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Chapter 1

Introduction and
Background

1.1 Introduction

Ontologies, formal conceptualisations of a domain of interest, are exten-
sively used in biology and medicine. An ontology specifies the meaning of
the entities and relations relevant to an application domain by means of
logical statements (expressed in Description Logics). Automated reasoning
tools can then exploit their semantics to make explicit information that was
implicit in the ontology.

Ontology developers often need to integrate several ontologies. This might
be the case when they need to exchange or migrate data between different
ontology-based applications, or as the first stage in the development of a new
ontology, in which relevant parts of existing ontologies are reused. However,
since different ontologies are typically developed by different groups of ex-
perts, even if they describe related domains it is reasonable to expect that
their vocabularies will be quite different. For very small-sized ontologies,
this problem can be simply addressed by manually identifying what are the
names given in each ontology to common concepts. If the source ontologies
are large, however, such task cannot be manually undertaken.

The problem of finding correspondences between entities in ontologies is
called ontology matching. For large and complex ontologies, such task can
only be efficiently accomplished by an automatic tool. Existing methods for
mapping discovery are mainly based on lexical and structural techniques.
These algorithms, however, do not take into account the semantic informa-
tion included in the initial ontologies. Thus, found mappings could lead
to unintended logical consequences when automated reasoning is performed
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CHAPTER 1. INTRODUCTION AND BACKGROUND

over the integrated ontologies (i.e., the initial ones together with the map-
pings).

LogMap [1, 2] is a EPSRC-funded project whose aim is to develop an ontol-
ogy matching system (the LogMap tool, or simply ‘LogMap’) that combines
lexical, structural and semantic techniques. The latter are especially impor-
tant to minimise the number of erroneous mappings introduced by lexical
heuristics. Consider for example the scenario in which a user is develop-
ing an ontology about juvenile forms of arthritis, for which they want to
start by integrating two independently developed ontologies: one describing
types of arthritis and the other juvenile diseases. Both ontologies provide a
description of different types of juvenile arthritis, but since they have been
independently developed, their vocabularies are disjoint. The disease known
as JRA (Juvenile Rheumatoid Arthritis), for instance, is represented by the
concept Juvenile Rheumathoid Arthritis in the first ontology and by the con-
cept Rheum Arthritis Juvenile in the second one. By using lexical techniques,
LogMap is able to establish a correspondence between these concepts. Fur-
thermore, if the addition of such correspondence would lead to a seman-
tic error (i.e. a logical contradiction), LogMap can detect it, identify the
mappings involved in the conflict and attempt to repair (by using semantic
techniques). In realistic ontologies there may be thousands of such conflicts.
Each such conflict may involve several mappings, and a given mapping can
participate in many conflicts.

This chapter provides some context for the following ones introducing the
background problem (sections 1.2 and 1.3), briefly analyzes the state of
the art in ontology matching tools (section 1.4), describes in further detail
the algorithm implemented by LogMap (section 1.5) and summarises the
objectives and main contributions of this thesis (section 1.6).

Chapter 2 describes the methods used in the development of the thesis, ad-
dressing in particular experimental work. Chapters 3, 4 and 5 account for
the extensions proposed for each addressed stage in the LogMap algorithm
(‘Lexical indexation’, ‘Structural indexation’ and ‘Mapping repair and dis-
covery’) and analyze the outcome of their evaluation. Finally, chapter 6
resumes the obtained conclusions and main contributions of this thesis.

1.2 Ontologies

This section introduces the concept of ontology and provides some related
terminology1.

1It is assumed that the reader is familiar with the basics of FOL.
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CHAPTER 1. INTRODUCTION AND BACKGROUND

Description Logics (DL) are family of decidable fragments of First Order
Logic (FOL). Their vocabulary is composed of atomic concepts (unary pred-
icates), atomic roles (binary predicates) and individuals (constants). DL
semantics is given by syntactic translation into FOL, and a DL ontology
corresponds to a FOL knowledge base. Ontologies are composed of two sets
of statements: The terminological box TBox, typically containing FO sen-
tences (i.e. with no free variables) without constants, and the assertion box
ABox, comprised of ground atomic formulae.

Given an ontology O, the following notions are defined:

• An ontology is consistent if it has a FO-model.

• O entails a statement α if every model of O satisfies α.

• An atomic concept (unary predicate) A is satisfiable with respect to
O if there exists a model of O in which A is interpreted as a non-empty
set.

1.3 Ontology matching

Ontology matching (or ontology alignment) can be defined on an abstract
level as the task of finding correspondences between the vocabulary of dif-
ferent ontologies. [3]. This correspondences express relations between such
entities, and the entities themselves can be either elements of the concep-
tual schema of the ontology (TBox) or individuals belonging to its dataset
(ABox). The former is known as schema matching, and the latter as in-
stance matching, although the general name of ‘ontology matching’ is often
used to refer to schema matching2.

Correspondences can be established between different types of entities, e.g.
concepts (classes) or properties (relations). Although LogMap’s techniques
can be easily applied for property matching, the current implementation
targets class matching. The term mapping is used in this thesis to refer to a
correspondence established between classes. A formal definition of mapping
(adapted from [3]) follows:

Given two ontologies, O1 and O2, a mapping is a quintuple:

〈id, c1, c2, r, n〉

such that:

• id is an identifier of the given correspondence.

2Since LogMap focuses in schema matching exclusively, in this thesis the mentioned
convention is followed using the term ‘ontology matching’ hereafter as an equivalent to
‘schema matching’ unless specified otherwise.

6



CHAPTER 1. INTRODUCTION AND BACKGROUND

• c1 and c2 are classes of O1 and O2, respectively.

• r is a relation holding between c1 and c2 such as equivalence (≡),
subsumption (v) or disjointness (⊥).

• n is a confidence measure (typically in the [0, 1] range) holding for the
correspondence between c1 and c2.

1.4 State of the art

A wide range of approaches have been developed for ontology alignment.
Furthermore, current matching tools often do not limit themselves to ap-
plying one single technique or method but combine several of them in a
structured way. For instance, LogMap uses lexical techniques for establish-
ing initial mappings and structural and semantic methods for refining or
repairing them. Section 1.4.1 provides an overview of current state-of-the-
art techniques in ontology matching while section 1.4.2 relates them to some
of the most relevant matching tools at the moment.

1.4.1 Matching strategies

Ontologies contain knowledge of different types within them, and different
approaches to ontology matching exploit different kinds of knowledge. Some
of them perform lexical comparisons between terms, explore the context
of the classes or extract logical consequences through reasoning over the
ontologies’ axioms. Instance data can also be accessed to analyze frequency
distributions, or furthermore, external resources can be used during the
process. Matching techniques can be classified in the following way [4]:

Similarity techniques
These techniques measure the degree of ‘similarity’ between concepts in
order to decide whether they represent the same entity. Such exploited
similarities can be of different kinds:

Linguistic techniques use label names of classes and properties to
identify correspondences between them. They can be either purely
syntactic comparisons, using just the structure of the words, or they
can also use semantic information, accessing lexical resources such
as WordNet [5].

Contextual techniques analyze the structural features of concepts
comparing elements either from their external structure (e.g. hier-
archically linked classes or related properties) or internal (e.g. prop-
erty domain and range types). Contexts built this way are often
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CHAPTER 1. INTRODUCTION AND BACKGROUND

represented by graphs, and their similarity can be determined with
topological similarity measures.

Reasoning-based techniques
Reasoning-based techniques take as the input the ontologies together with
an initial set of mappings (manually or automatically defined) and they
reason over them to infer new mappings and to derive the implications
of such correspondences. According to the type of reasoning performed,
they can be:

Deductive techniques, which mainly use propositional (SAT) or
description logics (DL) to logically express the candidate mappings
as formulae and verify their satisfiability.

Probabilistic techniques, which make use of machine learning
techniques or Bayesian networks to determine the probability whether
two given concepts refer to the same entity.

1.4.2 Matching tools

An increasing number of ontology matching tools and frameworks are avail-
able at the moment which apply the previously described techniques (see
section 1.4.1). Furthermore, it is a common tendency in these tools to pro-
vide an extensible system which integrates a number of matchers rather
than focusing on only one algorithm, allowing customized parametrization.

