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Abstract. We present a resolution-based decision procedure for the description
logic SHOIQ—the logic underlying the Semantic Web ontology language OWL-DL.
Our procedure is goal-oriented, and it naturally extends a similar procedure for
SHIQ, which has proven itself in practice. Extending this procedure to SHOIQ
using existing techniques is not straightforward because of nominals, number restric-
tions, and inverse roles—a combination known to cause termination problems. We
overcome this difficulty by using basic superposition calculus extended with custom
simplification rules.
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1. Introduction

Description logics (DLs) are a family of knowledge representation for-
malisms [2] with applications in diverse fields of computer science such
as information integration [2, Chapter 16] [33, 9, 19], software engi-
neering [2, Chapter 11], and conceptual modeling [2, Chapter 10] [11].
Furthermore, DLs provide the logical foundation for the Web Ontology
Language (OWL) [40]—the language standardized by the W3C for
building Semantic Web ontologies. The OWL DL variant of OWL is
closely related to the DL SHOIQ. To support the applications of DLs,
several reasoning algorithms were developed and implemented.1

It is well known that SHOIQ can be embedded in C2 [46]—the
two-variable fragment of first-order logic with counting quantifiers—
and that C2 can be decided in NExpTime [39] (this was recently
shown to hold for binary coding of numbers [43] as well). Although
these results imply decidability of SHOIQ, they are unlikely to be
suitable for practical purposes. Specifically, the algorithms from [39, 43]
check satisfiability of a C2 by “blindly” guessing a representation of an
interpretation and then verifying whether this interpretation is a model

∗ This paper is an extended version of [31]. Our work was partially funded by the
EPSRC project REOL.

1 See http://www.cs.man.ac.uk/~sattler/reasoners.html for a list of cur-
rently available reasoners.
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of the formula. Since this representation can be exponentially large in
the size of the formula signature, these algorithms are impractical.

A practical decision algorithm should be goal-oriented: it should
use the formula structure, and not only the formula signature in the
search for a model. Currently, the state-of-the-art practical reasoning
algorithms for DLs are tableau algorithms [2]. Tableau algorithms have
been derived for DLs such as SHIQ [24], but extending these results
to SHOIQ—the extension of SHIQ with singleton concepts called
nominals—has proved to be a nontrivial task. The reason rests with
the intricate interaction between inverse roles, number restrictions, and
nominals. Only recently, a goal-directed tableau-based procedure was
presented in [23]; it uses an additional rule that nondeterministically
creates nominals to ensure termination.

SHOIQ is a complex DL, so it is not obvious which reasoning algo-
rithm is best in practice. Rather, it makes sense to compare different
algorithms and to identify which ones are suitable for which types of
problems. The state-of-the-art techniques for first-order theorem prov-
ing are based on resolution, so it is natural to try using them for DL
reasoning. Resolution-based decision procedures have been developed
for many different DLs (see Section 3 for an overview). In particular, a
resolution-based algorithm for reducing a SHIQ knowledge base to a
disjunctive datalog program has been presented in [25]. This algorithm
has been implemented in the reasoning system KAON22 and has proved
itself on problems with many individual assertions [35].

Here, we continue this line of research and present a resolution-based
decision procedure for the DL SHOIQ. In building our procedure, we
encountered problems analogous to those arising in the tableau algo-
rithm from [23]. Namely, the combination of nominals, inverse roles, and
number restrictions can cause resolution to derive clauses of unbounded
size, thus preventing termination. We solve these problems by using
basic superposition [6, 36], which we extend with novel simplification
rules. These rules replace complex clauses with simpler ones without
compromising soundness or completeness, while ensuring a bound on
the number of derivable clauses.

This paper is organized as follows. After presenting the basic defini-
tions in Section 2, we discuss the problems and the solutions involved
in deriving the decision procedure in Section 3. We split our procedure
into two phases: in Section 4 we present the preprocessing phase, and
in Section 5 we present the saturation phase of the algorithm. Before
concluding, we discuss interesting aspects of our algorithm in Section 6.

2 http://kaon2.semanticweb.org/
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2. Preliminaries

2.1. Basic Notions of First-Order Logic

We use the standard notions of first-order logic with equality and
counting quantifiers ∃≥n and ∃≤n. Throughout this paper, we use x, y,
and z for variables; a, b, c, and d for constants; s, t, u, v, and w for
terms; and f , g, and h for function symbols (possibly with subscripts
or superscripts). Terms, atoms, and formulae that do not contain vari-
ables are said to be ground. We use the infix notation for the equality
predicate symbol ≈ and do not distinguish the equational atoms t ≈ s

and s ≈ t or their negations t 6≈ s and s 6≈ t. Counting quantifiers can
be expressed by using ordinary quantifiers and equality as follows.

∃≥nx.ϕ(x, y) = ∃x1, . . . , xn.





n
∧

i=1

ϕ(xi, y) ∧
∧

1≤i<j≤n

xi 6≈ xj



(1)

∃≤nx.ϕ(x, y) = ∀x1, . . . , xn+1.





n+1
∧

i=1

ϕ(xi, y) →
∨

1≤i<j≤n+1

xi ≈ xj



(2)

In Section 3.1.2, we present an alternative encoding of counting quan-
tifiers, which is more suitable for our decision procedure.

A substitution σ is an assignment of variables to terms, which we
write as {x1 7→ t1, . . . , xn 7→ tn}. With MGU(s, t) we denote the most
general unifier of s and t.

A position p is a finite sequence of integers, written as i1.i2 . . . in.
The empty position is denoted with ǫ. Let t be a term of the form
t = f(t1, . . . , ti, . . . , tn); when n = 0, f is a constant. The subterm of
t at position p, written t|p, is defined as t|ǫ = t and t|i.p = ti|p. The
replacement of a subterm of t at position p with a term s, written t[s]p,
is defined as t[s]ǫ = s and t[s]i.p = f(t1, . . . , ti[s]p, . . . , tn).

A strict (partial) ordering ≻ on a set D is a transitive irreflexive
binary relation on D. The reflexive closure of ≻ is denoted by �. An
ordering ≻ is total if, for each d1 6= d2 from D, either d1 ≻ d2 or
d2 ≻ d1. An ordering ≻ is well-founded if there is no infinite sequence
d1 ≻ d2 ≻ · · ·. An ordering ≻ on terms is a reduction ordering if s ≻ t

implies u[s]p ≻ u[t]p for all terms s, t, and u and all positions p.
A multiset M over a set D is a function M : D → N0, where N0

is the set of all nonnegative integers. The size of M is defined as
|M | = Σd∈DM(d); M is finite if |M | is finite. A multiset M is a sub-
multiset of N , written M ⊆ N , if M(x) ≤ N(x) for every x ∈ D; the
union of M and N is defined as (M ∪ N)(x) = M(x) + N(x). Given a
strict ordering ≻ on D, the multiset extension of ≻ to finite multisets
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over D, written ≻mul, is defined as follows: M ≻mul N if (i) M 6= N ,
and (ii) for every x ∈ D with N(x) > M(x) there exists some y ≻ x

such that M(y) > N(y).
A literal is an atom A or a negated atom ¬A. The literals A and

¬A are said to be complementary. For a literal L, with L we denote the
literal complementary to L. A clause is a finite multiset of literals and
is written as C = L1 ∨ . . . ∨ Ln; it is semantically equivalent to ∀x.C,
where x is the vector of the free variables of C. If n = 1, C is a unit
clause; if n = 0, C is the empty clause and is written as �. A ground
clause C ′ is a ground instance of a clause C if a substitution σ exists
such that C ′ = Cσ. A Herbrand interpretation I is a set of ground
atoms. A ground literal L is satisfied in a Herbrand interpretation I,
written I |= L, if either L = A and A ∈ I, or L = ¬A and A 6∈ I. A
clause C is satisfied in I if, for every ground instance C ′ of C, there is
a literal L ∈ C ′ such that I |= L.

2.2. Description Logic SHOIQ

In this section we introduce the syntax and the semantics of the descrip-
tion logic SHOIQ. A SHOIQ signature is a triple Σ = (NR, NC , NI),
where NR is a set of role names, NC is a set of concept names, and NI is
a set of individuals. A role is either some R ∈ NR or an inverse role R−

for R ∈ NR; for each R ∈ NR, we set Inv(R) = R− and Inv(R−) = R.
An RBox KBR is a finite set of role inclusion axioms R ⊑ S and

transitivity axioms Trans(R), where R and S are roles. Let ⊑∗ be the re-
flexive transitive closure of {R ⊑ S, Inv(R) ⊑ Inv(S) | R ⊑ S ∈ KBR}.
A role S is simple if no role R exists such that R ⊑∗ S and either
Trans(R) ∈ KBR or Trans(Inv(R)) ∈ KBR.

The set of concepts is the smallest set containing ⊤, ⊥, A, ¬C, C⊓D,
C ⊔ D, {a}, ∃R.C, ∀R.C, > n S.C, and 6 n S.C, where A is a concept
name, C and D are concepts, R is a role, S is a simple role, a is an
individual, and n is a nonnegative integer.

A TBox is a finite set KBT of concept inclusion axioms C ⊑ D,
where C and D are concepts. An ABox is a finite set KBA of axioms
C(a), R(a, b), and (in)equalities a ≈ b and a 6≈ b, for a, b ∈ NI . A
SHOIQ knowledge base is a triple KB = (KBR,KBT ,KBA). With
|KB | we denote the number of symbols in KB assuming that the
numbers in number restrictions are written in unary coding.

