
PAGOdA: Pay-as-you-go Ontology Query Answering
Using a Datalog Reasoner

Yujiao Zhou yujiao.zhou@cs.ox.ac.uk

Bernardo Cuenca Grau bernardo.cuenca.grau@cs.ox.ac.uk

Yavor Nenov yavor.nenov@cs.ox.ac.uk

Mark Kaminski mark.kaminski@cs.ox.ac.uk

Ian Horrocks ian.horrocks@cs.ox.ac.uk

Department of Computer Science, University of Oxford

Parks Road, Oxford OX1 3QD, United Kingdom

Abstract

Answering conjunctive queries over ontology-enriched datasets is a core reasoning task
for many applications of semantic technologies. Query answering is, however, computation-
ally very expensive, which has led to the development of query answering procedures that
sacrifice either expressive power of the ontology language, or the completeness of query an-
swers in order to improve scalability. In this paper, we describe a hybrid approach to query
answering over OWL 2 ontologies that combines a datalog reasoner with a fully-fledged
OWL 2 reasoner in order to provide scalable ‘pay-as-you-go’ performance. The key feature
of our approach is that it delegates the bulk of the computation to the datalog reasoner
and resorts to expensive OWL 2 reasoning only as necessary to fully answer the query.
Furthermore, although our main goal is to efficiently answer queries over OWL 2 ontologies
and data, our technical results are very general and our approach is applicable to first-order
knowledge representation languages that can be captured by rules allowing for existential
quantification and disjunction in the head; our only assumption is the availability of a
datalog reasoner and a fully-fledged reasoner for the language of interest, both of which
are used as ‘black boxes’. We have implemented our techniques in the PAGOdA system,
which combines the datalog reasoner RDFox and the OWL 2 reasoner HermiT. Our ex-
tensive evaluation shows that PAGOdA succeeds in providing scalable pay-as-you-go query
answering for a wide range of OWL 2 ontologies, datasets and queries.

1. Introduction

Ontologies are increasingly used as rich conceptual schemas in a wide range of application
domains (Staab & Studer, 2004). One of the most widely used ontology languages is OWL, a
description logic based language that was standardised by the World Wide Web Consortium
(W3C) in 2004 and revised (as OWL 2) in 2009 (Baader, Calvanese, McGuinness, Nardi,
& Patel-Schneider, 2003; Horrocks, Patel-Schneider, & van Harmelen, 2003; Cuenca Grau,
Horrocks, Motik, Parsia, Patel-Schneider, & Sattler, 2008). An OWL ontology consists of a
set of axioms, which correspond to first-order sentences containing only unary and binary
predicates (called classes and properties in OWL), with the structure of axioms/sentences
being restricted to ensure the decidability of basic reasoning problems.

In some applications, the main focus is on the conceptual model itself, with class sub-
sumption being a key reasoning problem. In an increasing number of applications, however,
the main focus is on using the conceptual model to access data, often in the form of an RDF

1

Revision 2244 – March 19, 2015

graph (Manola & Miller, 2004). In such data-centric applications a key reasoning problem is
to answer conjunctive queries (CQs)—sentences constructed from function-free atoms using
conjunction and existential quantification only (Abiteboul, Hull, & Vianu, 1995)—which
constitute the core component of standard query languages such as SQL and SPARQL
(W3C SPARQL Working Group, 2013).

Conjunctive query answering over ontology-enriched datasets is, however, of high worst-
case complexity (Glimm, Lutz, Horrocks, & Sattler, 2008; Eiter, Ortiz, & Simkus, 2012),
even when measured only with respect to the size of the data (so called data complexity).
Although heavily optimised, existing systems for query answering with respect to (RDF)
data and an unrestricted OWL 2 ontology can process only small to medium size datasets
(Sirin, Parsia, Cuenca Grau, Kalyanpur, & Katz, 2007; Möller, Neuenstadt, Özcep, &
Wandelt, 2013; Wandelt, Möller, & Wessel, 2010; Kollia & Glimm, 2013). This has led
to the development of query answering procedures that sacrifice expressive power of the
ontology language or the completeness of query answers in order to improve scalability.

In the former case (sacrificing expressive power), query answering procedures have been
developed for various fragments of OWL 2 for which conjunctive query answering is tractable
with respect to data complexity, and three such fragments were standardised as so-called
profiles in OWL 2 (Motik, Cuenca Grau, Horrocks, Wu, Fokoue, & Lutz, 2009). The OWL 2
QL and OWL 2 EL profiles are based on the DL-Lite (Calvanese, De Giacomo, Lembo,
Lenzerini, & Rosati, 2007) and EL (Baader, Brandt, & Lutz, 2005) families of description
logics; the OWL 2 RL profile corresponds to a fragment of the rule-based language datalog
(Grosof, Horrocks, Volz, & Decker, 2003; Dantsin, Eiter, Gottlob, & Voronkov, 2001).
Conjunctive Query answering systems for such profiles have been shown to be highly scalable
in practice (Bishop, Kiryakov, Ognyanoff, Peikov, Tashev, & Velkov, 2011; Wu, Eadon, Das,
Chong, Kolovski, Annamalai, & Srinivasan, 2008; Motik, Nenov, Piro, Horrocks, & Olteanu,
2014; Erling & Mikhailov, 2009; Rodriguez-Muro & Calvanese, 2012; Lutz, Seylan, Toman,
& Wolter, 2013; Stefanoni, Motik, & Horrocks, 2013). The more favourable computational
properties of these fragments make them a natural choice for data-intensive applications,
but they also come at the expense of a loss in expressive power, and many ontologies used
in applications are not captured by any of the profiles.

In the latter case (sacrificing completeness), query answering procedures have been
developed that exploit scalable reasoning techniques, but at the expense of computing only
approximate query answers (Thomas, Pan, & Ren, 2010; Tserendorj, Rudolph, Krötzsch,
& Hitzler, 2008; Wandelt et al., 2010; Bishop et al., 2011). In most cases, the computed
answers are sound (only correct answer tuples are identified) but incomplete (some correct
answer tuples may not be identified). One way to realise such a procedure is to weaken
the ontology until it falls within one of the OWL 2 profiles, and then to use a scalable
procedure for the relevant fragment. The required weakening can be trivially achieved
simply by discarding (parts of) out-of-profile axioms, but more sophisticated techniques may
try to reduce or even minimise information loss (Console, Mora, Rosati, Santarelli, & Savo,
2014). Such an approach is clearly sound (if an answer tuple is entailed by the weakened
ontology, then it is entailed by the original ontology), but incomplete in general, and for
ontologies outside the relevant profile, the answer returned by such systems can therefore
be understood as providing a lower-bound on the correct answer; however, such procedures

2

Revision 2244 – March 19, 2015

cannot in general provide any complementary upper bound or even any indication as to
how complete the computed answer is (Cuenca Grau, Motik, Stoilos, & Horrocks, 2012).

In this paper, we describe a novel hybrid approach to query answering that combines a
scalable datalog (or OWL 2 RL) reasoner with a fully-fledged OWL 2 reasoner to provide
scalable performance while still guaranteeing sound and complete answers in all cases. Our
procedure uses the datalog reasoner to efficiently compute both lower bound (sound but
possibly incomplete) and upper bound (complete but possibly unsound) answers to the in-
put query. If lower and upper bound answers coincide, they obviously provide a sound and
complete answer. Otherwise, relevant subsets of the ontology and data are computed that
are guaranteed to be sufficient to test the correctness of tuples in the ‘gap’ between the
lower and upper bounds. These subsets are computed using only the datalog reasoner, and
they are typically much smaller than the input ontology and data. Finally, the fully-fledged
reasoner is used to check gap tuples w.r.t. the relevant subset. As this can still be compu-
tationally expensive, the load on the fully-fledged reasoner is further reduced by exploiting
summarisation techniques inspired by the SHER system to quickly identify spurious gap
tuples (Dolby, Fokoue, Kalyanpur, Kershenbaum, Schonberg, Srinivas, & Ma, 2007; Dolby,
Fokoue, Kalyanpur, Schonberg, & Srinivas, 2009), and by analysing dependencies between
remaining gap tuples to reduce the number of checks that need to be performed.

The key feature of our approach is its ‘pay-as-you-go’ behaviour: the bulk of the com-
putational workload is delegated to the datalog reasoner, and the extent to which the
fully-fledged reasoner is needed does not depend solely on the ontology, but on interactions
between the ontology, the dataset and the query. Thus, even when using a very expressive
ontology, queries can often be fully answered using only the datalog reasoner, and even
when the fully-fledged reasoner is required, relevant subset extraction, summarisation and
dependency analysis greatly reduce the number and size of reasoning problems. Moreover,
our approach has the additional advantage that lower bound answer tuples can be quickly
returned, even in cases where completion of the answer requires more time consuming com-
putations. Finally, although our main goal is to efficiently answer queries over OWL 2
ontologies and datasets, our technical results are very general and our approach is not
restricted to ontology languages based on description logics. More precisely, given a KR
language L that can be captured by first-order rules allowing for existential quantification
and disjunction in the head, and over which we want to answer conjunctive queries, our
only assumption is the availability of a fully-fledged reasoner for L and a datalog reasoner,
both of which are used as a ‘black box’.

We have implemented our techniques in the PAGOdA system1 using RDFox as a datalog
reasoner (Motik et al., 2014) and HermiT as a fully-fledged OWL 2 reasoner (Glimm,
Horrocks, Motik, Stoilos, & Wang, 2014),2 and conducted an extensive evaluation using a
wide range of realistic and benchmark datasets and queries. This evaluation suggests that
our techniques are very effective at providing scalable pay-as-you-go query answering: in
our tests of more than 4,000 queries over 8 ontologies, none of which is contained within any
of the OWL profiles, more than 99% of queries were fully answered without resorting to the
fully-fledged reasoner. Moreover, even when the fully-fledged reasoner was used, relevant

1. http://www.cs.ox.ac.uk/isg/tools/PAGOdA/

2. Although our techniques are proved correct for general conjunctive queries, in practice we are limited by
the current query capabilities of OWL 2 reasoners.

3

Revision 2244 – March 19, 2015

subset extraction, summarisation and dependency analysis greatly reduced the number and
size of reasoning problems: in our tests, the size of the dataset was typically reduced by an
order magnitude, and often by several orders of magnitude, and it seldom required more
than a single test to resolve the status of all gap tuples. Taken together, our experiments
demonstrate that PAGOdA can provide an efficient conjunctive query answering service in
real-world scenarios requiring both expressive ontologies and datasets containing hundreds
of millions of facts, something that is far beyond the capabilities of pre-existing state-of-
the-art ontology reasoners.

The remainder of the paper is organised as follows. In Section 2 we introduce key
concepts and definitions. In Section 3 we present a high-level overview of our approach.
In Section 4 we describe how lower bound answers are computed and prove that they are
sound, and in Section 5 we describe how upper bound answers are computed and prove
that they are complete. In Section 6 we present our technique for reducing the size of
the ontology and dataset to be processed by the fully-fledged reasoner and prove that it
preserves completeness. In Section 7 we present our summarisation and dependency analysis
optimisations and prove that they too preserve completeness. In Section 8 we describe the
implementation of our techniques in the PAGOdA system and discuss some additional
optimisations. Finally, after positioning our work within the state-of-the-art in Section 9,
we present our extensive evaluation in Section 10, and draw our conclusions in Section 11.

2. Preliminaries

In this section we briefly introduce rule-based first-order languages and description logics
(DLs)—a family of knowledge representation formalisms underpinning the OWL and OWL 2
ontology languages (Baader et al., 2003).

We use standard notions from first-order logic such as constant, predicate, function,
term, substitution, atom, formula, and sentence. We also adopt standard definitions of
(Herbrand) interpretation and model, as well as of (un)satisfiability and entailment (written
|=) of sets of first-order sentences. We denote with ⊥ the nullary predicate that is false in
all interpretations. Formulas may also contain the special equality predicate ≈. We assume
that each first-order knowledge base F over a function-free signature that uses ≈ axiomatises
its semantics in the usual way; that is, F must contain the following first-order sentences,
where (EQ1) and (EQ4) are instantiated for each n-ary predicate P in F and each 1 ≤ i ≤ n:

∀x1, . . . , xn(P (x1, . . . , xi, . . . , xn)→ xi ≈ xi) (EQ1)

∀x, y(x ≈ y → y ≈ x) (EQ2)

∀x, y, z(x ≈ y ∧ y ≈ z → x ≈ z) (EQ3)

∀x1, . . . , xn, y(P (x1, . . . , xi, . . . , xn) ∧ xi ≈ y → P (x1, . . . , xi−1, y, xi+1, . . . , xn)) (EQ4)

Finally, we will also exploit the following notion of homomorphism applicable to sets
of atoms, formulas and substitutions. Given sets of ground atoms S and T , we define a
homomorphism from S to T as a mapping τ from ground terms to ground terms s.t. τ(c) = c
for any constant c in S and T , and P (t1τ, . . . , tnτ) ∈ T for each atom P (t1, . . . , tn) ∈ S.
The application of a homomorphism can be naturally extended to ground atoms, ground
formulas and ground substitutions, e.g. for an atom α = P (t1, . . . , tn), ατ = P (t1τ, . . . , tnτ)
and for a ground substitution σ, στ is the substitution {x 7→ xστ | x ∈ dom(σ)}.

4

Revision 2244 – March 19, 2015

2.1 Rule-based Knowledge Representation

Rule languages are well-known knowledge representation formalisms which are strongly con-
nected with ontology languages (Dantsin et al., 2001; Cal̀ı, Gottlob, Lukasiewicz, Marnette,
& Pieris, 2010; ?).

