
'$ »
¼

'$ ±°
²¯

I N F O R M A T I K

 ª

® ©

Resolution Decision Procedures
for the Guarded Fragment with

Transitive Guards

Yevgeny Kazakov Hans de Nivelle

MPI–I–2004–2–001 April 2004

FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U T
FÜR

I N F O R M A T I K

Stuhlsatzenhausweg 85 66123 Saarbrücken Germany

Authors’ Addresses

Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken
Germany
Phone: +49 681 9325-215, +49 681 9325-223
Fax: +49 681 9325-299
Email: ykazakov,nivelle@mpi-sb.mpg.de

Publication Notes

The short version of this technical report is accepted to the conference
IJCAR 2004 and is copyrighted by Springer-Verlag.

Acknowledgements

The authors would like to thank Konstantin Korovin for reading the draft of
the paper and giving valuable remarks. The first author is supported by the
International Max Planck Research School for computer science (IMPRS).

Abstract

We show how well-known refinements of ordered resolution, in particular
redundancy elimination and ordering constraints in combination with a se-
lection function, can be used to obtain a decision procedure for the guarded
fragment with transitive guards. Another contribution of the paper is a spe-
cial scheme notation, that allows to describe saturation strategies and show
their correctness in a concise form.

The report is an extended version of the paper (Kazakov & de Nivelle 2004).

Keywords

Automated deduction, Resolution, Decision procedures

Contents

1 Introduction 2

2 Preliminaries 3
2.1 The framework of resolution theorem proving 3

2.1.1 Constraint clauses. 6
2.2 Schemes of expressions and clauses 6

3 Deciding The Guarded Fragment by Resolution 8
3.1 Clause normal form translation 8
3.2 Saturation of the clause set 9

4 The Guarded Fragment With Transitivity 11
4.1 Obstacles for deciding the guarded fragment with transitivity . 12
4.2 Redundancy of inferences involving transitive relations 13
4.3 Saturation of the clause set 18

5 Conclusions and future work 20

Appendix A Saturation of the clause class (GT) 23

1

1 Introduction

The guarded fragment GF of first order logic has been introduced by Andréka,
van Benthem & Németi (1998) to explain and generalize the good computa-
tional properties of modal and temporal logics. This is achieved essentially by
restricting quantifications in first order formulae to the following “bounded”
forms: ∀x.[G → F] and ∃y.[G ∧ F], where G should be an atomic formula
(so-called guard) containing all free variables of F . The guarded fragment is
decidable in 2EXPTIME (Grädel 1999) and inherits many other nice com-
putational properties from the modal logics like the finite model property,
the interpolation property and invariance under an appropriate notion of
bisimulation.

Many extensions of the guarded fragment have been found to capture
the known formalisms: the loosely guarded fragment has been introduced
by van Benthem (1997) to capture the until operator in temporal logics;
Grädel & Walukiewicz (1999) have extended the guarded fragment by fixed-
point constructors to capture the modal mu-calculus. All these extensions
of the guarded fragment, however, cannot express the transitivity axiom:
∀xyz.(xTy ∧ yTz → xTz). Transitivity is important, since it is used to
model discrete time (in temporal verification) and ordered structures (in
program shape analysis). The question of whether transitivity can be safely
integrated into the guarded fragment was answered negatively by Grädel
(1999). He proved that the guarded fragment becomes undecidable as long as
transitivity is allowed. This result was later sharpened by Ganzinger, Meyer
& Veanes (1999) who showed that even the two-variable guarded fragment
GF2 with transitivity is undecidable. The same paper, however, presents the
first restriction of the guarded fragment, where transitivity can be allowed
without loss of decidability. In this, so-called monadic GF2, binary relations
are allowed to occur as guards only. The paper poses two natural questions:
(i) Does GF remain decidable if transitive predicates are admitted only as
guards? (ii) What is the exact complexity of the monadic GF2? The first
question was answered positively in (Szwast & Tendera 2001) where using a
heavy model-theoretic construction, it was shown that the guarded fragment
with transitive guards GF [T G] is decidable in 2EXPTIME. Kieroński (2003)
has proved the matching 2EXPTIME lower bound for the monadic GF2 with
transitivity, answering hereby the second question.

A practical disadvantage of procedures based on enumeration of struc-
tures, like the one given for GF [T G] in (Szwast & Tendera 2001), is that
without further optimizations, those methods exhibit the full worst-case com-
plexity. Resolution-based approach, is a reasonable alternative to model-
theoretic procedures, as its goal-oriented nature and numerous refinements

2

allow to scale well between “easy” and “hard” instances of problems. In this
paper we demonstrate the practical power of resolution refinements, such
as redundancy elimination and usage of ordering constraints in combination
with selection function. We present a first resolution-based decision pro-
cedure for GF [T G]. Another aspect that is demonstrated in our paper is
the usage of resolution as a specification language for decision procedures.
We introduce a special scheme notation that allows to describe resolution
strategies in a concise form. This may provide a formal foundation for using
resolution for specifying decision procedures and proving their correctness.

2 Preliminaries

We shall use a standard notation for first-order logic clause logic. An expres-
sion is either a term or a literal. A literal symbol l is either a or ¬a, where a

is a predicate symbol. An expression symbol e is either a functional symbol f

or a literal symbol l. We write literals and expressions using literal symbols
and expression symbols as follows: L = l(t1, .., tn), E = e(t1, .., tn). As usual,
a clause is a disjunction of literals C = L1 ∨· · ·∨ Ln. The empty clause is
denoted by ¤. We use the shortcuts ∨∧ for conjunction or disjunction and x

for some vector of variables.
The depth of an expression dp(E) is recursively defined as follows: (i)

dp(x) := 0; (ii)dp(e(t1, .., tn)) := max{0, dp(t1), .., dp(tn)}+ 1. The depth of
the clause C = L1∨· · ·∨Ln is dp(C) := max{0, dp(L1), .., dp(Ln)}. The width
of a formula wd(F) is the maximal number of free variables in subformulas
of F .

2.1 The framework of resolution theorem proving

For describing the decision procedures we use the well-known ordered res-
olution calculus with selection ORÂ

Sel
enhanced with additional simplifica-

tion rules. Our presentation of the calculus is very close to (Bachmair &
Ganzinger 2001). The ordered resolution calculus ORÂ

Sel
is parametrized by

an admissible ordering Â and a selection function Sel . A partial ordering
Â on atoms is admissible (for ORÂ

Sel
) if (i) Â is liftable: A1 Â A2 implies

A1σ Â A2σ for any substitution σ and (ii) Â is a total reduction ordering on
ground atoms. Although resolution remains complete for a much wider class
of orderings, admissible orderings are better understood and widely used in
existing theorem provers. Examples of admissible orderings are the recursive
path ordering with status RPOS and the Knuth-Bendix ordering KBO.

The ordering Â is extended on literals by comparing L = A as the multiset

3

Figure 1 The inference rules of ORÂ

Sel

Ordered Resolution

OR :
C ∨ A? D ∨ ¬B

Cσ ∨ Dσ

where (i) σ = mgu(A,B), (ii) A is maximal in C ∨ A?, (iii) ¬B is maximal
in D ∨ ¬B and (iv) nothing is selected in the premises.

Ordered Factoring

OF :
C∨A∨B

Cσ ∨ Aσ

where (i) σ = mgu(A,B), (ii) A is maximal in C∨A∨B and (iii) nothing is
selected in C.

Ordered Hyper-resolution

HR :
C1 ∨ A1 . . . Cn ∨ An ¬B1

]∨···∨ ¬Bn
]∨ D

Cnσ ∨···∨ Cn ∨ D

where (i) σ = mgu(Ai, Bi), (ii) Ai are strictly maximal in Ci ∨ Ai
? and

(iii) ¬Bi are all selected literals in ¬B1
]∨···∨ ¬Bn

]∨ D, 1 ≤ i ≤ n.

{A} and L = ¬A as the multiset {A,A}. The ordering on clauses is the
multiset extension of the ordering on literals. Given a clause C, we say that
a literal L ∈ C, is maximal in C if there is no L′ in C, with L′ Â L. A
selection function Sel assigns a set of negative literal to every clause. These
literals are called the selected literals. A literal L is eligible in a clause C if
it is either selected: L ∈ Sel(C), or otherwise nothing is selected and L is
maximal in C.

The ordered resolution calculus ORÂ

Sel
consists of the inference rules that

are given on Fig.1. We mark maximal literals in clauses with “star”, selected
literals with “dash” and underline the expressions to be unified. The calculus
ORÂ

Sel
is refutationally complete for any choice of an admissible ordering Â

and a selection function Sel . This means that every saturated set of clauses
has a model, or, dually, the empty clause is derivable from every unsatisfiable
clause set. Moreover, the calculus is compatible with a general notion of
redundancy which allows to make use of additional simplification rules.

A ground clause C is called redundant w.r.t. a set of the ground clauses
N if C follows from the set N≺C of the clauses from N that are smaller than

4

C. A non-ground clause C is redundant w.r.t. N if every ground instance
Cσ of C is redundant w.r.t. the set N gr of all ground instances of N . A
ground inference S ` C from the clause set S is called redundant w.r.t. a
clause set N if its conclusion C follows from the set N

gr

≺max(S), where max (S)
is the maximal clause from S. A non-ground inference S ` C is redundant
w.r.t. N if every ground instance Sσ ` Cσ of the inference is redundant
w.r.t. N . A clause set N is saturated up to redundancy if the conclusion of
every non-redundant w.r.t. N inference from N is contained in N .

