleteRed. Thus, Step 5 in
Rewrite amounts to simply deleting Rule (16) from P5. The resulting program
P ′5 is markable (and even linear), with {M,P,W} being the only marking. Our
procedure then returns the transposition of P ′5 w.r.t. this marking, which by
Theorem 14 yields a Datalog rewriting of P5.

6. Applications to Ontologies

In this section we study the implications of markability on ontology reason-
ing. After providing a brief overview of Description Logics and ontologies in
Section 6.1, we show in Section 6.2 that our notion of markability can be seam-
lessly adapted to ontologies. Then, we focus on the complexity of reasoning over
markable OWL 2 ontologies. In Section 6.3, we study the natural extension of
the OWL 2 RL profile based on markability and show that fact entailment in
the resulting language is tractable in combined complexity. Subsequently, we
consider in Section 6.4 ontologies in the expressive Description Logic SHI and
show that markable SHI ontologies admit a (possibly exponential size) Datalog
rewriting, which implies tractability of fact entailment w.r.t. data complexity
(as opposed to co-NP-completeness in the case of unrestricted SHI ontologies).

6.1. Ontologies and OWL 2

We assume basic familiarity with Description Logics (DLs) and ontology
languages and refer the reader to the literature for further details [24, 25]. A
DL signature Σ consists of disjoint countable sets of of concept names ΣC , role
names ΣR, and individuals ΣI . A role is an element of ΣR ∪ {R− | R ∈ ΣR}.
W.l.o.g., we consider normalised DL axioms as in Table 1. The table also

27

A1.
dn
i=1Ai v

⊔m
j=1 Cj

∧n
i=1Ai(x)→

∨m
j=1 Cj(x)

A2. ∃R.A v B R(x, y) ∧A(y)→ B(x)
A3. A v Self(R) A(x)→ R(x, x)
A4. Self(R) v A R(x, x)→ A(x)
A5. R v S R(x, y)→ S(x, y)
A6. R v S− R(x, y)→ S(y, x)
A7. R ◦ S v T R(x, z) ∧ S(z, y)→ T (x, y)
A8. A v ∃R.B A(x)→ R(x, fR(x)); A(x)→ B(fR(x))
A9. A v ≤mR.B A(z) ∧

∧m
i=1R(z, xi) ∧B(xi)→

∨
1≤i<j≤m xi≈xj

A10. A v {a} A(x)→ x≈ a

Table 1: Normalised DL axioms. A,B ∈ ΣC ∪{>}, C ∈ ΣC ∪{⊥}, R,S, T ∈ ΣR, and a ∈ ΣI .

provides the translation π of normalised DL axioms into rules with equality
(≈). We will treat equality as an ordinary IDB binary predicate, the meaning
of which is axiomatised.

Definition 15. An ontology O is a finite set of DL axioms. We define π(O) as
the smallest program containing (i) π(α) for each axiom α in O, and (ii) the
standard (Datalog) axiomatisation of equality as a congruence relation over the
predicates in O, whenever O contains an axiom of type A9 or A10.4 3

It can be observed that all axioms in Table 1 correspond to Disjunctive
Datalog rules, with the only exception of existentially quantified axioms of type
A8, where the corresponding rules contain function symbols.

An ontology consisting of axioms of type A1-A10 in Table 1 is

• SHIQ if it has no axiom of type A10 and R = S = T in each axiom of
type A7;5

• SHI if it is SHIQ and it contains no axiom of type A9;

• Horn if m = 1 for each axiom of type A1 and A9, and RL if it is Horn
and it has no axiom of type A8.

The logics SHIQ and SHI are typically referred to in the literature as
expressive DLs due to their high complexity of reasoning: fact entailment for
these logics is ExpTime-complete in combined complexity and co-NP-complete
w.r.t. data [26]. In contrast, OWL 2 RL is a lightweight ontology language,
where fact entailment is tractable in combined complexity [7].6 The favourable

4We assume that reflexivity of ≈ is axiomatised using the safe rule >(x)→ x ≈ x.
5SHIQ enforces additional restrictions to ensure decidability, which we omit here. We

refer the reader to [26] for details.
6Datalog reasoning is tractable (as opposed ExpTime-complete) if the maximum number of

variables in rules is bounded [4], which is the case for programs stemming from RL ontologies
as shown in Table 1.

28

computational properties of OWL 2 RL have spurred the development of scalable
reasoning engines such as GraphDB [8] and RDFox [10].

6.2. Markability for Ontologies

Our notions of weak linearity and markability are formulated for arbitrary
first-order programs and hence they can be seamlessly adapted to ontologies.

Definition 16. An ontology O is weakly linear if so is the program π(O). Fur-
thermore, we say that a set of predicates M is a marking of an ontology O if it
is a marking of π(O), and O is markable if it admits a marking. 3

Example 17. Consider the ontology O1 and its corresponding program π(O1):

O1 = {Person v Man tWoman,Person v ∃parent.Person,
∃married.Person v Person,Woman v Person,Man v Person}

π(O1) = {Person(x)→ Man(x) ∨Woman(x),Person(x)→ parent(x, f(x)),

Person(x)→ Person(f(x)),Person(y) ∧married(x, y)→ Person(x),

Woman(x)→ Person(x),Man(x)→ Person(x)}

Ontology O1 is markable since {Person,Man,Woman} is a marking of π(O1) 3.

6.3. Extending OWL 2 RL with Disjunctive Axioms

We next consider a natural extension of OWL 2 RL that allows for an un-
restricted use of disjunctive axioms of the form

dn
i=1Ai v

⊔m
j=1 Cj . Thus,

ontologies in this language correspond to Disjunctive Datalog programs.

Definition 18. An RLt ontology is a finite set of DL axioms of type A1–A7
and A9–A10 in Table 1, where m = 1 for each axiom of type A9. 3

Extending OWL 2 RL in this way leads to increased complexity of reasoning
since we can now encode standard graph search problems.

Proposition 19. Fact entailment w.r.t. RLt ontologies is co-NP-complete.

Proof. Membership in co-NP follows from the fact that both the rules in
Table 1 and the rules axiomatising equality and ⊥ contain a bounded number
of variables; hence, the corresponding programs can be grounded in polynomial
time and entailment in the resulting propositional program can be checked in
co-NP. For hardness, it suffices to provide a fairly standard encoding of non-3-
colourability (a very similar reduction can be found, e.g., in [27]). Clearly, the
following ontology O can be normalised into an RLt ontology:

V v R tG tB B u ∃edge.B v ⊥ B uG v ⊥
G u ∃edge.G v ⊥ G uR v ⊥
R u ∃edge.R v ⊥ B uR v ⊥

Given an undirected graph G = (V,E), the dataset DG contains a fact V (a) for
each node a ∈ V and a fact edge(a, b) for each edge connecting a and b in E.
Then G is non-3-colourable iff O ∪DG |= ⊥. 2

29

If we restrict RLt ontologies O to be markable, however, we can pick a
marking M and exploit the transformation ΞM in Definition 8 to compute a
Datalog rewriting P of π(O). Tractability of fact entailment for markable RLt

ontologies is established by the following theorem.

Theorem 20. Fact entailment w.r.t. markable ontologies expressed in RLt is
PTime-complete in both data and combined complexity.