We define a fact as a function-free ground atom and a dataset as a finite set of facts. A
rule r is a function-free first-order sentence of the form

∀~x, ~y(β1(~x, ~y) ∧ · · · ∧ βn(~x, ~y)→
m∨
i=1

∃~ziϕi(~x, ~zi)) (1)

where each βi(~x, ~y) is an atom different from ⊥ with free variables in ~x ∪ ~y, and either

• m = 1 and ϕ1(~x, ~z1) = ⊥, or

• m ≥ 1, and for each 1 ≤ i ≤ m the formula ϕi(~x, ~zj) is a conjunction of atoms different
from ⊥ with free variables in ~x ∪ ~zj .

The conjunction of atoms β1(~x, ~y)∧ · · · ∧βn(~x, ~y) is the body of r, denoted by body(r). The
formula

∨m
i=1 ∃~ziϕi(~x, ~zi) is the head of r, denoted by head(r). We assume that rules are

safe; that is, every variable in ~x is mentioned in body(r). For brevity, universal quantifiers
are omitted in rules.

Rules of this form are very general and are able to capture most first-order rule languages
for knowledge representation, including datalog (Abiteboul et al., 1995), existential rules
and datalog± (Cal̀ı et al., 2010), as well as datalog±,∨ (Alviano, Faber, Leone, & Manna,
2012; Bourhis, Morak, & Pieris, 2013).

We say that a rule r is

• disjunctive datalog if head(r) contains no existential quantifiers or conjunction;

• existential if m = 1; and

• datalog if it is disjunctive datalog and m = 1.

A knowledge base K = ΣK ∪DK consists of a finite set of rules ΣK and a dataset DK where
each predicate in DK is assumed to occur in ΣK.

In order to simplify the presentation of our technical results, we sometimes restrict
ourselves to knowledge bases in a particular normal form, which we specify next. We say
that a rule r is normalised if it is of one of the following forms, where m ≥ 1 and each
γi(~x, ~zi) is a single atom different from ⊥:

β1(~x, ~y) ∧ · · · ∧ βn(~x, ~y)→ ⊥ (2)

β1(~x, ~y) ∧ · · · ∧ βn(~x, ~y)→ ∃~z1γ1(~x, ~z1) (3)

β1(~x, ~y) ∧ · · · ∧ βn(~x, ~y)→ γ1(~x) ∨ · · · ∨ γm(~x) (4)

A knowledge base ΣK ∪ DK is normalised if all rules in ΣK are normalised. The restriction
to normalised knowledge bases is w.l.o.g. since every set of rules Σ of the form (1) can be
transformed in polynomial time into a set of normalised rules norm(Σ) that is a conservative
extension of Σ as given next. For each rule r ∈ Σ and each 1 ≤ i ≤ m, let ~xi be the tuple of

5

Revision 2244 – March 19, 2015

free variables in the subformulas ∃~ziϕi(~x, ~zi) of head(r), then ~xi ⊆ ~x. Furthermore, let Eϕi

be fresh predicates of arity |~xi| and let Cϕi be fresh predicates of arity |~xi| + |~zi| uniquely
associated to r and i. Then, norm(Σ) consists of the following rules:3

β1(~x, ~y) ∧ · · · ∧ βn(~x, ~y)→
m∨
i=1

Eϕi(~xi), (5)

Eϕi(~xi)→ ∃~ziCϕi(~xi, ~zi) for each 1 ≤ i ≤ m, (6)

Cϕi(~xi, ~zi)→ γ for each 1 ≤ i ≤ m and each atom γ in ϕi(~x, ~zi), (7)

ϕi(~x, ~zi)→ Eϕi(~xi) for each 1 ≤ i ≤ m, (8)

ϕi(~x, ~zi)→ Cϕi(~xi, ~zi) for each 1 ≤ i ≤ m. (9)

We frequently use Skolemisation to interpret rules in Herbrand interpretations. For each
rule r of the form (1) and each existentially quantified variable zij , let f rij be a function
symbol globally unique for r and zij of arity ~x. Furthermore, let θsk be the substitution
such that θsk(zij) = f rij(~x) for each zij ∈ ~zi. The Skolemisation sk(r) of r is the following
first-order sentence, which by slight abuse of notation we refer to as a Skolemised rule:

β1(~x, ~y) ∧ · · · ∧ βn(~x, ~y)→
m∨
i=1

ϕi(~x, ~zi)θsk

The Skolemisation sk(Σ) of a set of rules Σ is obtained by Skolemising each individual rule
in Σ. We extend the definitions of head and body of rules to Skolemised rules naturally. It
is well-known that Skolemisation is an entailment-preserving transformation.

2.2 Description Logics and Ontology Languages

We next present a brief overview of the DLs underpinning the W3C standard ontology
language OWL 2 (Horrocks, Kutz, & Sattler, 2006; Cuenca Grau et al., 2008). Typically, the
predicates in DL signatures are restricted to be unary or binary; the former are called atomic
concepts, whereas the latter are typically referred to as atomic roles. DLs typically provide
two special concepts ⊥ (the bottom concept) and > (the top concept), which are mapped
by every interpretation to the empty set and the interpretation domain, respectively.

Every OWL 2 DL ontology can be normalised as a set of axioms of the form given on the
left-hand-side of Table 1 (e.g., see (Motik, Shearer, & Horrocks, 2009)).4 Thus, w.l.o.g. we
define an OWL 2 DL ontology as a finite set of axioms of the form (O1)–(O13) in Table 1.
Every OWL 2 DL ontology must satisfy certain additional requirements in order to ensure
decidability of reasoning; these restrictions, however, are immaterial to our technical results
and we refer the interested readers to (Horrocks et al., 2006) for details.

Each normalised axiom corresponds to a single rule, as given on the right-hand-side of
Table 1. Concept ⊥ is translated as the special nullary predicate ⊥, whereas > is translated

3. Although rules (5)–(7) are sufficient to express Σ in normal form, we also introduce rules (8)–(9) in order
to facilitate the computation of upper bound query answers (see Sections 5.2 and 5.3).

4. For convenience, we omit axioms of the form A v ≥nR.B as they can be simulated by A v ∃R.Bi,
Bi v B and Bi uBj v ⊥ for 1 ≤ i < j ≤ n where each Bi is a fresh concept.

6

Revision 2244 – March 19, 2015

Axioms Rules
dn
i=1Ai v ⊥

∧n
i=1Ai(x)→ ⊥ (O1)dn

i=1Ai v
⊔m
j=1Bj

∧n
i=1Ai(x)→ ∨m

j=1Bj(x) (O2)

∃R.A v B R(x, y) ∧A(y)→ B(x) (O3)
A v Self(R) A(x)→ R(x, x) (O4)

Self(R) v A R(x, x)→ A(x) (O5)
R v S R(x, y)→ S(x, y) (O6)
R v S− R(x, y)→ S(y, x) (O7)

R ◦ S v T R(x, z) ∧ S(z, y)→ T (x, y) (O8)
R u S v ⊥ R(x, y) ∧ S(x, y)→ ⊥ (O9)

A v ∃R.B A(x)→ ∃y(R(x, y) ∧B(y)) (O10)

A v ≤mR.B A(x) ∧∧m+1
i=1 [R(x, yi) ∧B(yi)]→

∨
1≤i<j≤m+1 yi ≈ yj (O11)

A v {a} A(x)→ x ≈ a (O12)
> v ∀R.A R(x, y)→ A(y) (O13)

Table 1: Normalised DL axioms and their translation into rules where n,m > 0, A and B
are atomic concepts or >, and R,S, T are atomic roles.

as an ordinary unary predicate, the meaning of which is axiomatised. Let π be the function
that maps an OWL 2 axiom α to its corresponding rule as in Table 1, and let O be an
ontology. Then, π(O) is the smallest knowledge base containing:

• π(α) for each α ∈ O;

• a rule A(x)→ >(x) for each atomic concept A in O; and

• rules R(x, y)→ >(x) and R(x, y)→ >(y) for each atomic role R in O.

Note that since π(O) is a knowledge base, it must contain the axioms of equality for its
signature whenever ≈ is required to translate an axiom in O.

We say that an ontology is ELHOr⊥ if it does not contain axioms (O4), (O5), (O7),
(O8), (O9) or (O11), and every axiom of type (O2) satisfies m = 1. Rules corresponding to
ELHOr⊥ axioms can be syntactically characterised as follows. A rule is ELHOr⊥ if it is of
one of the following forms, where ϕ(x) is either ⊥, or of the form A(x), x ≈ c, or ∃yR(x, y):

p∧
i=1

Ai(x) ∧
q∧
j=1

[Rj(x, yj) ∧
lj∧
k=1

Bjk(yj)]→ ϕ(x), (EL1)

R1(x, y)→ R2(x, y), (EL2)

R(x, y)→ A(y). (EL3)

2.3 Conjunctive Queries

A conjunctive query (CQ) is a formula q(~x) of the form ∃~y ϕ(~x, ~y), where ϕ(~x, ~y) is a
conjunction of function-free atoms. A query is Boolean if |~x| = 0, and it is atomic if ϕ(~x, ~y)

7

Revision 2244 – March 19, 2015

consists of a single atom and |~y| = 0. For simplicity, we sometimes omit the free variables
and write q instead of q(~x).

Let K be a knowledge base. A tuple ~a of constants is a possible answer to q(~x) w.r.t. K
if it is of the same arity as ~x and each constant in ~a occurs in K. Furthermore, we say that a
possible answer ~a is a certain answer if K |= q(~a); the set of such certain answers is denoted
by cert(q,K). Note that, if ϕ(~x, ~y) is Boolean, the set of certain answers is either empty
or it consists of a tuple of length zero. We treat unsatisfiability as a Boolean query where
ϕ(~x, ~y) is the nullary falsehood symbol ⊥; this query holds w.r.t. K iff K is unsatisfiable.

CQs can be alternatively represented using datalog rules. To this end, each query q(~x)
is uniquely associated with a predicate Pq of arity |~x| (where we take P⊥ = ⊥) and a set
Rq of rules defined as follows:

Rq =

{
∅ q = ⊥
{ϕ(~x, ~y)→ Pq(~x)} otherwise

(10)

Then, ~a ∈ cert(q,K) iff K ∪Rq |= Pq(~a). In this way, certain answers can be characterised
by means of entailment of single facts.

Answering CQs w.r.t. knowledge bases can be computationally very hard, and decidabil-
ity for knowledge bases stemming from OWL 2 DL ontologies remains open. The standard
language SPARQL 1.1 (W3C SPARQL Working Group, 2013) allows users to formulate
CQs over OWL 2 ontologies; however, to ensure decidability and reduce the complexity of
query answering, CQs are interpreted in SPARQL 1.1 under ground semantics. We say that
a possible answer ~a to q(~x) = ∃~yϕ(~x, ~y) is a ground answer w.r.t. a satisfiable knowledge
base K if there exists a tuple ~e of constants in K such that K |= ϕ(~a,~e). Clearly, every
ground answer is a certain answer but not vice-versa. We denote with ground(q,K) the set
of ground answers to q w.r.t. K.

Many reasoning systems currently support SPARQL 1.1 and hence compute ground(q,K)
when given a CQ q and an OWL 2 DL ontology K as input. Additionally, most systems are
able to compute all certain answers if q is suitably restricted. More precisely, we say that q is
internalisable if Kq = K∪Rq corresponds to an OWL 2 DL knowledge base. Internalisation
amounts to transforming the query into an ontology axiom and it is typically referred to as
rolling-up in the DL literature (Horrocks & Tessaris, 2000).

In this paper, we focus on the general problem of computing all certain answers of a CQ
w.r.t. a knowledge base K, and all our theoretical results are generally applicable regardless
of the rule-based language in which K is expressed.

2.4 Hyperresolution

Reasoning over knowledge bases can be realised by means of the hyperresolution calculus,
which we briefly discuss next (Robinson & Voronkov, 2001). In our treatment of hyper-
resolution we consider standard basic notions in theorem proving such as (ground) clause
and most general unifier (MGU). Furthermore, we treat disjunctions of ground atoms as
sets and hence we do not allow for duplicated atoms in a disjunction. We assume that ⊥
does not occur in clauses and denote with � the empty clause. The Skolemisation sk(r)
of a normalised rule r is logically equivalent to the clause containing each atom different
from ⊥ in head(sk(r)) and the negation of each atom in body(sk(r)), so we sometimes abuse
notation and use sk(r) to refer to a Skolemised rule or its corresponding clause.

8

Revision 2244 – March 19, 2015

Let C = ¬β1 ∨ · · · ∨ ¬βn ∨ γ1 ∨ · · · ∨ γm be a clause, where each βi and γj are atoms
(possibly containing functional terms). Furthermore for each 1 ≤ i ≤ n, let ψi = αi ∨ χi be
a positive ground clause. Finally, let σ be a MGU of all pairs βi, αi, 1 ≤ i ≤ n. Then, the
positive ground clause γ1σ∨· · ·∨γmσ∨χ1∨· · ·∨χn is a hyperresolvent of C and ψ1, . . . , ψn.
The inference is called a hyperresolution step, where the clause C is the main premise.

Let K = ΣK∪DK be a normalised knowledge base and let C be a positive ground clause.
A derivation of C from K is a pair ρ = (T, λ) where T is a tree, λ is a labeling function
that maps each node in T to a ground clause, and for each v in T :

(1) λ(v) = C if v is the root;

(2) λ(v) ∈ DK if v is a leaf; and

(3) if v has children w1, . . . , wn, then λ(v) is a hyperresolvent of sk(r) and λ(w1), . . . , λ(wn)
for a rule r ∈ ΣK.

The support of ρ, written support(ρ), is the set of facts and rules participating in hyperres-
olution steps in ρ. We write K ` C to denote that there is a hyperresolution derivation of
C from K. Hyperresolution is sound and complete: K is unsatisfiable if and only if K ` �;
furthermore, if K is satisfiable then K ` α iff K |= α for any ground atom α.