Theorem 2.1 (Bachmair & Ganzinger 2001) Let N be a clause set that
is saturated up to redundancy in ORÂ

Sel
. Then N is satisfiable iff N does not

contain the empty clause.

For our decision procedures we do not need the full power of redundancy
but rather additional simplification rules. A (non-deterministic) inference
rule S ` S1 || S2 · · · || Sk producing one of the clause sets Si from the clause
set S is called sound if every model of S can be extended to a model for some
Si with 1 ≤ i ≤ k. Additionally, if every set Si makes some clause from S

redundant, the rule is called a simplification rule.
Given a set of clauses N , a theorem prover based on ordered resolution

nondeterministically computes a saturation of N by adding conclusions of
inference rules to N and marking1 redundant clauses as deleted so that they
do not participate in further inferences. If the process terminates without
deriving the empty clause ¤, then a set of the clauses ORÂ

Sel
(N) is computed

that is saturated in ORÂ

Sel
up to redundancy. Theorem 2.1 then implies that

the clause set N is satisfiable, since only satisfiability preserving transforma-
tions N ⇒ · · · ⇒ ORÂ

Sel
(N) were applied to N . Note that termination of

a saturation process is a key issue of using resolution as a decision proce-
dure. If any application of inference rules is a priori guaranteed to terminate
for a clause set N then satisfiability of N can be decided in finite time by
enumerating all possible saturations.

In our paper we use the simplification rule from Fig.2. An additional
simplification rule will be introduced later, when a certain class of orderings
is considered. We indicate redundant premises of rules by enclosing them in
double brackets. The simplification rules are applied eagerly, that is before
any resolution or factoring inference is made. In particular, in the sequel we
assume that no clause contain several occurrences of the same literal.

1Clauses are not removed from the set to avoid repetition of generation/deletion of the
same redundant clauses.

5

Figure 2 The simplification rules of ORÂ

Sel

Elimination of Duplicate Literals

ED :
[[C ∨ D ∨ D]]

C ∨ D

2.1.1 Constraint clauses.

The ordered resolution calculus on non-ground level is a directly lifted version
of the calculus on the ground level: (i) each clause represents the set of its
ground instances and (ii) whenever an inference is possible from the ground
instances of some clauses, there should be a corresponding inference from the
clauses themselves, that captures the result of the ground inference. This is
due to the fact that ORÂ

Sel
is parametrized with a liftable ordering Â and does

not use non-liftable conditions in inferences (like, say, in the paramodulation
calculus, when paramodulation to a variable is not allowed). Therefore, in
fact, any representation for sets of ground clauses can be admitted as long as
the condition (ii) above holds. In our decision procedure we use constraint
clauses of the form: C | R, where C is a (non-ground) clause and R is a set
of ordering constraints of the form: t Â s or t º s. Constraint clause C | R

represent the set of ground instances Cσ of C such that every constraint in
Rσ is true. The ordered resolution calculus and all notions of redundancy
can be straightforwardly adopted to be used with constraint clauses: instead
of considering all substitutions (for determining a maximal literal, or showing
redundancy) one should consider only substitutions satisfying the constraints.
In particular, one could use different values for selection function for different
constraint variants of the same clause.

2.2 Schemes of expressions and clauses

To describe resolution-based decision procedures we have to reason about
sets of clauses. We introduce a special notation that allows to represent sets
of clauses in a compact form. We extend our vocabulary with additional
symbols called signature groups that represent sets of functional symbols:
function groups, predicate symbols: predicate groups or literal symbols: lit-
eral groups. We allow to use these symbols in expressions as usual functional
and literal symbols and to distinguish them, we use small letters with a
“hat” ĝ. For instance, if f̂all denotes the set of all functional symbols, we

6

write f̂all(t) meaning a term of the form f(t) where f ∈ f̂all (the formal
definition follows below). We adopt the following notation for referring to
arguments of expressions. By writing e[!t1, .., !tn, s1, .., sm] we mean an ex-
pression starting with the expression symbol e, having all arguments t1, .., tn
and optional arguments s1, .., sm (arranged in some way). Formally, the set
of term schemes, literal schemes and clause schemes are defined as follows:

T̂m ::= x | f̂(t̂1, .., t̂n) | f̂ [!t̂1, .., !t̂n, ŝ1, .., ŝm], n ≥ 0,m ≥ 0.

L̂t ::= l̂(t̂1, .., t̂n) | l̂[!t̂1, .., !t̂n, ŝ1, .., ŝm], n ≥ 0,m ≥ 0.

Ĉl ::= L̂ | !L̂ | Ĉ1 ∨ Ĉ2.

where f̂ is a functional group, l̂ is a literal group, t̂i, ŝj with 1 ≤ i ≤ n,

1 ≤ j ≤ m are term schemes, L̂ is a literal scheme and Ĉ1, Ĉ2 are clause
schemes. For convenience, we assume that every functional and literal sym-
bol acts as a singleton group consisting of itself, so usual terms and clauses
are term schemes and clause schemes as well.

Each term scheme t̂, literal scheme L̂ and clause scheme Ĉ represents a
set {t̂}, {L̂} and {Ĉ} of terms, literals and clauses respectively, as defined
below:

{T̂m}, {L̂t} : = {x} : {x} |

{ĝ(t̂1, .., t̂n)} : {g(t1, .., tn) | g ∈ ĝ, ti ∈ {t̂i}, 1≤ i≤n} |

{ĝ[!t̂1, .., !t̂n, ŝ1, .., ŝm]} : {g(h1, .., hk) | g ∈ ĝ,

{h1, .., hk} ∩ {t̂i} 6= ∅, 1≤ i≤n,

{h1, .., hk} ⊆ ∪n
i=1{t̂i} ∪

m
j=1 {ŝj}}.

{Ĉl} = {L̂} : {L1 ∨ · · · ∨ Lk | k ≥ 0, Li ∈ {L̂}, 1 ≤ i ≤ k}|

{!L̂} : {L1 ∨ · · · ∨ Lk | k ≥ 1, Li ∈ {L̂}, 1 ≤ i ≤ k}|

{Ĉ1 ∨ Ĉ2} : {C1 ∨ C2 | C1 ∈ {Ĉ1}, C2 ∈ {Ĉ2}}.

We use the shortcuts ê(., x,.), ê[., x,.] and ê[., !x,.] where x is a vector x1, .., xn,
to stand for ê(., x1, .., xn,.), ê[., x1, .., xn,.] and ê[., !x1, .., !xn,.] respectively. We
write ..∨ ¬!Â ∨.. in clause schemes instead of ..∨ !¬Â ∨.., where Â is either
of the form â(..) or â[..]. In fact we use variable vectors x and functional
symbols without “hat” f as parameters of clause schemes. A clause scheme
Ĉ(x, f, ..) with parameters x, f, .. represents the union {Ĉ} := ∪η{Cη} for
all substitutions η of vectors x1, .., xn for x, function symbols for f , etc..

Example 2.1 Suppose â is a predicate group consisting of all predicate sym-

bols and α̂ := {â,¬â} is a literal group consisting of all literal symbols.

Then the clause scheme Ĉ = ¬!â[!x] ∨ α̂[!f(x), x] has two parameters: x and

f . Any clause C ∈ {Ĉ} corresponds to some choice of these parameters

7

x = x1, .., xn, f = f ′. The clause C should have a nonempty subset of nega-

tive literals containing all variables x1, .., xn and no other arguments. Other

literals of C should contain the subterm f ′(x1, .., xn) as an argument and pos-

sibly some variables from x1, .., xn. In particular, {Ĉ} contains the clauses

¬a(x, y, x) ∨ b(y, f ′(x, y)), ¬b(x, y) ∨ ¬b(y, x) and ¬p∨¬q(c, c), but not the

clauses ¬a(x, y, x) ∨ b(f ′(x, y), f ′(y, x)) because the functional subterms are

different, or ¬b(y, f ′(x, y)) because the clause does not have a guard. ♦

3 Deciding The Guarded Fragment by Reso-

lution

In this section we demonstrate our technique by revisiting a resolution de-
cision procedure for the guarded fragment without equality. The original
procedure is due to (de Nivelle & de Rijke 2003). Resolution-based decision
procedures (for an overview see Fermüller, Leitsch, Hustadt & Tammet 2001)
usually consist of several main steps. First, a clause normal form transforma-
tion is applied to a formula of a fragment that produce initial clauses. Then
a clause set containing the initial clauses is defined, that is shown later to be
closed under inferences of the calculus. Decidability and complexity results
follow from the fact that the defined clause class contains only finitely many
different clauses over a fixed signature.

3.1 Clause normal form translation

In order to describe the transformation to a clause normal form (CNF), it is
convenient to use the recursive definition for the guarded fragment:

GF ::= A | F1 ∨ F2 | F1 ∧ F2 | ¬F1 | ∀x.(G→F1) | ∃x.(G ∧ F1).

where A is an atom, Fi, i = 1, 2 are guarded formulas, and G is an atom called
the guard containing all free variables of F1. The translation of a guarded
formula into CNF is done in two steps. First, the formula is transformed
into negation normal form (NNF) in the standard way. Guarded formulas in
NNF are defined by the following recursive definition:

[GF]nnf ::= (¬)A | F1 ∨ F2 | F1 ∧ F2 | ∀y.(G→F1) | ∃y.(G ∧ F1).

Second, a so-called structural transformation is applied, that decomposes the
formula by introducing definitions for all of its subformulae. We assume that
to each subformula F′ of F, a unique predicate PF′ = pF

′(x) is assigned. Each
predicate PF′ has the arity equal to the number of free variables x of F′.
Using the new predicates, the structural transformation can be defined as

8

∃x.PF ∨ [F]st, where [F]st is given below. In each row, x are the free variables
of F.