Usually, KB is interpreted by using a direct model-theoretic seman-
tics (e.g., see [2, Chapter 2]). Since our reasoning algorithms are based
on resolution, in this paper we define the semantics of SHOIQ by
translating KB into a formula π(KB) of first-order logic with equality
and counting quantifiers; the translation operator π is defined in Table
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Table I. Semantics of SHOIQ by Mapping to FOL

Translating Concepts to FOL

πx(⊤) = ⊤ πy(⊤) = ⊤

πx(⊥) = ⊥ πy(⊥) = ⊥

πx(A) = A(x) πy(A) = A(y)

πx({a}) = x ≈ a πy({a}) = y ≈ a

πx(¬C) = ¬πx(C) πy(¬C) = ¬πy(C)

πx(C ⊓ D) = πx(C) ∧ πx(D) πy(C ⊓ D) = πy(C) ∧ πy(D)

πx(C ⊔ D) = πx(C) ∨ πx(D) πy(C ⊔ D) = πy(C) ∨ πy(D)

πx(∃R.C) = ∃y.[R(x, y) ∧ πy(C)] πy(∃R.C) = ∃x.[R(y, x) ∧ πx(C)]

πx(∀R.C) = ∀y.[R(x, y) → πy(C)] πy(∀R.C) = ∀x.[R(y, x) → πx(C)]

πx(> n S.C) = ∃≥ny.[S(x, y) ∧ πy(C)] πy(> n S.C) = ∃≥nx.[S(y, x) ∧ πx(C)]

πx(6 n S.C) = ∃≤ny.[S(x, y) ∧ πy(C)] πy(6 n S.C) = ∃≤nx.[S(y, x) ∧ πx(C)]

Translating Axioms to FOL

π(C ⊑ D) = ∀x.[πx(C) → πx(D)]

π(R ⊑ S) = ∀x, y.[R(x, y) → S(x, y)]

π(Trans(R)) = ∀x, y, z.[R(x, y) ∧ R(y, z) → R(x, z)]

π(C(a)) = πx(C){x 7→ a}

π(R(a, b)) = R(a, b)

π(a ≈ b) = a ≈ b

π(a 6≈ b) = a 6≈ b

π(KB) =
∧

R∈NR
∀x, y.[R(x, y) ↔ R−(y, x)] ∧

∧

α∈KBT ∪KBR∪KBA
π(α)

I. In the translation, concept names correspond to unary predicate sym-
bols and roles correspond to binary predicate symbols (for an inverse
role R−, we take R− to be a name of a binary predicate symbol). It is
well known that the translational semantics is equivalent to the direct
model-theoretic one [10]. The main reasoning problem for SHOIQ
is checking satisfiability of KB , which corresponds to checking first-
order satisfiability of π(KB). All other commonly considered inference
problems, such as concept satisfiability, concept subsumption, and in-
stance checking, can be reduced to satisfiability using the well-known
transformations [2, Chapter 2].

The DL ALCHOIQ is obtained from the DL SHOIQ by disal-
lowing the transitivity axioms. The DL SHIQ is obtained from the
DL SHOIQ by disallowing nominals. With nnf(C) we denote the
negation-normal form of C—that is, the concept equivalent to C in
which negation occurs only in front of concept names. It is well known
that nnf(C) can be computed in time polynomial in C [2, Chapter 2].
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2.3. Basic Superposition Calculus

We briefly recapitulate the relevant notions of resolution theorem prov-
ing [5, 37]. In equational theorem proving, one usually assumes that
equality is the only predicate symbol. Hence, each literal P (t1, . . . , tn)
where P is not equality is encoded as P (t1, . . . , tn) ≈ tt, where tt is a
new propositional symbol. If P and tt are of a sort different from the
sort of the terms ti, this encoding preserves satisfiability. Technically
speaking, P thus becomes a function symbol; however, when ambiguity
does not arise, we call it a predicate symbol.

Basic superposition (BS) [6, 36] is a calculus optimized for equa-
tional theorem proving. The inference rules of BS work with closures,
which consist of a skeleton clause C and a substitution σ. A closure,
written as C · σ, semantically represents the clause Cσ. A closure C · σ
is ground, unit, or empty if Cσ is ground, unit, or empty, respectively.
If σ is identity, C ·σ is often written as C; furthermore, (C1 ∨ C2) · σ is
often written as C1 · σ ∨ C2 · σ. Moreover, we sometimes use (closure)
terms t · σ and (closure) literals L · σ.

A closure can be written by using the abbreviated form as a clause
Cσ in which the positions of the variables of C are enclosed in square
brackets. For example, the following are two forms of the same closure:

(P (x) ∨ z ≈ b) · {x 7→ f(y), z 7→ g(b)} ≡ P ([f(y)]) ∨ [g(b)] ≈ b.

The positions that correspond to terms enclosed in square brackets are
called marked positions, and the positions at or below marked positions
are called substitution positions. We do not distinguish closures that
have the same abbreviated form. For example, we do not distinguish
the following first two closures, but we do distinguish the third closure
from the first two.

(P (x) ∨ Q(y, z)) · {x 7→ a, y 7→ a} ≡ P ([a]) ∨ Q([a] , z)
(P (x) ∨ Q(x, z)) · {x 7→ a} ≡ P ([a]) ∨ Q([a] , z)
(P (x) ∨ Q(a, z)) · {x 7→ a} ≡ P ([a]) ∨ Q(a, z)

The BS calculus is parameterized with an admissible ordering on
terms and a selection function for negative literals.

An ordering ≻ on terms is admissible for BS if ≻ is a reduction
ordering that is total on ground terms with tt the smallest element. This
ordering is extended to an ordering on literals and clauses as follows.
Literals are compared by identifying s ≈ t with a multiset {{s}, {t}}
and s 6≈ t with a multiset {{s, t}}, and by comparing these multisets
using the twofold multiset extension of the term ordering. Clauses are
compared by using the multiset extension of the ordering on literals,

paper-journal.tex; 2/11/2007; 14:11; p.6



7

Table II. Inference Rules of the BS Calculus

Positive Superposition:

(C ∨ s ≈ t) · ρ (D ∨ w ≈ v) · ρ

(C ∨ D ∨ w[t]p ≈ v) · θ

(i) σ = MGU(sρ,w|pρ) and θ = ρσ;
(ii) tθ � sθ and vθ � wθ;
(iii) (s ≈ t) · θ is strictly eligible in

(C ∨ s ≈ t) · θ;
(iv) (w ≈ v) · θ is strictly eligible in

(D ∨ w ≈ v) · ρ;
(v) sθ ≈ tθ � wθ ≈ vθ;
(vi) w|p is not a variable.

Negative Superposition:

(C ∨ s ≈ t) · ρ (D ∨ w 6≈ v) · ρ

(C ∨ D ∨ w[t]p 6≈ v) · θ

(i) σ = MGU(sρ,w|pρ) and θ = ρσ;
(ii) tθ � sθ and vθ � wθ;
(iii) (s ≈ t) · θ is strictly eligible in

(C ∨ s ≈ t) · θ;
(iv) (w 6≈ v) · θ is eligible in (D ∨ w 6≈ v) · θ;
(v) w|p is not a variable.

Reflexivity Resolution:

(C ∨ s 6≈ t) · ρ

C · θ

(i) σ = MGU(sρ, tρ) and θ = ρσ;
(ii) (s 6≈ t) · θ is eligible in (C ∨ s 6≈ t) · θ.

Equality Factoring:

(C ∨ s ≈ t ∨ s′ ≈ t′) · ρ

(C ∨ t 6≈ t′ ∨ s′ ≈ t′) · θ

(i) σ = MGU(sρ, s′ρ) and θ = ρσ;
(ii) tθ � sθ and t′θ � s′θ;
(iii) (s ≈ t) · θ is eligible in

(C ∨ s ≈ t ∨ s′ ≈ t′) · θ.

and closures are compared by treating each closure C · σ as a clause
Cσ. We denote the orderings on literals and clauses also with ≻.

A selection function is a function that assigns to each closure C · σ
a (possibly empty) submultiset of its negative literals; these literals are
said to be selected.

A literal L · σ is maximal (strictly maximal) w.r.t. a closure C · σ
if no L′ ∈ C exists such that L′σ ≻ Lσ (L′σ � Lσ). A literal L · σ is
eligible (strictly eligible) in a closure (C ∨ L) · σ if either (i) L · σ is
selected in (C ∨ L) · σ, or (ii) no literal is selected in (C ∨ L) · σ and
L · σ is maximal (strictly maximal) w.r.t. C · σ.

The inference rules of BS are presented in Table II.3 It is important
to distinguish an inference rule from an inference. An inference rule
can be understood as a template that specifies actions to be applied
to any premises. An inference is an application of an inference rule to
actual premises. As usual in resolution theorem proving, we assume
that the common variables of the premises in each inference have been
renamed apart, so the premises are variable-disjoint.

3 The version of BS presented here can be seen as a weaker variant of the calculi
from [6, 36]. Unlike [6], we ignore induced substitution positions and, unlike [36],
we do not inherit ordering constraints. Weaker inference rules may result in more
possible inferences; the calculus, however, remains refutationally complete.
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The BS calculus is refutationally complete for every admissible or-
dering and every selection function. Moreover, the calculus is com-
patible with a powerful notion of redundancy, which can be used to
justify many simplification rules. We assume the reader to be familiar
with the basic notions from term rewriting [3]. Let R be a ground and
convergent rewrite system and C · σ a ground closure. A variable x in
the skeleton C is variable irreducible w.r.t. R if (i) xσ is irreducible
by R, or (ii) x occurs in C only in literals of the form x ≈ s such
that xσ ≻ sσ, and xσ is irreducible by those rules l ⇒ r ∈ R for which
xσ ≈ sσ ≻ l ≈ r. Furthermore, C ·σ is variable irreducible w.r.t. R if all
variables from C are variable irreducible w.r.t. R. For C · σ a possibly
nonground closure, irredR(C · σ) is the set of all ground closures C · στ

that are variable irreducible w.r.t. R. For N a set of closures, we set
irredR(N) =

⋃

C·σ∈N irredR(C · σ).
A closure C ·σ is redundant w.r.t. a set of closures N if, for all rewrite

systems R and all ground substitutions τ , if C · στ ∈ irredR(C · σ), then
irredR(N) contains closures C1, . . . , Cn such that {C1, . . . , Cn} |= Cστ

and Cστ ≻ Ci. In [6, 36], the authors also define the notion of redun-
dancy for inferences. This definition is rather technical and is not used
in our results, so please refer to [6, 36] for details. A set of closures N is
saturated under BS if each BS inference from N is redundant w.r.t. N .
It is known that, if each BS inference with closures from N produces
a redundant conclusion, then N is saturated up to redundancy.