Most matching tools are based entirely on lexical and structural (contex-
tual) techniques. For instance, TaxoMap [6] lexically processes concept la-
bels to obtain morphological and syntactic information, but also divides the
hierarchical structure of the ontologies into partitions for better scalabil-
ity. AgreementMaker [7] implements a stack of syntactical and structural
matchers (allowing customization of the stack policies) and combines their
results into the final set of mappings.

However, automatic lexical and structural techniques often lead to semantic
errors which manifest themselves in the form of logical inconsistencies. For
example, consider the scenario where the ontologies O1 and O2 are being
matched: two equivalence mappings connecting concepts that are related via
an is-a relation in O1 to concepts that are disjoint in O2 would be conflicting.

Interest is therefore growing in designing tools that are based on or incorpo-
rate reasoning techniques. For example, ASMOV [8, 9] iteratively calculates
similarity measures combining weighted lexical, structural (internal and ex-
ternal) and extensional (data instances) techniques, and then performs a se-
ries of semantic checks to prevent logical inconsistencies. KosiMAP [10, 11]
extracts logical consequences about entities from ontology axioms through
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Figure 1.1: Overview of LogMap stages.

DL-reasoning, then combines lexical and structural similarity matchers to
produce a ‘pre-alignment’ over which DL-reasoning is used to remove inap-
propriate mappings. CODI [12] provides a declarative framework for on-
tology matching (at schema and data levels) which uses lexico-structural
matching techniques for mapping detection together with Markov logic for
logical representation and evaluation of mappings.

1.5 LogMap

LogMap [2] is an ontology matching system which combines lexical, struc-
tural and semantic techniques to produce incoherence-free alignments. The
motivation underlying LogMap’s design is to provide a matching tool sat-
isfying two needs which are commonly lacked by most available matchers:
scalability and logical consistence.

Although currently available tools can deal efficiently with moderately-sized
ontologies (thousands of classes), some bio-medical ontologies can have up
to tens or hundreds of classes (e.g. SNOMED CT, see section 2) and are still
beyond their reach. LogMap intends to make use of accurate but efficient
methods in order to manage to process such large ontologies.

Since manually curating these errors would be extremely time-consuming,
the scenario requires of a tool capable of automatically repairing such errors.
LogMap uses reasoning techniques for efficient detection and repair of logical
inconsistencies.

Figure 1.1 provides a schematic overview of the stages followed by the
LogMap algorithm, briefly described next:

1. Lexical indexation: After parsing the input ontologies (received in
OWL[13] format), lexical indices are built for each ontology to store
the labels of its classes in a compact format which will allow efficient
lookup. At this stage, linguistic techniques are used to enhance the
index with spelling variations, synonyms, etc. Chapter 3 describes
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CHAPTER 1. INTRODUCTION AND BACKGROUND

tasks performed here in detail as well as the proposed extensions for
this stage.

2. Structural indexation: The extended3 hierarchy of each ontology is
computed using structural heuristics or an off-the-shelf DL reasoner.
An interval-labelling schema is then used to efficiently store structural
information. See chapter 4 for a more detailed description of this stage
as well as extensions implemented in this thesis.

3. Computation of ‘initial anchor’ mappings: Lexical indices are
intersected producing a set of exact lexical matches. These are con-
sidered reliable mappings, and will be used as initial anchors for the
iterative core of the algorithm.

4. Mapping repair and discovery: The expansion stage is an itera-
tive algorithm composed of two steps: repair and discovery. The repair
step takes as an input the so-far established mappings (anchors plus
already repaired mappings) and the most recently discovered ones (the
active mappings), and through reasoning techniques for inconsistency
detection and repair ‘cleans’ the active mappings. The discovery step
makes use of the already established mappings to explore the ontol-
ogy hierarchies looking for new mapping candidates, and obtains new
correspondences using an efficient lexical matcher [14]. These new
mappings will be cleaned in the next iteration, and so on until a stop
condition is reached (namely, no new mappings are discovered). Chap-
ter 5 addresses this stage and describes proposed enhancements for the
repair algorithm.

5. Overlapping estimation: In addition to the final set of mappings,
LogMap produces fragments of the input ontologies corresponding to
their estimated overlapping. These fragments are meant to be offered
to the user if it is needed to look for missed mappings, since it is
most likely that they will be found in the overlapping. For obtaining
such fragments, LogMap includes classes involved in ‘weak mappings’,
which establish correspondences between related entities but not nec-
essarily equivalent (their label names are not exact matches, but share
a number of terms) and therefore are not taken into account for map-
ping discovery.

1.6 Summary of contributions

The main goal of this MSc thesis is to propose and implement extensions to
improve the matching techniques currently implemented in LogMap. Such

3The class hierarchy of each ontology is extended with additional information such as
more complex subsumption axioms or explicit disjoints
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CHAPTER 1. INTRODUCTION AND BACKGROUND

enhancements must be integrated into LogMap for their evaluation on real-
istic ontologies.

Extensions are proposed addressing some of the stages of LogMap’s algo-
rithm as follows:

• Lexical indexation is enriched with WordNet synonyms and stem-
ming tools for improving the system’s recall, and the results for deter-
mined ontologies are shown to benefit from the stemming extension.
Furthermore, a significant efficiency boost is obtained as a side-effect
of stemming.

• Structural indexation makes use of an interval-labelling schema
provided by an external library. A new library has been designed in
order to carry out this task. It is shown that the new component, op-
timized for storing ontology hierarchies, is capable of greatly reducing
execution times for structural indexation (up to 97%).

• The repair algorithm in the mapping repair and discovery stage is
enhanced with two different optimized methods. These new versions
manage to improve efficiency, significantly reducing execution times
for ontology matching (up to 17% excluding the indexation stages).

Besides the direct benefits obtained from proposed extensions, the library
provided for structural indexation presents an additional advantage. Since it
integrates into LogMap rather than being an external process (as the library
used by previous LogMap releases is), it allows the system to be delivered as
a self-contained tool, therefore qualifying to enter the OAEI 2011 Campaign
for ontology alignment evaluation. Publication of LogMap’s participation in
the matching contest is pending [15] (details are given in section 6.2.1).

11



Chapter 2

Methodology

This chapter aims to provide a frame of reference for methods referred to
throughout this thesis. In particular, details are given on the assessment
methods and test case ontologies used for experiments.

2.1 Assessing the proposed extensions

Since one of the objectives set for this thesis is to evaluate the impact of pro-
posed extensions to the LogMap system, a number of experiments have been
carried out for that purpose. Since the objectives fixed for the different ex-
tensions vary, two types of experiments were designed: quality experiments
(section 2.2 and efficiency experiments (section 2.3). Note that, however,
both types were needed for some of the extensions (for instance, to know the
extra cost of a newly introduced technique). Furthermore, due to the num-
ber of tests that had to be run, and the amount of results to be processed,
a flexible evaluation framework has been implemented ad-hoc to run series
of tests and extract diverse information from the output logs.

Scalability is one of the stated objectives for the LogMap project. Therefore,
knowing that the enhancements proposed would allow the system to retain
such property was crucial. Real-world large ontologies were therefore chosen
as test cases for experimentation (the same that are used for evaluation of
LogMap), together with one pair of ontologies from a renowned ontology
matching benchmark:

• SNOMED CT Jan. 2009 version (306, 591 classes)

• NCI version 08.05d (66, 724 classes)

• FMA (78, 989 classes)

12



CHAPTER 2. METHODOLOGY

• NCI Anatomy (3, 304 classes) and Mouse Anatomy (2, 744 classes),
both from the OAEI 2010 benchmark [3, 16]

The conducted experiments were run on two standard laptops: a Windows
7 4GB RAM system and a Linux Fedora 4.6GB RAM system. To ensure
coherence, all time measures were run on the same machine (Linux).

It is worth noting that LogMap is parametrized by a number of configurable
values such as confidence threshold for expansion or maximum number of
iterations. For evaluation purposes, parameter values have been fixed to
LogMap’s ‘defaults’ for all conducted experiments.

