
Making the Most of your Triple Store:
Query Answering in OWL 2 Using an RL Reasoner

Yujiao Zhou 1 Bernardo Cuenca Grau 1 Ian Horrocks 1

Zhe Wu 2 Jay Banerjee 2

1University of Oxford

2Oracle Corporation

August 30, 2013

RDF & OWL

Resource Description Framework (RDF)

I The RDF is a family of W3C specifications.

I The RDF data model is based on making statements about
resources in the form of subject-predicate-object expressions.

Web Ontology Language (OWL)

I OWL is endorsed by W3C as a family of knowledge
representation languages.

I It allows to illustrate schema information upon RDF triples.

Datalog

We will use datalog languages as intermediate representations of
ontologies. Datalog languages are subsets of first-order logic.

I Datalog

B1(~x) ∧ . . . ∧ Bm(~x)→ A1(~x) ∧ . . . ∧ An(~x)

I Datalog±,∨

B1(~x) ∧ . . . ∧ Bm(~x)→
∨
i

∃~yiϕ(~x , ~yi)

where ϕi is a conjunction of atoms with free variables ~x ∪ ~y .

Objective

Conjunctive Query Answering
in OWL 2 Ontologies and Large Data Sets
using scalable OWL 2 RL reasoners

Ontologies & Data Sets1

I An ontology O consists of a set of schema axioms.

I A data set D consists of a set of data assertions.
We assume a data set only contains atomic class assertions A(c) or

atomic property assertions r(a, b).

1Here we slightly deviated from W3C standard.

Running Example

A ontology Oex consists of the following axioms.

−EquivalentClasses(Student UnionOf (GradStudent UndergradStudent))

−SubClassOf (

SomeValuesFrom(InverseOf (hasStudent) College)

UndergradStudent)

−SubClassOf (Student SomeValueFrom(takes Course))

A data set Dex consists of the following facts.

GradStudent(Alice),College(New), hasStudent(New,Bob)

Query Languages

I SPARQL is the standard query language for RDF.

I The conjunctive query is a restricted form of first order logic.

I . . .

The following an example query asks for all the graduate students
that take a same course as Alice.

Qex(x) := GradStudent(x) ∧ takes(x , y) ∧ takes(Alice, y)

Difference:
In SPARQL semantics, y should be binded to a named

individual in Oex or Dex, whereas y is existentially quantified in
conjunctive queries.

Our goal is to deal with conjunctive queries.

Query Answers

Given an ontology O and a data set D and a conjunctive query
Q(~x) := ϕ(~x , ~y), cert(Q,O,D) is defined as the answer to Q w.r.t.
〈O,D〉, which satisfies

~a ∈ cert(Q,O,D) iff O ∪D |= Q(~a)

Example

Oex = {EquivalentClasses(Student UnionOf (GradStudent UndergradStudent)),

SubClassOf (

SomeValuesFrom(InverseOf (hasStudent) College)

UndergradStudent),

SubClassOf (Student SomeValueFrom(takes Course))}
Dex = {GradStudent(Alice),College(New), hasStudent(New,Bob)}

Qex(x) =GradStudent(x) ∧ takes(x , y) ∧ takes(Alice, y)

cert(Qex,Oex,Dex) = {Alice}

Since Alice is a graduate student, she is a student and thus takes
some courses. So Alice herself is an answer the query Qex. From
Oex and Dex, we can not infer that Bob is graduate student. so
Bob is not an answer to Qex.

Query Answering in Ontologies

I QA in full OWL 2 is of high computational complexity

I Lightweight OWL profiles

Off-the-shelf scalable OWL 2 RL reasoners:
Oracle’s RDF Semantic Graph, OWLim . . .

OWL 2 RL

+ A large fragment of OWL 2 closely connected to datalog

+ Scalable query answering by materialisation (PTime)

− Restrictions on expressivity
I Disjunctive axioms

SubClassOf (Student UnionOf (GradStudent UndergradStudent))

I Existential axioms

SubClassOf (Student SomeValuesFrom(takes Course))

To Overcome the Expressivity Restrictions

− Full-fledged OWL 2 reasoner
I High computation complexity.
I The scalability of such systems falls far short of that exhibited

by RL reasoners.