2.5 The Skolem Chase

Answering CQs over a knowledge base K = ΣK ∪ DK where ΣK consists only of existential
rules can be realised using the chase technique (Abiteboul et al., 1995; Cal̀ı, Gottlob, &
Kifer, 2013). In this paper, we use the Skolem chase variant (Marnette, 2009; Cuenca Grau,
Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang, 2013).

The Skolem chase sequence of K is the sequence of sets of ground atoms {Bi}i≥0, where
B0 = DK, and Bi+1 is inductively defined as follows:

Bi+1 = Bi ∪ {head(sk(r))σ | r ∈ ΣK, σ a substitution, and Bi |= body(r)σ}.

The Skolem chase of K, written as ChaseK, is defined as
⋃
i≥0 Bi.

The key property of the Skolem chase is that it computes a universal Herbrand model
of K, which can be used as a ‘database’ for answering CQs. Formally, K is satisfiable iff
⊥ /∈ ChaseK; furthermore, if K is satisfiable, then ChaseK is homomorphically embeddable
into every Herbrand model of K (seen as a set of atoms). It follows that for K satisfiable
and q a Boolean CQ we have K |= q iff ChaseK |= q.

Note that ChaseK might contain infinitely many atoms. If ΣK is datalog, however,
ChaseK is guaranteed to be finite and it contains precisely all facts logically entailed by K.
In this case, we often refer to ChaseK as the materialisation of K.

3. Overview

In this section we provide a high-level overview of our approach to conjunctive query an-
swering. We assume the availability of two reasoners:

• A datalog reasoner that is sound and complete for answering conjunctive queries over
datalog knowledge bases; and

9

Revision 2244 – March 19, 2015

• A fully-fledged reasoner that is sound and complete for answering a given class of
conjunctive queries Q (which includes the unsatisfiability query) w.r.t. knowledge
bases in a given ontology language L.

We will describe our approach in its most general form, where we make no assumptions
about the two reasoners, treating them as ‘black-box’ query answering procedures.

The kind of queries and knowledge bases that can be dealt with using this approach
ultimately depends on the capabilities of the fully-fledged reasoner. For instance, OWL
2 DL reasoners can typically process arbitrary OWL 2 DL knowledge bases; however, the
query language is limited to internalisable queries. In turn, the scalability of our approach
ultimately depends on how much of the reasoning workload can be delegated to the datalog
reasoner; our goal is to delegate the bulk of the computation to the datalog reasoner and
to restrict the (expensive) use of the fully-fledged reasoner to the bare minimum.

Here, and in the rest of this paper, we fix an arbitrary normalised knowledge base
K = ΣK∪DK. Given an arbitrary query q (which may be the special unsatisfiability query)
containing only symbols from K, the core of our approach relies on exploiting the datalog
reasoner for accomplishing the following tasks:

• Lower and Upper Bound Computation, where we exploit the datalog reasoner
to compute both a lower bound Lq and an upper bound U q to the certain answers
to q w.r.t. K. If these bounds match (i.e. Lq = U q), then the query has been fully
answered by the datalog reasoner; otherwise, the difference Gq = U q \ Lq provides
a set of ‘gap’ answers that need to be verified using the fully-fledged reasoner. The
relevant techniques for computing these bounds are described in Sections 4 and 5.

• Knowledge Base Subset Computation, where we exploit the datalog reasoner to
compute a (hopefully small) subset Kq of K that is sufficient to check if answers in Gq

are in cert(q,K); that is, ~a ∈ cert(q,K) iff ~a ∈ cert(q,Kq) for each ~a ∈ Gq. The details
on how to compute such Kq are given in Section 6.

We then proceed according to the following steps when given a query q:

Step 1. Check satisfiability of K.

(a) Compute bounds L⊥ and U⊥ for the unsatisfiability query ⊥. If L⊥ 6= ∅, then
terminate and report that K is unsatisfiable. If U⊥ = ∅, then proceed to Step 2
(K is satisfiable).

(b) Compute the subset K⊥ of K.

(c) Use the fully-fledged reasoner to check the satisfiability of K⊥. To minimise the
computational workload of the fully-fledged reasoner, we proceed as follows:

i. Construct a summary of K⊥ (See Section 7), and use the fully-fledged rea-
soner to check if it is satisfiable; if it is, proceed to Step 2 (K is satisfiable).

ii. Use the fully-fledged reasoner to check the satisfiability of K⊥; if it is un-
satisfiable, then terminate and report that K is unsatisfiable. Otherwise,
proceed to Step 2 (K is satisfiable).

10

Revision 2244 – March 19, 2015

Mammal(tiger) (D1)

Mammal(lion) (D2)

MeatEater(python) (D3)

eats(python, rabbit) (D4)

Herbivore(rabbit) (D5)

Mammal(wolf) (D6)

MeatEater(wolf) (D7)

eats(wolf , sheep) (D8)

Herbivore(sheep) (D9)

eats(sheep, grass) (D10)

Mammal(howler) (D11)

Folivore(howler) (D12)

Mammal(a hare) (D13)

Folivore(a hare) (D14)

eats(a hare, willow) (D15)

Carnivore(x)→ Mammal(x) (R1)

Herbivore(x)→ Mammal(x) (R2)

Folivore(x) ∧MeatEater(x)→ ⊥ (R3)

Herbivore(x) ∧ eats(x, y)→ Plant(y) (R4)

Mammal(x)→ Herbivore(x) ∨MeatEater(x) (R5)

MeatEater(x)→ ∃y[eats(x, y) ∧ Herbivore(y)] (R6)

Mammal(x)→ ∃y eats(x, y) (R7)

Folivore(x)→ ∃y[eats(x, y) ∧ Leaf(y)] (R8)

Leaf(x)→ Plant(x) (R9)

qex(x) = ∃y[eats(x, y) ∧ Plant(y)]

Table 2: Running example knowledge base Kex and query qex(x). The set ΣKex consists of
rules (R1)–(R9), the dataset DKex consists of the facts (D1)–(D15).

Step 2. Compute bounds Lq and U q. If Gq = ∅, then terminate and return Lq. Otherwise,
proceed to Step 3.

Step 3. Compute the subset Kq of K.

Step 4. For each ~a ∈ Gq, use the fully-fledged reasoner to check whether Kq |= q(~a). To
minimise the computational workload, this step is carried out as follows:

(a) Construct a summary of Kq (see Section 7). For each ~a ∈ Gq, use the fully-
fledged reasoner to check whether the summary of ~a is a certain answer to q
w.r.t. the summary of Kq, and remove ~a from Gq if it is not the case.

(b) Compute a dependency relation between the remaining answers in Gq s.t. if ~b
depends on ~a and ~a is a spurious answer, then so is ~b. (See Section 7).

(c) Remove any remaining spurious answers from Gq, where an answer is spurious
if it is not entailed by Kq or if it depends on a spurious answer; use the fully-
fledged reasoner to check relevant entailments, arranging checks by heuristics
w.r.t. the dependency relation.

Step 5. Return Lq ∪Gq.

In the following sections, we describe each of these steps formally. We will also intro-
duce a number of improvements and optimisations, some of which rely on the additional

11

Revision 2244 – March 19, 2015

assumption that the datalog reasoner is materialisation-based—that is, for a datalog knowl-
edge base K′ and query q′, it computes query answers cert(q′,K′) by first computing the
materialisation ChaseK′ and then evaluating q′ over the resulting materialisation. This is
a reasonable assumption in practice since most datalog reasoners in Semantic Web appli-
cations (e.g., OWLim, RDFox, Oracle’s native inference engine) are materialisation-based.
In such cases, we further assume that we have direct access to the materialisation. Our
PAGOdA system combines HermiT with the materialisation-based reasoner RDFox, and
hence is able to exploit all of the improvements and optimisations described below; the
realisation of our approach in PAGOdA is discussed in detail in Section 8.

We will illustrate all our techniques using a running example consisting of the knowledge
base Kex = ΣKex ∪ DKex and the query qex(x) given in Table 2. Note that rules (R6) and
(R8) in ΣKex are not normalised; however, they can be easily brought into normal form by
introducing fresh binary predicates eatsH and eatsL as follows:

MeatEater(x)→ ∃y eatsH(x, y) (R6a)

eats(x, y) ∧ Herbivore(y)→ eatsH(x, y) (R6b)

eatsH(x, y)→ eats(x, y) (R6c)

eatsH(x, y)→ Herbivore(y) (R6d)

Folivore(x)→ ∃y eatsL(x, y) (R8a)

eats(x, y) ∧ Leaf(y)→ eatsL(x, y) (R8b)

eatsL(x, y)→ eats(x, y) (R8c)

eatsL(x, y)→ Leaf(y) (R8d)

Our core techniques described in Sections 4-6 are applicable to any knowledge base
and query. In order to simplify the presentation of our definitions and technical results of
those sections we fix, in addition to the knowledge base K = ΣK ∪ DK, an arbitrary query
q(~x) = ∃~yϕ(~x, ~y) (which may be the unsatisfiability query ⊥).

4. Lower Bound Computation

A straightforward way to compute lower bound answers using the datalog reasoner is to
evaluate q w.r.t. the datalog subset of K consisting of all facts in DK and datalog rules in
ΣK. By the monotonicity of first-order logic all certain answers w.r.t. such subset are also
certain answers w.r.t. K. Furthermore, if the subset is unsatisfiable, then so is K.

Example 4.1. The datalog subset of our example Kex consists of rules (R1)–(R4) and
(R9), together with all facts (D1)–(D15). The materialisation of the datalog subset of
Kex results in the following dataset: Dex∪{Mammal(rabbit),Mammal(sheep),Plant(grass)}
When evaluating qex(x) against the materialisation we obtain sheep as an answer. ♦

This basic lower bound can be rather imprecise in practice since rules featuring disjunc-
tion or existential quantification typically abound in OWL 2 DL ontologies. To improve
this bound, we exploit techniques that allow us to deterministically derive (also via datalog
reasoning) additional consequences from K that do not follow from its datalog subset.

4.1 Dealing with Disjunctive Rules: Program Shifting

To deal with disjunctive rules, we adopt a variant of shifting—a polynomial program trans-
formation commonly used in Answer Set Programming (Eiter, Fink, Tompits, & Woltran,
2004). We next illustrate the intuition behind this transformation with an example.

12

Revision 2244 – March 19, 2015

Example 4.2. Let us consider the information in Kex about Arctic hares (a hare). From
(R3) and (D14), one can deduce that a hare is not a MeatEater, and it further follows by
rule (R5) and fact (D13) that a hare is a Herbivore. Since a hare eats willow, we can
deduce Plant(willow) from (R4) and hence a hare is an answer to qex. Although (R5)
is a disjunctive rule, this reasoning process is fully deterministic and can be captured in
datalog. To this end, we introduce a predicate MeatEater which intuitively stands for the
complement of MeatEater. We can then extend the datalog subset of Kex with rules encoding
the intended meaning of the fresh predicate. In particular, (R3) and (R5) are two such rules,
which are obtained from (R3) and (R5), respectively.

Folivore(x)→ MeatEater(x) (R3)

Mammal(x) ∧MeatEater(x)→ Herbivore(x) (R5)

We can exploit these rules to derive MeatEater(a hare) and then Herbivore(a hare). ♦

We now define the shifting transformation formally.

Definition 4.3. Let r be a normalised disjunctive datalog rule. For each predicate P in r
let P be a fresh predicate of the same arity. Furthermore, given an atom α = P (~t) let α be
P (~t). The shifting of r, written shift(r), is the following set of rules:

• if r of the form (2), then shift(r) = {r}∪{β1∧· · ·∧βi−1∧βi+1∧· · ·∧βn → βi | 1 ≤ i ≤ n};

• if r of the form (4), then shift(r) consists of the following rules: (i) the rule (S1);
(ii) all rules (S2) for each 1 ≤ j ≤ m; and (iii) all rules (S3) for each 1 ≤ i ≤ n s.t.
each variable in βi also occurs in some other atom in the rule.

β1 ∧ · · · ∧ βn ∧ γ1 ∧ · · · ∧ γm → ⊥ (S1)

β1 ∧ · · · ∧ βn ∧ γ1 ∧ · · · ∧ γj−1 ∧ γj+1 ∧ · · · ∧ γm → γj (S2)

β1 ∧ · · · ∧ βi−1 ∧ βi+1 ∧ · · · ∧ βn ∧ γ1 ∧ · · · ∧ γm → βi (S3)

Let Σ be a set of normalised disjunctive datalog rules. Then, the shifting of Σ is defined
as the following set of datalog rules:

shift(Σ) =
⋃
r∈Σ

shift(r) ♦

Note that shifting is a polynomial transformation. For r a disjunctive datalog rule with
n atoms in the body and m atoms in the head, shift(r) contains at most m+ n+ 1 datalog
rules. Furthermore, as shown in the following theorem, it is also sound.

Theorem 4.4. Let ΣDD
K be the subset of disjunctive datalog rules in ΣK; furthermore, let

K′ = shift(ΣDD
K) ∪ DK. Then, cert(q,K′) ⊆ cert(q,K).

Proof. Let ChaseK′ = {Bi}Li=1 with L some non-negative integer (recall that K′ is a datalog
knowledge base and hence its Skolem chase is finite). We show by induction that the
following properties hold for each 0 ≤ i ≤ L and each α ∈ Bi:

13

Revision 2244 – March 19, 2015

(a) if α = ⊥, then K is unstisfiable;

(b) if α = P (~a), then K |= P (~a); and

(c) if α = P (~a), then K |= ¬P (~a).

Base case: Clearly, B0 = DK and the properties trivially follow from the fact that DK ⊆ K.