Proof. Hardness follows directly from the fact that the problem is already
PTime-hard if O is an RL ontology; thus, we focus on proving membership
in PTime. Let M be a marking of O. Let π(O)e be the IDB expansion of
π(O) and θ the corresponding substitution as defined in Section 2.1, and let
P = ΞM (π(O)e).7 By Theorem 9, O ∪D |= α iff P ∪ D |= αθ. Thus, it suffices
to show that the evaluation of P over D can be computed in polynomial time in
the size of O and D. First, P is of size at most quadratic in the size of O, and
the arity of a predicate in P is at most double the arity of a predicate in O. As
we can see in Table 1, the rules in π(O) contain at most 3 variables; hence, the
number of variables in each rule in P is bounded by 6. Since fact entailment in
Datalog is tractable for input programs having a bounded number of variables
per rule the claim of the theorem immediately follows. 2

6.4. Expressive Ontology Languages

Our Datalog rewriting techniques are not applicable to ontologies contain-
ing existentially quantified axioms (i.e., axioms of type A8 in Table 1). Hustadt
et al. [23], however, developed an algorithm for transforming a SHIQ ontol-
ogy into a Disjunctive Datalog program that preserves entailment of facts over
non-transitive roles. This technique was extended by Cuenca Grau et al. [28]
to preserve all facts (an alternative translation from an extension of SHIQ
to Disjunctive Datalog that preserves all ground consequences was developed
by Rudolph et al. [29]). It follows that every SHIQ ontology O admits a Dis-
junctive Datalog rewriting, the size of which may be exponential in the size of O.

When applied to SHI ontologies, the algorithm in [23] can be seen as a res-
olution calculus having binary resolution and factoring as inference rules, which
are restricted in a suitable way to ensure termination. The key observation
that allows us to transfer our results is captured by the following lemma, which
establishes that binary resolution and factoring preserve markability.

Lemma 21. Let M be a marking of a program P, and let P ′ be obtained from
P by applying binary resolution and factoring. Then M is a marking of P ′.

Proof. Note that markability of P is not affected if P is extended by factors
of rules that are already in P: if M is a marking of r, then M is a marking of

7We employ IDB expansion to lift the assumption that datasets contain no IDB facts,
which is non-standard for DL ontologies.

30

every factor of r. As for resolution, it suffices to show that whenever M is a
marking of two rules r and r′, M is a marking of their resolvent e. W.l.o.g., let

r = ϕ ∧
n∧
i=1

αi →
m∨
j=1

βj ∨ α

r′ = ϕ′ ∧
n′∧
i=1

α′i ∧ α′ →
m′∨
j=1

β′j

e = (ϕ ∧ ϕ′ ∧
n∧
i=1

αi ∧
n′∧
i=1

α′i →
m∨
j=1

βj ∨
m′∨
j=1

β′j)σ

where ϕ and ϕ′ contain all Horn atoms in r and r′, respectively, and σ is the
MGU of α and α′. We distinguish the following cases:

• If α is unmarked, then each αi is unmarked and each βj is marked. Thus,
e has as many marked body atoms and unmarked head atoms as r′.

• If α is marked and, say, β1 is unmarked, then each αi is unmarked, each
βj with j ≥ 2 is marked, each α′i is unmarked (since α′ is marked), and
each β′j is marked. Thus, e has β1σ as the only unmarked head atom and
has no marked body atom.

• If every head atom in r is marked (including α), then α′ is marked, each
α′i is unmarked, and each β′j is marked. Consequently, e contains only
marked head atoms and as many marked body atoms as r.

Thus, in all three cases M is a marking of e and the claim follows. 2

We conclude from Lemma 21 and the results in [23] that markable SHI ontolo-
gies admit a (possibly exponential size) Datalog rewriting.

Theorem 22. Let O be a markable SHI ontology. There exists a Datalog
rewriting of O that can be computed in exponential time in the size of O.

Proof. Let M be a marking of O. By the results in [23, 28], O is exponential-
time rewritable to a Disjunctive Datalog program P by means of binary resolu-
tion and factoring, where |P| is exponentially bounded in |O|. By Lemma 21,
M is a marking of P. Then ΞM (Pe) is a Datalog rewriting of P, and hence of
O. The claim follows since ΞM (Pe) is polynomial-time computable in |P|. 2

We can now establish tight bounds on the complexity of reasoning over
markable SHI ontologies.

Theorem 23. Fact entailment w.r.t. markable ontologies expressed in SHI is
PTime-complete in data and ExpTime-complete in combined complexity.

31

Proof. The ExpTime upper bound is immediate since fact entailment over
unrestricted SHI ontologies is known to be ExpTime-complete. Furthermore,
the PTime upper bound for data complexity follows directly from Theorem 22.

The lower bounds follow from existing results for Horn-ALC, where we say
that a SHI ontology is Horn-ALC if it is Horn and contains no axiom of type
A7. Indeed, fact entailment for Horn-ALC is ExpTime-hard [30] and PTime-
hard in data; furthermore, every Horn-ALC ontology is trivially markable as it
corresponds to a Horn program. 2

7. Conjunctive Queries

We have so far been interested in computing Datalog rewritings that preserve
the entailment of facts (or, equivalently, the answers to all atomic queries).
We now shift our attention to Datalog rewritings that preserve the answers to
unrestricted CQs.

In this setting, it is no longer possible to obtain query-independent rewrit-
ings. Lutz and Wolter [14] showed that for any Disjunctive Datalog program P
containing at least one disjunctive rule there exists a conjunctive query q such
that answering the (fixed) query q w.r.t. the (fixed) program P and an input
dataset is co-NP-hard. Under standard complexity-theoretic assumptions, this
implies that there cannot exist a Datalog rewriting of P that preserves the
answers to all CQs (and, in particular, those of q).

If we impose restrictions on both program P and query q, however, it is still
possible to identify situations where it is feasible to compute a Datalog rewrit-
ing. In this section, we investigate classes of queries and Disjunctive Datalog
programs that admit Datalog rewritings, and we discuss the implications of
these results on ontology reasoning.

7.1. Characterising Datalog Rewritability for Conjunctive Queries

In Section 3, we established a characterisation of Datalog rewritability based
on linearity: a Disjunctive Datalog program P is rewritable into a Datalog
program P1 iff it is rewritable into a linear Disjunctive Datalog program P2. In
this case, the requirement imposed on such P1 and P2 is that they preserve the
answers to all atomic queries for every dataset over the signature of P.

We next show that this characterisation can be seamlessly lifted to CQs.
For this, it suffices to observe that answering a CQ q(~x) = ∃~y.ϕ(~x, ~y) w.r.t. a
Disjunctive Datalog program P reduces to answering the atomic query Q(~x)
w.r.t. the program P ∪ {ϕ(~x, ~y)→ Q(~x)}, for Q a fresh predicate.

Theorem 24. A CQ q is Datalog rewritable w.r.t. a Disjunctive Datalog pro-
gram P iff q is rewritable w.r.t. P into linear Disjunctive Datalog.

Proof. Let q(~x) = ∃~y.ϕ(~x, ~y), and let Q be a fresh predicate of the same arity
as q. Then, for every D and ~a, P∪D |= q(~a) iff P∪{ϕ(~x, ~y)→ Q(~x)}∪D |= Q(~a).
It suffices to show that Q(~x) is Datalog rewritable w.r.t. P∪{ϕ(~x, ~y)→ Q(x)} iff
Q(~x) is rewritable w.r.t. P ∪ {ϕ(~x, ~y)→ Q(x)} into linear Disjunctive Datalog.

32

This, in turn, follows by Theorem 3 and Proposition 2: if P ′ is a Datalog (or
linear Disjunctive Datalog) rewriting of Q(~x) w.r.t. P ∪{ϕ(~x, ~y)→ Q(x)}, then
Ξ(P ′) is a linear Disjunctive Datalog (resp., Datalog) rewriting of Q(~x) w.r.t.
P ∪ {ϕ(~x, ~y)→ Q(x)}. 2

7.2. Exploiting the Markability Condition

A Datalog rewriting of a fixed atomic query Q(~x) w.r.t. a markable program
P must only preserve the answers to Q (rather than the answers to all atomic
queries). Thus, the rewriting ΞM (P) can be optimised by deleting all rules
involving auxiliary predicates XR and XR for R 6= Q. In particular, if Q is a
Horn predicate in P ∪{ϕ(~x, ~y)→ Q(~x)}, the optimised rewriting does not need
to contain any auxiliary predicates.