[F]stg := [(¬)A]stg : ∀x.(PF→(¬)A) |¬pF(x) ∨ (¬)a[x]

[F1∨∧F2]
st
g : ∀x.(PF→ [PF1∨∧PF2])∧[F1]

st
g∧[F2]

st
g |¬pF(x) ∨ pFi

[x] [∨ pFj
[x]]

[∀y.(G→F1)]
st
g : ∀x.(PF→∀y.[G→PF1]) ∧ [F1]

st
g |¬g[!x, !y] ∨ ¬pF(x) ∨ pF1

[x, y]

[∃y.F1]
st
g : ∀x.(PF→∃y.PF1) ∧ [F1]

st
g . ¬pF(x) ∨ pF1

[f(x), !x]

The transformation unfolds a guarded formula according to its construction
and introduces predicates and definitions for its guarded subformulae. A
guarded formula F in negation normal form is satisfiable whenever ∃x.PF∧[F]st

is: one can extend the model of F by interpreting the new predicate symbols
according to their definitions. Every recursive call of the transformation con-
tributes to a result with a conjunct describing a definition for an introduced
predicate. Performing the usual skolemization and writing the result in a
clause form, we obtain the clauses shown to the right of the definition for
[F]stg . It is easy to see that the clauses for PF ∧ [F]stg fall into the set of clauses
described by the following clause schemes:

1. l[ĉ];
2. ¬!p[!x] ∨ l[f(x), x].

(G)

where the predicate group p consists of all (initial and introduced) predicate
symbols and the literal group l consists of all literal symbols. Clauses of
the form 1 from (G) are shallow clauses containing only constant arguments.
The clauses of the form 2 are the so-called guarded clauses. Every clause
of this form has a non-empty set of negative literals-guards that contain
all variables of the clause. Other literals may contain as arguments either
variables, or a functional term whose arguments are all variables of the clause.
This functional term should be unique for each clause of the form 2 (see also
Example 2.1).

3.2 Saturation of the clause set

The resolution calculus has two parameters that can be chosen: an admissible
ordering and a selection function. These parameters should prevent clauses
from growing during the inferences. We will set the ordering and selection
function in such a way, that eligible literals would be (i) of maximal depth
and (ii) contain all variables of the clause.

We assume that the ordering Â enjoys L Â K for L ∈ {p[!f(x), x]} and
K ∈ {p[x]}, that is, any literal containing the functional symbol with all
variables is greater then any other literal in the clause without functional

9

Figure 3 The possible resolution inferences between clauses for the guarded
fragment

1 l[ĉ] ∨ l[ĉ]

1.1 l[ĉ] ∨ p[ĉ]? :OR.1

1.2 l[ĉ] ∨ ¬p[ĉ] :OR.2

1.3 l[ĉ]∨p[ĉ]∨p[ĉ] : [OF]

OR[1.1; 1.2]: l[ĉ] :1
OF[1.3] : l[ĉ] ∨ p[ĉ]:1

2 ¬!ĝ[!x] ∨ l[f̂(x), x]

2.1 ¬!ĝ[!x] ∨ l[f̂(x), x] ∨ l[!f̂(x), x]

2.1.1 ¬!ĝ[!x] ∨ l[f̂(x), x] ∨ p[!f̂(x), x]
?

:OR.1

2.1.2 ¬!ĝ[!x] ∨ l[f̂(x), x] ∨ ¬p[!f̂(x), x] :OR.2

2.1.3 ¬!ĝ[!x] ∨ l[f̂(x), x]∨p[!f̂(x), x]∨p[f̂(x), x] :OF

OR[2.1.1; 2.1.2]:¬!ĝ[!x] ∨ l[f̂(x), x] :2

OF[2.1.3] :¬!ĝ[!x] ∨ l[f̂(x), x] ∨ p[!f̂(x), x]:2

2.2 ¬!ĝ[!x]]∨ l[x]

2.2.1 ¬!ĝ[!x] ∨ l[x] :OR.2

OR[1.1; 2.2.1] : l[ĉ] :1

OR[2.1.1; 2.2.1]:¬!ĝ[!x] ∨ l[f̂(x), x]:2

subterms. This can be achieved by taking, say, any recursive path ordering
Ârpos on expressions with the precedence >P enjoying f >P p for any func-
tional symbol f and predicate symbol p. We define the selection function
Sel for the clauses without functional symbols to select a negative literal
containing all variables of the clause if there is one.

We prove that the clause class from (G) is closed under the ordered reso-
lution by making case analysis of possible inferences between clauses of this
class. The complete case analysis is given in Fig.3. The table is organized
as follows. The clause schemes from (G) are spread in the table on differ-
ent levels of precision. On the first level the schemes are given themselves.
On the second level, different possibilities for eligible literals (marked by the
asterisk) are considered. On the last level, possible inference rules that can
be applied for a clause are identified and the expressions to be unified are
underlined. For example, OR.1 marked to the right of the clause scheme 1.1
means that a clause represented by this scheme may act as a first premise
of the ordered resolution rule. Below the last level, inferences between pre-
ceding clauses are drawn and their conclusions are identified as instances of
clause schemes.

We have used the special form of literals in the clauses when the unifiers
has been computed. For instance, the reason of why the resolution inference
OR[2.1.1; 2.1.2] has produced the clause of the same depth is because the
so-called covering expressions have been unified. An expression E is called
covering if all functional subterms of E contain all variables of E. It is well
known that the unifier for the two covering expressions maps the variables
of the deepest expression to variables:

10

Theorem 3.1 (Fermüller, Leitsch, Tammet & Zamov 1993) Let E1

and E2 be two covering expressions with dp(E1) ≥ dp(E2) and let σ =
mgu(E1, E2). If x = free(E1) then σ maps x to some vector of variables
u. As a conclusion dp(E2σ) = dp(E1σ) = dp(E1).

Theorem 3.2 (de Nivelle & de Rijke 2003) Ordered resolution decides
the guarded fragment in double exponential time.

Proof. Given a formula F ∈ GF of the size n, the structural transformation
introduces at most linear number of new predicate symbols with the arity
not greater than n. Since every non-ground clause from (G) has a guard,
the number of variables in such a clause does not exceed n. It can be shown
that at most c = 22O(n log n)

different clauses from (G) over the initial and
introduced signature can be constructed. A saturation of the size c can be
computed in time O(c2). So the resolution decision procedure for GF can be
implemented in 2EXPTIME. ¤

4 The Guarded Fragment With Transitivity

Some binary predicates of Σ, which we call transitive predicates have a special
status. We usually denote them by the letters T , S and use the infix notation
(t1Tt2) rather than the postfix notation a(t1, t2), as for the other predicates.
For any group of transitive predicates T̂ = {T1, . . . , Tn}, the shortcuts (xT̂ y)
and ¬(xT̂ y) represent respectively the disjunctions (xT1y)∨ · · ·∨ (xTny) and
¬(xT1y)∨· · ·∨¬(xTny). We assume that every set of clauses N contains the
transitivity clause: ¬(xTy)∨¬(yTz)∨xTz for every transitive predicate T .

The guarded fragment with transitive guards GF [T G] is defined by:

GF [T G] ::= A | F1 ∨ F2 | F1 ∧ F2 | ¬F1 | ∀x.(G→F1) | ∃x.(G ∧ F1).

where Fi, i = 1, 2 are from GF [T G], A is a non-transitive atom and G is
a (possibly transitive) guard for F1. Note that GF can be seen as a sub-
fragment of GF [T G], when there are no transitive predicates. It is easy to see
from the CNF transformation for guarded formulas that transitive predicates
can appear only in initial clauses of the form: ¬xTy ∨ l[x, y], ¬xTx ∨ l[x] or
¬g(x) ∨ T [x, f(x)]. We present a resolution decision procedure for GF [T G]
as an extension of the one for GF by carefully analyzing and blocking the
cases when resolution with transitivity predicates can lead to unbounded
generation of clauses.

11

Figure 4 Resolution with the transitivity axiom may increase the size of
clauses
1. ¬(xTy)?∨ ¬(yTz) ∨ xTz;

2. α(x) ∨ f(x)Tx
?;

OR[2; 1]: 3. α(x) ∨ ¬(xTz) ∨ f(x)Tz
?;

OR[3; 1]: 4. α(x) ∨ ¬(xTz) ∨ ¬(zTz1) ∨ f(x)Tz1
?;

. : .

1. ¬(xTy)]∨ ¬(yTz)]∨ xTz;

2. α(x) ∨ f(x)Tx
?;

HR[2, 2; 1]: 3. α(x) ∨ ff(x)Tx
?;

HR[3, 2; 1]: 4. α(x) ∨ fff(x)Tx?;

. : .