2.2 Measuring the quality of the results

As it is traditional in the field of information retrieval and common prac-
tice in the context of ontology matching evaluation, a matching system is
evaluated by comparing the set of obtained mappings with a previously des-
ignated gold standard, i.e. a manually curated collection of mappings which
is agreed to be thet most correct solution to the matching problem. Pre-
cision, recall and F-measure scores are obtained from this comparison and
used as the main quality measures to assess matching tools. Let M be the
set of found mappings and GS the set of correct mappings. The mentioned
measures are computed as follows:

Precision: Ratio of correct found mappings with respect to total number of
found mappings, i.e. ‘How many of the found mappings are correct?’:

P =
|M ∩GS|
|M |

Recall: Ratio of correct found mappings with respect to total number
of correct mappings, i.e. ‘How many of the correct mappings were
found?’:

R =
|M ∩GS|
|GS|

F-measure: Dice’s coefficient of the found and correct mappings sets. This
measure combines precision and recall scores and applies a hard penalty
to very unbalanced systems1, i.e. ‘How close are the found mappings
to the correct mappings?’::

F =
2× |M ∩GS|
|M |+ |GS|

=
2× P ×R
P +R

1Otherwise, if for instance the arithmetic mean were used, extreme cases could be
aimed for in order to attain higher scores, e.g. reporting all possible mappings as found
would yield perfect recall, and reporting none at all would achieve perfect precision.

13



CHAPTER 2. METHODOLOGY

For assessing each of the extensions proposed in this thesis, they were im-
plemented and integrated into LogMap. Then, experiments were run under
identical conditions with and without the assessed extension. Precision, re-
call and F-measure scores were extracted and compared for analysis and
evaluation.

As for the gold standards, the following resources were employed:

• The mappings FMA-NCI, FMA-SNOMED and SNOMED-NCI in-
cluded in UMLS Metathesaurus [17] version 2009AA (the mappings
are extracted from the UMLS distribution files [18]).

• The OAEI 2010 Anatomy track gold standard [3, 16].

2.3 Measuring efficiency

For some of the extensions designed in this thesis, the objective was to
improve the system’s efficiency and therefore it was needed to determine
such improvement. Execution times were run for the test cases with and
without the extensions, and results were compared to conclude whether the
proposal had succeeded in achieving its goal.

Besides this, it was found necessary to run efficency tests on other extensions
as well to measure whether they had a negative impact on the system’s
peformance (e.g., enriching lexical indices with WordNet synonyms for labels
greatly increases the cost of the mapping extraction process).
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Chapter 3

Lexical Indexation Stage

The first step after parsing the input ontologies is building the lexical indices
that will be used for establishing the initial anchor mappings. This indices
take the form of inverted files, a data structure widely used in information
retrieval applications.

For each class, LogMap takes the English name of each class, as well as any
other alternative label (usually stored in the ontology as OWL annotations),
and splits them into single words. Thus, each label produces a set of words
which is then introduced as the key in the inverted index to store the class
identifier (an integer).

For instance, the ontology Mouse Anatomy contains the class labelled
{thorax bone} which is annotated with the synonym {upper body bone}.
Hence, the inverted file index contains two entries for this class: one of
them has {thorax,bone} as its key and the other has {upper,body,bone}.
Both entries map to the same numeric identifier (2008).

Once the lexical index has been built, the initial set of anchors can be
efficiently computed by intersecting the sets of keys in each inverted index,
thus obtaining exact matches: classes whose labels contain exactly the same
words (disregarding the order).

The objective of this thesis with respect to the lexical indexation stage
is to increase the number of intended mappings detected by the system
(its recall). This is achieved by enriching the set of alternative labels for
each class. During computation of the initial anchors and during mapping
discovery, mappings are established between classes depending on a lexical
similarity measure that takes into account such alternative labels. Hence,
an enriched lexical index increases the probability of an intended mapping
being ‘detected’.

15



CHAPTER 3. LEXICAL INDEXATION STAGE

LogMap already makes use of the annotations contained in the ontologies to
look for alternative labels and of the UMLS Lexicon to search for spelling
variants. This thesis introduces two additional enhancements for the lexical
indexation: using the WordNet lexicon (section 3.1) and stemming (section
3.2).

3.1 WordNet

WordNet [5] is a lexical English database containing information on seman-
tic relatedness for words, including relations such as synonymy (same mean-
ing), antonymy (opposite meanings), hyperonymy-hiponymy (hierarchycal
subordination), meronymy (part-of relationship) and others.

An external tool (WordNetFetcher) was implemented to extract synonymy
information from the WordNet database in the following way: An ontology
is precomputed in order to extract a ‘bag of words’, i.e. the set of words
contained in all class labels across the ontology’s signature. Then, the tool
accesses the database and obtains a list of synonyms for each word, storing
them in the form of a map into an output file.

This map can be loaded during the lexical indexation stage of the algorithm
and efficiently queried to obtain synonyms for the words contained in a
label. Then, all possible combinations of each label substituting each word
for one of its synonyms are produced (under a controlled limit to avoid huge
numbers of cases) and stored as alternative labels for the class in the index.

The tool WordNetFetcher is written in C to make use of the WordNet search
API, which allows direct access to the WordNet database. This method is
fairly efficient (see section 3.3.1), and furthermore, it only requires to be
executed once. Then, LogMap only needs to load the map file, which is also
efficiently accessed to fetch synonyms.

Table 3.1 shows fragments of the lexical indices generated for the Mouse
and NCI Anatomy ontologies, in particular the entries related to the classes
Mouse:Right Oviduct and NCI Anat:Right Fallopian Tube. The WordNet ex-
tended index for Mouse shows how it has been enriched with new entries for
Mouse:Right Oviduct by producing alternative labels. This alternative labels
result from substituting the the word oviduct with the synonyms found in
WordNet for it: {oviduct, uterine tube, fallopian tube}.

The result of including these additional entries is that the intersection of
the inverted file keys, which would be empty without WordNet expan-
sion, contains now the key {tube, right, fallopian}, which leads to success-
fully establishing a mapping between the classes Mouse:Right Oviduct and
NCI Anat:Right Fallopian Tube. This is an intended mapping (it is contained
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CHAPTER 3. LEXICAL INDEXATION STAGE

Lexical inverted indices
Key Ids

Mouse oviduct, right 2651
NCI Anatomy tube, right, fallopian 2804

Mouse (wnet)
uterine, tube, right 2651
tube, right, fallopian 2651
oviduct, right 2651

NCI Anatomy (wnet) tube, right, fallopian 2804

Class Ids to URIs indices
Id URIs

Mouse 2651 Mouse:Right Oviduct
NCI Anatomy 2804 NCI Anat:Right Fallopian Tube

Table 3.1: Fragment of the lexical indexes for Mouse and NCI Anatomy ontolo-
gies, showing the changes when extending with WordNet.

in the Gold Standard used for evaluation) that is not detected by LogMap
without the WordNet extension.

3.2 Stemming

Stemming is a lexical procedure, widely used in the field of information
retrieval, consisting on removing suffixes from words in order to transform
them into a common root shared by all words from the same lexical family.
This root may or may not be a English1 word; instead, it is a token which
represents the whole set of words included in that lexical family.

In the context of ontology matching, stemming allows to recognize varia-
tions of the same word and deal with them as if they were the same, hence
detecting mappings between concepts whose names include different forms
of the same word. The number of detected mappings (the system’s recall)
can this way be increased.

The LogMap system has been extended to allow the use of stemming. The
first approach followed the lines of the WordNet extension previously men-
tioned (section 3.1) and consisted of preprocessing the ontology’s ‘bag of
words’ to produce an index mapping words to their stemmed version. This
map was to be loaded during lexical indexation by the LogMap algorithm.
However, the experiments showed that stemming can be implemented very
efficiently, therefore this approach was discarded and the preprocessing is no

1It is presumed here that the original language is English. Note that, for most stemming
algorithms, there are adapted versions available for a variety of languages.
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Lexical inverted indices
Key Ids

Mouse intestine, epithelium 1021
NCI Anatomy intestinal, epithelium 2965

Mouse (stemming aggro) intestin, epithel 1021
NCI Anatomy (stemming aggro) intestin, epithel 2965

Mouse (stemming non-aggro)
intestin, epithel 1021
intestine, epithelium 1021

NCI Anatomy (stemming non-aggro)
intestin, epithel 2965
intestinal, epithelium 2965

Class Ids to URIs indices
Id URIs

Mouse 1021 Mouse:Intestine Epithelium
NCI Anatomy 2965 NCI Anat:Intestinal Epithelium

Table 3.2: Fragment of the lexical indexes for Mouse and NCI Anatomy ontolo-
gies, showing the changes when extending with stemming.

longer necessary. The current approach obtains stemmed versions running
the algorithm on the fly during lexical indexation, avoiding thus having to
load extra files or keeping extra maps in memory.