Definition 25. Let P be a Disjunctive Datalog program, let M be a marking
of P, and let S be a set of predicates. The M -transposition of P w.r.t. S is
the program ΞSM (P) obtained from ΞM (P) by removing all rules involving a
predicate XR or XR for R /∈ S. 3

The transposition ΞSM (P) is linear in the size of P for a fixed S. It is easily
seen that ΞSM (P) is a rewriting of each atomic query over predicates in S.

Theorem 26. Let P be a Disjunctive Datalog program, let M be a marking of
P, and let S be a set of predicates. Then, ΞSM (P) is a Datalog rewriting of all
atomic queries over S w.r.t. P.

Proof. The claim is shown analogously to Theorem 9 with the additional ob-
servation that Step 1 of the proof only needs rules involving auxiliary predicates
of the form QP and QP to show facts about a predicate P . 2

Based on these observations, we can exploit our results on markability to
identify a class of Disjunctive Datalog programs and CQs admitting a Datalog
rewriting, and for which CQ entailment is tractable in data complexity.

Theorem 27. Let P be a Disjunctive Datalog program and let q(~x) = ∃~y.ϕ(~x, ~y)
be a CQ. Furthermore, assume that there exists some marking M of P that
marks at most one atom of q, and let Q be a fresh predicate of arity |~x|. Then
the following properties hold:

1. Ξ
{Q}
M (P ∪ {ϕ(~x, ~y)→ Q(~x)}) is a Datalog rewriting of q w.r.t. P.

2. For every tuple of constants ~a with |~a| = |~x|, answering the (fixed) Boolean
CQ q(~a) w.r.t. (fixed) P and arbitrary data is a tractable problem.

Proof. Statement 2 in the theorem follows directly from the first one, which we
show next. Clearly, P∪D |= q(~a) if and only if P∪{ϕ(~x, ~y)→ Q(~x)}∪D |= Q(~a)

for every D and ~a, and hence Ξ
{Q}
M (P∪{ϕ(~x, ~y)→ Q(~x)}) is a Datalog rewriting

of q w.r.t. P provided M is a marking of P ∪ {ϕ(~x, ~y) → Q(~x)}. This holds
since M is a marking of P, ϕ has at most one marked atom, and Q does not
occur in P. 2

33

Since RLt ontologies correspond to Disjunctive Datalog programs, the result in
Theorem 27 also applies to markable RLt ontologies. Note also that the theorem
is always applicable whenever the input query has at most one disjunctive atom.
As we will see in our evaluation, in typical non-Horn ontologies more than 70%
of predicates are Horn; hence, it is reasonable to expect that the theorem will
be applicable to many queries in practice.

The following example illustrates the rewriting of a conjunctive query w.r.t.
an RLt ontology.

Example 28. Consider the following RLt ontology O and query q:8

O = {A v B′ t C ′, B v B′, C v C ′}
q(x) = ∃yz1z2. R(x, y) ∧R(y, z1) ∧R(y, z2) ∧B′(z1) ∧ C ′(z2)

The program π(O) corresponding to O is as follows:

A(x)→ B′(x) ∨ C ′(x) (18)

B(x)→ B′(x) (19)

C(x)→ C ′(x) (20)

We can check that the Datalog program P = {B(x) → B′(x), C(x) → C ′(x)}
is a rewriting of O. This program, however, is not a rewriting of q, as witnessed
by the following dataset D for which O ∪D |= q(a):

{R(a, b1), R(a, b2), R(b1, c1), R(b1, c2), R(b2, c2), R(b2, c3), B(c1), A(c2), C(c3)}

Clearly, M = {B′} is a marking of O, and q contains one marked atom. More-
over, M ′ = {B′, Q} is a marking of π(O) ∪ {rq}, where

rq = R(x, y) ∧R(y, z1) ∧R(y, z2) ∧B′(z1) ∧ C ′(z2)→ Q(x)

and P ′ = Ξ
{Q}
M ′ (π(O) ∪ {rq}) contains the following rules:

A(x) ∧B′Q(x, y)→ C ′
Q

(x, y) (18’)

B(x) ∧B′Q(x, y)→ Q(y) (19’)

>(y) ∧ C(x)→ C ′
Q

(x, y) (20’)

QQ(x, u) ∧R(x, y) ∧R(y, z1) ∧R(y, z2) ∧ C ′Q(z2, u)→ B′Q(z1, u) (21)

>(x)→ QQ(x, x) (22)

Then, P ′ is a rewriting of q; Fig. 2 shows a derivation of Q(a) from P ′ ∪ D. 3

To conclude this section, observe that Theorem 27 only transfers to SHI (or
potentially SHIQ) ontologies if the CQ q corresponds to a normalised SHIQ
axiom. This is because the reduction to Disjunctive Datalog in [23, 28] is only
complete for inputs equivalent to SHIQ ontologies.

8This example is based on a personal communication with Carsten Lutz.

34

Q(a)

B′Q(c1, a)

QQ(a, a)

>(a)

(22)

R(a, b1) C′Q(c2, a)

B′Q(c2, a)

QQ(a, a)

>(a)

(22)

R(a, b2) C′Q(c3, a)

>(a) C(c3)

(21)

R(b2, c2) R(b2, c3)

A(c2)

(21)

R(b1, c1) R(b1, c2)

B(c1)

(19’)

(18’)

(20’)

Figure 2: Derivation of Q(a) from P ′ ∪ D in Example 28.

8. Related Work

The computational complexity and expressive power of Disjunctive and plain
Datalog are well-understood, and we refer the interested reader to [4] for an
excellent survey. Disjunctive Datalog with negation as failure has also been
extensively studied in the Logic Programming literature [3, 31].

The specification of fragments of (Disjunctive) Datalog with more favourable
computational properties has also received significant attention. The class of
head-cycle free Disjunctive Datalog programs with negation as failure was stud-
ied by Ben-Eliyahu-Zohary et al. [31, 32], who showed that certain reasoning
problems are tractable for such programs (fact entailment, however, remains
intractable in data complexity). In particular, head-cycle free programs are
amenable to a program transformation technique known as shifting [33–35] that
bears some resemblance to program transposition. Semantic characterisations of
first-order rewritability in the context of non-monotonic programs were studied
in [36]. Furthermore, there is a large body of work on Datalog and first-order
rewritability of Horn Description Logics and related languages [37–45]. Finally,
linearity has been extensively studied in the context of plain Datalog and it is
known to limit the effect of recursion and lead to reduced complexity of reason-
ing, namely NLogSpace vs PTime in the case of data complexity and PSpace
vs ExpTime for combined complexity [11].

Gottlob et al. [46] investigated the complexity of reasoning over disjunctive
tuple-generating dependencies (TGDs), which extend Disjunctive Datalog by
allowing existentially quantified variables in the head of rules. In particular,
they showed tractability (in data complexity) of fact entailment for a class of
disjunctive TGDs with single-atom bodies. This class of rules is incomparable
to weakly-linear and markable Disjunctive Datalog as it allows existential quan-

35

tification (and hence function symbols) in the head of rules. Artale et al. [47]
showed tractability of fact entailment w.r.t. data for DLs of the DL-Litebool
family. This result is strongly related to that in [46] since many variants of
DL-Litebool can be normalised as disjunctive TGDs with singleton bodies. Fi-
nally, combined complexity of CQ answering for different classes of disjunctive
TGDs was studied by Bourhis et al. [48].

Lutz and Wolter [14] investigated non-uniform data complexity of CQ an-
swering w.r.t. extensions of ALC, and related CQ answering to constraint sat-
isfaction problems. This connection was explored by Bienvenu et al. [22],
who showed NExpTime-completeness of first-order and Datalog rewritability
of atomic queries for SHI.