The notion of redundancy makes it possible to extend BS with sim-
plification rules without losing completeness. These rules simplify a clo-
sure set N ∪ {C · ρ} into one of the m closure sets N ∪ N j , 1 ≤ j ≤ m.
A simplification rule is deterministic if m = 1; it is nondeterministic
otherwise. A simplification rule is consistency preserving (or sound) if,
for every satisfiable N ∪ {C · ρ}, some resulting closure set N ∪ N j is
satisfiable as well. A simplification rule is compatible with the redun-
dancy criterion (or correct) if, for every N ∪ {C · ρ} and every j with
1 ≤ j ≤ m, the closure C · ρ is redundant w.r.t. N ∪ N j .

Some of the simplification rules of BS rely on the notion of η-
domination: for a substitution η, a term s · σ is η-dominated by a
term t · θ, written s · σ ⊑η t · θ, if and only if (i) sση = tθ, and (ii) a
substitution ρ exists such that s = tρ. For example,

f(g(x)) ⊑{x 7→a} f(y) · {y 7→ g(a)} ≡ f([g(a)]).

For literals, (s ≈ t) · σ ⊑η (w ≈ v) · θ if and only if s · σ ⊑η w · θ and
t · σ ⊑η v · θ, or s · σ ⊑η v · θ and t · σ ⊑η w · θ. The definition is analo-
gous for negative literals. For closures, C · σ ⊑η D · θ if and only if an
injective function λ from literals of C to literals of D exists such that
L · σ ⊑η L′ · θ for each L ∈ C and L′ = λ(L).
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Next, we present an overview of sound and correct simplification
rules known in the literature. All but the last one are deterministic.

Strict closure subsumption: N ∪ {C · σ} is simplified into N if a
closure D · θ in N and a substitution η exist such that D · θ ⊑η C · σ
and D contains fewer literals than C. For example, the closure

(P (f(x)) ∨ Q(y)) · {x 7→ a, y 7→ f(a)} ≡ P (f([a])) ∨ Q([f(a)])

is subsumed by the closures P (f(x)), Q(f(x)), and Q([f(x)]) but not
by the closure P (x).4

Elimination of duplicate literals: N ∪ {(C ∨ L1 ∨ L2) · σ} is simpli-
fied into N ∪ {(C ∨ L1) · σ} if L1 · σ ⊑{} L2 · σ.

Syntactic tautology deletion: N ∪ {C · σ} is simplified into N if C · σ
is a syntactic tautology ; the latter is the case if C · σ contains a lit-
eral (s ≈ t) · σ such that sσ = tσ, or a pair of literals (s ≈ t) · σ and
(s′ 6≈ t′) · σ such that sσ = s′σ and tσ = t′σ.

Ground unit resolution: N ∪ {(C ∨ L) · ρ} is simplified into a closure
set N ∪ {C · ρ} if N contains a ground closure L′ ·θ such that L′θ = Lρ.

Trivial reflexivity resolution: N ∪ {(C ∨ s 6≈ t) · ρ} is simplified into
N ∪ {C · ρ} provided that sρ = tρ.

Ground unit cut : N is nondeterministically simplified into either
N ∪ {L · ρ} or N ∪ {L · ρ} for Lρ a ground literal.5

The following rule is not a simplification rule; however, it is well-
known not to affect soundness or completeness of BS.

Elimination of marked position (called retraction in [6]): N ∪ {C · σ}
can be replaced with N ∪ {Cρ · θ} for ρ and θ such that σ = ρθ. For
example, the closure

(P (x) ∨ Q(x)) · {x 7→ f(a)} ≡ P ([f(a)]) ∨ Q([f(a)])

can be replaced with

(P (x) ∨ Q(f(y))) · {x 7→ f(a), y 7→ a} ≡ P ([f(a)]) ∨ Q(f([a])).

As usual, we use the standard ordered resolution rule as a “macro”
that combines negative superposition with eager application of the
trivial reflexivity resolution rule [4].

A BS derivation from a closure set N0 is a finitely branching tree
whose nodes are labeled with closure sets such that (i) the root of the
tree is labeled by N0 and (ii) each node labeled with a closure set N is
either a leaf node if N is saturated by BS up to redundancy, or it has

4 Note that the classical subsumption is not an instance of this rule; for example,
P (x) does not subsume P (a) ∨ P (b) in BS , since P (x) 6⊑η P (a) ∨ P (b) for any η.

5 Ground unit cut rule does not have a premise being simplified, so it is not really
a simplification rule; we treat it as such for the ease of presentation.
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m children labeled by the closure sets N1, . . . , Nm that are obtained
by applying a nonredundant inference or a simplification rule to N .
Each derivation is required to be fair ; intuitively, no inference should
be postponed infinitely often. For a precise definition of fairness and
for ways of achieving it, please refer to [5, 48]. BS is sound [6, 36]: if
some derivation from N0 contains the empty closure in the label of each
leaf, then N0 is unsatisfiable. Furthermore, BS is also complete [6, 36]:
if N0 is unsatisfiable, then each fair derivation from N0 is finite and it
contains the empty closure in the label of each leaf.

3. Outline of the Decision Procedure

In this section, we discuss the problems encountered in applying the
techniques of resolution decision procedures to SHOIQ. We also dis-
cuss the solutions to these problems and thus outline the main aspects
of our decision procedure.

The basic principles for deciding a fragment L of first-order logic by
(a refinement of) resolution were first formulated in [28]. The general
principle is to check satisfiability of a formula ϕ ∈ L by using a calculus
C that is sound and complete for first-order clausal logic. A formula
ϕ is translated into an equisatisfiable set of clauses, which are then
saturated by C. Soundness and completeness of C guarantee that ϕ is
unsatisfiable if and only if the empty clause is derived in the saturation.
Hence, satisfiability of ϕ can be decided by C provided that saturation
always terminates.

To prove termination of the saturation procedure, one typically
identifies a class of clauses NL such that (i) for a finite signature,
NL contains finitely many clauses different up to variable renaming,
(ii) every formula ϕ ∈ L can be translated into clauses from NL in a
satisfiability-preserving manner, and (iii) NL is closed under C—that is,
every inference of C with premises from NL produces only clauses from
NL. Provided that the inferences do not extend the signature, these
conditions guarantee that every saturation produces at most finitely
many clauses and thus necessarily terminates.

Calculi such as ordered resolution [5] or superposition calculi [37]
have parameters (e.g., the selection function or the term ordering) that
must be specified before performing any inferences. These parameters
determine which inferences are performed with clauses from NL. Hence,
the proper selection of the parameters—that is, defining a suitable
saturation strategy—plays the key role in achieving (iii).

These principles have been used to obtain decision procedures for
various well-known first-order fragments, such as the guarded fragment
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[18, 14], the two-variable fragment [15], the monadic fragment [7], clause
classes like E+ [45, 12, 13], PVD [32], PVDg

= [41], Maslov class K

[27], various description and modal logics [38], and various first-order
theories [1]. An overview of some of these results is given in [16, 17].

To decide satisfiability of a SHOIQ knowledge base KB , we use the
basic superposition calculus described in Section 2.3. Our procedure
consists of two phases. In the preprocessing phase, KB is translated
into an equisatisfiable set of closures Γ(KB), and in the saturation
phase, the inference rules of BS are applied to Γ(KB) according to a
particular strategy. In the rest of this section, we discuss the essential
steps of these phases.

3.1. Preprocessing Phase

The preprocessing phase of our procedure consists of three steps: (i) the
elimination of transitivity axioms from KB , (ii) the translation of
axioms into closures, and (iii) the introduction of guards.

3.1.1. Elimination of Transitivity Axioms
Transitivity axioms are known to be difficult to deal with in saturation-
based theorem proving. Consider the following SHOIQ knowledge base
and its translation into closures.

⊤ ⊑ ∃R.⊤ R(x, f(x))(3)

Trans(R) ¬R(x, y) ∨ ¬R(y, z) ∨ R(x, z)(4)

One of the negative literals in (4) should be eligible because both of
these literals are maximal: either one of them is selected, or both of
them are eligible. If the first literal is eligible, then ordered resolution
derives closures of unbounded depth, as shown in (5)–(7). In the fol-
lowing examples, we underline the part of the literal that is unified in
inferences. Furthermore, R[xx; yy] (S[xx; yy]) next to a closure means
that the closure is derived by resolution (superposition) of closures
labeled with (xx) and (yy).

¬R(x, y) ∨ ¬R(y, z) ∨ R(x, z)(5)

¬R(f(x), z) ∨ R(x, z) R[3;5](6)

R(x, f(f(x))) R[3;6](7)

¬R(f(f(x)), z) ∨ R(x, z) R[7;5] etc.(8)

If the second literal in (4) is eligible, then ordered resolution derives
closures with an unbounded number of variables, as shown in (9)–(11).

¬R(x, y) ∨ ¬R(y, z) ∨ R(x, z)(9)
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¬R(x, y) ∨ R(x, f(y)) R[3;9](10)

¬R(x, y) ∨ ¬R(y, y1) ∨ R(x, f(y1)) R[10;9] etc.(11)

To avoid such problems, simplification rules were developed in [30]
that decompose certain conclusions of inferences with clauses of the
form (5). In the case of description logics, however, there is a simpler
solution: the knowledge base KB can be polynomially transformed into
an equisatisfiable ALCHOIQ knowledge base Ω(KB). We present this
transformation in detail in Section 4.1.