Systems applying stemming usually substitute each word for its stemmed
version. Although this increases the chances of finding matches between
ontology concepts, the index might however lose accuracy since the original
form of the words composing the concept’s label is discarded. This is due
to the fact that labels are not only used by LogMap for finding the initial
anchors but also for obtaining lexical similarity scores at later stages (see
mapping repair and discovery in section 1.5). It might be therefore beneficial
not to discard the original labels in the lexical index when using stemming.
For this purpose, the LogMap extension handling stemming allows for two
different modes to be selected: aggressive substitutes each word with its
stemmed version when building the index while non-aggressive regards the
stemmed version as if it were a synonym of the original, and keeps both
version in the index.

Table 3.2 shows fragments of the lexical indices generated for the Mouse
and NCI Anatomy ontologies, in particular the entries related to the classes
Mouse:Intestine Epithelium and NCI Anat:Intestinal Epithelium. Index ver-
sions are shown for the cases of no stemming, aggressive stemming and
non-aggressive stemming (as described above). When the aggressive mode
is selected, the existing entries are modified by substituting each word in
the key by its root. For instance, for the Mouse ontology, the key {intestin,
epithel} is used instead of {intestine, epithelium}. On the other hand, in
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the non-aggressive case, entries are created for both the original label and
the stemmed version.

As a result of the described changes in the indices, the intersection their
sets of keys is now non-empty and contains the key {intestin, epithel}
(this holds for both the aggressive and non-aggressive options). Thus, a
mapping is established between the classes Mouse:Intestine Epithelium and
NCI Anat:Intestinal Epithelium. This is an intended mapping (it is contained
in the Gold Standard used for evaluation), and it is not detected by LogMap
when the stemming extension is not activated.

3.2.1 Stemmer selection

Since there are multiple stemming algorithms available, it was necessary to
carry a minimal survey on existing algorithms. An extensible framework
was designed to allow different stemming tools to be plugged into LogMap;
so that the user can choose among them when running the system if desired.

The following tools were chosen to be included in the stemming extension
of LogMap because of their well-known good performance, relevance and
availability of implementations:

• Porter: Porter Stemmer [19].

• Porter2: Porter 2, new version of the previous one and included as
part of the SnowBall project [20].

• Paice: The Lancaster (Paice-Husk) Stemming Algorithm [21].

• Lovins: Lovins stemmer [22].

• LovinsIter: Actually same tool as Lovins, but enabling its ‘iterated’
options which recursively stems the term until no more changes are
performed on the input.

It was verified that some stemming tools behave in a slightly more aggres-
sive way than others, producing shorter roots for the same words. Also,
some stemmers may act more accurately than others, for instance when
dealing with irregular forms of words. This differences have an impact on
the system’s precision (too aggressive stemming matches unrelated words)
and recall (too moderate or unsophisticated stemming fails to match related
words), and therefore the mentioned tools were assessed under equal condi-
tions to compare their performance (see detailed results in section 3.3.2).

Since Porter 2 turned out to be the most balanced and achieved, in gen-
eral, best results during testing, it was chosen as the ‘default stemmer’ for
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No WordNet WordNet
P R F P R F

Anatomy 95.84 72.75 82.71 91.05 73.67 81.44
FMA-NCI 76.78 83.06 79.79 60.74 84.47 70.67
FMA-SNOMED 78.23 19.49 31.21 36.70 19.99 25.88
NCI-SNOMED 76.04 58.39 66.06 48.33 59.73 53.43

Table 3.3: Evaluation of WordNet application for lexical indexation: Precision,
Recall and F-measure.

LogMap. All mentioned facts and collected data in this thesis related to the
stemming extension comes therefore from the Porter 2 version unless stated
otherwise.

3.3 Evaluation

The proposed extensions to the lexical indexation stage were tested in order
to compare their impact both on the obtained results and on the execution
times. Experiments were run for the ontologies in the OAEI Challenge
Anatomy track (Mouse and NCI Anatomy), FMA, NCI and SNOMED.

Section 3.3.1 contains results for the WordNet extension, assessment of the
application of stemming are shown in section 3.3.2, and a comparison of
execution times for both extensions is included in section 3.3.3.

3.3.1 WordNet evaluation

Table 3.3 shows the obtained results for the specified ontologies when en-
abling the WordNet extension for the lexical indexation stage. Overall, the
WordNet extension achieves the objective of improving the recall score of
the system. However, this modest increase (up to 1.41% for FMA-NCI)
is counteracted by the massive drop of precision, leading to significantly
decreased F-measures for all ontology pairs.

In order to explain for the poor performance of the extension, it is worth
noting that there are two factors that mitigate its positive impact:

• High specialization of the input ontologies: Since LogMap is mostly
designed to target biomedical ontologies, the test datasets use highly
specialized vocabulary. Such terms are difficult to find in the Word-
Net database and, when found, the obtained synonyms are often too
general and lead to errors.

• Annotated synonyms for classes: In the tested ontologies, classes of-
ten include annotations containing alternative labels. These already
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Table 3.4: Comparison of stemming tools for the lexical indexation stage: Preci-
sion, Recall and F-measure.
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No Stemming Stemming aggro Stemming non-aggro
P R F P R F P R F

Ana 95.84 72.75 82.71 95.33 73.86 83.23 95.33 73.93 83.28
F-N 76.78 83.06 79.79 74.38 85.44 79.52 73.94 85.85 79.45
F-S 78.23 19.49 31.21 66.51 19.66 30.35 65.61 19.66 30.26
N-S 76.04 58.39 66.06 73.18 58.91 65.28 70.78 59.05 64.39

Table 3.5: Evaluation of the stemming extension for lexical indexation (Porter2
stemmer). Precision, Recall and F-measure shown. Abbreviations for
input ontologies: Ana = Anatomy, F-N = FMA-NCI, F-S = FMA-
SNOMED, N-S = NCI-SNOMED.

provide LogMap with a not extensive but accurate set of synonyms,
therefore WordNet’s contribution is perceived mostly as ‘noisy’.

Hence, evidence suggests that the developed extension for inclusion of Word-
Net synonyms is not adequate for the LogMap system, unless it is applied
for a different (less specialized) domain or the user’s primary need is recall
regardless of the precision obtained.

3.3.2 Stemming evaluation

As described in section 3.2, four stemming tools were included for this ex-
tension (they are five if both versions of Lovins are counted). A comparison
of how each of them performs for the specified ontologies is shown in table
3.4. Aggressive stemming was used for this purpose.

The Porter2 tool outstands as the most balanced, achieving in general the
best F-measure scores. Porter performs quite closely to it, only significantly
below for NCI-SNOMED (where recall is quite lower than Porter2’s). Paice’s
algorithm is much more aggressive than them, producing remarkable higher
recall results for every test, but with the drawback of much lower precision
with a subsequent drop in the F-measure. Finally, Lovins and its recursively-
iterated version present a very aggressive behaviour noticeable by their poor
precision scores, which not being compensated by a very high recall make
these last tools unsuitable for this application.

As mentioned, Porter2 shows the best performance and is therefore the
default tool for the stemming extension. It is worth noticing however that,
should the user be interested in attaining high recall over precision, changing
from Porter2 to Paice could be benefitial in such specific scenario.

Table 3.5 shows a comparison of results obtained for the specified ontolo-
gies disabling stemming, enabling aggressive stemming and enabling non-
aggresssive stemming.
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Ontologies None(s) WordNet(s)
Stemming
aggro(s)

Stemming
non-aggro(s)

Anatomy 7 24 9 9
FMA-NCI 187 1383 175 230
FMA-SNOMED 606 2893 470 649
NCI-SNOMED 756 7770 605 1173

Table 3.6: Evaluation of LogMap execution times if enabling the extensions: none,
WordNet, aggressive stemming and non-aggressive stemming.

Results show that the developed extension succeeds in increasing the sys-
tem’s recall, from 0.17% for FMA-SNOMED to 2.79% for FMA-NCI with
the non-aggressive option. However, it is counteracted by a loss of precision
which causes the F-measure to decrease in all cases except for the Anatomy
track (rises in 0.57% for the non-aggressive mode).