A goal-directed resolution procedure for computing first-order and Datalog
rewritings of Disjunctive Datalog programs was proposed in [28] and further
refined in [2]. Termination of the procedure in [28] is guaranteed for DL-Litebool
logics, and it was extended to a restricted class of SHI ontologies in [2]. Both
classes of of ontologies are incomparable to WL or markable ontologies. The
procedures in [2, 28] do not run in polynomial time or compute polynomial-size
rewritings. The procedure in [28] is used in [49] to show first-order/Datalog
rewritability of two fragments of the DL ELU . Notably, both fragments yield
linear programs and hence are subsumed by those studied in this paper.

Transposition bears a superficial resemblance to the Magic Sets method [50]
for Datalog, which has been extended to apply also to Disjunctive Datalog pro-
grams [51, 52]. Note, however, that the goal of Magic Sets is not to eliminate
the need for disjunctive reasoning (the Magic Set transformation of a Disjunc-
tive Datalog program will still contain disjunctive rules), but rather to restrict
bottom-up computation in the presence of a query so as to only compute facts
that are relevant to the query; in particular, Magic Sets are inherently query-
dependent while our technique is essentially query-independent. Transposition
and Magic Sets are thus largely orthogonal.

The idea of merging two atoms of smaller arity into one atom of larger arity
has been exploited by Faber and Woltran [53], albeit for a different purpose and
with a different intended semantics for the merged atoms.

Finally, our unfolding-based rewriting procedure is motivated by the work
of Afrati et al. [54] on linearisation of plain Datalog programs by means of
program transformation techniques [12, 13, 55].

9. Practical Considerations

In this section we discuss various optimisations that were instrumental in
applying our rewriting techniques to ontological reasoning over large datasets.

9.1. Optimising Transposition

Our transposition transformation introduces body atoms over the unary
predicate > to ensure safety of the resulting rules (recall Definitions 1 and
8). This, however, can lead to performance issues.

36

Consider again the example program P1 from Section 3.1. The initialisation
rule >(x)→ BB(x, x) in Ξ(P1) derives a fact BB(a, a) for each constant a in the
input dataset D, which can then trigger the derivation of new facts. An auxiliary
fact BB(a, a), however, is only relevant to the rewriting if B(a) follows from
P1 ∪ D, and hence initialising BB with all constants may lead to unnecessarily
large materialisations. Although the facts derivable from P1∪D are unknown in
advance, we can overapproximate them. For this, we introduce fresh predicates
Bu and Gu representing the overapproximation of the disjunctive predicates B
and G and construct a program P ′1 by replacing every disjunctive predicate with
its corresponding fresh predicate and splitting all disjunctive rules into different
Datalog rules as given next:

C(x)→ Bu(x) Gu(y) ∧ E(x, y)→ Bu(x)

C(x)→ Gu(x) Bu(y) ∧ E(x, y)→ Gu(x)

Finally, we add to P ′1 all rules in the transposition Ξ(P1) while replacing > in
the initialisation rules (4) with the freshly introduced predicates as follows:

Xu(x)→ XX(x, x) for each X ∈ {B,G}

In this way, the predicates XX are initialised with the extension of Xu. Consider
now a fact XX(a, a). If it is not included in the materialisation of P ′1 ∪ D then
neither is Xu(a); but then, since Xu overapproximates X, we also have that
X(a) does not follow from P1 ∪ D, which implies that XX(a, a) is irrelevant.

We next capture these ideas formally by defining the optimised transposition
ΞuM as an extension of ΞM . The definition can be straightforwardly adapted to
the transformations Ξ and ΞSM in Definitions 1 and 25, respectively.

Definition 29. Let P be a Disjunctive Datalog program and let M be a mark-
ing of P. For each disjunctive predicate Q in P, let Qu be fresh and of the same
arity as Q. Then, ΞuM (P) is the smallest program with all rules given next:

1. (
∧n
i=1 αi → βj)θ for each rule

∧n
i=1 αi →

∨m
j=1 βj in P and j ∈ [1,m],

where θ maps every disjunctive predicate Q to Qu;

2. every rule in P with no disjunctive predicates;

3. every rule in ΞM (P) of type 3 or 5 in Definition 8;

4. Ru(~y)→ RR(~y, ~y) for each rule ξ> → RR(~y, ~y) in ΞM (P);

5. Qu(~t) ∧Ru(~y) ∧ ψ → QR(~t, ~y) for each ξ> ∧ ψ → QR(~t, ~y) in ΞM (P); and

6. Pu(~s) ∧Ru(~y) ∧ ψ → PR(~s, ~y) for each ξ> ∧ ψ → PR(~s, ~y) in ΞM (P). 3

We can show that this optimised transformation can also be exploited to
polynomially rewrite markable programs into Datalog.

Theorem 30. Let P be a Disjunctive Datalog program and let M be a marking
of P. Then ΞuM (P) is a polynomial-size Datalog rewriting of P.

37

Proof (Sketch). Let D be a dataset. First, we note that the new predicates
in ΞuM (P) overapproximate the disjunctive predicates in P in the following sense.

Claim (♣). For every disjunction of facts ϕ derivable by hyperresolution from
P ∪ D and every disjunctive atom Q(~a) ∈ ϕ, we have ΞuM (P) ∪ D |= Qu(~a).

The claim follows by a simple induction on a derivation of ϕ from P ∪ D.
Using this claim, the proof of Theorem 9 can be easily adapted with the following
observations.

1. Rules in ΞM (P) with head atoms of the form QR(~s, ~y) or QR(~s, ~y) can
only participate in derivations of facts about the predicate R (among all
predicates in P). Thus, by Claim (♣), the body of every such rule can
be extended with Ru(~y) without affecting the rule’s consequences over the
predicates in P.

2. Whenever a rule r ∈ ΞM (P) with a head of the form QR(~s, ~y) or QR(~s, ~y)
is used in the proof of Theorem 9 with some substitution σ, we have
P ∪ D ` ϕ where Q(~sσ) ∈ ϕ. By Claim (♣), we have ΞuM ∪ D |= Qu(~sσ),
and hence the body of r can be extended with Qu(~s) without affecting the
rule’s consequences over the predicates in P. 2

Even with this optimisation, the presence of transposed rules that rely on
predicates Pu for safety may still lead to performance issues. A common source
of such problematic rules are constraints of the form ϕ ∧ A(x) → ⊥ where ϕ
is a conjunction of Horn atoms mentioning variable x and A is marked. Such
rules are rewritten to ϕ ∧ ⊥P (~y) → AP (x, ~y) for every predicate P , where the
extension of ⊥P is determined by the rule Pu(~x)→ ⊥P (~x). Thus, the extension
of AP in ΞuM (P) ∪D is populated by the Cartesian product of the extension of
ϕ and the extension of Pu. Hence, even if ϕ and Pu are both linearly bounded
in the size of D, the extension of AP will be quadratic in D.

This can often be remedied by unfolding the problematic rules. For instance,
let r = E(x)∧A(x)→ ⊥ ∈ P where E is Horn in P, and let B(x)∧C(x)→ A(x)
and D(x)→ A(x)∨F (x), with B,C,D, F all disjunctive in P, be the only rules
in P where predicate A occurs in the head. Then Unfold(P, r, A(x)) replaces r
in P with the rules E(x) ∧ B(x) ∧ C(x) → ⊥ and E(x) ∧ D(x) → ⊥ ∨ F (x).
Unlike r, the new rules each contain at least two disjunctive atoms besides ⊥,
and hence their rewritings contain at least one disjunctive body atom that is
not ⊥P (~y), typically leading to smaller materialisations.

We can realise this idea using Procedure 3, which unfolds rules of the form
ϕ ∧ α → ⊥ where α is marked by M and ϕ is a conjunction of Horn atoms.
Note that the procedure terminates for every P and M since every iteration
of the main loop that modifies P strictly reduces the number of problematic
rules. Procedure RewriteConstraints can then be incorporated into Procedure
Rewrite from Section 5 by replacing ΞM (P) with ΞuM (RewriteConstraints(P,M))
in Step 7 of the procedure. This modification preserves correctness of Rewrite
since (i) the program computed by RewriteConstraints for a program P and
any M is a rewriting of P (Theorem 12), and (ii) every marking M of P is a
marking of RewriteConstraints(P,M), as established by Lemma 21.