4.1 Obstacles for deciding the guarded fragment with
transitivity

The transitivity clauses do not behave well when they resolve with each
other because the number of variables increases. The simple solution is to
block the inferences between the transitivity axioms by setting the selection
function Sel such that it selects one of the negative literals. However this
is only a partial solution to the problem since saturation with other clauses,
in which positive transitive literals “should” be maximal, generate arbitrary
large clauses as shown in the left part of Fig.4. The reason for the growth
of the clause size is that the atoms which were resolved in the inferences
do not contain all variables of the clause. To keep the number of variables
from growing it is possible to use the hyperresolution, namely to select both
negative literals of the transitivity clause and resolve them simultaneously.
However, this strategy may result in increase of the clause depth, as shown
in the right part of Fig.4. Note that the variable depth in hyperresolution
inference with the transitivity clause grows only if for the terms h, t and
s which where simultaneously unified with x, y and z respectively, either
h Â max (t, s) or s Â max (t, h). In all other cases, say, when h = t Â s like
in the inference below, neither variable depth nor the number of variables
grows:

1. α(x) ∨ xTx?; 2. β(x) ∨ f(x)Tx
?; 3. ¬(xTy)]∨ ¬(yTz)]∨ xTz;

HR[1, 2; 3]: 4. α(f(x)) ∨ β(x) ∨ f(x)Tx;

We are going to distinguish these cases of using the transitivity clauses by
using ordering constraints in combination with a selection function. We split
the transitivity clause into the constraint clauses of the following forms:

T ¬(xTy) ∨ ¬(yTz) ∨ xTz;

T.1. ¬(xTy)]∨ ¬(yTz) ∨ xTz | x Â max (y, z);

T.2. ¬(xTy) ∨ ¬(yTz)]∨ xTz | z Â max (y, x);

T.3. ¬(xTy)]∨ ¬(yTx)]∨ xTx | x Â y;

T.4. ¬(xTy)]∨ ¬(yTz)]∨ xTz | y º max (x, z);

(T)

12

where selected literals are indicated with the asterisk. In the sequel, assume
that every set of clauses contains transitivity clauses T.1 – T.4 from (T) for
every transitive predicate T .

4.2 Redundancy of inferences involving transitive re-
lations

In this section we prove the main technical lemmas that allow to gain a control
over the saturation process in presence of transitivity clauses. We show that
many inferences involving transitive predicates are redundant. The definition
of redundancy for inferences is not very convenient to use. We proof auxiliary
lemmas using which redundancy of inferences can be shown in a much simpler
way.

Lemma 4.1 (Four Clauses) Let N be a clause set containing the ground
clauses:

C1. C ∨ C ′ ∨ A?; C2. D ∨ D′ ∨ ¬A?; C3. C ∨ D ∨ B; C4. C ′ ∨ D′ ∨ ¬B;

Then the following ordered resolution inference:

OR[C1; C2]: P. C ∨ C ′ ∨ D ∨ D′; is redundant provided that A Â B.

Proof. Obviously, the conclusion of the inference OR[C1; C2] follows from the
clauses C3 and C4. It remains to show that both C3 and C4 are smaller than
the maximum of the clauses C1 and C2. We use the fact that the conclusion
of the ordered resolution inference is always smaller than the premise with
the negative eligible literal. Therefore, C ∨ D ≺ P ≺ C2 and since B ≺
¬A ≺ C2, C3 = C ∨ D ∨ B ≺ C2. Similarly, C4 ≺ C2. We have shown that
max (C3, C4) ≺ max (C1, C2), thus the inference OR[C1; C2] is redundant. ¤

Lemma 4.1 can be generalized to show redundancy of hyperresolution
inferences as follows:

Lemma 4.2 Let N be a clause set containing the ground clauses:

C1. C1 ∨ A1
?; · · · Cn. Cn ∨ An

?;
C. C ∨ ¬A1

]∨···∨ ¬An
];

D1. C ′
1 ∨ D′

1; · · · Dm. C ′
m ∨ D′

m;

for n,m > 1 such that: (i) C1 ∨ · · · ∨ Cn ∨ C = C ′
1 ∨ · · · ∨ C ′

m, (ii)
D′

1 ∧ · · · ∧ D′
m ² ⊥ and (iii) max (A1, . . . , An) Â max (D′

1, . . . , D
′
m). Then

the (hyper-)resolution inference:
HR[C1, C2, . . . , Cn; C]: P. C1 ∨ C2 ∨ · · · ∨ Cn ∨ C; is redundant.

Proof. The conclusion C1 ∨ · · · ∨ Cn ∨ C = C ′
1 ∨ · · · ∨ C ′

n of the inference
logically follows from the clauses D1, . . . , Dm because of the condition (ii).

13

Moreover, max (D1, . . . , Dm) ≺ max (C1, . . . , Cn, C) = C since for any i with
1 ≤ i ≤ m, C ′

i ≺ P ≺ C (condition (i)) and D′
i ≺ ¬A1 ∨ · · · ∨ ¬An (condition

(iii)). Therefore, the inference HR[C1, C2, . . . , Cn; C] is redundant. ¤

For proving redundancy of inferences involving transitive relations, we
need to make additional assumption about the the ordering Â used in ORÂ

Sel
.

We say that the ordering Â is T-argument monotone if: (i) {t1, t2} Âmul

{s1, s2} implies (t1Tt2) Â (s1Ts2), and (ii) b(t1, t2) Â (t1Tt2) Â u(t1) for any
non-transitive predicate b and unary predicate u. From now on we assume
that the ordering Â is T-argument monotone. The intended ordering can
be easily obtained from the ordering Ârpos, that has been used for deciding
the guarded fragment, by requiring that all transitive predicates have the
multiset status and b >P T >P u for any non-transitive predicate b whose
arity is greater than two, transitive predicate T and unary predicate u.

Lemma 4.3 Let N be a clause set containing the clause:

1. C ∨ t1T t2
?; together with the result of the inference:

(a) HR[1; T.1]: 2. C ∨ ¬(t2Tz) ∨ t1Tz? | t1 Â max (t2, z); or
(b) HR[1; T.2] : 2. C ∨ ¬(xTt1) ∨ xT t2

? | t2 Â max (t1, x);

Then the following inferences are redundant respectively:

(a) HR[2; T.1]: C ∨ ¬(t2Tz) ∨ ¬(zTz1) ∨ t1Tz1 | t1 Â max (t2, z, z1);
(b) HR[2; T.2] : C ∨ ¬(x1Tx) ∨ ¬(xTt1) ∨ x1Tt2 | t2 Â max (t1, x, x1).

Proof. (a) The result of any instance of the inference HR[2; T.1]:

2a. C ∨ ¬(t2Ts) ∨ t1Ts? | t1 Â max (t2, s);

T.1a. ¬(t1Ts)]∨ ¬(sTh) ∨ t1Th | t1 Â max (s, h);

HR[2a; T.1a]:C ∨ ¬(t2Ts) ∨ ¬(sTh) ∨ t1Th | t1 Â max (t2, s, h);

can be obtained from other instances of the constraint clauses 2 and T:

2b. C ∨ ¬(t2Th) ∨ t1Th | t1 Â max (t2, h);
Tb. ¬(t2Ts) ∨ ¬(sTh) ∨ t2Th;

by resolving on the smaller atom: t2Th ≺ t1Ts. Therefore, by Lemma 4.1
the inference is redundant. The case (b) is proven symmetrically to (a).
¤

Lemma 4.4 Let N be a clause set containing the clauses:

1. C ∨ t1T t2
?;

2. D ∨ t2T t3
?;

HR[1; T.2] : 3. C ∨ ¬(xTt1) ∨ xT t2
? | t2 Â max (t1, x);

HR[2; T.1] : 4. D ∨ ¬(t3Tz) ∨ t2Tz? | t2 Â max (t3, z);
HR[1, 2; T.4]: 5. C ∨ D ∨ t1Tt3 | t2 º max (t1, t3);
HR[2, 3; T.3]: 6. D ∨ C ∨ ¬(t3Tt1) ∨ t2Tt2 | t2 Â t3;

14

Then the following inferences are redundant:

(a) HR[1, 4; T.4]: C ∨ D ∨ ¬(t3Tz) ∨ t1Tz | t2 Â max (t3, z); t2 º t1
(b) HR[3, 2; T.4] : C ∨ D ∨ ¬(xTt1) ∨ xTt3 | t2 Â max (t1, x); t2 º t3
(c) HR[3, 4; T.4] : C ∨ D ∨ ¬(xTt1) ∨ ¬(t3Tz) ∨ xTz | t2 Â max (t1, t3, x, z);
(d) HR[4, 3; T.3]: D ∨ C ∨ ¬(t3Tx) ∨ ¬(xTt1) ∨ t2Tt2 | t2 Â max (t1, t3, x).

Proof. (a) The result of any instance of the inference HR[1, 4; T.4]:

1a. C ∨ t1T t2
?;

4a. D ∨ ¬(t3Ts) ∨ t2Ts? | t2 Â max (t3, s);
HR[1a, 4a; T.4]:C ∨ D ∨ ¬(t3Ts) ∨ t1Ts | t2 Â max (t3, s); t2 º t1

follows from the clause 5 and an instance of the transitivity clause:

5a. C ∨ D ∨ t1Tt3 | t2 º max (t1, t3);
Ta. ¬(t1Tt3) ∨ ¬(t3Ts) ∨ t1Ts;

by resolving on t1Tt3 ≺ t1Tt2. By Lemma 4.2, the inference is redundant.
(b) The case (b) is proven symmetrically to (a).
(c) For any instance of the inference HR[3, 4; T.3] satisfying the constraints:

3b. C ∨ ¬(hTt1) ∨ hTt2
? | t2 Â max (t1, h);

4b. D ∨ ¬(t3Ts) ∨ t2Ts? | t2 Â max (t3, s);
HR[3b, 4b; T.4]:C ∨ D ∨ ¬(hTt1) ∨ ¬(t3Ts) ∨ hTs | t2 Â max (t1, t3, h, s);

the conclusion follows from instances of the clause 5 and the transitivity
clause:

5b. C ∨ D ∨ t1Tt3 | t2 º max (t1, t3);
Tb. ¬(t1Tt3) ∨ ¬(t3Ts) ∨ t1Ts;
Tb′. ¬(hTt1) ∨ ¬(t1Ts) ∨ hTs;

by resolving on t1Tt3 and t1Ts, each of them being smaller than both hTt2
and t2Ts. Therefore the inference is also redundant by Lemma 4.2.
(d) For any instance of the inference HR[4, 3; T.3] satisfying the constraints:

4c. D ∨ ¬(t3Th) ∨ t2Th? | t2 Â max (t3, h);
3c. C ∨ ¬(hTt1) ∨ hTt2

? | t2 Â max (t1, h);
HR[4, 3; T.3]:D ∨ C ∨ ¬(t3Th) ∨ ¬(hTt1) ∨ t2Tt2 | t2 Â max (t1, t3, h).

the conclusion follows from the clause 6 and the transitivity clause:

6c. 6. D ∨ C ∨ ¬(t3Tt1) ∨ t2Tt2 | t2 Â t3;
Tc. ¬(t3Th) ∨ ¬(hTt1) ∨ t3Tt1;

by resolving on t3Tt1 which is smaller then any of the atoms t2Ts and hTt2.
Therefore, the inference is redundant by Lemma 4.2. ¤

15

Figure 5 A saturation inference producing a clause with more variables

1. α(x) ∨ f(x)Tx?;

2. ¬(xTy)]∨ a(x) ∨ β(y);

3. ¬(xTy)]∨ ¬a(x) ∨ β′(y);

HR[1; T.1]: 5. α(x) ∨ ¬(xTz) ∨ f(x)Tz
? | f(x) º max (x, z);

HR[5; 2] : 6. α(x) ∨ ¬(xTz) ∨ a(f(x))?∨ β(z) | f(x) º max (x, z);

HR[5; 3] : 7. α(x) ∨ ¬(xTz1) ∨ ¬a(f(x))?∨ β′(z1) | f(x) º max (x, z1);

OR[6; 7] : 8. α(x) ∨ ¬(xTz) ∨ ¬(xTz1) ∨ β(z) ∨ β′(z1) | f(x) º max (x, z, z1);
. : .

We have shown that redundancy and ordering constraints help to avoid
many inferences involving transitivity. In particular the inference produc-
ing the clause 4 in the left part of Fig.4 can be shown to be redundant by
Lemma 4.3. However, certain inferences may still result in increasing of the
number of variables in clauses as in the situation shown on Fig.5. The prob-
lem here is that the functional term f(x) which does not contain all variables
of the clause appears as an argument of a non-transitive predicate. That has
happened as result of resolution inferences OR[5; 2] and OR[5; 3]. To resolve
this problem we introduce an additional inference rule:

Transitive Recursion

TR :
¬(xT̂y)

]
∨ α[x] ∨ β[y]

¬(xT̂ y) ∨ α[x] ∨ uT̂

α
(y)

¬(xT̂ y) ∨ ¬uT̂

α
(x) ∨ uT̂

α
(y)

¬uT̂

α
(y) ∨ β[y]

where (i) T̂ is a not empty set of transitive predicates (ii) uT̂
α is a special

unary predicate symbol indexed by α and T̂ .

The inference rule extends the signature by introducing new unary predicate
symbols uT̂

α , whose intended interpretation is “the set of elements that are
T -reachable from the ones where α is false”.

Lemma 4.5 The transitive recursion rule is a sound inference rule.

Proof. Let M be a model for the premise of the rule, such that all predicates
T1, . . . , Tn from T̂ are interpreted by transitive relations and let xT ′y :=
xT1y ∧ · · · ∧ xTny. Obviously, T ′ is a transitive relation in M. We extend
M to a model M′ by interpreting the new predicate uT̂

α(x) as the formula

∃x′.(¬α(x′)∧ x′T ′x). In particular, M′ |= ∀y.([∃x.(¬α(x)∧ xT ′y)]→uT̂
α(y)),

16

so the first conclusion of the inference rule is true in M′. The following
sequence of implications: uT̂

α(x) ∧ xT ′y ≡ ∃x′.[¬α(x′) ∧ x′T ′x ∧ xT ′y] ⇒

(transitivity of T ′) ⇒ ∃x′.[¬α(x′) ∧ x′T ′y] ≡ uT̂
α(y) shows that the second

conclusion is true in M′. Finally, the last conclusion is a consequence of the
premise of the rule: uT̂

α(y) ≡ ∃x′.(¬α(x′) ∧ x′T ′y) ⇒ ∃x′.β(y) ≡ β(y).
¤

Note that the transitive recursion rule is not a reduction rule, since the
premise does not always follow from the conclusions when there are more
than one transitive predicate. Even more, the inference may produce larger
clauses, say, when β(y) is empty. However, the rule helps to avoid danger-
ous inferences involving transitive predicates, like in the example above, by
making them redundant:

Lemma 4.6 Let T̂ = {T1, . . . , Tn} with n ≥ 1 be a set of transitive predicates
and N be a clause set containing the following clauses:

D. ¬(xT̂ z)
]
∨ α(x) ∨ β(z);

D1. ¬(xT̂ z)
]
∨ α(x) ∨ u(z);

D2. ¬(xT̂ z)
]
∨ ¬u(x) ∨ u(z);

D3. ¬u(z) ∨ β(z);

1i. Ci ∨ tTih
?, 1 ≤ i ≤ n.

HR[11, . . . , 1n; D1]: 2. C1∨∨Cn ∨ α(t) ∨ u(h).

with the conclusions of the following inferences: either

HR[1i; T.1]: 3i
a. Ci ∨ ¬(hTiz) ∨ tTiz

? | t Â max (h, z); 1 ≤ i ≤ n.

or

HR[1i; T.2]: 3i
b. Ci ∨ ¬(xTit) ∨ xTih

? | h Â max (t, x); 1 ≤ i ≤ n.

Then the following inferences are redundant respectively:

(a) HR[31
a, . . . , 3

n
a ; D]: ∨∨n

i=1{Ci ∨ ¬(hTiz)} ∨ α(t) ∨ β(z)
(b) HR[31

b , . . . , 3
n
b ; D] : ∨∨n

i=1{Ci ∨ ¬(xTit)} ∨ α(x) ∨ β(h)

Proof. Consider the case (a) (case (b) is proven symmetrically). For any
instance of the inference HR[31

a, . . . , 3
n
a ; D] satisfying the constraints:

3i
a. Ci ∨ ¬(hTis) ∨ tTis

? | t Â max (h, s);

D. ¬(tT̂ s)
]
∨ α(t) ∨ β(s);

HR[31
a, . . . , 3

n
a ; D]: ∨∨n

i=1{Ci ∨ ¬(hTis)} ∨ α(t) ∨ β(s)

the conclusion can be derived from the clause 2 and instances of D2 and D3:

3. C1∨∨Cn ∨ α(t) ∨ u(h).

Da
2. ¬(hT̂ s) ∨ ¬u(h) ∨ u(s);

Da
3. ¬u(s) ∨ β(s);

by resolving on u(h) and u(s), both of which are smaller than each tTis used
in the inference. Therefore the inference is redundant by Lemma 4.2. ¤

17

Remark 4.1 Note that the inferences HR[31
a, . . . , 3

n
a ; D1] and HR[31

a, . . . , 3
n
a ; D2]

(HR[31
b , . . . , 3

n
b ; D1] and HR[31

b , . . . , 3
n
b ; D2]) are redundant as well, since we can

apply Lemma 4.6 for β(z) := u(z); and α(x) := ¬u(x), β(z) := u(z) respec-
tively (one should not use the clause D3 in this case).

4.3 Saturation of the clause set

We have prepared a ground for describing a resolution decision procedure for
GF [T G]. However, to simplify the upcoming case analysis, we introduce an
additional inference rule:

Literal Projection

LP :
[[C ∨ L[!x]]]]

C ∨ pL[·](x)
¬pL[·](x) ∨ L[!x]

where (i) L is non-unary literal with free[L]={x}; (ii) C contains x

in non-unary literal or in functional subterm and (iii) pL is a unary
predicate for L.

The literal projection rule is a variant of the general splitting rule, which
allows to split a clause by introducing a new predicate over shared variables
of its parts. The purpose of this rule is to avoid clauses with several positive
transitive literals that can be produced, for instance, with the inference:

1. ¬a(f(x))?∨ xT1x; 2. ¬b(x) ∨ a(f(x))?∨ xT2x;

OR[1; 2]: ¬b(x) ∨ xT1x ∨ xT2x;

Instead of producing the inference above, one can alternatively simplify the
clauses 1 and 2 using the literal projection rule and obtain a resolvent without
transitive predicates.:

1a. pT1(x) ∨ ¬a(f(x))? 2a. pT2(x) ∨ ¬b(x) ∨ a(f(x))?;

1b. ¬pT1(x) ∨ xT1x; 2b. ¬pT2(x) ∨ xT2x;
OR[1a; 2a]: pT1(x) ∨ pT2(x) ∨ ¬b(x);

Note that the literal projection rule cannot be applied to literals containing
new predicate symbols since they are unary, therefore, only finitely many
predicates pL can be introduced.

We show the decidability of GF [T G] in similar way as for GF by de-
scribing a clause class containing the input clauses for GF [T G]-formulae and
closed under the ordered resolution inferences up to redundancy. This clause

18

class is represented by the set of the clause schemes below:

1: 〈¬T̂ , γ̂〉[ĉ];

2: 〈¬!d̂, γ̂〉[!x] ∨ 〈¬T̂ , γ̂〉[!f(x), x] ∨ β̂[f(x), x];

3: ¬!p̂1(!x) ∨ ¬p̂1(f(x)) ∨ T̂ [f(x), x];
T: ¬(xTy) ∨ ¬(yTz) ∨ xTz;
4: ¬!p̂1(x) ∨ ¬(xTz) ∨ f(x)Tz | f(x) Â z;
5: ¬!p̂1(x) ∨ ¬(zTx) ∨ zTf(x) | f(x) Â z;

R: ¬(x!T̂ y) ∨ γ̂(x) ∨ γ̂(y);

α̂ := {â,¬â};

T̂ := {T̂ ,¬T̂};

b̂ := {â, pα̂, pT̂ (·)};

β̂ := {b̂,¬b̂};

p̂ := {b̂, uτ
β}; γ̂ := {p̂,¬p̂};

d̂ := {p̂, T̂}; δ̂ := {d̂,¬d̂}.