It is also verified that, in general, the aggressive and non-aggressive options
perform similarly in terms of F-measures, although the latter attains slightly
higher recall in exchange for worse precision values. For these reasons, it
can be concluded that the aggressive method is overall preferable to the
non-aggressive alternative.

In a similar way as it was commented for WordNet in section 3.3.1, there are
two factors that counteract the positive impact of stemming in the system:

• High specialization of the input ontologies: Stemming algorithms are
language-specific, and tools used for this extension are English stem-
mers. Highly specialized vocabulary as biomedical often contains non-
English terms, acronyms, latinisms and other types of words for which
it is difficult to find a useful root. These cases often lead to noise when
stemming is enabled.

• Use of UMLS Lexicon: As it was previously mentioned in this chapter,
LogMap uses the UMLS Lexicon, a lexical resource for specialized
terms which contains spelling variants, plurals and normalizations.
This lexical enrichment contributes to diminishing the visibility of the
stemming extension effects.

In conclusion, experiments suggest that the stemming extension is beneficial
if recall is prioritized over precision, and that it is recommendable to use
it for the specific scenario of the Anatomy track of the OAEI Ontology
Matching Challenge.
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3.3.3 Execution times evaluation

Lexical index enhancing techniques can have an important impact (positive
or negative) on the execution time of the system, for three reasons:

• Building the lexical indices takes additional time since there are addi-
tional tasks to do(trivial).

• If the employed technique enriches the index with supplementary label
names (as it is the case of WordNet and non-aggressive stemming), the
time required at later stages to handle each of the alternative labels
each time two classes are compared increases significantly.

• If the employed technique, on the other hand, reduces the total number
of labels in the index (as aggressive stemming does in certain cases),
then there is a reduction in the time spent dealing with class labels at
later stages.

Since this time differences, positive or negative, can be significant, experi-
mentation was conducted to measure them. Table 3.6 resumes the evalu-
ation results of the proposed lexical indexation extensions for the specified
ontology matches. Execution times of the LogMap system are shown for the
cases of no extensions enabled, WordNet enabled and both aggressive and
non-aggressive stemming (Porter2 tool).

According to the results, execution times increase heavily when using the
WordNet extension (up to 928% extra time for NCI-SNOMED). Regarding
stemming, the non-aggressive mode also increases execution times, although
in a much more moderate way (up to 55% extra time for NCI-SNOMED).
Aggressive stemming, on the other hand, presents the added benefit of re-
ducing execution times (up to 20% of time saved for NCI-SNOMED).

From the analyzed results and previous conclusions in sections 3.3.1 and
3.3.2, it follows that WordNet has too high an efficiency penalty to be suit-
able for inclusion in LogMap. Regarding stemming, the non-aggressive ver-
sion increases execution times while aggressive stemming reduces them as an
added advantage and behaves generally better (in terms of the F-measure).
Hence, aggressive stemming stands as a useful extension for LogMap under
certain conditions.
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Structural Indexation Stage

The second stage of indexation is structural indexation. The (extended)
class hierarchy of each input ontology is used to obtain useful information
for later stages in the algorithm. LogMap’s scalability heavily relies therefore
on accessing efficiently the stored information.

LogMap’s extended structural index consists of the following elements:

• The inferred hierarchy of the ontology, describing all the parent-child
links between its classes.

• Disjointments explicitly declared in the ontology.

• Additional complex class axioms (e.g., those stating subsumption be-
tween an intersection of named classes and a named class).

This extended hierarchy is stored using interval-labelling schemas, optimized
data structures for DAGs and trees which present efficient use of memory
and access speed. For this purpose, the ontology classiffication is treated as
a DAG, where each class is a node with links pointing to its children (and
from its parents).

The first release of LogMap made use of an external Python library [23] for
handling the interval-labelling schemas. The external library was running
on a local server and communicated with the system through sockets, re-
ceiving the classified ontology and sending back the computed schemas. For
each ontology, two DAGs were to be processed: one containing the descen-
dants hierarchy (links from parents to children) and another containing the
ancestors hierarchy (links from children to parents).

This approach presents two main disadvantages: First, communication with
the library and the additional call for the reverse hierarchy are very time-
consuming. Second, needing to run the external server prevents the system
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from being one self-contained component, which is desirable for entering the
OAEI ontology matching challenge.

The objective of this thesis with respect to the structural indexation stage is
to provide a new implementation of the interval-labelling schema library in
Java, in order to improve LogMap’s efficiency and to allow direct integration
in the system (without needing to run an external process).

4.1 The interval-labelling schema library

A new library has been designed and built implementing the algorithm for
compression of transitive relations into interval-labelling schemas described
in [24], a technique that has been applied to ontology hierarchy indexing
and shown to significantly reduce the cost of typical queries over large class
hierarchies [25, 23]. The package offers a data structure that takes as input
a classified ontology (in the form of a map of classes to their children) and
then builds the corresponding interval-labelled graph following the steps
described in figure 4.1.

The algorithm in [24] uses postorder indices for nodes, while the library
formerly used by LogMap implements a preorder walk instead. For the
designed library, an extensible set of classes was built so that the user can
select which of the modes to use. It is woth noting that they differ in the
output intervals’ format, but their behaviour is exactly equivalent in terms
of performance and correctness.

4.2 Optimizing data structures: Encoding descen-
dants and ancestors in a single structure

In order to optimize memory usage, the library stores both the descendants
and ancestors information in a single structure. For this purpose, for each
class in the input ontology a node is created storing all information related
to it:

• Class identifier assigned by LogMap to each class.

• List of child nodes in the classified ontology.

• List of parent nodes in the classified ontology.

• Parent node in the descendants optimal spanning-tree.

• List of child nodes in the descendants optimal spanning-tree.

• Parent node in the ancestors optimal spanning-tree.
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Algorithm: Creation of interval-labelled schema

1. Create nodes for each class, and build map relating class identifiers to class
nodes.

2. Build DAG representing the classified ontology.

3. Both for descendants and ancestors, do:

(a) Find DAG’s root (create if necessary).

(b) Obtain optimal spanning-tree. This step is optional (any spanning-tree
can be used), but it guarantees that the data structure will only store
the least possible number of intervals.

(c) Perform preorder (or postorder) walk of the spanning-tree, assigning to
each node a preorder (or postorder) index. Additionally, each node is
assigned a tree interval of the form [i, j], where i is the node’s preorder
index and j is the maximum preorder index among its descendants (or
j is the node’s postorder and i is the minimum postorder among its
descendants).

(d) Compute and compress inherited intervals. Each node’s list of inter-
vals, which only contained its tree interval, is now extended with its
descendants’ intervals. This is accomplished performing a depth-first
traversal of the whole hierarchy (not only the spanning-tree this time),
so that each node ‘inherits’ all of its descendants’ intervals by inherit-
ing those belonging to its direct children. At the same time, intervals
are compressed, so that if for the same node one interval is subsumed
by another interval, the former is discarded, and if they are contiguous
both are merged into a new one.

Figure 4.1: Algorithm for building the interval-labelled schema for ancestors and
descendants.

• List of child nodes in the ancestors optimal spanning-tree.

• indexDesc : Preorder (postorder) index in the descendants tree.

• indexAnc : Preorder (postorder) index in the ascendants tree.

• intervalsDesc : List of descendants intervals.

• intervalsAnc : List of ancestors intervals.

After the compressed index has been created, data structures in a node
relating to other nodes can be cleared to save memory, so that the effective
memory usage is limited to (disregarding class and index identifiers, which
are integers) one list of intervals for descendants and another for ancestors.
Furthermore, having that the algorithm compresses the list intervals and
that an optimal spanning-tree has been used to assign them, these lists are
of minimal size.

Additionally, the artificial roots mentioned in 4.1 which may need to be cre-
ated to perform the preorder or postorder walks are automatically unattached
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and reattached from their related nodes when not needed. This is, if the
hierarchy root has been artificially added, then it is attached before the
descendants traversal but unattached after it, and likewise for the inverted
root and the ancestors traversal. If they were kept attached to the graph
during each of these walks, every node1 would be labelled with one extra
interval for the artificially added inverse root. This way, attachment and
reattachment of artificial roots improves memory usage.