3.1.2. Translation of Axioms into Closures
A näıve translation of Ω(KB) into closures can incur an exponential
blowup in the number of closures. Consider the following axiom:

A ⊑ (A1 ⊓ B1) ⊔ (A2 ⊓ B2) ⊔ . . . ⊔ (An ⊓ Bn).(12)

Direct translation of (12) into conjunctive normal form distributes the
disjunctions over the conjunctions in the right-hand side, thus produc-
ing 2n conjuncts. This can be avoided by using the structural transfor-
mation, also known as renaming [42]. This transformation transforms
(12) into the following axioms, where Q1, . . . , Qn are fresh concept
names.

A ⊑ Q1 ⊔ Q2 ⊔ . . . ⊔ Qn(13)

Qi ⊑ Ai ⊓ Bi 1 ≤ i ≤ n(14)

The axioms (13)–(14) can be straightforwardly translated into con-
junctive normal form without an exponential blowup. We present the
structural transformation in detail in Section 4.2.

The application of the operator π from Table I to the result of the
structural transformation produces first-order formulae with counting
quantifiers, which can be expressed by using ordinary quantifiers and
equality according to (1) and (2). When translating such formulas into
closures, the variables x1, . . . , xn in (1) are Skolemized; however, the
variables x1, . . . , xn+1 in (2) become a part of the resulting closure.
Although it might be possible to handle such closures by using the
hyperresolution inference rule as it was done for the logic SHIQ− in
[25], in this paper we use the following alternative first-order translation
of ∃≤nx.ϕ(x, y).

∃≤nx.ϕ(x, y) = ∃x1, . . . , xn.∀x.

[

ϕ(x, y) →
n
∨

i=1

x ≈ xi

]

(15)

One can easily see that (15) is equivalent to (2). The advantage of
(15) over (2) is that, instead of n + 1 universally quantified variables
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x1, . . . , xn+1, we now have only one universally quantified variable x,
which reduces the number of variables in the resulting closures.

3.1.3. Introduction of Guards
Nominals can be used to restrict the cardinality of the interpretation
domain. For example, the following axiom ensures that the interpreta-
tion domain contains at most two elements.

⊤ ⊑ {a1} ⊔ {a2}(16)

This axiom is translated into the following closure:

x ≈ a1 ∨ x ≈ a2.(17)

In (17), the variable x is unshielded—that is, it does not occur as a
proper subterm of some term. This allows for superposition inferences
from ai, since x ≻ ai does not hold for any admissible ordering ≻.
Inferences with (17) can produce closures with an arbitrary number of
variables (w.l.o.g. we can assume that a1 ≻ a2):

x1 ≈ a2 ∨ x2 ≈ a2 ∨ x1 ≈ x2 S[17;17](18)

x2 ≈ a2 ∨ x3 ≈ a2 ∨ x1 ≈ x2 ∨ x1 ≈ x3 ∨ x3 ≈ x4 S[18;18] etc.(19)

We avoid such problems by using another satisfiability-preserving
transformation, which we call the introduction of guards. Intuitively, we
introduce a new unary predicate symbol T and add closures that make
T hold on all elements of the Herbrand universe. Then, we add a literal
¬T (x) to every closure where x occurs unshielded. In our example, the
closure (17) is replaced with the following closure.

¬T (x) ∨ x ≈ a1 ∨ x ≈ a2(20)

Now the variable x in (20) is shielded, so the inference on a1 can
be avoided by selecting the guard literal ¬T (x). A similar strategy
for transforming clauses into range-restricted ones (i.e., the clauses in
which all variables are guarded) has been presented in [8]. We present
the details of our transformation in Section 4.3.

3.2. Saturation Phase

As we discuss in this section, a straightforward saturation of the clo-
sures obtained by preprocessing by BS does not necessarily terminate.
Therefore, we extend BS with four new simplification rules that deal
with dangerous closures. We first discuss the problems due to an inter-
action between number restrictions, role hierarchy, and inverse roles.
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We then consider the problems due to an interaction between nominals,
inverse roles, and number restrictions.

3.2.1. Number Restrictions, Role Hierarchy, and Inverse Roles
Even without nominals, the combination of number restrictions, role
hierarchy, and inverse roles is difficult to handle using resolution. Con-
sider the following knowledge base KB and its translation into closures.

⊤ ⊑ ∃Si.⊤ [i = 1, 2, 3] Si(x, fi(x))(21)

⊤ ⊑ 6 1Si.⊤ [i = 1, 2, 3] ¬Si(x, y) ∨ y ≈ si(x)(22)

S−
i ⊑ Si [i = 1, 2, 3] ¬S−

i (x, y) ∨ Si(x, y)(23)

¬Si(x, y) ∨ S−
i (y, x)(24)

Si ⊑ R [i = 1, 2, 3] ¬Si(x, y) ∨ R(x, y)(25)

⊤ ⊑ 6 2R.⊤ ¬R(x, y) ∨ y ≈ h1(x) ∨ y ≈ h2(x)(26)

By (22), the roles S1, S2, and S3 are functional; by (23), they are
symmetric; and by (25), they are subroles of the role R. Assuming that
the term ordering is such that si(x) ≻ fi(x), we can derive the following
closures.

[fi(x)] ≈ si(x) [i = 1, 2, 3] R[21;22](27)

S−
i ([fi(x)] , x) [i = 1, 2, 3] R[21;24](28)

Si([fi(x)] , x) [i = 1, 2, 3] R[28;23](29)

si([fi(x)]) ≈ x [i = 1, 2, 3] R[29;22](30)

fi([fi(x))] ≈ x [i = 1, 2, 3] S[30;27](31)

Note that, if we had si(x) 6≻ fi(x) for some i, then we would derive
Si(x, si(x)) and, consequently, si(si(x)) ≈ x. This closure is analogous
to (21) and (31), but with fi replaced by si, so the rest of this example
would follow analogously; that is, adjusting the term ordering does not
correct our problem.

The inferences are continued as follows, assuming that hj(x) ≻ fi(x)
for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2.

R(x, [fi(x)]) [i = 1, 2, 3] R[21;25](32)

fi(x) ≈ h1(x) ∨ fi(x) ≈ h2(x) [i = 1, 2, 3] R[32;26](33)

f1(x) ≈ f2(x) ∨ f1(x) ≈ f3(x) ∨ f2(x) ≈ f3(x) S[33;33](34)

The closure (34) is derived by superposition between (33) for different i

and by elimination of duplicate literals. We further derive the following
closures, in which we enclose “interesting” literals in frames.

f2([f1(x)]) ≈ x ∨ f1([f1(x)]) ≈ f3([f1(x)]) ∨

f2([f1(x)]) ≈ f3([f1(x)])

S[31;34](35)
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f2([f1(x)]) ≈ x ∨ Si([f1(x)] , f3([f1(x)])) ∨

f2([f1(x)]) ≈ f3([f1(x)]) [i = 1, 2, 3]

S[35;21](36)

One can superpose the deep closure (31) into (34), resulting in a clo-
sure (35) with an equation between terms of depth two. Such a literal
is dangerous for superposition, however, since it can easily result in
deeper closures: by superposing (35) into (21), we obtain a closure
(36), which has a literal Si([f1(x)] , f3([f1(x)])) of depth three. Such
a literal can participate in similar inferences as (21) and can produce
even deeper closures. Note that superposition from (31) into (21) does
not result in a deeper closure, although (31) is of depth two as well.
Also, choosing a different ordering (e.g., with fi(x) ≻ h1(x) for some
i) does not solve the problem, since a closure similar to (35) would
be derived by superposition from (31) into (33). Note that the basic
restriction, which blocks superposition into marked positions, does not
help us resolve this problem.

A similar problem was studied in [29] for the guarded fragment with
counting quantifiers. The solution was to introduce a new simplifica-
tion rule called splitting through new propositional symbols. Instead of
waiting for (36) to be derived, (34) is eagerly split into these closures:

Qf1,f2(x) ∨ Qf2,f3(x) ∨ Qf1,f3(x)(37)

¬Qfi,fj
(x) ∨ fi(x) ≈ fj(x) [1 ≤ i < j ≤ 3](38)

The predicate symbols Qfi,fj
(x) are fresh and unique for a pair of fi

and fj. Since the number of different such pairs is finite, the number of
these new predicate symbols is bounded. Furthermore, superposition
inferences from (31) into (38) do not produce equational literals such
as the ones in (35). In [26], a similar problem was solved for the DL
SHIQ by introducing a decomposition rule, which is similar to the
splitting rule. In Section 5.1, we adapt these results and extend basic
superposition with Decomposition 1 and 2 simplification rules.

3.2.2. Nominals, Number Restrictions, and Inverse Roles
The extension of SHIQ to SHOIQ introduces a new problem for
resolution due to an interaction of nominals, number restrictions, and
inverse roles [23]. Consider the following knowledge base and its trans-
lation into closures.

O ⊑ {c} ¬O(x) ∨ x ≈ c(39)

A ⊑ B1 ⊔ B2 ¬A(x) ∨ B1(x) ∨ B2(x)(40)

Bi ⊑ ∃Ri.A [i = 1, 2] ¬Bi(x) ∨ Ri(x, fi(x))(41)

¬Bi(x) ∨ A(fi(x))(42)
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⊤ ⊑ 6 1R−
i .⊤ [i = 1, 2] ¬R−

i (x, y) ∨ gi(x) ≈ y(43)

O ⊑ ∀Ri.O [i = 1, 2] ¬O(x) ∨ ¬Ri(x, y) ∨ O(y)(44)

[i = 1, 2] ¬Ri(x, y) ∨ R−
i (y, x)(45)

Saturation of these closures by BS produces the following closures.