(GT)

In the clause schemes we have used several auxiliary predicate and literal
groups. The groups â and T̂ consist of initial non-transitive and transitive
predicate symbols respectively. The literal groups α̂ and T̂ are constructed
from â and T̂ . The predicate group b̂ consists of predicate symbols from â in
addition with predicate symbols introduced by the literal projection rule for
the literals formed from α̂ or T̂ . The literal group constructed from these
predicates is denoted by β̂. The predicate group p̂ extends the group b̂ with
predicate symbols introduced by the transitive recursion rule for the clauses
formed from β̂. Finally, the group d̂ consists of all previously mentioned
predicate symbols. The groups γ̂ and δ̂ are the literal groups for p̂ and d̂

respectively.
To make the scheme notation even more compact, we enclose several lit-

eral groups in brackets: 〈¬T̂ , γ̂〉(ĉ) represents ¬T̂ (ĉ)∨γ̂(ĉ); we use parameters
for predicate and functional symbols to indicate that all occurrences of such
symbols are the same within a clause, thus the scheme T represents the tran-
sitivity axioms only; we use the infix notation for T and T̂ to indicate its
“right” and “left” arguments, thus xTx can be represented by T̂ (x, y) but
not by xT̂ y; finally, p̂1 denotes the subgroup of unary predicate symbols from
p̂.

The clause class can be described as follows. Clauses for the scheme 1
contain only constants as arguments and may contain transitive predicates
only negatively. Clauses of the form 2 also contain transitive predicates
negatively, have a negative atom containing all variables and all predicates
introduced by the transitive recursion rule as well as all transitive predicates
should contain all variables. Clauses of the form 3 originate from the clauses
having positive occurances of transitive predicates. They contain only one
variable and have the same functional symbol everywhere. T stands for tran-
sitivity axioms. Clauses of the form 4 and 5 are the only non-covering clauses
which may appear in a saturation. The redundancy lemmas that we have
proved aim for these clauses. And, finally, the clauses R, originated from the
clauses with transitive guards, appear from the transitive recursion inference
rule.

19

The complete case analysis showing the closure of the fragment from (GT)
under ORÂ

Sel
with additional inferences is given in Appendix A. This proves

the following theorem:

Theorem 4.7 There is a strategy based on ORÂ

Sel
with ordering constraints

and additional inference rules such that given a formula F ∈ GF [T G] a finite
clause set N containing the CNF transformation for F is produced such that:
(i) N is closed under rules of ORÂ

Sel
up to redundancy and (ii) N is a subset

of (GT).

Corollary 4.8 (Szwast & Tendera 2001) GF [T G] is decidable in double
exponential time.

Proof. Given a formula F ∈ GF [T G], it could be seen from construction of
(GT) that clauses generated in the saturation for F contain at most linear
number of initial predicate and functional symbols and at most exponential
number of introduced (by inferences extending the signature) unary predi-
cates. Simple calculations show that the number of clauses from (GT) that
can be constructed from them is at most double exponential. Therefore the
saturation can be computed in double exponential time. ¤

5 Conclusions and future work

The resolution decision procedure for GF [T G] presented in the paper can
shed light on the reasons why this fragment is so fragile with respect to
decidability and which decidable extensions it may have. Note, that we in
fact have already shown the decidability of a larger fragment: it is possible
to admit non-empty conjunctions of transitive relations xT̂ y as guards since
the CNF-transformation maps them to the same decidable fragment. This
might help to find a decidable counterpart for the interval-based temporal
logics à-la Halpern Shoham (Halpern & Shoham 1986) because the relation
between intervals can be expressed as a conjunction of (transitive) relations
between their endpoints.

Despite the fact that the fragment GF [T G] has a relatively hight com-
plexity: it is 2EXPTIME complete even for the case of monadic-GF [T G]
(Kieroński 2003), there are indications that this complexity will be not ex-
hibited in our procedure for average problems. The saturation size explodes
only when there are many clauses generated that are of the specific form for
which the transitive recursion rule applies. In fact, our procedure can be
shown to be in EXPTIME for the restricted version of GF [T G] that captures
the description logic SHI. SHI is an extension of the basic description logic

20

ALC with inverse roles, transitive predicates and role hierarchies. For this
fragment one can show that at most linear number of new predicate symbols
can be introduced by the transitive recursion inference rule.

As a future work, we try to extend our approach to the case with equality,
as well as to other theories like theories of associative compositional axioms:
∀xyz.(xSy ∧ yTz→xHz) and theories of linear, branching and dense partial
orderings without endpoints.

References

Andréka, H., van Benthem, J. & Németi, I. (1998), ‘Modal languages and
bounded fragments of predicate logic’, Journal of Philosophical Logic
27, 217–274.

Bachmair, L. & Ganzinger, H. (2001), Resolution theorem proving, in
A. Robinson & A. Voronkov, eds, ‘Handbook of Automated Reason-
ing’, Vol. I, Elsevier Science, chapter 2, pp. 19–99.

de Nivelle, H. & de Rijke, M. (2003), ‘Deciding the guarded fragments by
resolution’, Journal of Symbolic Computation 35, 21–58.

Fermüller, C., Leitsch, A., Hustadt, U. & Tammet, T. (2001), Resolution
decision procedures, in A. Robinson & A. Voronkov, eds, ‘Handbook of
Automated Reasoning’, Vol. II, Elsevier Science, chapter 25, pp. 1791–
1849.

Fermüller, C., Leitsch, A., Tammet, T. & Zamov, N. (1993), Resolution
Methods for the Decision Problem, Vol. 679 of LNAI, Springer, Berlin,
Heidelberg.

Ganzinger, H., Meyer, C. & Veanes, M. (1999), The two-variable guarded
fragment with transitive relations, in ‘Proc. 14th IEEE Symposium on
Logic in Computer Science’, IEEE Computer Society Press, pp. 24–34.

Grädel, E. (1999), ‘On the restraining power of guards’, Journal of Symbolic
Logic 64(4), 1719–1742.

Grädel, E. & Walukiewicz, I. (1999), Guarded fixed point logic, in ‘Proceed-
ings of 14th IEEE Symposium on Logic in Computer Science LICS ‘99,
Trento’, pp. 45–54.

21

Halpern, J. Y. & Shoham, Y. (1986), A propositional modal logic of time
intervals, in ‘Proceedings 1st Annual IEEE Symp. on Logic in Com-
puter Science, LICS’86, Cambridge, MA, USA, 16–18 June 1986’, IEEE
Computer Society Press, Washington, DC, pp. 279–292.

Kazakov, Y. & de Nivelle, H. (2004), A resolution decision procedure for the
guarded fragment with transitive guards, in D. Basin & M. Rusinowitch,
eds, ‘Second International Joint Conference on Automated Reasoning
(IJCAR 2004)’, Vol. 3097 of Lecture Notes in Artificial Intelligence,
Springer, Cork, County Cork, Ireland, pp. 122–136.

Kieroński, E. (2003), The two-variable guarded fragment with transitive
guards is 2EXPTIME-hard, in A. D. Gordon, ed., ‘FoSSaCS’, Vol. 2620
of Lecture Notes in Computer Science, Springer, pp. 299–312.

Szwast, W. & Tendera, L. (2001), On the decision problem for the guarded
fragment with transitivity, in ‘Proc. 16th IEEE Symposium on Logic in
Computer Science’, pp. 147–156.

van Benthem, J. (1997), Dynamic bits and pieces, Technical Report LP-97-
01, ILLC, University of Amsterdam.

22

Appendix A
Saturation of the clause class (GT)

This appendix contains the case analisys of possible inferences between
the clauses from (GT). The inferences are drawn in the system ORÂ

Sel
with

an addition of literal projection and transitive recursion inference rules and
based on the ordering given in Section 4.2 and the selection function for
transitivity axioms as given in (T) and for other clauses as defined in Section
3.2.

1 〈¬T̂ , γ̂〉[ĉ]

1.1 〈¬T̂ , γ̂〉[ĉ] ∨ 〈¬T, γ̂〉[ĉ]?