Inductive step: Assume that properties (a)–(c) hold for every α ∈ Bi. We show that they
also hold for every α ∈ Bi+1 \ Bi. There must exist a rule r′ ∈ K′ and a substitution σ
such that Bi |= body(r′)σ and α = head(r′)σ. Since every atom in body(r′)σ is in Bi, then
properties (a)-(c) hold for all these atoms by the induction hypothesis. Furthermore, there
must exist a rule r ∈ K of the form of β1 ∧ · · · ∧ βn → γ1 ∨ · · · ∨ γm such that r′ ∈ shift(r).

(a) If α = ⊥, we distinguish two cases. (i) head(r) = ⊥, in which case r = r′ and by
the induction hypothesis, K |= {β1σ, . . . , βnσ} and hence K |= ⊥; (ii) head(r) 6= ⊥,
in which case r′ is of the form (S1) and β1σ, . . . , βnσ and γ1σ, . . . , γmσ are in Bi. By
the induction hypothesis, K entails β1σ, . . . , βnσ and ¬γ1σ, . . . ,¬γmσ. But then, rule r
cannot be satisfied by any model of K and since r ∈ K, we obtain that K is unsatisfiable.

(b) If α = P (~a), then r′ is of the form (S2) and γiσ = P (~a). Hence, Bi contains all atoms
β1σ, . . . , βnσ, γ1σ, . . . γi−1σ and γi+1σ, . . . , γmσ. By induction hypothesis, K entails
β1σ, . . . , βnσ, ¬γ1σ, . . . ,¬γi−1σ, and ¬γi+1σ, . . . ,¬γmσ. Since r ∈ K and γiσ = P (~a) it
must be the case that K |= P (~a).

(c) If α = P (~a), we have the following cases. (i) head(r) = ⊥, in which case by induction
K |= {β1σ, . . . , βi−1σ, βi+1σ, . . . , βnσ}; but then, since β1 ∧ · · · ∧ βn → ⊥ is also a
rule in K, we obtain that K |= ¬βiσ, as required. (ii) head(r) 6= ⊥, in which case
r′ is of the form (S3) and βiσ = P (~a); then, Bi contains all atoms β1σ, . . . , βi−1σ,
βi+1σ, . . . , βnσ, and γ1σ, . . . , γmσ and by the induction hypothesis K entails atoms
β1σ, . . . , βi−1σ, βi+1σ, . . . , βnσ and ¬γ1σ, . . . ,¬γmσ. Since r ∈ K we obtain K |= ¬P (~a).

If q = ⊥, the theorem follows from property (a). Otherwise, let q(~x) = ∃~y(
∧n
i=1 βi(~x, ~y))

and let ~a be a possible answer such that K′ |= q(~a). Since K′ is datalog, there exists a tuple
~e of constants in K′ and a non-negative integer L such that βi(~a,~e) ∈ BL for each 0 ≤ i ≤ n.
But then, by (b) we have K |= βi(~a,~e), and hence K |= q(~a).

Note that shifting only captures some of the consequences of the disjunctive datalog
rules in K and hence it is an incomplete program transformation.

Example 4.5. Consider the disjunctive datalog knowledge base consisting of the fact
GreenSeaTurtle(turtle), the rules (R1), (R2) and

GreenSeaTurtle(x)→ Herbivore(x) ∨ Carnivore(x).

Clearly, Mammal(turtle) follows from the knowledge base. The shifting consists of fact
GreenSeaTurtle(turtle) and the following rules, where predicates Carnivore, GreenSeaTurtle,

14

Revision 2244 – March 19, 2015

Herbivore and Mammal have been abbreviated as, respectively, C, G, H and M:

C(x) ∧M(x)→ ⊥ C(x)→ M(x) M(x)→ C(x)

H(x) ∧M(x)→ ⊥ H(x)→ M(x) M(x)→ H(x)

G(x) ∧ H(x) ∧ C(x)→ ⊥ G(x) ∧ H(x)→ C(x) G(x) ∧ C(x)→ H(x)

H(x) ∧ C(x)→ G(x)

It can be easily checked that fact Mammal(turtle) does not follow from the shifting. ♦

4.2 Dealing with Existential Rules: The Combined Approach for ELHOr⊥
To compute query answers that depend on existentially quantified rules, we consider the
subset of ELHOr⊥ rules and facts in K. In the case of ELHOr⊥ knowledge bases, we can
exploit the so-called combined approach to delegate most of the computational work asso-
ciated with CQ answering to a datalog reasoner (Stefanoni et al., 2013). The combined
approach can be conceptualised as a three-step process.

1. The first step is to compute the materialisation M of a datalog program obtained
from the ELHOr⊥ knowledge base. If M contains ⊥, then the knowledge base is
unsatisfiable. Otherwise M is a model of the knowledge base. This model, however,
is not universal as it cannot be homomorphically embedded into every other model.
Thus, the evaluation of CQs over M may lead to unsound answers.

2. The second step is to evaluate the query q over M . This step is intractable in query
size, but well-known database techniques can be exploited.

3. In the third step, unsound answers obtained from the second step are discarded using
a polynomial time filtration algorithm.

We next specify the transformation from knowledge bases to datalog used in the first
step, as this transformation will also be exploited later on in Section 5 for computing upper
bound query answers. Describing the technical details of filtration, however, is beyond the
scope of this paper, and we refer the reader to the relevant literature (Stefanoni et al.,
2013). For our purposes, it suffices to assume the availability of a procedure soundAnswers
that solves Steps 2 and 3; that is, given q and the model computed in Step 1, it returns all
answers to q w.r.t. the input ELHOr⊥ knowledge base.

The computation of the datalog program from a knowledge base in Step 1 relies on a
form of Skolemisation where existentially quantified variables are mapped to fresh constants
(instead of functional terms).

Definition 4.6. For each rule r of the form (1) and each existentially quantified variable
zij , let crij be a constant globally unique for r and zij , and let θc-sk be the substitution such
that θc-sk(zij) = crij for each zij ∈ ~zi. The c-Skolemisation c-sk(r) of r is given as follows:

β1(~x, ~y) ∧ · · · ∧ βn(~x, ~y)→
m∨
i=1

ϕi(~x, ~zi)θc-sk.

Then, we define c-sk(K) = {c-sk(r) | r ∈ ΣK} ∪ DK. ♦

15

Revision 2244 – March 19, 2015

Note that the application of c-Skolemisation to an ELHOr⊥ rule always results in a
datalog rule. Note also that, in contrast to standard Skolemisation, c-Skolemisation is not
a satisfiability or entailment preserving transformation, and there may be query answers
w.r.t. c-sk(K) that are unsound w.r.t. K. If K is ELHOr⊥, however, it can be shown that K
is satisfiable iff c-sk(K) is satisfiable (Stefanoni et al., 2013). Given K and q, we can obtain
a lower bound on the query answers as follows:

• extract the subset ΣEL
K of all ELHOr⊥ rules in K;

• compute the materialisation M of c-sk(ΣEL
K) ∪ DK; and

• if q = ⊥ then return unsatisfiable iff ⊥ ∈M ; otherwise, return soundAnswers(q,M).

Example 4.7. Consider again our running example. The ELHOr⊥ fragment of Kex consists
of all facts (D1)–(D15) together with all rules except for (R4) and (R5). From fact (D12)
and rule (R8) we deduce that howler eats a leaf, which must be a plant by rule (R9). Hence
howler is an answer to qex. This answer can be identified using the aforementioned steps.
The c-Skolemisation of (R8a) leads to the datalog rule

Folivore(x)→ eatsL(x, c3) (R8aU)

The materialisation of the datalog program consisting of all facts and rule (R8aU) contains
the fact Plant(c3) and hence the tuple (howler, c3) matches qex to the materialisation. This
match is deemed sound by the filtration procedure. ♦

4.3 Aggregated Lower Bound

The techniques in this section can be seamlessly combined to obtain a lower bound Lq which
is hopefully close to the actual set of certain answers. Given K and q, we proceed as follows:

1. Construct the datalog knowledge base shift(ΣDD
K) ∪ DK, where ΣDD

K is the subset of
disjunctive datalog rules in ΣK. Compute its materialisation ML

1 .

2. Construct the datalog program c-sk(ΣEL
K)∪ML

1 and compute its materialisation ML
2 .

3. If q = ⊥, then Lq = cert(q,ML
2). Otherwise, Lq = soundAnswers(q,ML

2).

Theorem 4.4 ensures that K |= α for any α ∈ML
1 in the signature of K, and hence ML

1

can be used as the initial dataset for the second step. The properties of c-Skolemisation and
filtration discussed in Section 4.2 then ensure that every answer in Lq is indeed a certain
answer of q w.r.t. K. Furthermore, if ⊥ ∈ML

2 , then K is indeed unsatisfiable. Finally, note
that the materialisation ML

1 obtained in the first step is ‘pipelined’ into the second step;
as a result, Lq is a (sometimes strict) superset of the answers we would obtain by simply
computing the answers to q w.r.t. shift(ΣDD

K)∪DK and c-sk(ΣEL
K)∪DK independently and

then unioning the results.

Example 4.8. For our running example Kex, the aggregated lower bound Lex consists of
sheep (which follows from the datalog subset of Kex), a hare (which follows from shift(Kex)),
and howler (which follows from the ELHOr⊥ fragment of Kex). ♦

16

Revision 2244 – March 19, 2015

5. Upper Bound Computation

In many practical cases the lower bound Lq described in Section 4.3 constitutes a rather
precise approximation of the actual set of certain answers. Furthermore, it can also be
computed very efficiently by resorting only to the datalog reasoner. The lower bound
computation, however, gives no indication as to the accuracy of its answers: without a
corresponding upper bound, every other possible answer remains a candidate answer, which
needs to be either confirmed or discarded.

In this section, we describe our approach to efficiently computing an upper bound to
the set of certain answers. If lower and upper bounds coincide, then we have fully answered
the query; otherwise, the gap between lower and upper bounds not only provides a margin
of error for the lower bound, but also narrows down the set of candidate answers whose
verification may require more powerful computational techniques.

5.1 Strengthening the Knowledge Base

Our first step towards computing an upper bound will be to construct a (polynomial size)
datalog knowledge base K′ such that if K is unsatisfiable, then K′ entails a nullary predicate
⊥s, and cert(q,K) ⊆ cert(q,K′) otherwise. Roughly speaking, such K′, which we refer to as
the datalog strengthening of K, is obtained from K by

1. replacing ⊥ by a fresh nullary predicate ⊥s with no predefined meaning;

2. splitting the disjuncts occurring in head position into different datalog rules; and

3. Skolemising existentially quantified variables into constants as in Definition 4.6.

It is convenient for subsequent definitions and proofs to explicitly define the splitting of
K, written split(K), as the intermediate knowledge base resulting from Steps 1 and 2 above,
which is both satisfiable and disjunction-free. The datalog strenghtening of K is then defined
as the result of further applying Step 3 by replacing each existentially quantified rule in
split(K) with its c-Skolemisation.

Definition 5.1. The splitting of a rule r of the form (1) is the following set of rules:

• if head(r) = ⊥, then split(r) = {β1 ∧ · · · ∧ βn → ⊥s}, where ⊥s is a fresh nullary
predicate with no predefined meaning; and

• otherwise, split(r) = {β1 ∧ · · · ∧ βn → ∃~zjϕj(~x, ~zj) | 1 ≤ j ≤ m }.

The splitting of K = ΣK ∪ DK is defined as split(K) =
⋃
r∈ΣK

split(r) ∪ DK. Finally, the
datalog strenghtening of K is defined as str(K) = c-sk(split(K)). ♦

Example 5.2. Consider our example knowledge base Kex. The splitting of Kex is obtained
by replacing rule (R5) with rules (R5Ua) and (R5Ub), and rule (R3) with (R3U).

Mammal(x)→ Herbivore(x) (R5Ua)

Mammal(x)→ MeatEater(x) (R5Ub)

Folivore(x) ∧MeatEater(x)→ ⊥s (R3U)

17

Revision 2244 – March 19, 2015

Finally, str(K) is obtained by further replacing the existentially quantified rules (R6a), (R7)
with the following rules (R6aU), (R7U)

MeatEater(x)→ eatsH(x, c1) (R6aU)

Mammal(x)→ eats(x, c2) (R7U)

as well as rule (R8a) with rule (R8aU) given in Example 4.7. ♦

Note that if K does not contain rules with ⊥ in the head, then str(K) logically entails
K: splitting amounts to turning disjunctions in the head of rules into conjunctions, while
c-Skolemisation restricts the possible values of existentially quantified variables to fixed
constants. Thus, cert(q, str(K)) constitutes an upper bound to cert(q,K). This is, however,
no longer the case if ⊥ is replaced with an ordinary predicate ⊥s without a predefined
meaning. The rationale behind this replacement is to provide a meaningful upper bound
even in cases where splitting disjunctions and c-Skolemising existentially quantified variables
would make the streghtened knowledge base unsatisfiable.

Example 5.3. Consider the strenghtening K′ex = str(Kex) of our example knowledge base.
Since howler is a Mammal, we have by Rule (R5Ub) that it is also a MeatEater. But then,
since Folivore(howler) is a fact in Kex we can derive ⊥s using Rule (R3U). Note that,
had we not replaced the falsehood predicate ⊥ with ⊥s, the strenghtening of Kex would be
unsatisfiable, in which case no meaningful upper bound could be obtained for any query. ♦

We next show that str(K) can be exploited to compute a meaningful upper bound for
any input query, despite the fact that ⊥ is stripped of its built-in semantics in first-order
logic. The following lemma establishes the key property of the splitting transformation in
Definition 5.1: if a ground clause ϕ = α1 ∨ · · · ∨αn is derivable from K via hyperresolution,
then the Skolem chase of split(K) contains every atom αi for 1 ≤ i ≤ n.

Lemma 5.4. Let ρ = (T, λ) be a hyperresolution derivation from K and let H = split(K).
Then, for every node v ∈ T and ground atom α occurring in λ(v), we have that α ∈ ChaseH.