38

Procedure 3 RewriteConstraints
Input: P: a Disjunctive Datalog program; M : a marking of P
Output: a rewriting of P

1: for each r = ϕ ∧ α→ ⊥ in P with α marked and ϕ Horn do
2: P ′ := Unfold(P, r, α)
3: if P ′ \ P has no rule ϕ′ ∧ α′ → ⊥ with α′ marked and ϕ′ Horn then
4: P := P ′
5: return P

9.2. Guiding the Unfolding

The success of our rewriting procedure Rewrite described in Section 5 largely
depends on the choice of rule and atom to unfold in Steps 3 and 4. In our
implementation we have refined the rule selection strategy given in Steps 2
and 3. Rather than computing a pseudo-marking of P, we exploit instead the
data structures used for markability checking; specifically, we use the notion of
implication graph introduced by Aspvall et al. [56] for solving 2-SAT.

Definition 31. Let N be a 2-SAT instance. Given a proposition literal l, we
write l̄ for the negation of l, i.e., l̄ = ¬X if l = X and l̄ = X if l = ¬X. The
implication graph of N is the smallest digraph GN containing nodes l and l̄ for
each literal l in N , and edges (l̄1, l2) and (l̄2, l1) for each clause l1 ∨ l2 in N .

A clash in GN is a directed cycle involving some literal l and its negation l̄.
A literal is clashing if it is involved in a clash. 3

Let P be a program and N the 2-SAT instance encoding its markability.
Then P is markable iff N is satisfiable iff GN contains no clash (the latter
equivalence due to Aspvall et al. [56]). The following proposition establishes
that, in order to obtain a markable program, it suffices to remove from P all rules
that contain at least two clashing body atoms. Thus, in our implementation of
Rewrite we always select one such rule in Step 3.

Proposition 32. Let P be a Disjunctive Datalog program and let N be the 2-
SAT instance encoding markability of P. Then P is markable if and only if it
contains no rule that has two distinct body atoms P (~s), Q(~t) such that XP , XQ

are clashing in GN .

Proof. Assume that P is markable. Then N is satisfiable, and hence no literal
is clashing in GN , which trivially implies the claim. Assume now that P is not
markable. Then, P contains a rule r with two distinct disjunctive body atoms
P (~s), Q(~t) such that (XP ,¬XQ) or (XQ,¬XP) is part of a clash in GN ; note
that edges coming only from clauses of the form (2) and (3) in N cannot lead
to a clash, which needs to be present since P is not markable. Let l and l̄ be the
clashing literals and let, w.l.o.g., π1 = l, . . . , XP ,¬XQ, . . . , l̄ be a directed path
from l to l̄ and π2 be a directed path from l̄ to l. An easy induction on n reveals
that for every path l1, . . . , ln in GN , the sequence l̄n, . . . , l̄1 also constitutes a

39

path in GN . From this we can conclude that π′1 = l, . . . , XQ,¬XP , . . . , l̄ is a
path from l to l̄. We next argue that both XP and XQ are clashing. For XP , the
concatenation of the subpathXP ,¬XQ, . . . , l̄ of π1, the path π2, and the subpath
l, . . . , XQ,¬XP of π′1 is a path from XP to ¬XP . Moreover, the concatenation
of ¬XP , . . . , l̄ from π′1, π2 and l, . . . , XP from π1 is a path from ¬XP to XP .
Analogously, the concatenation π′1π2π1π2 is a directed cycle between XQ and
¬XQ, as required. 2

The choice of atom to unfold on in Step 4 of Rewrite is determined heuristi-
cally. We choose an atom with minimal “depth”, as defined next.

Definition 33. Let GP be the dependency graph of a program P. Given pred-
icates P,Q in P, let P ∼ Q hold iff P and Q belong to the same strongly
connected component of GP . The depth of an atom Q(~t) in P is the depth of
the strongly connected component of Q in the quotient graph GP/∼.9 3

This heuristic aims at avoiding unfolding cycles where predicates are repeatedly
replaced with predicates from the same strongly connected component.

10. Proof of Concept Evaluation

We have implemented weak linearity and markability checkers as well as the
unfolding-based rewriting procedure Rewrite in Section 5.2. Additionally, we
have implemented the transposition transformation for markable Disjunctive
Datalog programs described in Sections 4 and 9.1.

We have conducted two kinds of experiments, the results of which are de-
scribed in Sections 10.1 and 10.2.

• Rewritability experiments, where we have evaluated whether the non-Horn
ontologies available in well-known ontology repositories can be rewritten
into Datalog using our techniques. To this end, we have first exploited the
KAON2 reasoner [57] to transform ontologies into Disjunctive Datalog and
then applied our rewriting algorithms to the resulting programs.

• Query answering experiments, where we have evaluated the potential ben-
efits of our approach for optimising query answering over Disjunctive Dat-
alog programs obtained from ontologies. We considered two non-Horn on-
tologies that, on the one hand, come with a large-scale dataset and, on
the other hand, correspond to a markable Disjunctive Datalog program.

All experiments were conducted on a machine equipped with two Intel Xeon
E5-2670 processors and 256GB RAM. Our prototype implementation as well as
all test ontologies and datasets used in the evaluation are available online.10

9Note that the quotient graph is a DAG and hence the notion of depth is standard.
10https://krr-nas.cs.ox.ac.uk/2015/AIJ/Rewriting/.

40

10.1. Rewritability Experiments

We collected non-Horn ontologies from BioPortal,11 the Protégé library,12

the corpus of Gardiner et al. [58], the EBI RDF Platform,13 and the repository
of the ISKP Group at the University of Thessaloniki.14 In total, we gathered
128 ontologies from these sources.

The version of KAON2 available to us is restricted to the SHIN fragment of
OWL DL. Hence, we modified some of the test ontologies in a minimal possible
way so that they are accepted by the KAON2 parser. In addition to ineffectual
changes (e.g., removing all annotations) we made the following modifications
that may have an impact on rewritability:

1. We turned data properties into object properties and replaced all datatype
related axioms with their corresponding axioms for object properties.

2. We approximated nominals (i.e., axioms A10 in Table 1 from Section 6.1)
by replacing them with fresh classes in the usual way [59], and approxi-
mated self restrictions and qualified number restrictions using existential
and universal restrictions.

3. We removed reflexive and irreflexive properties as well as property chain
axioms from the ontology, and then added them back as Datalog rules to
the Disjunctive Datalog program computed by KAON2.

In total, we approximated 61 out of our 128 test ontologies in this way. Note
that the changes in Point 1 may only facilitate rewritability if there exist seman-
tic dependencies between the datatypes used in the ontology. Furthermore, the
approximation in Point 3 implies that the mentioned property axioms are not
taken into account during the resolution stage of KAON2, but they are consid-
ered later on for markability checking; although this is a sound but incomplete
approximation, it a most faithful one given the restrictions of KAON2.

Out of the 128 ontologies we considered, 16 ontologies were already RLt

and could be directly normalised as Disjunctive Datalog programs. From the
remaining 112 ontologies, KAON2 succeeded in computing Disjunctive Datalog
programs in 99 cases. Out of the total of 115 Disjunctive Datalog programs,
we found that 40 were markable (with 36 of them already WL, and where 9
of them had been modified for KAON2). Furthermore, our unfolding-based
procedure Rewrite succeeded on 6 additional programs when given a time limit
of 60 seconds (5 of which were modified for KAON2); these programs required
no more than 34 unfolding steps, and the programs after unfolding were no
more than 50% larger than the original ones (with one exception, where the
unfolded program was 6 times larger than the original program while taking
only 3 unfolding steps to compute). On average, 78% of the predicates in all

11http://bioportal.bioontology.org
12http://protegewiki.stanford.edu/wiki/Protege Ontology Library
13http://www.ebi.ac.uk/rdf/
14http://lpis.csd.auth.gr/ontologies/

41

Axioms Rules Predicates Facts
all disj all horn disj

ChEMBL 336 313 12 253 46 14 2.9× 108

UOBM(n) 261 273 1 186 70 21 2.6n× 105

Table 2: Test ontologies and datasets for query answering

the tested Disjunctive Datalog programs were Horn, and so could be queried
using a Datalog engine (even if the program itself could not be rewritten).