1.1.1 〈¬T̂ , γ̂〉[ĉ] ∨ p̂[ĉ]? :OR.1

1.1.2 〈¬T̂ , γ̂〉[ĉ] ∨ ¬d̂[ĉ] :OR.2

1.1.3 〈¬T̂ , γ̂〉[ĉ]∨p̂[ĉ]∨p̂[ĉ] :OF

OR[1.1.1; 1.1.2]: 〈¬T̂ , γ̂〉[ĉ] :1

OF[1.1.3] : 〈¬T̂ , γ̂〉[ĉ] ∨ p̂[ĉ]:1

2 〈¬!d̂, γ̂〉[!x] ∨ 〈¬T̂ , γ̂〉[!f(x), x] ∨ β̂[f(x), x] :

2.1 〈¬!d̂, γ̂〉[!x] ∨ 〈¬T̂ , γ̂〉[!f(x), x] ∨ β̂[f(x), x] ∨ 〈¬T, γ̂〉[!f(x), x]? :

2.1.1 〈¬!d̂, γ̂〉[!x] ∨ 〈¬T̂ , γ̂〉[!f(x), x] ∨ β̂[f(x), x] ∨ p̂[!f(x), x]? :OR.1

2.1.2 〈¬!d̂, γ̂〉[!x] ∨ 〈¬T̂ , γ̂〉[!f(x), x] ∨ β̂[f(x), x] ∨ ¬d̂[!f(x), x] :OR.2

2.1.3 〈¬!d̂, γ̂〉[!x] ∨ 〈¬T̂ , γ̂〉[!f(x), x] ∨ β̂[f(x), x]∨p̂[!f(x), x]∨p̂[f(x), x] :OF

OR[2.1.1; 2.1.2]: 〈¬!d̂, γ̂〉[!x] ∨ 〈¬T̂ , γ̂〉[!f(x), x] ∨ β̂[f(x), x] :2

OF[2.1.3] : 〈¬!d̂, γ̂〉[!x] ∨ 〈¬T̂ , γ̂〉[!f(x), x] ∨ β̂[f(x), x] ∨ p̂[!f(x), x]:2

2.2 ¬p̂[!x]]∨ 〈¬d̂, γ̂〉[!x] ∨ β̂[x] :HR.2

HR[1.1.1; 2.2]: 〈¬T̂ , γ̂〉[ĉ] ∨ 〈¬d̂, γ̂〉[ĉ] ∨ β̂[ĉ] :1

HR[2.1.1; 2.2]: 〈¬!d̂, γ̂〉[!x] ∨ 〈¬T̂ , γ̂,¬d̂〉[!f(x), x] ∨ β̂[f(x), x]:2

2.3 [[〈¬!T̂ , p̂〉[!x, !y] ∨ β̂[x] ∨ β̂[!x]
]
]] :LP

LP[2.3]: 〈¬!T̂ , p̂〉[!x, !y] ∨ β̂[x] ∨ pβ̂[·](x):2

:¬pβ̂[·](x) ∨ β̂[!x] :2

2.4 〈¬!T̂ , p̂〉[!x] ∨ β̂[x] ∨ p̂[!x]? :OR.1

OR[2.4; 1.1.2]: 〈¬!T̂ , p̂, γ̂〉[ĉ] ∨ β̂[ĉ] :1

OR[2.4; 2.1.2]: 〈¬!d̂, γ̂〉[!x] ∨ 〈¬T̂ , γ̂,¬!T̂ , p̂〉[!f(x), x] ∨ β̂[f(x), x]:2

HR[2.4; 2.2] : 〈¬!T̂ , p̂,¬d̂, γ̂〉[!x] ∨ β̂[x] :2

2.5 〈¬T̂ , p̂〉[!x] ∨ ¬T [!x] :OR.2

2.6 ¬!T̂ [!x, !y] ∨ β̂[x] ∨ β̂[y] :R

23

3 ¬!p̂1(x) ∨ ¬p̂1(f(x)) ∨ T̂ [f(x), x] :

3.1 [[¬!p̂1(x) ∨ ¬!p̂1(f(x)) ∨ T̂ [f(x), x] ∨ T̂ [f(x), x]
]
]] :LP

LP[3.1]:¬!p̂1(x) ∨ ¬!p̂1(f(x)) ∨ T̂ [f(x), x] ∨ pT̂ [f(·),·](x):3

:¬pT̂ [f(·),·](x) ∨ T̂ [f(x), x] :3

3.2 [[¬!p̂1(x) ∨ !T̂ [f(x), x] ∨ T̂ [f(x), x]
]
]] :LP

LP[3.2]:¬!p̂1(x) ∨ !T̂ [f(x), x] ∨ pT̂ [f(·),·](x):2

:¬pT̂ [f(·),·](x) ∨ T̂ [f(x), x] :3

3.3 ¬!p̂1(x) ∨ f(x)Tf(x)? :OR.1

OR[3.3; 2.1.2]:¬!p̂1(x) ∨ 〈¬!d̂, γ̂〉[x] ∨ 〈¬T̂ , γ̂〉[!f(x), x] ∨ β̂[f(x), x]:2

OR[3.3; 2.5] :¬!p̂1(x) ∨ 〈¬T̂ , p̂〉[!f(x)] :2

3.4 ¬!p̂1(x) ∨ f(x)Tx
? :OR.1

OR[3.4; 2.1.2]:¬!p̂1(x) ∨ 〈¬!d̂, γ̂〉[x] ∨ 〈¬T̂ , γ̂〉[!f(x), x] ∨ β̂[f(x), x]:2

3.5 ¬!p̂1(x) ∨ xTf(x)? :OR.1

OR[3.5; 2.1.2]:¬!p̂1(x) ∨ 〈¬!d̂, γ̂〉[x] ∨ 〈¬T̂ , γ̂〉[!f(x), x] ∨ β̂[f(x), x]:2

3.6 ¬!p̂1(x) ∨ xTx? :OR.1

OR[3.6; 1.1.2]:¬!p̂1(ĉ) ∨ 〈¬T̂ , γ̂〉[ĉ] :1

OR[3.6; 2.1.2]:¬!p̂1(!f(x), x) ∨ 〈¬!d̂, γ̂〉[!x] ∨ 〈¬T̂ , γ̂〉[!f(x), x] ∨ β̂[f(x), x]:2

OR[3.6; 2.5] :¬!p̂1(x) ∨ 〈¬T̂ , p̂〉[!x] :2

3.7 ¬!p̂1(x) ∨ ¬T [f(x), x] :2

T ¬(xTy) ∨ ¬(yTz) ∨ xTz :

T.1 ¬(xTy)]∨ ¬(yTz) ∨ xTz | x Â max (y, z) :HR.2

HR[3.4; T.1]:¬!p̂1(x) ∨ ¬(xTz) ∨ f(x)Tz | f(x) Â max (x, z):4

T.2 ¬(yTz)]∨ ¬(xTy) ∨ xTz | z Â max (y, x) :HR.2

HR[3.5; T.2]:¬!p̂1(x) ∨ ¬(yTx) ∨ yTf(x) | f(x) Â max (x, y):5

T.3 ¬(xTy)]∨ ¬(yTz)]∨ xTz | x Â y :HR.2

HR[3.4, 3.5; T.3]:¬!p̂1(x) ∨ f(x)Tf(x):3

T.4 ¬(xTy)]∨ ¬(yTz)]∨ xTz | y º max (x, z) :HR.2

HR[3.3, 3.3; T.4]:¬!p̂1(x) ∨ f(x)Tf(x) :3
HR[3.3, 3.4; T.4]:¬!p̂1(x) ∨ f(x)Tx :3
HR[3.5, 3.3; T.4]:¬!p̂1(x) ∨ f(x)Tx :3
HR[3.5, 3.4; T.4]:¬!p̂1(x) ∨ xTx :3
HR[3.3, 3.6; T.4]:¬!p̂1(x) ∨ ¬!p̂1(f(x)) ∨ f(x)Tf(x):3
HR[3.6, 3.3; T.4]:¬!p̂1(x) ∨ ¬!p̂1(f(x)) ∨ f(x)Tf(x):3
HR[3.5, 3.6; T.4]:¬!p̂1(x) ∨ ¬!p̂1(f(x)) ∨ xTf(x) :3
HR[3.6, 3.4; T.4]:¬!p̂1(x) ∨ ¬!p̂1(f(x)) ∨ f(x)Tx :3
HR[3.6, 3.6; T.4]:¬!p̂1(x) ∨ xTx :3

24

4 ¬!p̂1(x) ∨ ¬(xTz) ∨ f(x)Tz
? | f(x) Â z :OR.1

OR[4; 2.1.2] : 〈¬!d̂, γ̂,¬!p̂1〉[!x] ∨ 〈¬T̂ , γ̂〉[!f(x), x] ∨ β̂[f(x), x]:2

OR[4; 2.5] :¬!p̂1(x) ∨ ¬(xTf(x)) ∨ 〈¬T̂ , p̂〉[!x] :2
OR[4; T.1] : Redundant: Lemma 4.3 (a) :>
HR[4, 3.5; T.3]:¬!p̂1(x) ∨ ¬(xTx) ∨ f(x)Tf(x) :3
HR[3.3, 4; T.4]: Redundant: Lemma 4.4 (a) :>
HR[3.5, 4; T.4]: Redundant: Lemma 4.4 (a) :>
HR[3.6, 4; T.4]: Redundant: Lemma 4.4 (a) :>

5 ¬!p̂1(x) ∨ ¬(zTx) ∨ zTf(x)? | f(x) Â z; :OR.1

OR[5; 2.1.2] : 〈¬!d̂, γ̂,¬!p̂1〉[!x] ∨ 〈¬T̂ , γ̂〉[!f(x), x] ∨ β̂[f(x), x]:2

OR[5; 2.5] :¬!p̂1(x) ∨ ¬(f(x)Tx) ∨ 〈¬T̂ , p̂〉[!x] :2
OR[5; T.2] : Redundant: Lemma 4.3 (b) :>
HR[3.4, 5; T.3]:¬!p̂1(x) ∨ ¬(xTx) ∨ f(x)Tf(x) :3
HR[5, 3.3; T.4]: Redundant: Lemma 4.4 (b) :>
HR[5, 3.4; T.4]: Redundant: Lemma 4.4 (b) :>
HR[5, 3.6; T.4]: Redundant: Lemma 4.4 (b) :>
HR[4, 5; T.3] : Redundant: Lemma 4.4 (c) :>
HR[5, 4; T.4] : Redundant: Lemma 4.4 (d) :>

R ¬(x!T̂ y) ∨ γ̂[x] ∨ γ̂[y] :