Proof. We prove the claim by structural induction on ρ.

Base case: If v is a leaf in T , then λ(v) ∈ DK. Since DK ⊆ H we have α ∈ ChaseH.

Inductive step: Assume that the induction hypothesis holds for all children w1, . . . , wn of
a node v ∈ T . There exists a rule r ∈ ΣK and a substitution σ, where sk(r) is of the form
¬β1 ∨ · · · ∨ ¬βn ∨ ψ with ψ a disjunction of atoms, such that λ(v) = ψσ ∨ χ1 ∨ · · · ∨ χn
is the hyperresolvent of sk(r) and λ(wi) = βiσ ∨ χi for each 1 ≤ i ≤ n. By the induction
hypothesis, all the disjuncts in each χi are in ChaseH, so we only need to show the claim
for each disjunct in ψσ. We distinguish the following cases depending on the form of the
normalised rule r

• If r is of the form (2), ψσ is empty. So the claim holds vacuously.

• If r is of the form (3), then ψ = γ1θsk. By the induction hypothesis, each βiσ is in
ChaseH, and since split(r) = r and hence r ∈ H, we obtain γ1θskσ ∈ ChaseH.

18

Revision 2244 – March 19, 2015

grass

tiger lion python rabbit sheep howler

Mammal Mammal Herbivore Herbivore Mammal
Folivore

c2 Plant Plant

Herbivore Herbivore Mammal Mammal
Herbivore

c1
Herbivore
Plant

Mammal

MeatEater MeatEater MeatEater MeatEater
MeatEater

MeatEater

MeatEater

wolf

Mammal
MeatEater
Herbivore

Plant

c3
Leaf
Plant

Mammal
Folivore

a hare

Herbivore

Plant

MeatEater

willow

Figure 1: Materialisation of Datalog strengthening of Kex

• If r is of the form (4), then ψ = γ1 ∨ · · · ∨ γm. By induction hypothesis, each βiσ is in
ChaseH, and for each 1 ≤ i ≤ m, since the rule β1 ∧ · · · ∧ βn → γi is in H, we obtain
that each atom γiσ is also in ChaseH, as required.

We can now exploit the completeness of hyperresolution to show that split(K) satisfies
the required properties. Furthermore, the fact that str(K) |= split(K) immediately implies
that str(K) satisfies those properties as well and hence it may be exploited to compute upper
bound query answers.

Theorem 5.5. The following properties hold for H = split(K) as well as for H = str(K):
(i) cert(⊥,K) ⊆ cert(⊥s,H), i.e. if K is unsatisfiable, then H |= ⊥s; and (ii) if K is
satisfiable then cert(q,K) ⊆ cert(q,H).

Proof. We first show that Properties (i) and (ii) hold for H = split(K). If K is unsatisfiable,
then there is a hyperresolution derivation of the empty clause from K. Thus, there must
exist a rule r of the form (2) in ΣK and a substitution σ such that each atom βiσ for
1 ≤ i ≤ n is also derivable from K. But then, by Lemma 5.4 we have that βiσ ∈ ChaseH.
Since H contains the rule β1∧· · ·∧βn → ⊥s we have ⊥s ∈ ChaseH and H |= ⊥s, as required.
Assume now that K is satisfiable. If cert(q,K) = ∅, cert(q,K) ⊆ cert(q,H) holds trivially;
otherwise let ~a be a certain answer to q w.r.t. K. So K |= q(~a) and hence K ∪Rq |= Pq(~a).
Since cert(⊥,K) = ∅, we have q 6= ⊥. Using the completeness of hyperresolution and
Lemma 5.4 we obtain that Pq(~a) is in the chase of K ∪ Rq. But then, the aforementioned
splitting also entails Pq(~a) and since split(K ∪ Rq) = H ∪ Rq we have ~a ∈ cert(q,H), as
required. Finally, Properties (i) and (ii) hold for str(K) as a direct consequence of the fact
that str(K) |= split(K).

Example 5.6. Figure 1 depicts the materialisation of str(Kex), where edges for predicates
introduced during the normalisation are ignored and all edges in the figure represent the
binary predicate eats. Explicit facts in Kex are depicted in black; implicit facts are depicted
using different colours to facilitate the subsequent illustration of further refinements of the
materialisation that will allow us to tighten the upper bound. We obtain the following
upper bound of cert(qex,Kex) by evaluating qex against the materialisation:

cert(qex, str(Kex)) = {tiger, lion, python, rabbit,wolf , sheep, howler, a hare, c1}

19

Revision 2244 – March 19, 2015

As already mentioned, str(Kex) |= ⊥s; however, the obtained upper bound is still meaningful
since it does not contain all possible answers in Kex, such as grass or willow. Please note
that c1 is a certain answers to qex w.r.t. str(Kex); however, constant c1 is not in the signature
of Kex and hence it is not a possible answer to qex w.r.t. K. ♦

5.2 Tightening the Upper Bound: Existential Rules

The upper bound obtained from str(K) can be rather coarse-grained in practice: as discussed
in Example 5.6, python, tiger, lion and wolf are contained in the upper bound, where none
of them is a certain answer to qex. In this section, we show how to refine the upper bound
by restricting the application of c-Skolemisation to existential rules. Instead of computing
the upper bound of q by constructing the strengthened knowledge base str(K) and then
evaluating q over (the materialisation of) str(K), we proceed as follows.

1. Apply to K a variant of the Skolem chase, which we refer to as the c-chase by first
splitting the disjuncts occurring in head position into different rules and then apply-
ing Skolem chasing on split(K) with the following modifications: (i) similarly to the
restricted chase (Cal̀ı et al., 2013), existential rules are applied only when the rule
head is not already satisfied; and (ii) rather than Skolemising the head atom (using a
functional term) whenever an existential rule is applied, we resort to c-Skolemisation
instead. Due to the latter modification, the c-chase does not compute the least Her-
brand Model of split(K), but rather just some model of split(K).

2. Evaluate q over the result of the aforementioned chase, thus obtaining an upper bound
to the certain answers of q w.r.t. split(K), and thus also w.r.t. K.

The following example motivates the practical advantages of this approach.

Example 5.7. Consider again the materialisation of str(Kex) in Figure 1. As already
mentioned, python is returned as an upper bound answer since qex matches the facts
eats(python, c1) and Plant(c1) in the materialisation. The fact eats(python, c1) is obtained
from eatsH(python, c1), which is included in the materialisation to satisfy the c-Skolemised
rule (R6aU) in str(Kex), and also the existentially quantified rule (R6a) in Kex. In the case
of python, however, rule (R6a) in Kex is already satisfied by the fact eatsH(python, rabbit),
which is derived from eats(python, rabbit) and Herbivore(rabbit) in the dataset, and rule
(R6b). Please note that rule (R6b) is of the form (9) in the normalisation of (R6).
Rule (R6b) ensures that if (R6) is satisfied for any substitution, then (R6a) is also sat-
isfied for the same substitution. To obtain an upper bound it suffices to construct a model
of Kex (rather than a model of str(Kex)); thus, we can prevent the application of rule (R6aU)
on python during the chase, and dispense with eats(python, c1) in the materialisation. ♦

We are now ready to define the c-chase formally.

Definition 5.8. Let H = split(K), let Σd
H be the subset of datalog rules in ΣH, and

Σe
H = ΣH \Σd

H. The c-chase sequence of K is the sequence of sets of ground atoms {Bi}i≥0,
where B0 = DH (i.e. B0 = DK), and Bi+1 is inductively defined as given next. Let Si+1

d and

20

Revision 2244 – March 19, 2015

Si+1
e be defined as follows:

Si+1
d = {head(r)σ | r ∈ Σd

H, σ a substitution,Bi |= body(r)σ and Bi 6|= head(r)}
Si+1
e = {head(c-sk(r))σ | r ∈ Σe

H, σ a substitution,Bi |= body(r)σ and Bi 6|= head(r)}

Then, Bi+1 = Bi ∪ Si+1
d if Si+1

d 6= ∅, and Bi+1 = Bi ∪ Si+1
e otherwise. Finally, we define the

c-chase of K as c-ChaseK =
⋃
i≥0{Bi}. ♦

Note that the the c-chase of K is a finite set since the only terms that can occur in it
are constants from c-sk(split(K)).

Example 5.9. The c-chase of Kex is depicted in Figure 2. This materialisation is a strict
subset of that in Figure 1, where the orange-coloured binary facts are no longer derived.
Consequently, python is no longer derived as an answer to qex. ♦

The relevant properties of the c-chase are summarised in the following lemma.

Theorem 5.10. The following properties hold: (i) cert(⊥,K) ⊆ cert(⊥s, c-ChaseK), i.e. if
K is unsatisfiable, then ⊥s ∈ c-ChaseK; (ii) if K is satisfiable, cert(q,K) ⊆ cert(q, c-ChaseK).

Proof. We first prove that c-ChaseK is a model of split(K). Since DK ⊆ c-ChaseK it is clear
that it satisfies all facts in split(K). Let r ∈ split(K); we distinguish two cases:

• The rule r is datalog. If c-ChaseK |= body(r)σ for some substitution σ the definition
of c-chase ensures that head(r)σ ∈ c-ChaseK and hence the rule is satisfied.

• Otherwise, r is of the form (3). If c-ChaseK |= body(r)σ for some substitution σ
the definition of c-ChaseH ensures that head(c-sk(r))σ ∈ c-ChaseK; thus, c-ChaseK |=
head(r)σ and hence the rule is satisfied.

We now show the contrapositive of the first property. Assume that ⊥s 6∈ c-ChaseK.
Because c-ChaseK is a model of split(K), we have split(K) 6|= ⊥s and hence K is satisfiable by
Theorem 5.5. Finally, assume that K is satisfiable. If cert(q,K) = ∅, cert(q,K) ⊆ cert(q,H)
holds trivially; otherwise let ~a be a certain answer to q w.r.t. K. By Theorem 5.5, we obtain
~a ∈ cert(q, split(K)). Because c-ChaseK |= split(K), we have ~a ∈ cert(q, c-ChaseK).

5.3 Tightening the Upper Bound: Disjunctive Rules

Although the technique described in the previous section can be quite effective in practice,
its main limitation is that in split(K) all disjunctions in the heads of rules in K have effec-
tively been turned into conjunctions. In this section, we show how to refine the upper bound
by exploiting an extension of c-chase that uses a similar approach to deal with disjunctive
rules as well as existential rules.

Specifically, we extend c-chase to deal with disjunctive rules r of the form (4) such
that (i) r is applied only when none of the disjuncts in the head of the rule is already
satisfied; and (ii) when r is applied, only one of the disjuncts is included in the chase (rather
than all of them). In order to avoid non-determinism during chase expansion and reduce
the computational cost, disjuncts are selected deterministically by means of an (efficiently
implementable) choice function.

21

Revision 2244 – March 19, 2015

grass

tiger lion python rabbit sheep howler

Mammal Mammal Herbivore Herbivore Mammal
Folivore

c2 Plant Plant

Herbivore Herbivore Mammal Mammal
Herbivore

c1
Herbivore
Plant

Mammal

MeatEater MeatEater MeatEater MeatEater
MeatEater

MeatEater

MeatEater

wolf

Mammal
MeatEater
Herbivore

Plant

c3
Leaf
Plant

Mammal
Folivore

a hare

Herbivore

Plant

MeatEater

willow

Figure 2: c-chase of Kex

Example 5.11. Consider again our running example. First observe that wolf is an answer
to qex w.r.t. the c-chase of Kex shown in Figure 2. Indeed, Herbivore(wolf) is derived from
Mammal(wolf) and the rules in the split of (R5); thus, Plant(sheep) is also derived using
rule (R4). Note, however, that wolf is a spurious answer: given that MeatEater(wolf) is an
explicit fact in Kex, rule (R5) is already satisfied for wolf and hence we can dispense with
fact Herbivore(wolf) in the materialisation.

Finally, since our goal is to construct a model of Kex it is reasonable to pick disjuncts
whose predicate is unrelated to ⊥ in Kex. Since ⊥ depends only on MeatEater and Folivore
(by rule (R3)), it makes sense to include a fact Herbivore(b) in the materialisation whenever
the disjunctive rule (R5) is applied to a constant b. ♦

We can now define our extended notion of c-chase, where an efficiently implementable
choice function is given as an additional parameter.

Definition 5.12. Let H be the knowledge base obtained from K by replacing ⊥ with the
nullary predicate ⊥s, let Σd

H be the set of all datalog rules in ΣH, and let Σn
H = ΣH \ Σd

H.
Furthermore, let f be a polynomially computable choice function that given a ground clause
χ and a set of ground atoms returns a disjunct in χ. The c-chase sequence of K w.r.t. f is
the sequence of sets of ground atoms {Bi}i≥0, where B0 = DH (i.e. B0 = DK), and Bi+1 is
defined as given next. Let Si+1

d and Si+1
n be as follows:

Si+1
d = {head(r)σ | r ∈ Σd

H, σ a substitution, Bi |= body(r)σ and Bi 6|= head(r)}
Si+1
n = {f(head(c-sk(r))σ, Sin) | r ∈ Σn

H, σ a substitution ,Bi |= body(r)σ and Bi 6|= head(r)}

Then, Bi+1 = Bi ∪ Si+1
d if Si+1

d 6= ∅, and Bi+1 = Bi ∪ Si+1
n otherwise. Finally, we define the

c-chase of K w.r.t. f as c-ChasefK =
⋃
i≥0{Bi}. ♦

Example 5.13. Consider the aforementioned choice function f that picks Herbivore(b)

whenever rule (R5) is applied to a fact Mammal(b). Figure 3 depicts the facts in c-ChasefKex
.