4.3 Querying the hierarchy

Figure 4.2 shows a fragment of the NCI ontology together with two interval-
labelled DAGs representing the corresponding descendants and ascendants
hierarchies. These hierarchies are indexed by the designed library while dis-
jointness and complex class axioms are stored in separate structures not ad-
dressed by this thesis. Once the interval-labelled schema has been obtained
by the library, LogMap can access it for efficiently answering queries about
parent-child relationships. The following are examples of typical queries
over ontology hierarchies which only require simple integer operations (class
label abbreviations as stated in Figure 4.2):

• ‘Is Smegma a subclass of Anatomy?’ :

– Check if indexDesc(S)=7 is contained in any of
intervalsDesc(A)={[5,9]}.

– 7 ∈ [5, 9]

– Answer is Yes

• ‘Is BiologicalProcess an ancestor of CellularSecretion?’ :

– Check if indexAnc(BP)=4 is contained in any of
intervalsAnc(CS)={[2,4]}.

– 4 ∈ [2, 4]

– Answer is Yes

• ‘Do ExocrineGlandFluid and TransmembraneTransport have
descendants in common?’ :

– Check if the intersection of any interval from
intervalsDesc(EFG)={[6,7]} and any interval from
intervalsDesc(TT)={[3,4]} is non-empty.

– [6, 7] ∩ [3, 4] = ∅
– Answer is No

1To be rigorous, nodes within the same branch as the inverse root in the minimal
spanning-tree would not store an extra interval. Their tree-interval would already contain
the index of the inverse root.
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α1 : Anatomy v ¬BiologicalProcess
α2 : TransmembraneTransport v ∃BP hasLocation.CellularMembrane

α3 : ∃BP hasLocation.> v BiologicalProcess

α4 : > v ∀BP hasLocation.Anatomy

α5 : CellularSecretion v TransmembraneTransport

α6 : ExocrineGlandFluid v ∃AS hasLocation.ExocrineSystem

α7 : > v ∀AS hasLocation.Anatomy

α8 : ∃AS hasLocation.> v Anatomy

α9 : Smegma v ExocrineGlandFluid

α10 : ExocrineGlandFluid u ExfoliatedCells v Smegma

(a) NCI ontology fragment

β1 : ∀x.Anatomy(x)→ ¬BiologicalProcess(x)

β2 : ∀x.TransmembrTransport(x)→ ∃y.(CellularMembr(y) ∧ BP hasLocation(x, y))

β3 : ∀x.(∃y.BP hasLocation(x, y))→ BiologicalProcess(x)

β4 : ∀x.∀y.BP hasLocation(x, y)→ Anatomy(y)

β5 : ∀x.CellularSecretion(x)→ TransmembrTransport(x)

β6 : ∀x.ExocrineGlandFluid(x)→ ∃y.ExocrineSystem(y) ∧ AS hasLocation(x, y))

β7 : ∀x.∀y.AS hasLocation(x, y)→ Anatomy(y)

β8 : ∀x.(∃y.AS hasLocation(x, y))→ Anatomy(x)

β9 : ∀x.Smegma(x)→ ExocrineGlandFluid(x)

β10 : ∀x.ExocrineGlandFluid(x) ∧ ExfoliatedCells(x)→ Smegma(x)

(b) FOL translation

>
[1,9]

BP
[2,4]

TT
[3,4]

CS
[4,4]

A
[5,9]

EGF
[6,7]

S
[7,7]

ES
[8,8]

CM
[9,9]

⊥

(c) Descendant intervals

⊥
[1,9]

CS
[2,4]

TT
[3,4]

BP
[4,4]

S
[5,7]

EGF
[6,7]

ES
[8,8]
[7,7]

CM
[9,9]
[7,7]

A
[7,7]

(d) Ancestor intervals

Figure 4.2: Fragment of NCI extended hierarchy and labelled schema (FOL trans-
lation shown for reference).
Abbreviations: BP=BiologicalProcess, A=Anatomy,
TT=TransmembraneTransport, CM =CellularMembrane,
EGF=ExocrineGlandFluid, CS=CellularSecretion,
ES=ExocrineSystem, S=Smegma.
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Ontology
Original
time (s)

Improved
time (s)

Time reduction (%)

Mouse Anatomy 0.546 0.016 97.07%
NCI Anatomy 1.279 0.046 96.40%
FMA 35.038 2.044 94.17%
NCI 32.666 1.435 95.61%
SNOMED 961.071 33.197 96.55%

Table 4.1: Evaluation of structural indexation times before and after the integra-
tion of the new interval-labelling schema library.

• ‘Do Smegma and CellularSecretion have ancestors in common?’ :

– Check if the intersection of any interval from
intervalsAnc(S)={[5,7]} and any interval from
intervalsAnc(CS)={[2,4]} is non-empty.

– [5, 7] ∩ [2, 4] = ∅
– Answer is No

4.4 Evaluation

The designed interval-labelling schema library was tested for correctness in
two stages: First, small-sized unit tests were run during and after develop-
ment. The library was then integrated into LogMap and put in exploitation,
and it was checked that the obtained output for realistic ontologies (FMA,
NCI, SNOMED) matched the one obtained with the previous library.

The next stage in the evaluation was measuring the impact of integrating the
designed library instead of running the formerly used external one. Table
4.1 shows the assessment results for the library. The experiments consisted
on measuring the execution times of the structural indexation stage for the
ontologies Mouse, NCI Anatomy, FMA, NCI and SNOMED using both li-
braries. Table shows obtained times for each library for , as well as the
efficiency improvement expressed as the percentage of reduced time.

Results show that execution times are reduced by a large extent with the new
library both for small ‘laboratory’ ontologies such as those from the OAEI
Anatomy track, as well as for reallistic ontologies such as FMA, NCI or
SNOMED. The case of the latter is of special relevance, where the indexing
time has been improved from 961 seconds to 33 seconds.

This huge efficiency boost can be explained by optimizations described in
section 4.2 together with the fact that the library has been integrated di-
rectly into the LogMap system and is no longer needed to run and to com-
municate with an external process.
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Mapping repair and
discovery

Once the lexical and structural indices have been built and the initial an-
chors have been established, the next stage is mapping repair and discovery,
in which anchors are used to start the search for new mappings (see section
1.5). This task is carried out by the core of the LogMap system, an iterative
process consisting of two alternate steps: repair and discovery; which con-
tinue until no more mappings are found. Each step can be briefly described
as follows:

• During the repair step, a (possibly incomplete) reasoning algorithm
is used to identify unsatisfiable classes with respect to the merge of the
input ontologies and the set of mappings established so far. A ‘greedy’
diagnosis algorithm is then used to automatically repair (if possible)
the detected unsatisfiabilities.

• During the discovery step, previously found and ‘cleant’ mappings
are used as anchors to explore the input ontologies in an efficient way
searching for new mappings.

This thesis focuses in enhancing the repair step. Algorithmic details of the
actual design (section 5.1) as well as proposed modifications and extensions
(sections 5.2, 5.3) are described next.

5.1 The repair step

Automatically found mappings are prone to leading to undesired logical con-
sequences, which manifest themselves as unsatisfiable classes. The objective
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Procedure Repair1
Input: List: Ordered classes; P1, P2 and PM Horn-propositional theories.
Output: PM : set of repaired mappings

1: for each C ∈ List do
2: PC := P1 ∪ P2 ∪ PM ∪ {true→ C}
3: 〈sat,Pact〉 := DowlingGallier(PC)
4: if sat = false then
5: Repairs := ∅
6: repair size := 1
7: repeat
8: for each subset R of Pact of size repair size do
9: sat := DowlingGallier(PC \ R)

10: if sat = true then Repairs := Repairs ∪ {R}
11: end for
12: repair size := repair size+ 1
13: until |Repairs| > 0
14: R := element of Repairs with minimum confidence.
15: PM := PM \ R
16: end if
17: end for
18: return PM

Table 5.1: Repair in LogMap. A call to DowlingGallier returns a satisfiability
value sat and, if sat = false, it optionally returns the relevant active
mappings (Pact).

of the repair step is to remove some of the found mappings in order to
eliminate such unsatisfiabilities, hence yielding a set of ‘clean’ mappings.