10.2. Query Answering Experiments

We now consider the task of answering (atomic) queries w.r.t. Disjunctive
Datalog programs obtained from OWL ontologies and RDF datasets. The main
goal of our experiments is to confirm that rewriting a markable Disjunctive
Datalog program into Datalog can lead to improved performance and more
robust scalability of query answering, even if the reasoner of choice is highly-
optimised for disjunctive reasoning.

It is well-known that finding interesting test ontologies that come with a
substantial dataset is a major challenge for the evaluation of query answering.
In our case, we had the additional constraints that test ontologies are non-Horn
and correspond to a markable program. We could find two interesting test cases
satisfying these requirements.

• ChEMBL is a real-world ontology publicly available through the European
Bioinformatics Institute (EBI) linked data platform.15 This ontology is
RLt and it comes with a large-scale dataset, which is also publicly avail-
able. To evaluate scalability, we have used a sampling algorithm based on
random walks to extract subsets of the data of increasing size.

• UOBM is a widely-used reasoning benchmark that comes with a manually
created ontology and a data generator which produces synthetic datasets
according to a parameter n that determines data size [60]. KAON2 does
not succeed in rewriting the UOBM ontology into Disjunctive Datalog;
hence, we considered its RLt fragment in our experiments.

Table 2 summarises our test ontologies and datasets. The table indicates (i) the
number of ontology axioms; (ii) the number of rules in the corresponding Dis-
junctive Datalog program as well as the number of non-Horn rules; (iii) the
number of predicates together with the number of Horn and disjunctive IDB
predicates; and (iv) the number of facts in the accompanying datasets, where in
the case of UOBM this number is parametrised by n. We restricted our evalu-
ation to queries over disjunctive predicates; the remaining atomic queries (i.e.,

15http://www.ebi.ac.uk/rdf/platform

42

Data DLV Clingo RDFox

ontology rewriting ontology rewriting rewriting
time error time error time error time error time error

ChEMBL

0.1% 940 8 5 0 29 0 6 0 1 0
0.4% — all 21 0 59 3 23 0 3 0
0.7% — all 36 0 121 4 41 0 6 0

1% — all 53 0 131 5 60 0 9 0

UOBM(n)

n = 10 37 2 43 0 327 0 42 0 7 0
n = 40 201 2 221 0 — all 180 0 32 0
n = 70 429 2 401 0 — all 335 0 56 0
n = 100 711 2 528 0 — all 493 0 84 0

Table 3: Impact of rewriting on performance. All times are average times per query in seconds.

those over EDB and Horn predicates) are uninteresting as their computation is
not affected by our rewriting techniques.

In our experiments, we considered the well-known Disjunctive Datalog rea-
soners DLV [5] and Clingo [6] and assessed their scalability on our test ontologies
and their corresponding Datalog rewritings. Additionally, we assessed the scala-
bility of the dedicated Datalog reasoner RDFox [10] on the rewritten ontologies.

We proceeded as follows for each test ontology O and reasoning system:

• We normalised the ontology as a Disjunctive Datalog program PO and
computed its Datalog rewriting P ′O via transposition.

• For each test dataset D we used the reasoner to compute the answers to
all atomic queries over disjunctive predicates w.r.t. PO ∪ D and P ′O ∪ D,
respectively. In the case of RDFox, we only considered the latter.

Table 3 summarises our results. The first column indicates the tested ontol-
ogy and data. In the case of ChEMBL, percentages indicate the size of the data
sample w.r.t. the total size of the dataset as in Table 2; in the case of UOBM,
the size of the data is determined by the value of the parameter n as in Table
2. For each reasoner, results are split between those obtained for the input
ontology (“ontology”) and its Datalog rewriting (“rewriting”). Times indicate
the average time in seconds needed to answer an atomic query, whereas errors
refer to the number of queries for which the 20 minute time-out was exceeded.
Additionally, average query answering times for the rewritten ontologies are
visualised in Figure 3.

We can observe that the performance of Disjunctive Datalog reasoners con-
sistently improves after rewriting. This is so despite the fact that both DLV
and Clingo are highly optimised in their treatment of disjunctions.

As we can see, performance improvements can be very significant. For in-
stance, DLV could not answer any query on ChEMBL for most of our data
samples; after rewriting, however, it succeeded in answering all queries in un-
der a minute on average. Similarly, Clingo failed for all queries on UOBM for

43

0.2 0.4 0.6 0.8 1

6

12

18

24

30

36

42

48

54

60

data size (%)

ti
m

e
(s

)
DLV

Clingo
RDFox

20 40 60 80 100

50

100

150

200

250

300

350

400

450

500

550

data size (n)
ti

m
e

(s
)

DLV
Clingo
RDFox

Figure 3: Scalability of query answering on ChEMBL (left) and UOBM (right)

n ≥ 40, but succeeded on all queries for all datasets after rewriting. Further-
more, we can observe in Figure 3 that query answering times after rewriting
increased linearly in data size for all cases.

Finally, our results also suggest that a dedicated Datalog reasoner such as
RDFox can offer very favourable scalability when answering queries over large
datasets and Datalog programs obtained via transposition. In particular, RDFox
was capable of answering all queries for ChEMBL in under 10 seconds on aver-
age, even for the largest dataset we considered. Similarly, RDFox could answer
all queries in just over a minute, even for UOBM(100).

To sum up, we can draw two main conclusions from our experiments. On the
one hand, there is a fair number of ontologies used in practice that correspond
(either directly or by means of KAON2-style rewritings) to markable Disjunctive
Datalog programs, to which our rewriting techniques are applicable. On the
other hand, when the program is markable, rewriting it first into Datalog via
transposition can significantly improve reasoning performance and robustness.

11. Conclusion and Future Work

In this paper, we have studied the problem of rewriting Disjunctive Datalog
programs and Description Logics ontologies into Datalog.

From a theoretical perspective, we have established a novel characterisation
of Datalog rewritability in terms of linearisability: a Disjunctive Datalog pro-
gram is Datalog rewritable if and only if it can be rewritten into a linear program.
Our characterisation relies on the correctness of program transposition—a novel
polynomial transformation where IDB atoms are moved from head and body
and vice versa while their predicates are replaced with fresh predicates of higher

44

arity. Motivated by our characterisation and the properties of transposition, we
have then proposed the classes of weakly linear and markable Disjunctive Dat-
alog programs and showed that they admit polynomial Datalog rewritings. For
programs that do not satisfy the WL or markability conditions, we have pro-
posed a sound but incomplete procedure based on unfolding transformations
and proved its correctness. We have shown that our results for Disjunctive Dat-
alog can be naturally applied to DL ontologies as well, and we have proposed
classes of ontologies that admit polynomial and exponential rewritings, respec-
tively. Finally, we have extended all our results to conjunctive query answering
and identified classes of programs and queries that admit a Datalog rewriting.

From a practical perspective, our techniques enable the use of scalable Dat-
alog engines for data reasoning. This is especially relevant for DL ontologies,
where reasoning with large-scale datasets is a major challenge in practice. Our
experiments have confirmed the potential applicability of our approach.