It can be observed that c-ChasefKex
is a strict subset of the materialisation in Figure 2, where

the brown-colored facts are no longer derived. We can see that wolf is not an answer to
qex w.r.t. c-ChasefKex

and hence it can be identified as spurious. Furthermore, the nullary
predicate ⊥s has not been derived and hence we can determine that Kex is satisfiable. ♦

22

Revision 2244 – March 19, 2015

grass

tiger lion python rabbit sheep howler

Mammal Mammal Herbivore Herbivore Mammal
Folivore

c2 Plant Plant

Herbivore Herbivore Mammal Mammal
Herbivore

MeatEater

wolf

Mammal
MeatEater

c3
Leaf
Plant

Mammal
Folivore

a hare

Herbivore

Plantwillow

Figure 3: c-chasef of Kex

The relevant properties of this variant of the c-chase are as follows.

Theorem 5.14. Let f be a choice function as in Definition 5.12. If ⊥s 6∈ c-ChasefK, then

c-ChasefK is a model of K and cert(q,K) ⊆ cert(q, c-ChasefK).

Proof. The dataset DK is contained in c-ChasefK, so it suffices to show that c-ChasefK satisfies
each rule r ∈ K. We distinguish the following cases:

• r is of the form (2). Since ⊥s /∈ c-ChasefK, there cannot exist a substitution σ such

that c-ChasefK |= body(r)σ and hence c-ChasefK satisfies r vacuously.

• r is of the form (3). Pick σ such that c-ChasefK |= body(r)σ. The definition of c-ChasefK
ensures that head(c-sk(r))σ ∈ c-ChasefK and hence c-ChasefK satisfies r.

• r is of the form (4). Pick σ such that c-ChasefK |= body(r)σ. By the definition of

c-ChasefK, we have f(head(c-sk(r)), Sin)σ ∈ c-ChasefK for some set of atoms Sin in the

chase sequence, and then c-ChasefK satisfies r.

If q = ⊥, then cert(q,K) = ∅ and cert(q,K) ⊆ cert(q, c-ChasefK) holds trivially; otherwise,

cert(q,K) ⊆ cert(q, c-ChasefK) follows from the fact that c-ChasefK is a model of K.

5.4 Combined Upper Bound

We have introduced three different techniques for computing an upper bound to cert(q,K).

1. Compute the materialisation MU
1 of str(K), and evaluate q w.r.t. MU

1 to obtain a set
of possible answers U q1 to q w.r.t. K (c.f. Section 5.1).

2. Compute the c-chase of K, denoted by MU
2 , and evaluate q w.r.t. MU

2 to obtain a set
of possible answers U q2 to q w.r.t. K (c.f. Section 5.2).

3. Fix a choice function f , compute the c-chase of K w.r.t. f , denoted by MU
3 , and eval-

uate q w.r.t. MU
3 to obtain a set of possible answers U q3 to q w.r.t. K (c.f. Section 5.3).

It can be trivially seen that U q2 and U q3 are more precise than U q1 , i.e. U q2 ⊆ U q1 and U q3 ⊆ U q1 .
As shown in the following example, U q2 and U q3 are, however, incomparable.

23

Revision 2244 – March 19, 2015

Example 5.15. Consider a knowledge base H consisting of facts A(a1), R(a1, b1), B(b1),
A(a2), R(a2, b2), B(b2) and rules B(x) → C(x) ∨ D(x), R(x, y) ∧ C(y) → S(x, y) and
A(x) → ∃yS(x, y). Let c be the freshly introduced constant for A(x) → ∃yS(x, y), and let
f be a choice function that picks the disjunct D(bi) in every clause C(bi) ∨D(bi). Then,

c-ChaseH = DH ∪ {C(b1), D(b1), S(a1, b1), C(b2), D(b2), S(a2, b2)}, and

c-ChasefH = DH ∪ {D(b1), S(a1, c), D(b2), S(a2, c)}.

For q1(x) = ∃y(S(x, y) ∧ C(y) ∧ D(y)), the upper bound computed using the c-ChaseH
contains two additional answers a1 and a2 compared with that computed using c-ChasefH.

But for q2(x1, x2) = ∃y(S(x1, y)∧S(x2, y)), the upper bound computed using c-ChasefH has
additional answers (a1, a2) and (a2, a1) compared with that computed using c-ChaseH. ♦

There are, however, tradeoffs to be considered. Clearly, the upper bound U q1 is the most
convenient from an ease of implementation point of view: once str(K) has been constructed,
the bound can be directly computed using an off-the-shelf datalog reasoner without modi-
fication. Furthermore, the upper bound U q3 has an important shortcoming: it is of no use
whenever ⊥s is derived, as we will show in the following example.

Example 5.16. Consider a choice function g that picks MeatEater(a) for any disjunc-
tion of the form Herbivore(a) ∨MeatEater(a). Then the c-chase of Kex w.r.t. g will derive
MeatEater(howler) from the fact Mammal(howler) and the disjunctive rule (R5). Using
fact Folivore(howler) and rule (R3U) it will then derive ⊥s. Thus we can see that, although
howler is in cert(qex,Kex), Herbivore(howler) is not in the c-chase of Kex w.r.t. g, and hence
howler is not in the upper bound computed using it; this is in contrast to the other two
upper bounds, where Herbivore(howler) is in the materialisation of str(Kex) and the c-chase
of Kex, and hence howler is in the upper bound computed w.r.t. them. ♦

Therefore, if ⊥s 6∈ c-ChasefK, we can combine U q2 and U q3 to compute a hopefully more
precise upper bound; otherwise, we can use U q2 . The combined upper bound query answer
U q to q in K is formally defined as follows:

U q =


U⊥s

2 ∩ U⊥s
3 if q = ⊥;

U q2 ∩ U q3 if q 6= ⊥ and ⊥s 6∈ c-ChasefK;
U q2 otherwise.

(13)

Example 5.17. The combined upper bound for qex in Kex gives:

Uex = {tiger, lion, rabbit, sheep, howler, a hare}.

If we compare this upper bound with the aggregated lower bound Lex given in Example 4.8
we can identify a gap Gex = {tiger, lion, rabbit}. ♦

6. Reducing the Size of the Knowledge Base

In cases where there is a non-empty gap Gq between lower and upper bound (e.g., our
running example) we need to verify whether each answer in Gq is spurious or not. Ac-
complishing this task using a fully-fledged reasoner can be computationally very expensive:

24

Revision 2244 – March 19, 2015

verifying each answer in Gq typically involves a satisfiability test, which can be infeasible
in practice for large-scale knowledge bases.

In this section we propose a technique for identifying a (typically small) subset Kq of
the knowledge base K that are sufficient for verifying all answers in Gq (i.e. ~a ∈ cert(q,K)
iff ~a ∈ cert(q,Kq) for each ~a ∈ Gq). It is essential that these subsets be, on the one hand, as
small as possible and, on the other hand, efficiently computable. These requirements are in
conflict: computing minimal-sized subsets can be as hard as answering the query, whereas
subsets that can be easily computed may be almost as large as the initial knowledge base.

The main idea behind our approach is to construct a datalog knowledge base whose
materialisation identifies all rules and facts in Kq. Such knowledge base is of size polynomial
in the sizes of K and q and it does not include predicates of arity higher than those in K or
q. In this way, subset computation can be fully delegated to the scalable datalog reasoner,
hence addressing the efficiency requirement. The key property of Kq, which ensures that
it contains all the relevant information in K, is the following: for each rule or fact α /∈ Kq
we can show that α does not occur in any hyperresolution proof of � (resp. a gap answer
in Gq) from K ∪ Rq for q = ⊥ (resp. q 6= ⊥). The completeness of hyperresolution then
guarantees that all excluded facts and rules are indeed irrelevant.

6.1 Overview of the Approach

Let us motivate the main ideas behind our approach using our running example. Since ⊥s
has not been derived in MU

2 ∩MU
3 , we know that cert(⊥,Kex) = ∅, and hence that Kex

is satisfiable (see Example 5.13). However, we still need to determine whether answers in
Gex = {tiger, lion, rabbit} from the combined upper bound are in cert(qex,Kex), i.e., if they
are certain answers to qex.

We now sketch the construction of a datalog knowledge base track(Kex, qex, Gex) from
which the subset of Kex relevant to the answers in Gex is derived. The key property of
this knowledge base is that its materialisation ‘tracks’ all the rules and facts that may
participate in a hyperresolution proof of a gap answer and thus encodes the contents of the
subset Kqex . The relevant information is recorded using fresh predicates and constants:

• a fresh predicate PR for each predicate P in Kex, the extension of which in the
materialisation of track(Kex, qex, Gex) will give us the facts in the subset.

• a fresh constant dr for each rule r in Kex and a special unary predicate Rel, the
extension of which in the materialisation of track(Kex, qex, Gex) will give us the rules
in the subset.

The key step in the construction of this knowledge base is to ‘invert’ each rule r ∈ Kex
into a set of datalog rules ∆(r) by (i) moving all head atoms of r into the body while
replacing their predicates with the corresponding fresh ones (e.g., replace P with PR);
(ii) ‘copying’ all the atoms that were originally in the body of r into the (now empty) head
while replacing predicates with the corresponding fresh ones and adding the special atom
Rel(dr) as an additional conjunct; and (iii) eliminating the conjunction in the head of r by
splitting r into multiple rules, one for each head conjunct.

25

Revision 2244 – March 19, 2015

Consider as a first example the datalog rule (R4) in Kex, which is inverted into the
following rules:

PlantR(y) ∧ Herbivore(x) ∧ eats(x, y)→ HerbivoreR(x) (14)

PlantR(y) ∧ Herbivore(x) ∧ eats(x, y)→ eatsR(x, y) (15)

PlantR(y) ∧ Herbivore(x) ∧ eats(x, y)→ Rel(dR4) (16)

The head Plant(y) of (R4) has been moved to the body and predicate Plant replaced with
PlantR; the body Herbivore(x)∧eats(x, y) has been ‘copied’ into the head as the conjunction
HerbivoreR(x) ∧ eatsR(x, y), and then conjoined with the special atom Rel(dR4); and finally
the head conjunction has been eliminated by splitting the rule into three separate rules.

These rules reflect the intuitive meaning of the freshly introduced predicates. If fact
PlantR(c) holds for some constant c, this means that fact Plant(c) may participate in a
hyperresolution proof in Kex of an answer in the gap. Additionally, if Herbivore(b) and
eats(b, c) also hold for some b, then these facts and the rule (R4) could also participate
in one such proof since Plant(c) is a hyperresolvent of facts Herbivore(b) and eats(b, c) and
rule (R4), which is recorded as facts HerbivoreR(b), eatsR(b, c), and Rel(dR4). Thus, rules
(14)–(16) faithfully ‘invert’ hyperresolution steps involving rule (R4).

Similarly, the disjunctive rule (R5) is inverted into the following two rules:

HerbivoreR(x) ∧MeatEaterR(x) ∧Mammal(x)→ MammalR(x) (17)

HerbivoreR(x) ∧MeatEaterR(x) ∧Mammal(x)→ Rel(dR5) (18)

In this case, the disjunctive head Herbivore(x)∨MeatEater(x) of (R5) has been moved to the
body as the conjunction HerbivoreR(x)∧MeatEaterR(x) over the fresh predicates HerbivoreR

and MeatEaterR. If facts HerbivoreR(c) and MeatEaterR(c) hold for some c (which means
that facts Herbivore(c) and MeatEater(c) may participate in a relevant proof in Kex) and
Mammal(c) holds, then we also deem fact Mammal(c) and rule (R5) relevant.

The situation is different when it comes to inverting and existentially quantified rules, in
which case we no longer capture relevant hyperresolution steps in Kex faithfully. Consider
rule (R7), which is inverted as follows:

eatsR(x, y) ∧Mammal(x)→ MammalR(x) (19)

eatsR(x, y) ∧Mammal(x)→ Rel(dR7) (20)

In this case, the existentially quantified head ∃y eats(x, y) is moved to the body as the atom
eatsR(x, y). If eatsR(b, c) holds for some b and c (and hence this fact may participate in a
relevant proof), and Mammal(b) also holds, then we record both (R7) and Mammal(b) as
relevant (the latter by means of the fact MammalR(b)). The hyperresolvent of Mammal(b)
and (R7) is an atom eats(b, t), with t a functional term, which may be unrelated to eats(b, c)
and hence irrelevant to proving an answer in the gap.

In addition to inverting the rules in Kex, the construction of track(Kex, qex, Gex) also
needs to take the query and gap answers into account. For this, we encode the query
eats(x, y) ∧ Plant(y)→ Pqex(~x) into the rules

PRqex(x) ∧ eats(x, y) ∧ Plant(y)→ eatsR(x, y) (21a)

PRqex(x) ∧ eats(x, y) ∧ Plant(y)→ PlantR(y) (21b)

26

Revision 2244 – March 19, 2015

and add a fact PRqex(c) for each c ∈ Gex. These query-dependent rules are used to ini-
tialise the extension of the fresh predicates, which subsequently makes the other rules in
track(Kex, qex, Gex) applicable.

The query answers in the gap stem from the upper bound; consequently, in order for
rules (21a) and (21b) to be applicable the data in track(Kex, qex, Gex) is obtained from the
upper bound materialisation of Kex. In the following section we show that it suffices to
include all facts in the c-chase of Kex in order to ensure that the computed subset will
contain all the necessary facts and rules.

6.2 Subset Definition and Properties

We are now ready to formally define the datalog knowledge base used for subset computation
as well as the corresponding relevant subset.

Definition 6.1. Let G be a set of possible answers to q, let Rel be a fresh unary predicate
and let dr be a fresh constant unique to each r in K ∪Rq. Furthermore, for each predicate
P in K∪Rq, let PR be a fresh predicate of the same arity as P and, for an atom α = P (~t),
let αR denote PR(~t). For any normalised rule r ∈ K ∪ Rq, let move(r) be the following
conjunction of atoms:

• PR⊥ if r of the form (2);

• γR1 (~x, ~z1) if r of the form (3); and

• γR1 (~x) ∧ · · · ∧ γRm(~x) if r of the form (4).