+ To approximate the query answers.

Lower Bounds

An bonus of OWL 2 RL reasoners is that in practice they are
capable to process an arbitrary OWL 2 ontology as they ignore
(parts of) axioms outside OWL 2 RL.

rl(Q,O,D) ⊆ cert(Q,O,D)

I Soundness guarantee

I Lower bound of the query answers.

How INCOMPLETE are the answers computed by RL
reasoners???

rl(Qex,Oex,Dex) = ∅

Upper Bounds ???

Lower Bounds

An bonus of OWL 2 RL reasoners is that in practice they are
capable to process an arbitrary OWL 2 ontology as they ignore
(parts of) axioms outside OWL 2 RL.

rl(Q,O,D) ⊆ cert(Q,O,D)

I Soundness guarantee

I Lower bound of the query answers.

How INCOMPLETE are the answers computed by RL
reasoners???

rl(Qex,Oex,Dex) = ∅

Upper Bounds ???

Lower Bounds

An bonus of OWL 2 RL reasoners is that in practice they are
capable to process an arbitrary OWL 2 ontology as they ignore
(parts of) axioms outside OWL 2 RL.

rl(Q,O,D) ⊆ cert(Q,O,D)

I Soundness guarantee

I Lower bound of the query answers.

How INCOMPLETE are the answers computed by RL
reasoners???

rl(Qex,Oex,Dex) = ∅

Upper Bounds ???

Lower Bounds

An bonus of OWL 2 RL reasoners is that in practice they are
capable to process an arbitrary OWL 2 ontology as they ignore
(parts of) axioms outside OWL 2 RL.

rl(Q,O,D) ⊆ cert(Q,O,D)

I Soundness guarantee

I Lower bound of the query answers.

How INCOMPLETE are the answers computed by RL
reasoners???

rl(Qex,Oex,Dex) = ∅

Upper Bounds ???

Over-approximation to OWL 2 RL (Core Approach)

O ΣO Ξ(ΣO) O′
...

...
...

...
OWL 2 Datalog±,∨ Datalog OWL 2 RL

Step 1 An OWL 2 ontology O is translated into a set ΣO of
datalog±,∨ rules equivalently;

Step 2 *To transform ΣO into datalog rules, we replace
disjunctions with conjunctions and replace existentially
quantified variables with fresh individuals;

Ξ(ΣO) |= ΣO

Step 3 Ξ(ΣO) is translated back into OWL 2 RL ontology.

Examples

O ΣO Ξ(ΣO) O′
...

...
...

...
OWL 2 Datalog±,∨ Datalog OWL 2 RL

SubClassOf (Student UnionOf (GradStudent UndergradStudent))

→ Student(x)→ GradStudent(x) ∨ UndergradStudent(x)

 Student(x)→ GradStudent(x) ∧ UndergradStudent(x)

→ SubClassOf (Student IntersectionOf (GradStudent UndergradStudent))

SubClassOf (Student SomeValueFrom(takes Course))

→ Student(x)→ ∃y takes(x , y) ∧ Course(y)

 Student(x)→ takes(x , c) ∧ Course(c)

SubPropertyOf (r takes)

→ SubClassOf (Student hasValue(r c))

PropertyRange(r Course)

Lower and Upper Bounds

O ΣO Ξ(ΣO) O′
...

...
...

...
OWL 2 Datalog±,∨ Datalog OWL 2 RL

rl(Q,O,D) ⊆ cert(Q,O,D) ⊆ rl(Q,O′,D)

I The Lower Bound is the computed answer of Q by an RL
reasoner w.r.t. 〈O,D〉;

I The Upper Bound is the computed answers of Q by an RL
reasoner w.r.t. 〈O′,D〉 if

I O′ is in OWL 2 RL profile;
I cert(Q,O,D) ⊆ rl(Q,O′,D).

Lower and Upper Bounds

O ΣO Ξ(ΣO) O′
...

...
...