In order to detect unsatisfiable classes, LogMap uses the Dowling and Gallier
algorithm for propositional Horn satisfiability [26]. The structural indices
of the input ontologies are used together with the established mappings to
produce a propositional Horn theory. Then, a call to Downing and Gallier
finds whether a given class is satisfiable with respect to the propositional
theory. This is a sound and highly-scalable technique, but possibly incom-
plete. That is, detected unsatisfiabilities are guaranteed to be present in the
non-propositional merge of the input ontologies and the set of mappings,
while not every unsatisfiability entailed by the merge of the ontologies and
mappings discovered so far is guaranteed to be detected. This is due to
the loss of information when the ontologies’ axioms are projected to Horn
propositional form. However, experiments show that for instance, from the
more than 600 unsatisfiable classes in FMA-NCI, LogMap only fails to de-
tect one. It can therefore be assumed that if LogMap succeeds in repairing
all found unsatisfiabilities, it likely that there are none remaining.

Table 5.1 describes in detail the steps followed by the repair algorithm cur-
rently implemented by LogMap. At each iteration of the LogMap core, a

32



CHAPTER 5. MAPPING REPAIR AND DISCOVERY

data structure keeps track of the active mappings, i.e. the set of mappings
that have been found in the last discovery step and still need to be cleaned.
The implemented version of Downing and Gallier has been extended to iden-
tify the subset of active mappings that are involved in the proof that a class
is unsatisfiable. Thus, the diagnosis algorithm limits the search to mappings
only from this ‘conflicting’ set.

Given an unsatisfiable class with respect to the propositional theory formed
by the projected input ontologies and the established mappings, a repair
plan is a subset of the active mappings such that, if they are removed from
the theory, the class becomes satisfiable. Note that there may be zero,
one or more possible repairs for a given class, and therefore it is needed
to establish criteria to choose among them if several are found. LogMap
uses an heuristic approach for plan selection, implementing the following
specifications (in descending priority order):

1. A plan with a small size is preferred over a larger one. Intuitively,
this condition states that it is desirable to remove as few mappings as
possible during repair.

2. A plan with a low confidence value is preferred over a higher con-
fidence one. Mappings are assigned confidence values through lexical
and semantic heuristics (such as measuring lexical similarity or the
amount of mappings found in the local neighbourhoods of the mapped
classes). This way, a plan is assigned a confidence value equal to the
added confidence values of the mappings it contains. Intuitively, this
condition states that it is preferable to select plans involving removal
of low-confidence mappings.

One of the most expensive operations in the repair algorithm is calling the
Dowling and Gallier algorithm. Thus, reducing the number of calls made to
this procedure would improve the system’s efficiency for the expansion stage.
For each class, one call is performed to test satisfiability. Additionally, for
each class reported as unsatisfiable, there is one extra call for each potential
repair plan that is checked until one is selected. This thesis introduces an
enhanced version of the current repair algorithm which attempts to reduce
the number of calls to Dowling and Gallier (section 5.2), as well as an ex-
tended version of the later which additionally allows to filter the ‘conflicting
mappings’ before the possible plans are checked (section 5.3).

5.2 Enhancing the repair algorithm

LogMap’s current repair algorithm has been optimized aiming to reduce the
number of calls to the Dowling and Gallier algorithm but maintaining the
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Procedure Repair2
Input: List: Ordered classes; P1, P2 and PM Horn-propositional theories.
Output: PM : set of repaired mappings

1: for each C ∈ List do
2: PC := P1 ∪ P2 ∪ PM ∪ {true→ C}
3: 〈sat,Pact〉 := DowlingGallier(PC)
4: if sat = false then
5: repair size := 1
6: R := ∅
7: repeat
8: potential plans := {R : R ⊆ Pact and |R| = repair size}
9: ordered plans := OrderPlans(potential plans)

10: repeat
11: Rcandidate := next element in ordered plans
12: sat := DowlingGallier(PC \ Rcandidate)
13: if sat = true then
14: R := Rcandidate

15: end if
16: until (R 6= ∅ or ordered plans is empty)
17: repair size := repair size+ 1
18: until R 6= ∅
19: PM := PM \ R
20: end if
21: end for
22: return PM

Table 5.2: Enhanced repair algorithm. A call to OrderPlans returns a list of plans
in ascending confidence order.

plan selection heuristics specified in section 5.1 (this premise was set so that
the system’s behaviour remains unaltered).

Table 5.2 shows in detail the the enhanced repair algorithm. The proposed
modification is as follows: The former algorithm checks for all potential plans
(i.e. mapping combinations) of a given size whether they are repair plans,
and if several are found, then chooses according to their confidence values.
The new version orders the potential plans according to confidence values
into a queue, then iterates through it looking for the first element that is
effectively a repair plan. If such a plan is found, it is selected and there is
no need for extra calls to Dowling and Gallier for the remaining potential
plans.

This method needs, therefore, to carry out tasks which the previous version
did not, such as computing confidence values for every potential plan and
ordering them. This operations, however, are comparatively inexpensive
since confidence values are precomputed before the algorithm starts, and
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the saved calls to Dowling and Gallier are meant to compensate for their
cost. Assessment results are given in section 5.4.

5.3 Mappings pre-filtering

The enhanced version of the repair algorithm described in section 5.2 in-
troduces a new approach to plan evaluation and selection. However, all
‘conflicting mappings’ are still considered equal when obtaining potential
plans. Another variation of the original algorithm has been designed ex-
tending the previous approach and allowing mappings to be filtered before
combining them into plans. Repair exploration is optimized by checking
first those plans containing only mappings which satisfy certain properties.

The pre-filtering extension allows application of two different filtering meth-
ods (combined or in a separate manner) to the conflicting mappings obtained
from Dowling and Gallier:

• Conflict likelihood: Mappings less likely to be involved in a conflict
are discarded (see section 5.3.1).

• Confidence: High-confidence mappings, which are less likely to be in
the lowest-confidence repair plan, are discarded (see section 5.3.2).

Table 5.3 shows the modifications made to the previously enhanced algo-
rithm (see table 5.2) to extend it with mapping pre-filtering. The new
version filters the conflicting mappings obtained from Dowling and Gallier
before entering the loop in which potential plans are checked. Then, the
loop iterates twice for each size: The first time, filtering is enabled, and
plans are formed only with filtered mappings. If no plans are found, then
the loop is run a second time without increasing the size but disabling filter-
ing, so plans are formed from all conflicting mappings. Also, in the second
iteration, already tried plans are not checked again. If no plan is found in
the second iteration, size is incremented and filtering enabled for the next
iteration. Iterations over the size of potential plans are broken this way into
two parts, first checking all plans of that size which contain only filtered
mappings, and then checking the remaining ones.

In section 5.2 it was mentioned that the enhanced method (without filtering)
complies with the specifications of the plan-selecting policy described in sec-
tion 5.1 (selecting criteria were size and confidence). The method extended
with filtering, however, does not fully comply with both of them. Small-
sized plans are still selected over larger ones, but containing only filtered
mappings is considered now a higher-priority criterion than confidence. Al-
though it is untypical of the extended method to produce a plan that is not

35



CHAPTER 5. MAPPING REPAIR AND DISCOVERY

Procedure Repair3
Input: List: Ordered classes; P1, P2 and PM Horn-propositional theories.
Output: PM : set of repaired mappings

1: for each C ∈ List do
2: PC := P1 ∪ P2 ∪ PM ∪ {true→ C}
3: 〈sat,Pact〉 := DowlingGallier(PC)
4: if sat = false then
5: repair size := 1
6: R := ∅
7: Pact′ := FilterMappings(Pact)
8: sat := true
9: repeat

10: if filter then
11: potential plans := {R : R ⊆ Pact′ and |R| = repair size}
12: else
13: potential plans := {R : R ⊆ Pact and |R| = repair size
14: and R 6∈ potential plans}
15: end if
16: ordered plans := OrderPlans(potential plans)
17: repeat
18: Rcandidate := next element in ordered plans
19: sat := DowlingGallier(PC \ Rcandidate)
20: if sat = true then
21: R := Rcandidate

22: end if
23: until (R 6= ∅ or ordered plans is empty)
24: if mappings = Pact then
25: repair size := repair size+ 1
26: mappings := Pact′
27: else
28: mappings := Pact \ Pact′
29: end if
30: if filter then
31: filter := false
32: else
33: repair size := repair size+ 1
34: filter := true
35: end if
36: until R 6= ∅
37: PM := PM \ R
38: end if
39: end for
40: return PM

Table 5.3: Enhanced repair algorithm extended with mappings pre-filtering. A
call to FilterMappings returns a subset of Pact containing only mappings
presenting desired properties.
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lowest-confidence, it is worth acknowledging this fact in order to account
for minor differences in LogMap’s results. Evaluation details are given in
section 5.4.