Then, ∆(r) is the following set of rules:

∆(r) = {move(r) ∧ body(r)→ Rel(dr)} ∪ {move(r) ∧ body(r)→ βRk | βk in body(r)}.

The tracking knowledge base track(K, q, G) is the smallest knowledge base containing

(i) all facts in the c-chase of K;

(ii) all rules in
⋃
r∈K∪Rq

∆(r);

(iii) a fact PRq (~a) for each ~a ∈ G; and

(iv) a fact PR⊥ if q 6= ⊥.

The subset of K relevant to q and G, denoted by Kq,G, is the smallest knowledge base
containing

• each rule r ∈ ΣK such that track(K, q, G) |= Rel(dr); and

• each fact α ∈ DK such that track(K, q, G) |= αR.

For brevity, we write Kq for the particular case where G is the set of gap answers Uq \ Lq
as defined in Sections 4.3 and 5.4. ♦

27

Revision 2244 – March 19, 2015

Note that K⊥ is a subset of Kq since track(K,⊥, G⊥) is a subset of track(K, q, Gq): in
Definition 6.1, point (i) is the same for track(K,⊥, G⊥) and track(K, q, Gq); furthermore,
the set of rules from (ii) for track(K,⊥, G⊥) is a subset of that for track(K, q, Gq) since
K ∪R⊥ ⊆ K ∪Rq; finally, the fact PR⊥ , which is included in track(K,⊥, G⊥) by point (iii),
also belongs to track(K, q, Gq) by point (iv).

Example 6.2. Consider again our running example, where Gex = {tiger, lion, rabbit}. The
subset of Kex relevant to qex and Gex consists of rules R2, R4, R5, R6, and R7 and facts
D1, D2, D3, D5, D7, D9, and D11. ♦

The key properties of the computed subsets are established by the following theorem.

Theorem 6.3. The following properties hold:

(1) Assume that L⊥ = ∅. Then, K is unsatisfiable iff K⊥ is unsatisfiable.

(2) Let q be different from ⊥ and let G be any non-empty set of possible answers to q w.r.t.
K. If K is satisfiable, then ~a ∈ cert(q,K) iff ~a ∈ cert(q,Kq,G) for every ~a ∈ G.

Proof. The ‘if’ direction of (1) and (2) follows directly from the monotonicity of first-
order logic. The ‘only if’ direction of both (1) and (2) follows from the completeness of
hyperresolution and the following claim, which establishes that for any q and a non-empty
G, Kq,G contains the support of all hyperresolution derivations of any clause in Υ(q,G)
from K ∪Rq where

Υ(q,G) =

{
{�} if q = ⊥;
{Pq(~a) | ~a ∈ G} otherwise.

Claim (♣) If ρ = (λ, T) is a derivation of α ∈ Υ(q,G) from K∪Rq, then support(ρ) ⊆ Kq,G.

To show the ‘only if’ direction of (1), assume that K is unsatisfiable. By Theorem 5.10,
Theorem 5.14 and (13), we have U⊥ 6= ∅ and thus G⊥ 6= ∅. There exists a hyperresolution
derivation ρ1 of � from K. Since Υ(⊥, G⊥) = {�}, we know that support(ρ1) ⊆ K⊥ by
(♣). So K⊥ is unsatisfiable. To show the ‘only if’ direction of (2), assume that ~a ∈ G and
~a ∈ cert(q,K). Then there exists a hyperresolution ρ2 of Pq(~a) from K ∪Rq. Similarly, by
(♣), we know that support(ρ2) ⊆ Kq,G and hence ~a ∈ cert(q,Kq,G).

We next show inductively a statement from which (♣) will follow. Let ρ = (λ, T) be
a derivation of a clause in Υ(q,G) from K ∪ Rq, and let H = split(K). We have already
established (see proof of Theorem 5.10) that c-ChaseK is a model of H. Since ChaseH is a
universal model of H there exists a homomorphism τ from ChaseH to c-ChaseK. We show
the following properties inductively for every node v in T .

a. track(K, q, G) |= αRτ , for each atom α in λ(v); and

b. track(K, q, G) |= Rel(dr), if sk(r) is the main premise used to obtain the parent u of v.

We proceed by induction on the distance of v to the root of T .

Base case: In the base case we have that v is the root of T . Property (b) follows vacuously
since v has no parent in ρ.

28

Revision 2244 – March 19, 2015

• If q = ⊥, then ρ is a derivation of the empty clause and λ(v) is the empty disjunction
and. So property (a) also follows vacuously.

• Otherwise, λ(v) = Pq(~a) for some ~a ∈ G. By the definition of track(K, q, G) (point
(iii)) we have that (λ(v))R ∈ track(K, q, G) and hence property (a) also holds.

Inductive step: Assuming that properties (a) and (b) hold for a node u, we show that
they also hold for the children v1, . . . , vn of u. Let r be the rule in K such that sk(r) is
the main premise in the relevant hyperresolution step with MGU σ, i.e., λ(u) = γ1σ ∨ · · · ∨
γmσ ∨ χ1 ∨ · · · ∨ χn is the hyperresolvent of sk(r) = ¬β1 ∨ · · · ∨ ¬βn ∨ γ1 ∨ · · · ∨ γm and
λ(vi) = βiσ ∨ χi for 1 ≤ i ≤ n, using σ. An easy observation of composition between a
substitution and a homomorphism is used later in the rest of the proof.

(βσ)τ = β(στ) for an arbitrary function-free atom β. (22)

By Lemma 5.4 in Section 5.1 we have that each βiσ ∈ ChaseH for each 1 ≤ i ≤ n. Since τ
is a homomorphism from ChaseH into c-ChaseK we then have that (βiσ)τ ∈ c-ChaseK and
by (22), βi(στ) ∈ c-ChaseK for 1 ≤ i ≤ n. We next show that track(K, q, G) |= move(r)στ .

• If m = 0, then move(r) = PR⊥ . We distinguish two cases.

– if q 6= ⊥, PR⊥ ∈ track(K, q, G) by point (iv);

– if q = ⊥, we have ⊥s ∈ c-ChaseK and hence PRq ∈ track(K, q, G) by point (iii).

• Otherwise, by the induction hypothesis, we also have that track(K, q, G) |= (γjσ)Rτ
and again by (22), track(K, q, G) |= γRj (στ) for 1 ≤ j ≤ m.

Therefore track(K, q, G) |= move(r)στ . Then the body of rules in ∆(r) is satisfied by
the substitution στ and hence track(K, q, G) |= Rel(dr), and track(K, q, G) |= βRi (στ) for
1 ≤ i ≤ n. Again by (22), track(K, q, G) |= (βRi σ)τ for 1 ≤ i ≤ n. In addition, by the
induction hypothesis, we have track(K, q, G) |= χRi τ , for each 1 ≤ i ≤ n. Hence, have shown
that (a), (b) hold for each child vi of u.

It only remains to be shown that (a) and (b) imply (♣). Indeed, take any α ∈ support(ρ).

• If α is a fact in K, then it is a leaf node of ρ; hence, by property (a) we have that
track(K, q, G) |= αRτ . But then, since α is a fact in DK the definition of homomor-
phism ensures that αRτ = αR. By the definition of Kq,G this implies that α ∈ Kq,G.

• If α is a rule in K, then by Property (b) we have that track(K, q, G) |= Rel(dα). Again,
the definition of Kq,G ensures that α ∈ Kq,G.

This completes the proof of the theorem.

We conclude with an example illustrating why the dataset in track(K, q, G) (point 1 in
Definition 6.1) is obtained from c-ChaseK the materialisation underpinning the upper bound

in Section 5.2, rather than c-ChasefK in Section 5.3.

29

Revision 2244 – March 19, 2015

Example 6.4. Consider the query q(x) = E(x) and the knowledge base K consisting of
the following rules and facts.

A(x)→ B(x) ∨D(x) D(x)→ E(x)

B(x)→ E(x) A(a)

Let f be a function always choosing B(a) over D(a), then c-ChasefK = {A(a), B(a), E(a)}
and constant a is an answer to q(x) in the gap between lower and upper bound. Suppose
that we were to define track(K, q, G) as in Definition 6.1 but replacing the facts in point (i)

with those in c-ChasefK. Since D(a) does not hold in c-ChasefK the corresponding subset will
not contain the rule D(x)→ E(x), which is essential to derive E(a). ♦

6.3 Optimisations of the Datalog Encoding

To conclude this section, we present two optimisations of the datalog encoding in Definition
6.1 that we will exploit in our system PAGOdA.

The first optimisation aims at reducing the size of the computed subsets. Recall that
the key step in the construction of the tracking knowledge base track(K, q, G) was to invert
the rules in K to capture hyperresolution proofs in a ‘backwards’ fashion. Consider the
inversion (17) of rule (R5) in our running example. The effect of the inversion is to cap-
ture the applicability of hyperresolution: if facts Mammal(rabbit), HerbivoreR(rabbit) and
MeatEaterR(rabbit) hold, then we include rule (R5) in the subset since there may be a proof
in K involving a step where a ground clause Herbivore(rabbit) ∨ MeatEater(rabbit) ∨ ξ is
obtained by resolving (R5) with Mammal(rabbit) ∨ ξ.

Note, however, that such a step is redundant should Herbivore(rabbit) already be con-
tained in K, in which case (R5) may not be needed in the relevant subset. We can capture
this observation by distinguishing in the tracking knowledge base those facts in the c-chase
of K that were not already present in the original dataset DK. We encode these ‘implied’
facts by instantiating fresh predicates P I for each predicate P in K. In our running example,
a fact MeatEaterI(rabbit) in the tracking knowledge base establishes that MeatEater(rabbit)
was not present in the original data. We then use atoms over these predicates as guards in
the inverted rules, e.g. rule (17) would now be written as follows:

HerbivoreI(x) ∧MeatEaterI(x) ∧ HerbivoreR(x)

∧MeatEaterR(x) ∧Mammal(x)→ MammalR(x)

Formally, Definition 6.1 can be optimised as given next.

Definition 6.5. Let K, q, G and predicates PR be as in Definition 6.1. For each predicate
P , let P I be a fresh predicate of the same arity as P . We now redefine move(r) for each
rule r as the following conjunction of atoms:

• PR⊥ if r of the form (2);

• γI1(~x, ~z1) ∧ γR1 (~x, ~z1) if r of the form (3); and

• γI1(~x) ∧ · · · ∧ γIm(~x) ∧ γR1 (~x) ∧ · · · ∧ γRm(~x) if r of the form (4).

30

Revision 2244 – March 19, 2015

Then, ∆(r) is as in Definition 6.1, and track(K, q, G) is also as in Definition 6.1, but extended
with the addition of a fact P I(~a) for each fact P (~a) that is in c-ChaseK but not in DK. ♦

It is easy to see that this optimisation does not affect the correctness of Theorem 6.3:
if a disjunction of atoms is derived via hyperresolution, where one of the atoms is already
present in the data, then the disjunction is subsumed and can be dispensed with.

The second optimisation can be used to obtain a more succinct encoding for datalog
reasoners that support equality reasoning natively (such as RDFox). As already mentioned,
the built-in semantics of the equality predicate can be axiomatised within datalog. However,
axiomatisation can lead to performance issues, and scalability can be improved by a native
treatment of equality where equal objects are ‘merged’ into a single representative of the
whole equivalence class.

The axiomatisation of equality has a significant effect in our tracking encoding. For
example, the replacement rules r of the form (EQ4) are inverted into the following rules in
∆(r) for each predicate P :

PR(x1, . . . , xi−1, y, xi+1, . . . , xn) ∧ P (x1, . . . , xn) ∧ xi ≈ y → PR(x1, . . . , xn) (23)

PR(x1, . . . , xi−1, y, xi+1, . . . , xn) ∧ P (x1, . . . , xn) ∧ xi ≈ y →≈R (xi, y) (24)

where (23) is an tautology and can be dispensed with, but rule (24) is required. If the
datalog reasoner has native support for equality, then we do not need to include in the
tracking knowledge base the inversion of equality axioms (EQ1), (EQ2) or (EQ3), and we
only need to include rules (24) in order to ensure that the computed subset has the required
properties. The result is a more succinct encoding that can be materialised more efficiently.

Example 6.6. Consider a knowledge base K consists of facts {R(a1, b), R(a2, b), A(a1)}
and the following rules.

A(x)→ B(x) ∨ C(x) (25)

R(x1, y) ∧R(x2, y)→ x1 ≈ x2 (26)

B(x)→ D(x) (27)

C(x)→ D(x) (28)

Let q = D(x), the gap G between lower and upper bounds to q is {a1, a2}. It is easy the
see that rule (26) is essential to derive q(a2). To ensure that this rule is in the fragment
Kq,G, we have to track a1 ≈ a2 using an instance of rule (24). ♦

7. Summarisation and Analysis of Answer Dependencies

In this section, let q be an input query different from the unsatisfiability query ⊥. Once
K⊥ and Kq have been computed, we still need to check, using the fully-fledged reasoner,
the satisfiability of K⊥ as well as whether Kq entails each candidate answer in Gq. This
can be computationally expensive if these subsets are large and complex, or there are many
candidate answers to verify. We therefore exploit summarisation techniques (Dolby et al.,
2007) in an effort to further reduce the number of candidate answers.

The idea behind summarisation is to ‘shrink’ the data in the knowledge base by merging
all constants that instantiate the same unary predicates. Since summarisation is equivalent
to extending the knowledge base with equality assertions between constants, the summary

31

Revision 2244 – March 19, 2015

knowledge base entails the original one by the monotonicity of first-order logic. Conse-
quently, we can exploit summarisation as follows:

1. If the satisfiability of K remains undetermined, we construct the summary of K⊥ and
check its satisfiability. If it is satisfiable, then K⊥ (and thus also K) is also satisfiable.