...
OWL 2 Datalog±,∨ Datalog OWL 2 RL

rl(Q,O,D) ⊆ cert(Q,O,D) ⊆ rl(Q,O′,D)

I The Lower Bound is the computed answer of Q by an RL
reasoner w.r.t. 〈O,D〉;

I The Upper Bound is the computed answers of Q by an RL
reasoner w.r.t. 〈O′,D〉 if

I O′ is in OWL 2 RL profile;
I cert(Q,O,D) ⊆ rl(Q,O′,D).

Lower and Upper Bounds

O ΣO Ξ(ΣO) O′
...

...
...

...
OWL 2 Datalog±,∨ Datalog OWL 2 RL

rl(Q,O,D) ⊆ cert(Q,O,D) ⊆ rl(Q,O′,D)

I The Lower Bound is the computed answer of Q by an RL
reasoner w.r.t. 〈O,D〉;

I The Upper Bound is the computed answers of Q by an RL
reasoner w.r.t. 〈O′,D〉 if

I O′ is in OWL 2 RL profile;

I cert(Q,O,D) ⊆ rl(Q,O′,D).

Lower and Upper Bounds

O ΣO Ξ(ΣO) O′
...

...
...

...
OWL 2 Datalog±,∨ Datalog OWL 2 RL

rl(Q,O,D) ⊆ cert(Q,O,D) ⊆ rl(Q,O′,D)

I The Lower Bound is the computed answer of Q by an RL
reasoner w.r.t. 〈O,D〉;

I The Upper Bound is the computed answers of Q by an RL
reasoner w.r.t. 〈O′,D〉 if

I O′ is in OWL 2 RL profile;
I cert(Q,O,D) ⊆ rl(Q,O′,D).

Example
The transformed rules Ξ(Σex) should be as follows.

r1 : Student(x)→ GradStudent(x) ∧ UndergradStudent(x)

r2 : GradStudent(x)→ Student(x)

r3 : UndergradStudent(x)→ Student(x)

r4 : hasStudent(y , x) ∧ College(y)→ UndergradStudent(x)

r5 : Student(x)→ takes(x , c) ∧ Course(c)

Recall that

Dex = {GradStudent(Alice),College(New), hasStudent(New,Bob)}
Qex = GradStudent(x) ∧ takes(x , y) ∧ takes(Alice, y)

The upper bound rl(Qex,O′
ex,Dex) = {Alice,Bob}.

hasStudent(New,Bob),College(New)
r4 UndergradStudent(Bob)

UndergradStudent(Bob)
r3 Student(Bob)

Student(Bob)
r1 GradStudent(Bob)

Student(Bob)
r5 takes(Bob, c)

Usages of Lower & Upper Bounds

I Lower and upper bounds coincide;

Most cases in the evaluation!

I To bound the incompleteness of an OWL 2 RL reasoner;

I To optimise the query answering process of an OWL 2
reasoner by checking only the answers in the gap between
lower and upper bounds.

Usages of Lower & Upper Bounds

I Lower and upper bounds coincide;

Most cases in the evaluation!

I To bound the incompleteness of an OWL 2 RL reasoner;

I To optimise the query answering process of an OWL 2
reasoner by checking only the answers in the gap between
lower and upper bounds.

Usages of Lower & Upper Bounds

I Lower and upper bounds coincide;

Most cases in the evaluation!

I To bound the incompleteness of an OWL 2 RL reasoner;

I To optimise the query answering process of an OWL 2
reasoner by checking only the answers in the gap between
lower and upper bounds.

Usages of Lower & Upper Bounds

I Lower and upper bounds coincide;

Most cases in the evaluation!

I To bound the incompleteness of an OWL 2 RL reasoner;

I To optimise the query answering process of an OWL 2
reasoner by checking only the answers in the gap between
lower and upper bounds.