¬Bi(x) ∨ B1([fi(x)]) ∨ B2([fi(x)] R[40;42](46)

¬Bi(x) ∨ ¬O(x) ∨ O([fi(x)]) R[41;44](47)

¬Bi(x) ∨ ¬O(x) ∨ [fi(x)] ≈ c R[47;39](48)

¬Bi(x) ∨ ¬O(x) ∨ Ri(x, c) S[48;41](49)

¬Bi(x) ∨ ¬O(x) ∨ R−
i (c, x) R[49;45](50)

¬Bi(x) ∨ ¬O(x) ∨ x ≈ gi(c) R[50;43](51)

¬Bi(x) ∨ B2([fi(x)]) ∨ ¬O([fi(x)]) ∨ [fi(x)] ≈ g1(c) R[46;51](52)

¬Bi(x) ∨ ¬O([fi(x)]) ∨ [fi(x)] ≈ g1(c) ∨ [fi(x)] ≈ g2(c) R[52;51](53)

¬Bi(x) ∨ ¬O(x) ∨ [fi(x)] ≈ g1(c) ∨ [fi(x)] ≈ g2(c) R[47;53](54)

The closure (54) is similar in structure to (48): it contains just two
literals, fi(x) ≈ g1(c) and fi(x) ≈ g2(c), instead of one literal, fi(x) ≈ c.
One can easily see that all inferences with (48) can be repeated for (54)
and that this would produce even longer closures with even deeper liter-
als fi(x) ≈ g1(g1(c)), fi(x) ≈ g2(g1(c)) and so on. This clearly prevents
the saturation from terminating.

To deal with this problem, we simplify (54) into

¬Bi(x) ∨ ¬O(x) ∨ c ≈ g1(c) ∨ c ≈ g2(c).(55)

The closure (55) is a logical consequence of (48) and (54). Further-
more, (55) makes (54) redundant, since (54) follows from the smaller
closures (48) and (55). Thus, (54) can be deleted from the closure set,
which eventually ensures termination of the saturation. In Section 5.1,
we generalize this idea and introduce two simplification rules, called
Nominal Generation 1 and 2.

4. Computing the Set of Closures

We now present the preprocessing phase of our algorithm in detail. The
main task of this phase is to translate a SHOIQ knowledge base KB
into a suitable set of closures Γ(KB).
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4.1. Eliminating Transitivity Axioms

As explained in Section 3.1.1, we eliminate transitivity axioms from
KB by polynomially encoding KB into an equisatisfiable ALCHOIQ
knowledge base Ω(KB).

DEFINITION 1. For KB a SHOIQ knowledge base, clos(KB) is the
smallest set of concepts such that

− nnf(¬C ⊔ D) ∈ clos(KB) if C ⊑ D ∈ KBT ;

− nnf(C) ∈ clos(KB) if C(a) ∈ KBA;

− D ∈ clos(KB) if C ∈ clos(KB) and D occurs in C;

− nnf(¬C) ∈ clos(KB) if 6 n R.C ∈ clos(KB);

− ∀S.C ∈ clos(KB) if ∀R.C ∈ clos(KB) and S is such that S ⊑∗ R

and Trans(S) ∈ KBR or Trans(Inv(S)) ∈ KBR.

The ALCHOIQ knowledge Ω(KB) is obtained from KB by ( i) remov-
ing all transitivity axioms and ( ii) adding an axiom ∀R.C ⊑ ∀S.(∀S.C)
for each concept ∀R.C ∈ clos(KB) and each role S with S ⊑∗ R and
Trans(S) ∈ KBR or Trans(Inv(S)) ∈ KBR.

This encoding is polynomial in |KB |: the number of concepts in
clos(KB) stemming from a concept C is bounded by 2 · |C| · |NR| and,
for each concept from clos(KB), we generate at most |NR| axioms in
the TBox of Ω(KB).

This encoding is similar to the transformation of formulas of modal
logic K4 into formulas of modal logic K from [44]. Another related
algorithm for transforming SHIQ concepts into ALCIQb concepts was
presented in [46]. For the proof of correctness of this transformation,
we refer the interested reader to [34].6

LEMMA 2 ([34]). KB is satisfiable if and only if Ω(KB) is satisfiable.

4.2. Translation into Closures

Because of the reasons explained in Section 3.1, we next apply the
structural transformation [42] to Ω(KB):

DEFINITION 3. For a SHOIQ knowledge base KB, the result Θ(KB)
of applying the structural transformation to KB is defined in Table III.
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Table III. The Structural Transformation of KB

Θ(KB) =
⋃

α∈KB′

R
∪KB′

A

Θ(α) ∪
⋃

C1⊑C2∈KB′

T

Θ(⊤ ⊑ nnf(¬C1 ⊔ C2))

Θ(a ≈ b) = {a ≈ b}

Θ(a 6≈ b) = {a 6≈ b}

Θ(C(a)) = {QC(a)} ∪ Θ(QC ⊑ nnf(C))

Θ(R(a, b)) = {R(a, b)}

Θ(R ⊑ S) = {R ⊑ S}

Θ(A ⊑ B) = {A ⊑ B}

Θ(A ⊑ ¬B) = {A ⊑ ¬B}

Θ(A ⊑ {a}) = {A ⊑ {a}}

Θ(A ⊑ ¬{a}) = {¬A(a)}

Θ(A ⊑ C1 ⊓ C2) = Θ(A ⊑ C1) ∪ Θ(A ⊑ C2)

Θ(A ⊑ C1 ⊔ C2) = {A ⊑ QC1
⊔ QC2

} ∪ Θ(QC1
⊑ C1) ∪ Θ(QC2

⊑ C2)

Θ(A ⊑ ∃R.C) = {A ⊑ ∃R.QC} ∪ Θ(QC ⊑ C)

Θ(A ⊑ ∀R.C) = {A ⊑ ∀R.QC} ∪ Θ(QC ⊑ C)

Θ(A ⊑ > n R.C) = {A ⊑ > n R.QC} ∪ Θ(QC ⊑ C)

Θ(A ⊑ 6 n R.C) = {A ⊑ 6 n R.¬QD} ∪ Θ(QD ⊑ D) for D = nnf(¬C)

Note: KB ′ = Ω(KB); A and B are concept names or ⊤; C, C1, and C2 are
arbitrary concepts; R and S are roles; and QX is a new concept name not
occurring in KB that is unique for the concept X.

The following lemma follows trivially from the fact that the trans-
formation from Table III corresponds to the well-known structural
transformation of first-order formulas.

LEMMA 4. A SHOIQ knowledge base KB is satisfiable if and only
if Θ(KB) is satisfiable; furthermore, Θ(KB) can be computed in time
polynomial in |KB |.

The axioms in Θ(KB) contain at most one concept that is not a
concept name, so they can be straightforwardly converted into closures
by translating them into first-order logic using the operator π from
Table I, skolemizing the existential quantifiers, and translating the
result into the conjunctive normal form. We denote the resulting set of
closures with Ξ(KB). Table IV shows the closures that are produced
by different types of axioms.

In [34], several optimizations of the clausification algorithm were
presented that can be used to reduce the size and the number of closures

6 The proof is given for SHIQ, but the extension to SHOIQ is trivial.
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Table IV. Closure Types after Preprocessing

Axiom Closure

R = Inv(S) ¬R(x, y) ∨ S(y, x)

¬S(x, y) ∨ R(y, x)

R ⊑ S ¬R(x, y) ∨ S(x, y)

A ⊑ ∃R.B ¬A(x) ∨ R(x, f(x))

¬A(x) ∨ B(f(x))

A ⊑ > n R.B ¬A(x) ∨ R(x, fi(x)) 1 ≤ i ≤ n

¬A(x) ∨ B(fi(x)) 1 ≤ i ≤ n

¬A(x) ∨ fi(x) 6≈ fj(x) 1 ≤ i < j ≤ n

A ⊑
⊔

(¬)Bi ¬A(x) ∨
∨

(¬)Bi(x)

A ⊑ {c} ¬A(x) ∨ x ≈ c

A ⊑ ∀R.B ¬A(x) ∨ ¬R(x, y) ∨ B(y)

A ⊑ 6 n R.¬B ¬A(x) ∨ ¬R(x, y) ∨ B(y) ∨
∨n

i=1
fi(x) ≈ y

A(c) A(c)

R(c, d) R(c, d)

c ≈ d c ≈ d

c 6≈ d c 6≈ d

Note: The function symbols f(i) are fresh for each axiom.

in Ξ(KB); however, these are not essential for the correctness of our
algorithm so we do not discuss them further.

4.3. Introduction of Guards

The final step in preprocessing is the introduction of guards.

DEFINITION 5. For a closure C · ρ, a variable x from Cρ is guarded
if it occurs in Cρ in a negative nonequational literal; this literal is called
a guard for x.

Let KB be a SHOIQ knowledge base and T a fresh predicate sym-
bol. Then, Γ(KB) is the smallest set such that ( i) for each closure
C · ρ ∈ Ξ(KB), Γ(KB) contains ¬T (x1) ∨ · · · ∨ ¬T (xn) ∨ C · ρ, where
x1, . . . , xn are all nonguarded variables of Cρ; ( ii) for each constant
c occurring in Ξ(KB), Γ(KB) contains the closure T (c) (if there are
no constants, we add one); and ( iii) for each unary function symbol f

occurring in Ξ(KB), Γ(KB) contains the closure ¬T (x) ∨ T (f(x)).

LEMMA 6. Ξ(KB) is satisfiable if and only if Γ(KB) is satisfiable.
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Proof. (⇒) Let I be a model of Ξ(KB), and let I ′ be obtained from
I by interpreting T (x) to be true for all x. Clearly, I ′ is a model of
Γ(KB). (⇐) In each Herbrand model I of Γ(KB), ¬T (x) ∨ T (f(x))
and T (c) ensure that T holds on all elements of I. Hence, each ¬T (xi)
in a closure from Γ(KB) is false in I, so I is a model of Ξ(KB). 2

5. Saturating Closures by Basic Superposition

After preprocessing, our algorithm continues by saturating the set of
closures Γ(KB) by basic superposition. In this section we present the
appropriate saturation strategy and prove that it is sound, complete,
and terminating. We also estimate the complexity of our algorithm.

5.1. The Saturation Strategy

We say that N is a set of DL-closures if every closure in N is of some
form from Table V.

LEMMA 7. For every SHOIQ knowledge base KB, Γ(KB) is a set of
DL-closures.