We see many interesting directions for future work. In particular, we are
currently working on lifting transposition to programs with function symbols;
preliminary results are reported in [61]. This would allow us to identify classes of
first-order programs (and thus also expressive ontologies) that admit polynomial
Datalog rewritings via transposition. Additionally, it would be interesting to
devise rewriting techniques that combine the benefits of resolution [2, 28] and
transposition. Finally, we believe that our techniques could be exploited to
enhance “pay-as-you-go” query answering systems such as PAGOdA [62], where
the idea is to delegate the bulk of the computational workload to a Datalog
reasoner.

Acknowledgments

This work was supported by the Royal Society, the EPSRC projects Score!,
ExODA, MaSI3 and DBOnto, and the FP7 project Optique. We would like to
thank the anonymous referees for their helpful suggestions, which have signifi-
cantly improved the paper.

References

[1] M. Kaminski, Y. Nenov, B. Cuenca Grau, Datalog rewritability of dis-
junctive Datalog programs and its applications to ontology reasoning, in:
C. E. Brodley, P. Stone (Eds.), Proc. 28th AAAI Conference on Artificial
Intelligence, AAAI, 1077–1083, 2014.

[2] M. Kaminski, Y. Nenov, B. Cuenca Grau, Computing Datalog rewrit-
ings for disjunctive Datalog programs and description logic ontologies, in:
R. Kontchakov, M. Mugnier (Eds.), Web Reasoning and Rule Systems –
8th International Conference, RR 2014, vol. 8741 of LNCS, Springer, 76–91,
2014.

[3] T. Eiter, G. Gottlob, H. Mannila, Disjunctive Datalog, ACM Trans.
Database Syst. 22 (3) (1997) 364–418.

45

[4] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and expressive
power of logic programming, ACM Comput. Surv. 33 (3) (2001) 374–425.

[5] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, F. Scarcello,
The DLV system for knowledge representation and reasoning, ACM Trans.
Comput. Log. 7 (3) (2006) 499–562.

[6] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, S. Thiele,
Engineering an incremental ASP solver, in: M. Garćıa de la Banda, E. Pon-
telli (Eds.), Proc. 24th International Conference on Logic Programming,
ICLP 2008, vol. 5366 of LNCS, Springer, 190–205, 2008.

[7] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz, OWL
2 Web Ontology Language Profiles, W3C Recommendation, W3C, 2009.

[8] B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev, R. Velkov,
OWLIM: A family of scalable semantic repositories, Semantic Web 2 (1)
(2011) 33–42.

[9] Z. Wu, G. Eadon, S. Das, E. I. Chong, V. Kolovski, M. Annamalai, J. Srini-
vasan, Implementing an inference engine for RDFS/OWL constructs and
user-defined rules in Oracle, in: G. Alonso, J. A. Blakeley, A. L. P. Chen
(Eds.), Proc. 24th International Conference on Data Engineering, ICDE
2008, IEEE, 1239–1248, 2008.

[10] B. Motik, Y. Nenov, R. Piro, I. Horrocks, D. Olteanu, Parallel materiali-
sation of Datalog programs in centralised, main-memory RDF systems, in:
C. E. Brodley, P. Stone (Eds.), Proc. 28th AAAI Conference on Artificial
Intelligence, AAAI, 129–137, 2014.

[11] G. Gottlob, C. H. Papadimitriou, On the complexity of single-rule Datalog
queries, Inf. Comput. 183 (1) (2003) 104–122.

[12] H. Tamaki, T. Sato, Unfold/fold transformation of logic programs, in:
S. Tärnlund (Ed.), Proc. 2nd International Logic Programming Confer-
ence, Uppsala University, Sweden, 127–138, 1984.

[13] M. Gergatsoulis, Unfold/fold transformations for disjunctive logic pro-
grams, Inf. Process. Lett. 62 (1) (1997) 23–29.

[14] C. Lutz, F. Wolter, Non-uniform data complexity of query answering in
description logics, in: G. Brewka, T. Eiter, S. A. McIlraith (Eds.), Princi-
ples of Knowledge Representation and Reasoning: Proc. 13th International
Conference, KR 2012, AAAI, 297–307, 2012.

[15] L. Bachmair, H. Ganzinger, Resolution theorem proving, in: J. A. Robin-
son, A. Voronkov (Eds.), Handbook of Automated Reasoning, Elsevier and
MIT Press, 19–99, 2001.

46

[16] F. Bry, N. Eisinger, T. Eiter, T. Furche, G. Gottlob, C. Ley, B. Linse,
R. Pichler, F. Wei, Foundations of rule-based query answering, in: G. Anto-
niou, U. Aßmann, C. Baroglio, S. Decker, N. Henze, P. Patranjan, R. Tolks-
dorf (Eds.), Reasoning Web 2007, vol. 4636 of LNCS, Springer, 1–153, 2007.

[17] J. A. Robinson, Automatic deduction with hyper-resolution, Int. J. Com-
put. Math. 1 (3) (1965) 227–234.

[18] T. Feder, M. Y. Vardi, The computational structure of monotone monadic
SNP and constraint satisfiaction: A study through Datalog and group the-
ory, SIAM J. Comput. 28 (1) (1998) 57–104.

[19] S. A. Cook, An observation on time-storage trade off, J. Comput. Syst. Sci.
9 (3) (1974) 308–316.

[20] K. R. Apt, H. A. Blair, A. Walker, Towards a theory of declarative knowl-
edge, in: J. Minker (Ed.), Foundations of Deductive Databases and Logic
Programming, Morgan Kaufmann, 89–148, 1988.

[21] J. D. Ullman, Principles of Database and Knowledge-Base Systems, Volume
I, Computer Science Press, 1988.

[22] M. Bienvenu, B. ten Cate, C. Lutz, F. Wolter, Ontology-based data ac-
cess: A study through disjunctive Datalog, CSP, and MMSNP, ACM Tans.
Database Syst. 39 (4) (2014) 33.

[23] U. Hustadt, B. Motik, U. Sattler, Reasoning in description logics by a
reduction to disjunctive Datalog, J. Autom. Reason. 39 (3) (2007) 351–
384.

[24] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-
Schneider, The Description Logic Handbook: Theory, Implementation, and
Applications, Cambridge University Press, 2003.

[25] B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P. F. Patel-Schneider,
U. Sattler, OWL 2: The next step for OWL, J. Web Semant. 6 (4) (2008)
309–322.

[26] I. Horrocks, U. Sattler, S. Tobies, Practical reasoning for very expressive
description logics, Log. J. IGPL 8 (3) (2000) 239–263.

[27] M. Cadoli, L. Palopoli, M. Lenzerini, Datalog and description logics: Ex-
pressive power, in: S. Cluet, R. Hull (Eds.), Proc. 6th International Work-
shop on Database Programming Languages, DBPL-6, vol. 1369 of LNCS,
Springer, 281–298, 1997.

[28] B. Cuenca Grau, B. Motik, G. Stoilos, I. Horrocks, Computing Datalog
rewritings beyond Horn ontologies, in: F. Rossi (Ed.), IJCAI 2013, Proc.
23rd International Joint Conference on Artificial Intelligence, AAAI, 832–
838, 2013.

47

[29] S. Rudolph, M. Krötzsch, P. Hitzler, Type-elimination-based reasoning for
the description logic SHIQbs using decision diagrams and disjunctive Dat-
alog, Log. Methods Comput. Sci. 8 (1:12) (2012) 1–37.

[30] M. Krötzsch, S. Rudolph, P. Hitzler, Complexities of Horn description log-
ics, ACM Trans. Comput. Log. 14 (1:2) (2013) 1–36.

[31] R. Ben-Eliyahu-Zohary, L. Palopoli, Reasoning with minimal models: Effi-
cient algorithms and applications, Artif. Intell. 96 (2) (1997) 421–449.

[32] R. Ben-Eliyahu-Zohary, L. Palopoli, V. Zemlyanker, More on tractable dis-
junctive Datalog, J. Log. Program. 46 (1-2) (2000) 61–101.