R.1 ¬(x!T̂ y)
]
∨ β̂[x][x] ∨ β̂[y][y] :TR.1

TR[R.1]:¬(x!T̂ y) ∨ β̂[x][x] ∨ u!T̂
β̂[·]

(y) :R

:¬(x!T̂ y) ∨ ¬u!T̂
β̂[·]

(x) ∨ u!T̂
β̂[·]

(y):R

:¬u!T̂
β̂[·]

(y) ∨ β̂[y][y] :3

R.2 ¬(x!T̂ y)
]
∨ γ̂[x] ∨ γ̂[y] :

R.2.1 ¬(x!T̂ y)
]
∨ γ̂[x] ∨ γ̂[y] :HR.2

HR[{3.3, 3.6}; R.2.1]: 〈¬!p̂1, γ̂〉[!x] ∨ 〈¬p̂1, γ̂〉[!f(x)] ∨ ¬T̂ [!f(x), x]:2

HR[{3.4, 4}; R.2.1] : 〈¬!p̂1, γ̂〉[!x] ∨ 〈¬p̂1, γ̂〉[!f(x)] ∨ ¬T̂ [!f(x), x]:2

HR[{3.5, 5}; R.2.1] : 〈¬!p̂1, γ̂〉[!x] ∨ 〈¬p̂1, γ̂〉[!f(x)] ∨ ¬T̂ [!f(x), x]:2
HR[4; R.2.1] : Redundant: Lemma 4.6 :>
HR[5; R.2.1] : Redundant: Lemma 4.6 :>

25

Â¿³
´

Â¿ k

I N F O R M A T I K

Below you find a list of the most recent technical reports of the Max-Planck-Institut für Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut für Informatik
Library
attn. Anja Becker
Stuhlsatzenhausweg 85
66123 Saarbrücken
GERMANY
e-mail: library@mpi-sb.mpg.de

MPI-I-2005-4-006 C. Fuchs, M. Goesele, T. Chen,
H. Seidel

An Emperical Model for Heterogeneous Translucent
Objects

MPI-I-2005-4-005 G. Krawczyk, M. Goesele, H. Seidel Photometric Calibration of High Dynamic Range
Cameras

MPI-I-2005-4-004 C. Theobalt, N. Ahmed, E. De Aguiar,
G. Ziegler, H. Lensch, M.A.,. Magnor,
H. Seidel

Joint Motion and Reflectance Capture for Creating
Relightable 3D Videos

MPI-I-2005-4-003 T. Langer, A.G. Belyaev, H. Seidel Analysis and Design of Discrete Normals and
Curvatures

MPI-I-2005-4-002 O. Schall, A. Belyaev, H. Seidel Sparse Meshing of Uncertain and Noisy Surface
Scattered Data

MPI-I-2005-4-001 M. Fuchs, V. Blanz, H. Lensch,
H. Seidel

Reflectance from Images: A Model-Based Approach for
Human Faces

MPI-I-2005-2-001 J. Hoffmann, C. Gomes, B. Selman Bottleneck Behavior in CNF Formulas

MPI-I-2005-1-007 I. Katriel, M. Kutz A Faster Algorithm for Computing a Longest Common
Increasing Subsequence

MPI-I-2005-1-002 I. Katriel, M. Kutz, M. Skutella Reachability Substitutes for Planar Digraphs

MPI-I-2005-1-001 D. Michail Rank-Maximal through Maximum Weight Matchings

MPI-I-2004-NWG3-001 M. Magnor Axisymmetric Reconstruction and 3D Visualization of
Bipolar Planetary Nebulae

MPI-I-2004-NWG1-001 B. Blanchet Automatic Proof of Strong Secrecy for Security
Protocols

MPI-I-2004-5-001 S. Siersdorfer, S. Sizov, G. Weikum Goal-oriented Methods and Meta Methods for
Document Classification and their Parameter Tuning

MPI-I-2004-4-006 K. Dmitriev, V. Havran, H. Seidel Faster Ray Tracing with SIMD Shaft Culling

MPI-I-2004-4-005 I.P. Ivrissimtzis, W.-. Jeong, S. Lee,
Y.a. Lee, H.-. Seidel

Neural Meshes: Surface Reconstruction with a Learning
Algorithm

MPI-I-2004-4-004 R. Zayer, C. Rssl, H. Seidel r-Adaptive Parameterization of Surfaces

MPI-I-2004-4-003 Y. Ohtake, A. Belyaev, H. Seidel 3D Scattered Data Interpolation and Approximation
with Multilevel Compactly Supported RBFs

MPI-I-2004-4-002 Y. Ohtake, A. Belyaev, H. Seidel Quadric-Based Mesh Reconstruction from Scattered
Data

MPI-I-2004-4-001 J. Haber, C. Schmitt, M. Koster,
H. Seidel

Modeling Hair using a Wisp Hair Model

MPI-I-2004-2-007 S. Wagner Summaries for While Programs with Recursion

MPI-I-2004-2-002 P. Maier Intuitionistic LTL and a New Characterization of Safety
and Liveness

MPI-I-2004-2-001 H. de Nivelle, Y. Kazakov Resolution Decision Procedures for the Guarded
Fragment with Transitive Guards

MPI-I-2004-1-006 L.S. Chandran, N. Sivadasan On the Hadwiger’s Conjecture for Graph Products

MPI-I-2004-1-005 S. Schmitt, L. Fousse A comparison of polynomial evaluation schemes

MPI-I-2004-1-004 N. Sivadasan, P. Sanders, M. Skutella Online Scheduling with Bounded Migration

MPI-I-2004-1-003 I. Katriel On Algorithms for Online Topological Ordering and
Sorting

MPI-I-2004-1-002 P. Sanders, S. Pettie A Simpler Linear Time 2/3 - epsilon Approximation for
Maximum Weight Matching

MPI-I-2004-1-001 N. Beldiceanu, I. Katriel, S. Thiel Filtering algorithms for the Same and UsedBy
constraints

MPI-I-2003-NWG2-002 F. Eisenbrand Fast integer programming in fixed dimension

MPI-I-2003-NWG2-001 L.S. Chandran, C.R. Subramanian Girth and Treewidth

MPI-I-2003-4-009 N. Zakaria FaceSketch: An Interface for Sketching and Coloring
Cartoon Faces

MPI-I-2003-4-008 C. Roessl, I. Ivrissimtzis, H. Seidel Tree-based triangle mesh connectivity encoding

MPI-I-2003-4-007 I. Ivrissimtzis, W. Jeong, H. Seidel Neural Meshes: Statistical Learning Methods in Surface
Reconstruction

MPI-I-2003-4-006 C. Roessl, F. Zeilfelder, G. Nrnberger,
H. Seidel

Visualization of Volume Data with Quadratic Super
Splines

MPI-I-2003-4-005 T. Hangelbroek, G. Nrnberger,
C. Roessl, H.S. Seidel, F. Zeilfelder

The Dimension of C1 Splines of Arbitrary Degree on a
Tetrahedral Partition

MPI-I-2003-4-004 P. Bekaert, P. Slusallek, R. Cools,
V. Havran, H. Seidel

A custom designed density estimation method for light
transport

MPI-I-2003-4-003 R. Zayer, C. Roessl, H. Seidel Convex Boundary Angle Based Flattening

MPI-I-2003-4-002 C. Theobalt, M. Li, M. Magnor,
H. Seidel

A Flexible and Versatile Studio for Synchronized
Multi-view Video Recording

MPI-I-2003-4-001 M. Tarini, H.P.A. Lensch, M. Goesele,
H. Seidel

3D Acquisition of Mirroring Objects

MPI-I-2003-2-004 A. Podelski, A. Rybalchenko Software Model Checking of Liveness Properties via
Transition Invariants

MPI-I-2003-2-003 Y. Kazakov, H. de Nivelle Subsumption of concepts in DL FL0 for (cyclic)
terminologies with respect to descriptive semantics is
PSPACE-complete

MPI-I-2003-2-002 M. Jaeger A Representation Theorem and Applications to
Measure Selection and Noninformative Priors

MPI-I-2003-2-001 P. Maier Compositional Circular Assume-Guarantee Rules
Cannot Be Sound And Complete

MPI-I-2003-1-018 G. Schaefer A Note on the Smoothed Complexity of the
Single-Source Shortest Path Problem

MPI-I-2003-1-017 G. Schfer, S. Leonardi Cross-Monotonic Cost Sharing Methods for Connected
Facility Location Games

MPI-I-2003-1-016 G. Schfer, N. Sivadasan Topology Matters: Smoothed Competitive Analysis of
Metrical Task Systems

MPI-I-2003-1-015 A. Kovcs Sum-Multicoloring on Paths

MPI-I-2003-1-014 G. Schfer, L. Becchetti, S. Leonardi,
A. Marchetti-Spaccamela,
T. Vredeveld

Average Case and Smoothed Competitive Analysis of
the Multi-Level Feedback Algorithm

MPI-I-2003-1-013 I. Katriel, S. Thiel Fast Bound Consistency for the Global Cardinality
Constraint

MPI-I-2003-1-012 - not published -

MPI-I-2003-1-011 P. Krysta, A. Czumaj, B. Voecking Selfish Traffic Allocation for Server Farms

MPI-I-2003-1-010 H. Tamaki A linear time heuristic for the branch-decomposition of
planar graphs

MPI-I-2003-1-009 B. Csaba On the Bollobás – Eldridge conjecture for bipartite
graphs

MPI-I-2003-1-008 P. Sanders Polynomial Time Algorithms for Network Information
Flow

MPI-I-2003-1-007 H. Tamaki Alternating cycles contribution: a strategy of
tour-merging for the traveling salesman problem