Proof. The set Ξ(KB) contains only closures from Table IV, and, by
Definition 5, each closure in Γ(KB) contains a guard literal for each
variable. Condition (∗) holds vacuously. 2

Next, to obtain a procedure for checking satisfiability of Γ(KB), we
choose the appropriate parameters for BS and extend it with certain
simplification rules. These rules can extend the signature with new
predicate symbols and constants. In order to ensure that only finitely
many new symbols are introduced into the signature, our rules reuse
previously introduced symbols whenever possible. Thus, an application
of a simplification rule depends not only on the current closure set but
also on the inferences applied previously.

DEFINITION 8. With BSDL we denote the BS calculus parameterized
by any admissible term ordering ≻ such that f(x) ≻ A(x) ≻ B(x) ≻ c,
R(x, c) ≻ A(x), R(c, x) ≻ A(x), and B(f(x)) ≻ g(c), for a binary
predicate symbol R ∈ A and unary predicate symbols A ∈ A and
B ∈ B \ A. The selection function of BSDL selects in C · σ a literal
of the form ¬R(x, y), x 6≈ c, or x 6≈ f(c); if there are no such literals
and Cσ does not contain a term f(x), an atom R(x, c), or an atom
R(c, x), it selects a literal ¬B(x) if there is one.
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Table V. Types of DL-Closures

1 α(x) ∨ (¬)f(x) ≈ g(x)

2 α(x) ∨ (¬)f([g(x)]) ≈ x

3 α(x) ∨ (¬)A(f(x))

4 β(x) ∨ (¬)f(x) ≈ c

5 β(x) ∨
∨

(¬)x ≈ ti

6 α(x) ∨ β([f(x)]) ∨
∨

[f(x)] ≈ ti ∨
∨

(¬)x ≈ ci

Condition (∗): the disjunction β([f(x)]) ∨
∨

[f(x)] ≈ ti is nonempty and

if the closure contains a literal x ≈ ci, then the closure set

contains α′(x) ∨ g(f(x)) ≈ x such that α(x) = α′(x) ∨ α′′(x).

7 α1(x) ∨ ¬R(x, y) ∨ α2(y) ∨
∨n

i=1
fi(x) ≈ y

8 ¬R(x, y) ∨ S(x, y) or ¬R(x, y) ∨ S(y, x)

9 α(x) ∨ R(x, f(x)) or α(x) ∨ R(f(x), x)

10 β(x) ∨ R(x, c) or β(x) ∨ R(c, x)

11
unit closures and (¬)B(t) (¬)t1 ≈ t2 (¬)f(g(c)) ≈ d
the empty closure: (¬)R(c, d) (¬)R(c, f(d)) (¬)R(f(c), d) �

All predicate symbols are drawn from two sets A and B such that A ⊆ B and
A contains all predicate symbols of Γ(KB). Each variable in each closure is
guarded (see Definition 5). α(x) is a disjunction (¬)A1(x) ∨ · · · ∨ (¬)An(x)
with Ai ∈ A. β(x) is a disjunction (¬)B1(x) ∨ · · · ∨ (¬)Bn(x) with Bi ∈ B.
Disjunctions α(x), β(x), β([f(x)]),

∨

(¬)x ≈ ti, and
∨

[f(x)] ≈ ti may be
empty. Also, c and d are constants, and t(i) are ground terms of the form c

or f(c).

Apart from the standard BS inferences, BSDL eagerly applies the
simplification rules from Table VI, elimination of duplicate literals,
tautology deletion, closure subsumption, and ground unit resolution.
Immediately after deriving a closure C · ρ ∨ L · ρ where Lρ is ground,
BSDL applies the cut rule for Lρ. Marked positions are removed eagerly
if doing so enables applying a simplification rule.

An example of an ordering suitable for BSDL is a Knuth-Bendix
ordering [3] such that

weight(f) > weight(R) > weight(A) >

weight(B) > weight(c) > weight(tt)

for each nonconstant function symbol f , binary predicate symbol R,
unary predicate symbols A ∈ A and B ∈ B \ A, and a constant c 6= tt.

Next, we show that the simplification rules of BSDL are sound and
correct, so they do not affect the soundness and completeness of BS.
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Table VI. Simplification Rules of BSDL

Decomposition 1:

D · ρ ∨ L · ρ

D · ρ ∨ A(x),
¬A(x) ∨ L · ρ

(i) L · ρ is (¬)f(x) ≈ g(x), (¬)f([g(x)]) ≈ x,
R(x, f(x)), or R(f(x), x);

(ii) Dρ contains a term h(x);
(iii) If Decomposition 1 has already been applied

in the saturation to a premise with the same
L · ρ, then A is the same as in the previous
application; otherwise, A ∈ A is fresh.

Decomposition 2:

D · ρ ∨ f(x) ≈ c

D · ρ ∨ B(x),
¬B(x) ∨ f(x) ≈ c

(i) Dρ contains either a term h(x), or a literal
(¬)A(x) with A ∈ A;

(ii) If Decomposition 2 has already been applied
in the saturation to a premise with the same
f(x) ≈ c, then B is the same as in the pre-
vious application; otherwise, B ∈ B \ A is
fresh.

Nominal Generation 1:

α(x) ∨
∨n

i=1
[f(x)] ≈ ti

α(x) ∨
∨k

i=1
f(x) ≈ ci,

α(x) ∨
∨n

j=1
ci ≈ tj

(1 ≤ i ≤ k)

(i) Some ti is of the form h(c);
(ii) If Nominal Generation 1 has already been

applied in the saturation to some closure
α(x) ∨

∨n1

i=1
[f(x)] ≈ t′

i
(for the same α(x)

and f), then k and ci are the same as in
this previous application; otherwise, k = n
and ci are fresh.

Nominal Generation 2:

α(x) ∨
∨n

i=1
[f(x)] ≈ ti ∨

∨m

i=1
x ≈ ci

α(x) ∨
∨k

i=1
Bi(x),

¬Bi(x) ∨ f(x) ≈ ei,

¬Bi(x) ∨ x ≈ di,

α(x) ∨
∨n

j=1
ei ≈ tj ∨

∨m

j=1
di ≈ cj

(1 ≤ i ≤ k)

(i) Some ti is of the form h(c);
(ii) A closure α′(x) ∨ g(f(x)) ≈ x, such that

α(x) = α′(x) ∨ α′′(x), has been derived
before;

(iii) If Nominal Generation 2 has already been
applied in the saturation to some closure
α(x) ∨

∨n1

i=1
[f(x)] ≈ t′

i
∨

∨m1

i=1
x ≈ c′

i
(for

the same α(x) and f), then k, di, ei, and
Bi are the same as in this previous applica-
tion; otherwise, k = n + m and di, ei, and
Bi ∈ B \ A are fresh.

LEMMA 9 (Soundness). In every BSDL saturation, each application
of a simplification rule is sound.

Proof. Let N0, N1, . . . , Nn be a BSDL saturation and I0 a model of
N0. We prove the lemma by constructing a model Is for each Ns with
1 ≤ s ≤ n inductively. Consider all possible cases for the inference
producing Ns from Ns−1:

(Standard BS inferences) Is := Is−1 is clearly a model of Ns.
(Decomposition 1) If the predicate symbol A is reused in the infer-

ence, we set Is := Is−1; otherwise, we extend Is−1 to Is by interpreting
A(x) exactly as Lρ. Obviously, Is is a model of Ns.

(Decomposition 2) Analogous to Decomposition 1.
(Nominal Generation 1) If ci are reused in the inference, we set

Is := Is−1. If ci are new and α(x) is true for all x, we extend Is−1 to Is by
interpreting new symbols arbitrarily. Otherwise, α(x)∨

∨n
i=1 [f(x)] ≈ ti

ensures that, for those x for which α(x) is false in Is−1, f(x) has ℓ

paper-journal.tex; 2/11/2007; 14:11; p.22



23

distinct values o1, . . . , oℓ in Is−1, 1 ≤ ℓ ≤ n, so we extend Is−1 to Is by
interpreting ci as oi for i ≤ ℓ and as o1 for i > ℓ.

Hence, if α(x) is true for all x, all conclusions are obviously true in
Is. Otherwise, ci represent exactly those values f(x) for which α(x) is
false, so each ci is interpreted in Is as some tj; therefore, all conclusions
are true in Is.

(Nominal Generation 2) If di, ei, and Bi are reused in the inference,
we set Is := Is−1. If di, ei, and Bi are new and α(x) is true for all x, we
extend Is−1 to Is by interpreting di and ei arbitrarily, and making Bi

false everywhere. Otherwise, let x be such that α(x) is false in Is−1. By
Condition (ii), α′(x) is also false, so x ≈ g(f(x)) holds in Is−1. More-
over, α(x) ∨

∨n
i=1 [f(x)] ≈ ti ∨

∨m
i=1 x ≈ ci ensures that either f(x) is

equal to one of t1, . . . , tn, or x is equal to one of c1, . . . , cm. These two
conditions imply that x is equal to one of g(t1), . . . , g(tn), c1, . . . , cm,
so α(x) is false for exactly ℓ distinct domain elements o1, . . . , oℓ, for
1 ≤ ℓ ≤ n + m. We extend Is−1 to Is as follows: for i ≤ ℓ, we interpret
di as oi, ei as f(oi) and make Bi true only for oi; for i > ℓ, we interpret
di as o1 and ei as f(o1) and make Bi true only for o1.

Hence, if α(x) is true for some x, then Bi(x) is false, so all conclusions
are obviously true in Is. Otherwise, if α(x) is false, i exists such that di

is equal to x, Bi holds only on x, and ei is equal to f(x). This makes
the first three conclusions true in Is; the fourth conclusion is true in Is

because of the premise. 2

LEMMA 10 (Correctness). All BSDL simplification rules are correct.
Proof. For each simplification rule with the premise C · ρ and con-

clusions Ci · ρ, 1 ≤ i ≤ n, ground substitution τ , and rewrite system
R, we need to show that, if C · ρτ is variable irreducible w.r.t. R, then
(i) Ci ·ρτ are variable irreducible w.r.t. R, (ii) C1ρτ, . . . , Cnρτ |= Cρτ ,
and (iii) Cρτ ≻ Ciρτ . Property (i) is trivially satisfied for all simpli-
fication rules from Table VI, since each substitution position in Ci · ρ
corresponds to a substitution position in C ·ρ. Next, we prove properties
(ii) and (iii) for each rule. Let u = xτ .