5.3.1 Conflict likelihood filtering

Let A1 ≡ B1 and A2 ≡ B2 be two mappings where A1, A2are classes from
O1 and B1, B2are classes from O2. For cases where A1 ⊆ A2 and B1 ⊥
B2, the mappings are in direct conflict, and at least one of them will be
included in any repair plan. For cases where A1 ⊆ A2 and B1and B2belong
to independent branches in the hierarchy, mappings are not necessarily in
conflict but are likely to create one, and it is probable that one of them will
be included in most repair plans.

The conflict likelihood filter performs the described check over all pairs of
mappings in the conflicting set returned by Dowling and Gallier. Any map-
ping reported as likely to be involved in a conflict is included in the filtered
output set.

5.3.2 Confidence filtering

Intuitively, mappings with high confidence scores are considered ‘better map-
pings’, and it is therefore preferable not to delete them. Additionally, the
plan-selection policy prioritizes low-confidence plans, which typically will
not consist of high-confidence mappings. Therefore, it is reasonable to check
first if there is a plan without considering high-confidence mappings.

For this purpose, a very basic statistical analysis is performed on the con-
fidence scores of the conflicting mappings in order to obtain their median
and standard deviation. Then, a threshold is obtained from this parame-
ters (e.g., threshold = median(confidences) − sd(confidences)1), instead
of being arbitrarily set. This way it is ensured that confidence values are
only considered to be high if they are high with respect to most of the other
conflicting mappings. Every mapping is compared against the obtained
threshold, and then those with confidence values below it are included in
the filtered output set.
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Ontologies Repair1 (s) Repair2 (s) Repair3 (s)
Anatomy 2 2 2
FMA-NCI 36 36 35
FMA-SNOMED 221 182 189
NCI-SNOMED 408 388 381

Table 5.4: Evaluation of enhanced versions of repair algorithms (execution times
exclude the indexation stages). Algorithms labelled as follows: Repair1
= Original repair (non-enhanced), Repair2 = Enhanced version (no
filtering), Repair3 = Enhanced version with filtering.

5.4 Evaluation

Table 5.4 compares the obtained results from the evaluation of the different
versions of the repair algorithm. Times were measured for the matching
stages (computation of initial anchors plus expansion), excluding the index-
ation stages which are equal for all methods.

Results show that the enhanced version which order plans before testing for
satisfiability (Repair2 ) succeeds in reducing execution times with respect
to the original algorithm saving up to 18% of the original time for FMA-
SNOMED. The version extended with mapping pre-filtering (Repair3 ) per-
forms quite similarly to the one not including mapping pre-filtering.

In light of the shown results, it can be concluded that the enhanced repair
with plan-ordering improves the original repair algorithm in LogMap. Re-
garding the extended version with mapping-filtering, it appears to be neither
beneficial nor unfavorable with respect to its non-extended counterpart. It
remains as possible future work to conduct research on whether a better
adjusted filtering would improve the results.

1This is the threshold used in the current implementation. Using thresholds of the
form threshold = median(confidences) − k × sd(confidences) allows experimenting with
more aggressive (k > 1) or permissive (k < 1) filtering.))
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Conclusions and
contributions

This chapter resumes the conclusions obtained after the finalization of the
thesis from the obtained results and offers an account of the contributions
of this thesis. The following sections address each of the stages of LogMap
for which proposals were presented.

6.1 Lexical indexation

The proposed extensions for the lexical indexation stage consist on the use
of WordNet synonyms and stemming algorithms:

• Application of the WordNet extension 1 has been found to produce a
small increase in the recall of system. However, it presents major draw-
backs such as a very significant drop of precision and a huge increase in
computational costs for large ontologies, hindering the system’s scal-
ability. It is therefore not recommended for permanent integration in
LogMap, although it remains as an available resource for the project
which can be enabled for specific cases (e.g. small or non-specialized
ontologies).

• It has been shown that enriching the lexical indices with stemming
succeeds in improving the system’s recall. However, the technique also
involves a moderate loss of precision that is only compensated in spe-
cific cases, such as the OAEI benchmark Anatomy track (for which
non-aggressive stemming improves the F-measure in 0.57%). A num-
ber of stemming algorithms have been integrated into LogMap, from

1The external tool WordNetFetcher was implemented for this extension.
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which Porter2 [20] has been determined to be the most balanced. As a
beneficial side-effect, aggressive stemming has been found to improve
the system’s performance by reducing execution times in up to 20% for
NCI-SNOMED. It remains as a component in the system and its use
is recommended for the above mentioned specific cases (or for those
in which recall is prioritized over precision).

6.2 Structural indexation

Regarding structural indexation, an integrated library implementing the
interval-labelling schema proposed by [24] has been built to substitute for
the former one [23]. The library has been optimized for storing ontology
hierarchies, and has been shown to produce a large efficiency boost for the
task of structural indexation. For instance, SNOMED was indexed by the
previous library in 961s, while the new takes 31s to do it (97% time reduc-
tion).

6.2.1 Participation in the OAEI 2011 Campaign

The Ontology Alignment Evaluation Initiative2 [3] carries out annual cam-
paigns for the evaluation of ontology matching tools, focusing primarily on
concept matching although instance matching has recently been included as
well. The initiative provides an assessment benchmark for ontology align-
ment, including test cases and associated gold standards.

Before the new interval-labelling schema library (written in Java) was im-
plemented, LogMap relied on a Python library, run as an external process
which communicated with the system via sockets. The fact that the new
library integrates with the system into a single component allowed LogMap
to qualify for entering the OAEI 2011 ontology matching contest.

Tables 6.1 and 6.2 compare LogMap to the top participating tools in the
OAEI 2010 campaign for the Anatomy and Conference tracks. Precision,
recall and F-measure scores are shown for both, and an incoherence score
which measures the amount of logical errors present in the established map-
pings is shown for Conference. In the light of the good positioning of LogMap
with respect to competing tools in these tracks (second for Anatomy and
first for Conference), it is reasonable to expect good results on the 2011
edition taking place in the near future.

Publication of the participation of LogMap in the OAEI 2011 Campaign is
pending [15].

2http://oaei.ontologymatching.org/
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Systems Precision Recall F-score

AgrMaker 0.903 0.853 0.877
LogMap 0.934 0.803 0.864
Ef2Match 0.955 0.781 0.859
NBJLM 0.920 0.803 0.858
SOBOM 0.949 0.778 0.855
BLOOMS 0.954 0.731 0.828

Table 6.1: Comparing LogMap with the top 5 tools in the Anatomy track of the
OAEI 2010

Systems Precision Recall F-score Incoherence

LogMap 0.85 0.54 0.66 0%
CODI 0.86 0.48 0.62 0.1%
ASMOV 0.57 0.63 0.60 5.6%
Ef2Match 0.61 0.58 0.60 7.2%
Falcon 0.74 0.49 0.59 >4.8%
AgrMaker 0.53 0.62 0.58 >14.8%

Table 6.2: Comparing LogMap with the top 5 tools in the Conference track of
the OAEI 2010. Incoherence degree for Falcon and AgrMaker is not
complete due to a timeout in the mapping incoherence evaluation al-
gorithm.

6.3 Mapping repair and discovery

Two enhanced versions for the repair algorithm of LogMap are presented in
this thesis: the first one (Repair2 ) implements an optimization for the plan-
selection method and the second one (Repair3 ) extends it by pre-filtering
involved mappings. The proposed optimization was shown to significantly
reduce execution times of the matching stages3 of the algorithm, up to 18%
for FMA-SNOMED. However, the mapping filtering feature was found not
to improve the system’s performance beyond these results. The possibility
of considering different parameters for the filtering method remains open for
further research.

3Excluding lexical and structural indexation
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