[33] M. Gelfond, H. Przymusinska, V. Lifschitz, M. Truszczynski, Disjunctive
defaults, in: J. F. Allen, R. Fikes, E. Sandewall (Eds.), Proc. 2nd Interna-
tional Conference on Principles of Knowledge Representation and Reason-
ing (KR’91), Morgan Kaufmann, 230–237, 1991.

[34] R. Ben-Eliyahu-Zohary, R. Dechter, Propositional semantics for disjunctive
logic programs, Ann. Math. Artif. Intell. 12 (1–2) (1994) 53–87.

[35] J. Dix, G. Gottlob, V. W. Marek, Reducing disjunctive to non-disjunctive
semantics by shift-operations, Fundam. Inform. 28 (1–2) (1996) 87–100.

[36] H. Zhang, Y. Zhang, First-order expressibility and boundedness of disjunc-
tive logic programs, in: F. Rossi (Ed.), IJCAI 2013, Proc. 23rd Interna-
tional Joint Conference on Artificial Intelligence, AAAI, 1198–1204, 2013.

[37] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati,
Tractable reasoning and efficient query answering in description logics: The
DL-Lite family, J. Autom. Reason. 39 (3) (2007) 385–429.

[38] S. Heymans, T. Eiter, G. Xiao, Tractable reasoning with DL-programs
over Datalog-rewritable description logics, in: H. Coelho, R. Studer,
M. Wooldridge (Eds.), ECAI 2010, Proc. 19th European Conference on
Artificial Intelligence, vol. 215 of Frontiers in Artificial Intelligence and
Applications, IOS Press, 35–40, 2010.

[39] H. Pérez-Urbina, B. Motik, I. Horrocks, Tractable query answering and
rewriting under description logic constraints, J. Appl. Log. 8 (2) (2010)
186–209.

[40] R. Rosati, A. Almatelli, Improving query answering over DL-Lite ontolo-
gies, in: F. Lin, U. Sattler, M. Truszczynski (Eds.), Principles of Knowledge
Representation and Reasoning: Proc. 12th International Conference, KR
2010, AAAI, 290–300, 2010.

[41] G. Orsi, A. Pieris, Optimizing query answering under ontological con-
straints, Proc. VLDB Endow. 4 (11) (2011) 1004–1015.

48

[42] T. Eiter, M. Ortiz, M. Šimkus, T.-K. Tran, G. Xiao, Query rewriting for
Horn-SHIQ plus rules, in: J. Hoffmann, B. Selman (Eds.), Proc. 26th AAAI
Conference on Artificial Intelligence, AAAI, 726–733, 2012.

[43] M. Rodŕıguez-Muro, D. Calvanese, High performance query answering over
DL-Lite ontologies, in: G. Brewka, T. Eiter, S. A. McIlraith (Eds.), Princi-
ples of Knowledge Representation and Reasoning: Proc. 13th International
Conference, KR 2012, AAAI, 308–318, 2012.

[44] T. Venetis, G. Stoilos, G. B. Stamou, Query extensions and incremental
query rewriting for OWL 2 QL ontologies, J. Data Semant. 3 (1) (2014)
1–23.

[45] D. Trivela, G. Stoilos, A. Chortaras, G. B. Stamou, Optimising resolution-
based rewriting algorithms for OWL ontologies, J. Web Semant. 33 (2015)
30–49.

[46] G. Gottlob, M. Manna, M. Morak, A. Pieris, On the complexity of ontolog-
ical reasoning under disjunctive existential rules, in: B. Rovan, V. Sassone,
P. Widmayer (Eds.), Mathematical Foundations of Computer Science 2012
– 37th International Symposium, MFCS 2012, vol. 7464 of LNCS, Springer,
1–18, 2012.

[47] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite
family and relations, J. Artif. Intell. Res. 36 (2009) 1–69.

[48] P. Bourhis, M. Morak, A. Pieris, The impact of disjunction on query an-
swering under guarded-based existential rules, in: F. Rossi (Ed.), IJCAI
2013, Proc. 23rd International Joint Conference on Artificial Intelligence,
AAAI, 796–802, 2013.

[49] M. Kaminski, B. Cuenca Grau, Sufficient conditions for first-order and Dat-
alog rewritability in ELU , in: T. Eiter, B. Glimm, Y. Kazakov, M. Krötzsch
(Eds.), Informal Proc. 26th International Workshop on Description Logics,
vol. 1014 of CEUR Workshop Proceedings, CEUR-WS.org, 271–293, 2013.

[50] F. Bancilhon, D. Maier, Y. Sagiv, J. D. Ullman, Magic sets and other
strange ways to implement logic programs, in: A. Silberschatz (Ed.), Proc.
5th ACM SIGACT-SIGMOD Symposium on Principles of Database Sys-
tems, ACM, 1–15, 1986.

[51] S. Greco, Binding propagation techniques for the optimization of bound
disjunctive queries, IEEE Trans. Knowl. Data Eng. 15 (2) (2003) 368–385.

[52] M. Alviano, W. Faber, G. Greco, N. Leone, Magic sets for disjunctive
Datalog programs, Artif. Intell. 187–188 (2012) 156–192.

[53] W. Faber, S. Woltran, Manifold answer-set programs and their applica-
tions, in: M. Balduccini, T. C. Son (Eds.), Logic Programming, Knowl-
edge Representation, and Nonmonotonic Reasoning: Essays Dedicated to

49

Michael Gelfond on the Occasion of His 65th Birthday, vol. 6565 of LNCS,
Springer, 44–63, 2011.

[54] F. Afrati, M. Gergatsoulis, F. Toni, Linearisability of Datalog programs,
Theor. Comput. Sci. 308 (1–3) (2003) 199–226.

[55] M. Proietti, A. Pettorossi, The Loop absorption and the generalization
strategies for the development of logic programs and partial deduction, J.
Log. Program. 16 (1) (1993) 123–161.

[56] B. Aspvall, M. F. Plass, R. E. Tarjan, A linear-time algorithm for testing
the truth of certain quantified Boolean formulas, Inf. Process. Lett. 8 (3)
(1979) 121–123.

[57] B. Motik, Reasoning in Description Logics using Resolution and Deductive
Databases, Ph.D. thesis, Universität Karlsruhe (TH), Karlsruhe, Germany,
2006.

[58] T. Gardiner, D. Tsarkov, I. Horrocks, Framework for an automated compar-
ison of description logic reasoners, in: I. F. Cruz, S. Decker, D. Allemang,
C. Preist, D. Schwabe, P. Mika, M. Uschold, L. Aroyo (Eds.), Proc. 5th
International Semantic Web Conference, ISWC 2006, vol. 4273 of LNCS,
Springer, 654–667, 2006.

[59] E. Sirin, B. Cuenca Grau, B. Parsia, From Wine to Water: Optimizing
Description Logic Reasoning for Nominals, in: Proceedings, Tenth Inter-
national Conference on Principles of Knowledge Representation and Rea-
soning, Lake District of the United Kingdom, June 2-5, 2006, 90–99, 2006.

[60] L. Ma, Y. Yang, Z. Qiu, G. T. Xie, Y. Pan, S. Liu, Towards a complete OWL
ontology benchmark, in: Y. Sure, J. Domingue (Eds.), Proc. 3rd European
Semantic Web Conference, ESWC 2006, vol. 4011 of LNCS, Springer, 125–
139, 2006.

[61] M. Kaminski, B. Cuenca Grau, Computing Horn rewritings of description
logics ontologies, in: Q. Yang, M. Wooldridge (Eds.), IJCAI 2015, Proc.
24th International Joint Conference on Artificial Intelligence, AAAI, 3091–
3097, 2015.

[62] Y. Zhou, Y. Nenov, B. Cuenca Grau, I. Horrocks, Pay-as-you-go OWL
query answering using a triple store, in: C. E. Brodley, P. Stone (Eds.),
Proc. 28th AAAI Conference on Artificial Intelligence, AAAI, 1142–1148,
2014.

50