Optmisation1

No matter if O′ ∪ D is consistent or not,

cert(Q,O,D) ⊆ cert(Q,O′,D);

However, when O′ ∪ D is inconsistent, the upper bound is the
trivial one, namely, all the tuples with appropriate arity.
In this case, if O∪D is consistent, removing all the rules Σ⊥ of the
form A1 ∧ . . .∧Am → ⊥ from Ξ(ΣO) doesn’t lose any answers, i.e.

cert(Q,O,D) ⊆ cert(Q,Ξ(ΣO) \ Σ⊥,D).

Optimisation2

When O′ ∪ D is consistent, sophisticated strategies can be applied
to approximate disjunctions.

− replace disjunctions by conjunctions;

+ choose one disjunct by heuristics
I randomly choose one;
I the simplest one;
I the one that appear least in the body of rules.

Student(x)→ GradStudent(x) ∨ UndergradStudent(x)

 Student(x)→ UndergradStudent(x)

Then Bob is not in the upper bound any more since it can be
inferred to be a instance of GradStudent.

Safety Harbor

”THE FOLLOWING IS INTENDED TO OUTLINE OUR

GENERAL PRODUCT DIRECTION. IT IS INTENDED FOR

INFORMATION PURPOSES ONLY, AND MAY NOT BE

INCORPORATED INTO ANY CONTRACT. IT IS NOT A

COMMITMENT TO DELIVER ANY MATERIAL, CODE, OR

FUNCTIONALITY, AND SHOULD NOT BE RELIED UPON IN

MAKING PURCHASING DECISION. THE DEVELOPMENT,

RELEASE, AND TIMING OF ANY FEATURES OR

FUNCTIONALITY DESCRIBED FOR ORACLE’S PRODUCTS

REMAINS AT THE SOLE DISCRETION OF ORACLE.”

RDF Semantic Graph in Oracle Database

RAC Exadata scalability

Compression partitioning

SQL Loader direct path load

Parallel load, inference, query

High Availability

Triple-level label security

Choice of SPARQL, SQL, or Java

Native inference engine

Enterprise Manager

•  Native RDF graph data store
•  Manages billions of triples
•  Optimized storage architecture

•  SPARQL-Jena/Joseki, Sesame
•  SQL/graph query, B-tree indexing
•  Ontology assisted SQL query

•  RDFS, OWL2 RL, EL+, SKOS
•  User-defined SWRL-like rules
•  Incremental, parallel
 reasoning
•  Plug-in architecture

Load /
Storage

Query

Reasoning

•  Semantic indexing framework
•  Integration with
•  OBIEE, Oracle R Enterprise
•  Oracle Data Mining

Analytics

Native Inference Engine in Oracle

Parallel
Execution

Leverage SQL and relational technologies (partitioning, compression)

Setup for Performance

Use a balanced hardware system for databases and mid-tier servers
– A single, huge physical disk for everything is not recommended. Multiple
hard disks tied together through ASM is a good practice
– A virtual machine for multiple databases and applications is not
recommended
– Make sure throughput of hardware components matches up

30 - 50 MB/s Disk (spindle)

80 MB/s* 2 Gbit/s GigE NIC (interconnect)

2 Gbit/s

2 Gbit/s

8 * 2 Gbit/s

1/2 Gbit/s

-

Hardware spec

200 MB/s Disk controller

200 MB/s Fiber channel

1,200 MB/s 16 port switch

100/200 MB/s 1/2 Gbit HBA

100 - 200 MB/s CPU core

Sustained throughput Component

2k-7k MB/s MEM

Hardware specification: a dual quad core (Intel Xeon E5620) CPU, 5 SATA

disks, and 40GB RAM with the operating system Linux 2.6.18.

Tips for Best Inference Performance in Oracle

I Analyze models before running inference
– SQL: sem apis.analyze model(), JAVA: analyze()

I Use the right API
– sem apis.create entailment()

I Pick RAW8=T for compact intermediate data storage

I Pick DOP = 〈n〉 for parallel inference
– Require a balanced setup with multi CPU cores

I Pick INC=T for incremental inference

I Dynamic Sampling level 1 can improve inference performance

I Additional optimizations
– Separate Tbox inference from Abox inference may reduce # of
inference rounds required
– Dynamic incremental inference: off by default, could be turned on by
DYN INC INF=T option

Data Sets

I Lehigh University Benchmark (LUBM)
I The LUBM describes the organisation of universities and

academic departments;
I It is outside OWL 2 RL since the appearance of existential

axioms;

I University Ontology Benchmark (UOBM)
I The UOBM is a extension of LUBM with a more complex

ontology containing disjunctive axioms and negations.