(Decomposition 1) The instance C = Dρτ ∨ Lρτ of the premise can
be obtained by resolving the instances E1 = ¬A(u) ∨ Lρτ and E2 =
Dρτ ∨ A(u) of the conclusions on A(u). Furthermore, Dρτ contains
a term h(u) by Condition (ii), and h(u) ≻ A(u) by Definition 8, so
Dρτ ≻ A(u). Similarly, Lρτ contains a term f(u) by Condition (i), so
Lρτ ≻ ¬A(u). Thus, C ≻ E1 and C ≻ E2.

(Decomposition 2) By Definition 8, f(u) ≈ c ≻ B(u). Furthermore,
by Condition (i), Dρ contains either h(x), but then h(u) ≻ ¬B(u),
or Dρ contains (¬)A(x), but then (¬)A(u) ≻ ¬B(u) by Definition 8.
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Hence, Dρτ ≻ ¬B(u), so the rest of the argument is analogous to
Decomposition 1.

(Nominal Generation 1) The instance C = α(u) ∨
∨n

i=1 f(u) ≈ ti of
the premise can be obtained by simultaneously paramodulating on each
ci from Ei = α(u) ∨

∨n
j=1 ci ≈ tj into D = α(u) ∨

∨k
i=1 f(u) ≈ ci.

Furthermore, by Condition (i) of Nominal Generation 1, some t = ti is
of the form h(c), and, because h(c) ≻ ci, we have f(u) ≈ t ≻ f(u) ≈ ci,
which implies C ≻ D. Similarly, f(u) ≈ tj ≻ ci ≈ tj, so C ≻ Ei.

(Nominal Generation 2) The instance

C = α(u) ∨
n
∨

i=1

f(u) ≈ ti ∨
m
∨

i=1

u ≈ ci

of the premise can be obtained from the conclusions: first, paramodu-
late from Ci = ¬Bi(u) ∨ f(u) ≈ ei and from Di = ¬Bi(u) ∨ u ≈ di on ei

and di, respectively, into Ei = α(u) ∨
∨n

j=1 ei ≈ tj ∨
∨m

j=1 di ≈ cj ; this
produces E′

i = α(u) ∨ ¬Bi(u) ∨
∨n

j=1 f(u) ≈ tj ∨
∨m

j=1 u ≈ cj ; then, re-

solve all E′
i with F = α(u) ∨

∨k
i=1 Bi(u) on Bi(u) to obtain C. Further-

more, some t = ti is of the form h(c) by Condition (i), so h(c) ≻ ei

implies f(u) ≈ t ≻ f(u) ≈ ei. Since f(u) ≻ ¬Bi(u), so C ≻ Ci. Simi-
larly, f(u) ≈ t ≻ u ≈ di, so C ≻ Di. Finally, f(u) ≻ ei and f(u) ≻ di

imply C ≻ Ei, and f(u) ≻ Bi(u) implies C ≻ F . 2

5.2. Saturation of DL-Closures by BSDL

We now show that the inferences of BSDL, when applied to DL-closures,
always produce a DL-closure.

LEMMA 11 (Closure under Inferences). Let N be a set of DL-closures
to which no BSDL simplification is applicable. Then, an application of
a BSDL inference to N followed by exhaustive simplification produces
a set of DL-closures.

Proof. Before considering all possible inferences with closures from
N , we consider the types of literals that can be eligible in each closure
from N . Each closure of type 1–4 contains exactly one literal containing
a function symbol; this literal is then eligible because it is maximal and
no literal is selected. A closure of type 5 either contains a literal x 6≈ t,
which is selected, or it contains a guard for x, which is selected. A
closure of type 6 can contain a literal x 6≈ c, which is then selected.
Otherwise, the closure must contain a literal (¬)B([f(x)]): were this not
the case, the closure would have the form α(x)∨

∨

[f(x)] ≈ ti∨
∨

x ≈ ci;
if some ti is of the form h(c), the closure would be simplified by Nominal
Generation 1 or 2 (Condition (ii) of Nominal Generation 2 is satisfied
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Table VII. Eligible Literals in DL-Closures

1 α(x) ∨ (¬)f(x) ≈ g(x) 2 α(x) ∨ (¬)f([g(x)]) ≈ x

3 α(x) ∨ (¬)A(f(x)) 4 β(x) ∨ (¬)f(x) ≈ c

5.1 β(x) ∨
∨

(¬)x ≈ ti ∨ x 6≈ t 5.2 β(x) ∨ ¬B(x) ∨
∨

x ≈ ti

6.1 α(x) ∨
∨

[f(x)] ≈ ti ∨
∨

(¬)x ≈ ci ∨ x 6≈ c

6.2 α(x) ∨ β([f(x)]) ∨ (¬)B([f(x)]) ∨
∨

[f(x)] ≈ ti ∨
∨

x ≈ ci

7 α1(x) ∨ ¬R(x, y) ∨ α2(y) ∨
∨n

i=1
fi(x) ≈ y

8.1 ¬R(x, y) ∨ S(x, y) 8.2 ¬R(x, y) ∨ S(y, x)

9.1 α(x) ∨ R(x, f(x)) 9.2 α(x) ∨ R(f(x), x)

10.1 β(x) ∨ R(x, c) 10.2 β(x) ∨ R(c, x)

11.1 (¬)B(t) 11.2 (¬)t1 ≈ t2 11.3 (¬)f(g(c)) ≈ d

11.4 (¬)R(c, d) 11.5 (¬)R(c, f(d)) 11.6 (¬)R(f(c), d)

because Condition (∗) holds for the premise); if all ti are constants,
the closure would be simplified by Decomposition 2 (Condition (i) is
satisfied by a guard for x occurring in α(x)). Since B(f(x)) ≻ f(x)
and B(f(x)) ≻ g(c) by Definition 8, a literal of this form is eligible
for inferences. The cases for the remaining closures are straightforward
and are summarized in Table VII.

Next, we enumerate all BSDL-inferences between DL-closures and
show that they result in DL-closures. With [c1, c2] = [s] = [r1, r2, . . .]
we denote an inference between closures c1 and c2 resulting in clo-
sures r1, r2, . . ., possibly by applying simplification s exhaustively. Cut,
ground unit resolution, and closure subsumption ensure that ground
literals occur only in unit closures; we call a combination of these
inferences splitting.

Resolution inferences are possible only between closures of types 3,
5.2, 6.2, and 11.1 on unary literals; 9, 10, 11.4, 11.5, and 11.6 on positive
binary literals; and 7, 8, 11.4, 11.5, and 11.6 on negative binary literals.
Resolution with a premise of type 11 results in a ground closure, which
is split into closures of type 11. The remaining resolution inferences are
as follows: [3,3] = [5], [3,5.2] = [6], [3,6.2] = [6], [5.2,6.2] = [6], [6.2,6.2]
= [6], [9.1,7] = [Decomposition 1] = [1,6], [9.2,7] = [Decomposition 1]
= [2,6], [9,8] = [9], [10.1,7] = [Decomposition 2, Splitting] = [4,5,11],
[10.2,7] = [Splitting] = [5,11], [10,8] = [10].
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Superposition inferences are possible from a nonground closure of
type 1, 2, or 4, or from a ground closure of type 11.2 or 11.3, into a
term f(x) of 1, 3, 4, or 9 or into a term f([g(x)]) of 2 or into a ground
(sub)term of 5.1, 6.1, 10, or 11. Note that superposition into or from a
ground term does not increase the term depth, so the conclusion either
becomes ground or is of the same type as the other premise. Therefore,
we do not consider types 5.1, 6.1, 10, and 11 in the following case
analysis.

Superposition from 1 into 1, 3, 4, or 9 produces closure of the latter
type, since a function symbol f is just replaced by g: [1,1] = [1], [1,3]
= [3], [1,4] = [4], [1,9 ]= [9]. Superposition from 1 into 2 produces
α([g′(x)]) ∨ α′(x) ∨ g([g′(x)]) ≈ x, which is simplified into types 2 and
6 using Decomposition 1.

Superposition from 2 into 1, 3, 4, or 9 instantiates the variable of
the second premise to [g(x)]: [2,1] = [Decomposition 1] = [2,6], [2,3] =
[6], [2,4] = [6], [2,9] = [Decomposition 1] = [9,6]. Superposition from 2
into 2 produces either a tautology that is deleted or a closure with a
literal x 6≈ x that is removed by reflexivity resolution and subsumption
deletion, thus producing a closure of type 5.

Superposition from 4 into 1, 2, 3, 4, or 9 results in the following
inferences: [4,1] = [4], [4,2] = [6], [4,3] = [Splitting] =[5,11], [4,4] =
[Splitting] = [5,11], [4,9] = [10].

Reflexivity resolution inferences can be applied only to a closure of
type 1, 5.1, 6.1, or 11.2. For 1 we obtain 5; in the remaining cases, the
result is ground and is split into closures of type 11.

Factoring inferences are not applicable because duplicate literals
are eagerly eliminated and closures with multiple equality literals are
eagerly decomposed.

Condition (∗). Consider an inference producing a closure of type
6 with a literal x ≈ ci. Such an inference either is a superposition
between 2 and 4, so the premise of type 2 validates Condition (∗) of
the conclusion, or it has a premise of type 6, so x ≈ ci in the conclusion
stems from this premise. Hence, (∗) is satisfied for all conclusions of
type 6.

Guards are preserved by all inferences because each premise contains
a guard, and no inference involves a negative nonequational literal from
all premises.

Simplification inferences always produce DL-closures: for our cus-
tom rules, this follows from Table VI, and for the remaining standard
ones this is trivial. 2

paper-journal.tex; 2/11/2007; 14:11; p.26



27

5.3. Termination and Complexity Analysis

We now show that each saturation of Γ(KB) by BSDL terminates.
Assuming unary coding of numbers in number restrictions, the number
of function symbols in Γ(KB) is linear in |KB |.