I Fly Anatomy (FLY): this is a realistic and complex ontology
describing the anatomy of flies and it is rich in existential
axioms.

Evaluation

Tightness of the lower and upper bounds:
I LUBM

I 14/14 standard queries and
74/78 generated queries with matching bounds;

I UOBM
I 8/14 modified LUBM queries,

4/15 standard queries, and
101/198 generated queries with matching bounds;

I FLY
I 1/5 queries with matching bounds;
I We managed to verify that the upper bounds are all tight in

this case.

Transformation time: The time to over-approximate the ontologies
are negligible.

Evaluation

Materialisation and query time of LUBM:

 100

 1000

 10000

 1 10 100 1000

 100

 1000

 10000

Q
ue

ry
in

g
tim

e
(m

s)

M
at

er
ia

lis
at

io
n

tim
e

(s
)

The number of universities

materialisation_lower
materialisation_upper

standard_lower
standard_upper

generated_lower
generated_upper

Evaluation

Materialisation and query time of UOBM:

 100

 1000

 10000

 1 10 100

 100

 1000

 10000

 100000

Q
ue

ry
in

g
tim

e
(m

s)

M
at

er
ia

lis
at

io
n

tim
e

(s
)

The number of universities

materialisation_lower
materialisation_upper

standard_lower
standard_upper

generated_lower
generated_upper

Thanks!

For more information: yujiao.zhou@cs.ox.ac.uk
Oracle Spatial and Graph: alan.wu@oracle.com

mailto:yujiao.zhou@cs.ox.ac.uk
mailto:alan.wu@oracle.com

Appendix

Jena and Sesame Adapters

Jena and Sesame Adapters provide the following features:
– A set of easy-to-use and performant Java APIs to access Oracle database
– A standard-compliant SPARQL web service endpoint

- SPARQL Protocol, Federated SPARQL, SPARQL update
– Data loading (RDF/XML, N-TRIPLES, N-QUADS, TriG ,Turtle) w/ long
literals
– JSON output
– Oracle-specific extensions for query execution control and management

- Timeout, abort, S2S, hints in SPARQL syntax, property path, result
cache, mid-tier cache, user-defined functions

– Runs in Oracle WebLogic Server and Apache Tomcat

Native Inference Engine in Oracle: APIs

SEM APIS.CREATE ENTAILMENT(
entailment name

sem models(GraphTBox, GraphABox,),

sem rulebases(OWL2RL),

passes,

inf components,

Options,

)

PROOF=T to generate inference proof

SEM APIS.VALIDATE ENTAILMENT(
sem models((GraphTBox, GraphABox,),

sem rulebases(OWL2RL),

Criteria,

Max conflicts,

Options

)

Typical Usage:
•  First load RDF/OWL data
•  Call create_entailment to generate

inferred graph
•  Query both original graph and

inferred data
Inferred graph contains only new triples

Saves time & resources

Typical Usage:
•  First load RDF/OWL data
•  Call create_entailment to generate

inferred graph
•  Call validate_entailment to find

inconsistencies

API: performInference, deleteInference, setInferenceOption, analyze methods in
- GraphOracleSem, DatasetGraphOracleSem (Jena Adapter)

Configure/Tune OS, Network, and Database

I Network configuration is important to performance
– Network MTU (TCP, Infiniband) , net core rmem max, wmem max

I Linux OS Kernel parameters
– shmmax, shmall, aio-max-nr, sem,

I Database parameters
– SGA, PGA, filesystemio options, db cache size, auto dop,

I Calibrate I/O performance
– DBMS RESOURCE MANAGER.CALIBRATE IO

I Gather statistics

I Run a typical workload on a typical data set
– Check AWR report to see top waits
– Check SQL Monitor report to find bottlenecks in SQL executions