LEMMA 12. Let Γ(KB) = N0, N1, . . . , Nn be a path in a derivation by
BSDL from N0. Then, the number of constants in each Ni is at most
doubly exponential, and the number of closures in Ni is at most triply
exponential in |KB |, for unary coding of numbers.

Proof. Nominal Generation 1 and 2 introduce new constants at most
once for a combination of α(x) and f . Other than the predicate symbols
from Γ(KB), α(x) can contain the predicate symbols A introduced by
Decomposition 1, of which at most four are introduced for a pair of
function symbols f and g. Hence, the number of disjunctions α(x) is at
most exponential in |KB |, and so is the number of Nominal Generation
inferences that introduce new constants. Furthermore, the premise of
such an inference can involve all terms of the form c or f(c) derived
thus far, so the inference can increase the total number of constants
only by a linear factor. Thus, the number of constants in Ni can be at
most doubly exponential in |KB |.

Decomposition 2 introduces at most one predicate symbol B for
a combination of f and c, and Nominal Generation 2 introduces at
most one predicate symbol Bi for each ei or di. Hence, the number of
predicate symbols in Ni is at most doubly exponential in |KB |. Since
each DL-closure contains at most one variable, the number of different
literals is at most doubly exponential, so the number of DL-closures
without repeated literals is at most triply exponential in |KB |. 2

THEOREM 13. BSDL decides satisfiability of a SHOIQ knowledge
base KB in triply exponential time, for unary coding of numbers.

Proof. Without loss of generality we can assume that an inference
between two closures is performed at most once in a saturation. By
Lemmas 7 and 11, each set of closures in a BSDL saturation contains
only DL-closures and is at most triply exponential in size by Lemma
12. Hence, all DL-closures are derived after at most triply exponential
number of steps. Because simplification rules of BSDL are sound and
correct by Lemmas 9 and 10, the set of closures upon termination is
saturated up to redundancy. Hence, Γ(KB) and, by Lemma 6, KB are
satisfiable if and only if the saturated set does not contain the empty
closure.

Since BSDL uses the cut rule, it is nondeterministic, so a straight-
forward complexity estimation gives us only a nondeterministic triply
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exponential upper bound. This can be improved to a deterministic
triply exponential bound as follows. The number of unit ground closures
is at most doubly exponential, so the number of cut inferences per-
formed on each branch of the saturation is at most doubly exponential.
Hence, if we implement our procedure using backtracking, the number
of all inferences is triply exponential. 2

6. Discussion

In this section we discuss two important aspects of our algorithm.

6.1. Relationship with the Tableau Procedure

Nominal Generation 1 and 2 rules from Table VI are somewhat anal-
ogous to the Ro-rule from the tableau decision algorithm for SHOIQ
[23]. In particular, the termination argument for tableau decision pro-
cedures is typically based on the so-called tree-model property: if a DL
knowledge base is satisfiable, then it has a tree model [47]. Nominal
nodes, however, can be connected in arbitrary ways. In fact, for the DL
SHOQ (obtained from SHOIQ by disallowing inverse roles), we can
consider only forest models, which consist of a “cloud” of arbitrarily
interconnected nominals, and trees that emanate from nominals and
whose nodes can have role arcs pointing to nominals. The size of these
trees depends on the number of nominals (and which is bounded by
the size of the input knowledge base), which can be exploited to ob-
tain a decision procedure [22]. By adding inverse roles, however, we
can restrict the number of links pointing to a nominal node, which
in turn means that the predecessors of nominal nodes can also be
interconnected arbitrarily; effectively, they behave just like nominals.
The number of nominals is thus not bounded by the size of the input
knowledge base, which invalidates the termination proof. To remedy
the situation, given a nominal node that is an instance of a number
restriction concept 6 n S.C, the Ro-rule guesses the actual number of
neighboring nominals and introduces them explicitly. The number n is
taken as an upper bound on the number of the introduced nominals.
By obtaining the bound on the number of rule applications, one can
establish termination of the algorithm.

The problems in the resolution setting are similar: because of inverse
roles, nominals, and number restrictions, we can derive terms that play
the role of new nominals. Nominal Generation rules then introduce
new names for such terms, thus bounding the term growth. The main
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difference from the tableau procedure, however, is that the application
of these rules does not depend on some concrete model; rather, it is
performed for all models that are described by the knowledge base.
Furthermore, our rules are deterministic: they introduce new constants
that are not necessarily different and that can be made equal later. Our
procedure can thus be viewed as being “more deterministic.”

6.2. Reasoning about Set Cardinalities Using Resolution

The decision procedure for the DL SHIQ from [25, 26] is worst-case
optimal (assuming unary coding of numbers), yet still practical. It is
therefore somewhat disappointing that the procedure presented in this
paper is not worst-case optimal. The high complexity of our procedure
is due to a possibly doubly exponential number of constants intro-
duced by Nominal Generation rules 1 and 2. In this section we analyze
the situations in which this blowup occurs, and we provide an intu-
itive explanation why deriving an optimal resolution-based procedure
is difficult, if not impossible.

Let KB be a knowledge base from Table VIII, which uses the well-
known encoding of binary numbers by DL concepts. A concept Bi

represents the ith bit of a number, so a binary number bp bp−1 . . . b0

with bi ∈ {0, 1} is represented by a concept µp(bp)⊓ . . .⊓µ0(b0), where
µi(0) = ¬Bi and µi(1) = Bi. Axioms T1 and T2 ensure that a model
of KB can be embedded in a binary R-tree: every element has at most
two R-successors and at least one R-predecessor. Axioms T3–T6 ensure
that the numbers bp bp−1 . . . b0 corresponding to elements connected by
R-links are incremented by one. Together with T7, these axioms ensure
that the number of elements in the concept at the kth level of this tree
is at most 2k. In particular, the last level, corresponding to the concept
Bp ⊓ . . . ⊓ B0, can contain at most 22p

elements. Using a dual set of
axioms T8–T13 and A1, we express in a similar way that the concept
Aq ⊓ . . . ⊓ A0 contains at least 22q

elements.
Because of axiom T14, KB is satisfiable if and only if a set with 22q

elements can be embedded in a set with 22p
elements. Such combinato-

rial problems, commonly called the pigeon hole principle, are known to
be hard for resolution [21]. On KB , our algorithm generates new nom-
inals for all possible α(x) = (¬)Bp(x) ∨ . . . ∨ (¬)B0(x); intuitively, this
is done to represent the constraints of the form |Bp ⊓ . . . ⊓ B0| ≤ 22p

by enumerating the set’s elements using new constants. Although this
observation does not prove that an optimal resolution-based procedure
for SHOIQ cannot exist, it suggests that resolution alone might not
suffice; rather, explicit algebraic operations with numbers might be
necessary.
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Table VIII. Expressing Big Cardinality Restrictions in SHOIQ

T1 ⊤ ⊑ 6 2 R.⊤ T2 ⊤ ⊑ > 1 R−.⊤

T3 B0 ⊑ ∀R.¬B0 T4 Bi+1 ⊓ Bi ⊑ ∀R.((Bi+1 ⊓ Bi) ⊔ (¬Bi+1 ⊓ ¬Bi))

T5 ¬B0 ⊑ ∀R.B0 T6 ¬Bi+1 ⊓ Bi ⊑ ∀R.((¬Bi+1 ⊓ Bi) ⊔ (Bi+1 ⊓ ¬Bi))

T7 ¬Bp ⊓ . . . ⊓ ¬B0 ⊑ {c} i = 1 . . . p

T8 ⊤ ⊑ > 2 S.⊤ T9 ⊤ ⊑ 6 1 S−.⊤

T10 A0 ⊑ ∀S.¬A0 T11 Ai+1 ⊓ Ai ⊑ ∀S.((Ai+1 ⊓ Ai) ⊔ (¬Ai+1 ⊓ ¬Ai))

T12 ¬A0 ⊑ ∀S.A0 T13 ¬Ai+1 ⊓ Ai ⊑ ∀S.((¬Ai+1 ⊓ Ai) ⊔ (Ai+1 ⊓ ¬Ai))

A1 ¬Aq ⊓ . . . ⊓ ¬A0(c) i = 1 . . . q

T14 Aq ⊓ . . . ⊓ A0 ⊑ Bp ⊓ . . . ⊓ B0

T1–T7 express |Bp ⊓ . . . ⊓ B0| ≤ 22p
; T8–T13, A1 express |Aq ⊓ . . . ⊓ A0| ≥ 22q

Worst-case complexity does not, however, say much about the typ-
ical case. The example from Table VIII is problematic because it suc-
cinctly encodes binary numbers. Many applications do not require such
combinatorial reasoning. In such cases, our algorithm should not intro-
duce too many new constants. In fact, new nominals are generated only
due to terms g(c), which can result only from an interaction between
inverse roles, number restrictions, and nominals. If these constructs are
not used simultaneously, our algorithm is similar to the algorithm for
the DL SHIQ from [25], and it runs in exponential time. Thus, our
algorithm exhibits “pay-as-you-go” behavior.

7. Conclusion

In this paper, we presented a resolution-based procedure for decid-
ing satisfiability of a SHOIQ knowledge base KB running in triply
exponential time. Extending the existing decision procedures for DLs
such as SHIQ is not trivial because of an intricate interaction between
nominals, inverse roles, and number restrictions. We base our procedure
on basic superposition [6, 36], which we additionally extend with new
simplification rules that break apart dangerous clauses and thus ensure
termination. We believe that our explanations provide useful guidance
for the construction of resolution-based procedures for other fragments
of first-order logic.

The main challenge for future research is to derive a practical, but
worst-case optimal decision procedure for SHOIQ. The problems out-
lined in Section 6 might be addressed by integrating algebraic reasoning
directly into resolution, as was done, for example, for tableau calculi
[20].
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