2. Construct the summary of Kq and then use the fully-fledged reasoner to check whether
the summary of ~a is entailed to be a certain answer of q in the summary of Kq,
discarding any answers that are not so entailed.

Formally, summarisation is defined as follows.

Definition 7.1. A type T is a set of unary predicates; given a constant c in K, we say
that T = {A | A(c) ∈ K} is the type for c. For each type T , let aT be a fresh constant
uniquely associated with T . The summary function over K is the substitution σ mapping
each constant c in K to aT , where T is the type for c. Finally, the summary of K is Kσ. ♦

The following proposition shows how summarisation can be exploited to detect spurious
answers in our setting. Since summarisation can significantly reduce data size in practice,
and the relevant subsets K⊥ and Kq are already significantly smaller than K, checking the
satisfiability of K⊥ and of each gap answer against Kq becomes feasible in many cases, even
though doing so implies resorting to the fully-fledged reasoner.

Proposition 7.2. Let σ be the summary function over K. Satisfiability of K⊥σ implies the
following: (i) K is satisfiable; and (ii) cert(q,K) ⊆ cert(qσ,Kqσ) for every CQ q.

Example 7.3. In the case of our running example, the constants tiger and lion both have
type {Mammal}, and are therefore mapped to a fresh constant, say tMammal, that is uniquely
associated with {Mammal}. Since tMammal is not a certain answer to qex w.r.t. the summary
of Kex, we can determine that both tiger and lion are spurious answers. ♦

If summarisation did not suceed in pruning all candidate answers in G, we try in a
last step to further reduce the calls to the fully-fledged reasoner by exploiting dependencies
between the remaining candidate answers such that, if answer ~a depends on answer ~c, and
~c is spurious, then so is ~a.

Consider two tuples ~c and ~d of constants in Gq. Suppose that we can find an endomor-
phism η of the dataset DK in which ~cη = ~d. If we can determine (by calling the fully-fledged
reasoner) that ~d is a spurious answer, then so must be ~c; as a result, we no longer need to
call the fully-fledged reasoner to verify ~c. Such endomorphisms are defined next.

Definition 7.4. Let ~c = (c1, . . . , cn) and ~d = (d1, . . . , dn) be n-tuples of constants from K.
An endomorphism from ~c to ~d in K is a mapping η from constants to constants such that
(i) ciη = di for each 1 ≤ i ≤ n; (ii) P (t1, . . . , tm)η ∈ DK for each fact P (t1, . . . , tm) ∈ DK;
and (iii) rη ∈ ΣK for each r ∈ ΣK. ♦

The relevant property of endomorphisms is given in the following proposition.

Proposition 7.5. Let ~c, ~d be possible answers to q and let η be an endomorphism from ~c
to ~d in K. Then, ~c ∈ cert(q,K) implies ~d ∈ cert(q,K).

32

Revision 2244 – March 19, 2015

normaliser

HermiT clausifier

KARMA

subset extractor

RDFox of D

RDFox

soundAnswers(q,Σ ∪ D)

O

Σ

certU2
(q,Σ ∪ D)

Kq

summary filter

HermiT

heuristic planner

HermiT

cert(q,O ∪D)

G′ ⊆ Gq

c-chase

RDFox

D

certU3
(q,Σ ∪ D)

c-chasef

RDFox

shift

Gq

Σ, q, Gq

Lq

Lq

Full reasoning

Extracting subsets

Computing query bounds

Materialisation

Loading ontology & data

tracking encoder

track(Σ, q, Gq)

*

D

F

q

q,Gqq,Gq

q
q

profile checker

lower store

endormophism
checker

ML
2 MU

3 MU
2

Figure 4: The architecture of PAGOdA

Proof. Since ~c ∈ cert(q,K), we know that K |= q(~c). So there is a hyperresolution derivation
ρ = (T, λ) of Pq(~c) from K ∪ Rq. It is easy to check that (T, λ ◦ η) is a hyperresolution

derivation of Pq(~d) from K ∪Rq. Then, K |= q(~d) and hence ~d ∈ cert(q,K).

We exploit this idea to compute a dependency graph having candidate answer tuples as
nodes and an edge (~c, ~d) whenever an endomorphism in DK exists mapping ~c to ~d. Com-
puting endomorphisms is, however, a computationally hard and we will resort in practice
to a sound greedy algorithm to approximate the dependency graph.

8. Implementation: The PAGOdA System

We have implemented our approach in a system called PAGOdA, which is written in Java
and it is available under an academic license. Our system integrates the datalog reasoner
RDFox (Motik et al., 2014) and the fully-fledged OWL 2 reasoner HermiT (Glimm et al.,

33

Revision 2244 – March 19, 2015

2014) as ‘black-boxes’, and we also exploit the combined approach for ELHOr⊥ (see Section
4.2) implemented in KARMA.5

PAGOdA accepts as input arbitrary OWL 2 DL ontologies, datasets in turtle format6

and CQs in SPARQL. Queries can be interpreted under ground or certain answer semantics.
In the former case, PAGOdA is sound and complete. In the latter case, however, PAGOdA
is limited by the capabilities of HermiT, which can only check entailment of ground or DL
concept queries; hence, PAGOdA can guarantee completeness only if the lower and upper
bounds match, or if the query can be transformed into a DL concept query via internalisation
(see Section 2.3). Otherwise, PAGOdA returns a sound (but possibly incomplete) set of
answers, along with a bound on the incompleteness of the computed answer set.

The architecture of PAGOdA is depicted in Figure 4. Each box in Figure 4 represents a
component of PAGOdA, and indicates any external systems that are exploited within that
component. We could, in principle, use any materialisation-based datalog reasoner that
supports CQ evaluation and the incremental addition of facts, and any fully-fledged OWL
2 DL reasoner that supports fact entailment.

PAGOdA uses four instances of RDFox (one in each of the lower bound, c-chase, c-
chasef and subset extractor components) and two instances of HermiT (one in each of the
summary filter and dependency graph components).

The process of fully answering a query can be divided into several steps. Here, we distin-
guish between query independent steps and query dependent ones. As we can see in Figure
4, the ‘loading ontology’ and ‘materialisation’ steps are query independent. Therefore, both
of them are counted as pre-processing steps. ‘Computing query bounds’, ‘extracting subset’
and ‘full reasoning’ are query dependent, and are called query processing steps.

We next describe the each component, following the process flow of PAGOdA.

Loading ontology and data. PAGOdA uses the OWL API to parse the input ontology
O. The dataset D is given separately in turtle format. The normaliser then computes
the set of rules corresponding to the axioms in the ontology. PAGOdA’s normaliser is
an extension of HermiT’s clausification component (Glimm et al., 2014), which transforms
axioms into so-called DL-clauses (Motik et al., 2009). The dataset is loaded directly into
(the four instances of) RDFox.

After normalisation, the ontology is checked to determine if it is inside OWL 2 RL
or ELHOr⊥. If an input ontology is in OWL 2 RL (resp. ELHOr⊥), then RDFox (resp.
KARMA) is already sound and complete, and in such cases PAGOdA simply processes the
ontology, dataset and queries using the relevant component. Otherwise, PAGOdA uses a
dedicated program shifting component to enrich the deterministic part of the ontology with
additional information from disjunctive rules (see Section 4.1), resulting in a set of rules Σ.

Materialisation. There are three components involved in this step, namely lower bound,
c-chase and c-chasef . Each of these takes as input Σ and D, and each computes a material-
isation (shown in Figure 4 as ellipses). The lower bound component performs Steps 1 and
2 from Section 4.3 in order to compute an aggregated lower bound ML

2 . The c-chase and c-
chasef components compute the MU

2 and MU
3 upper bound materialisations as described in

Section 5.4 using a dedicated implementation of the c-chase algorithm. The chase sequence

5. KARMA is available at http://www.cs.ox.ac.uk/isg/tools/KARMA/.
6. http://www.w3.org/TR/turtle/

34

Revision 2244 – March 19, 2015

is stored in RDFox, and the applicability of existential and disjunctive rules is determined
by posing SPARQL queries to RDFox. When applying a disjunctive rule (while computing
MU

3), PAGOdA uses a choice function to select one of the disjuncts. As discussed in Sec-
tion 5.4, the choice function should try to select disjuncts that will not (eventually) lead to
a contradiction. To this end, PAGOdA implements the following heuristics.

• We construct a standard dependency graph containing an edge from predicate P to
Q if there is a rule where P occurs in the body and Q in the head. Then, we compute
a preference ordering on the predicates occurring in a disjunction according to their
distance from ⊥ in the dependency graph, preferring those that are furthest from ⊥.

• We exploit the result of materialising D using the shifting enriched rules in Σ (see
Section 4.1). If a fact of the form P (~a) is obtained in the materialisation, then ¬P (~a)
follows from the knowledge base. Hence, if we have obtained P (~a), then we try to
avoid choosing P (~a) from a disjunct P (~a) ∨ χ during chase computation.

If ML
2 contains a contradiction, then the input ontology and dataset is unsatisfiable,

and PAGOdA reports this and terminates. If ⊥s is derived in MU
3 , then the computation

is aborted and MU
3 is no longer used. If MU

2 contains ⊥s, then PAGOdA checks the
satisfiability of Σ ∪ D; in effect, it computes cert(⊥,Σ ∪ D). If the answer to this query is
non-empty, then the input ontology and dataset is unsatisfiable, and PAGOdA reports this
and terminates; otherwise the input ontology and dataset is satisfiable, and PAGOdA is
able to answer queries.

Computing query bounds. Given a query q, PAGOdA uses the ML
2 lower bound mate-

rialisation to compute the lower bound answer Lq. In order to do this it exploits KARMA’s
implementation of the filtration procedure (algorithm soundAnswers in Section 4.2), but for
clarity this step is shown separately (as a circle with an “F” in it) in Figure 4. If ⊥s was not
derived when computing the MU

3 materialisation, U q = cert(q,MU
2)∩cert(q,MU

3); otherwise
U q = cert(q,MU

2). In either case U q is computed directly by using RDFox to answer q w.r.t.
the relevant materialisation.

Extracting subsets. The tracking encoder component implements the datalog encoding
based on Definition 6.1 with the optimisations described in Section 6.3. The resulting
datalog knowledge base is added to the rules and data in the c-chase component, and
RDFox is used to extend the c-chase materialisation accordingly. The freshly derived facts
(over the tracking predicates introduced by the tracking encoder) are then passed to the
subset extractor component, which uses these facts to identify all the facts and rules that
are relevant for checking gap answers, and computes the intersection between relevant facts
and the input dataset D by querying an instance of RDFox containing D only.

Full reasoning. PAGOdA uses HermiT to verify gap answers in Gq = U q \ Lq. As
HermiT only accepts queries given either as facts or DL concepts, we have implemented
the standard rolling-up technique to transform internalisable CQs. In the summary filter
component, PAGOdA uses HermiT to filter out gap answers that are not entailed by a
summary of Kq (see Section 7). The remaining gap answers G′ ⊆ Gq are then passed to
the endormorphism checker, which exploits a greedy algorithm to compute a (incomplete)
dependency graph between answers in G′. This graph is used by the heuristic planner to

35

Revision 2244 – March 19, 2015

optimise the order in which the answers in G′ are checked using HermiT (see Section 7).
Verified answers from G′ are combined with the lower bound Lq to give cert(q,O ∪D).

9. Related Work

Conjunctive query answering over ontology-enriched datasets has received a great deal of
attention in recent years. Its computational complexity has been thoroughly investigated for
a wide range of KR languages and a number of practicable algorithms have been proposed
in the literature and implemented in reasoning systems.

9.1 Computational Complexity of CQ Answering

The decision problem associated to CQ answering is conjunctive query entailment (CQE),
namely to decide whether K |= q(~a) when given as input a CQ q, a possible answer ~a,
and a knowledge base K expressed in a (fixed) language L. This problem is well-known
to be undecidable in general, even if q is restricted to be atomic and L is the language of
existential rules (e.g., see (Dantsin et al., 2001)).

Decidability of CQE for knowledge bases stemming from OWL DL ontologies was estab-
lished in (Rudolph & Glimm, 2010) under the assumption that the query does not mention
transitive relations. Decidability of CQE for unrestricted OWL DL or OWL 2 DL on-
tologies and CQs remains an open problem. Even in the cases where CQE is decidable,
it is typically of very high computational complexity. CQE is 2-ExpTime-complete for
the expressive DLs SHIQ and SHOQ (Glimm et al., 2008; Eiter, Lutz, Ortiz, & Simkus,
2009). Hardness results for 2-ExpTime can be obtained already for ALCI (Lutz, 2008)
as well as for the logic Horn-SROIQ which underpins the Horn fragment of OWL 2 DL
(Ortiz, Rudolph, & Simkus, 2011). CQE for ALC and SHQ, which do not involve inverse
roles, is ExpTime-complete (Lutz, 2008). Single exponential time results are also obtained
for Horn DLs by disallowing complex role inclusion axioms: CQE is ExpTime-complete
Horn-SHOIQ, which underpins the Horn fragment of OWL DL (Ortiz et al., 2011).

Given the high complexity of CQE, there has recently been an increasing interest in
lightweight DLs for which CQE is computationally easier. Such lightweight DLs have been
incorporated in the OWL 2 standard as profiles (Motik et al., 2009). CQE in the OWL 2 EL
profile is PSpace-complete (Stefanoni, Motik, Krötzsch, & Rudolph, 2014). Furthermore,
the complexity of CQE drops to NP if complex role inclusions (with the exception only of
transitivity and reflexivity) are disallowed in OWL 2 EL (Stefanoni & Motik, 2015). The
latter complexity is rather benign since CQE over databases is already NP-hard. Finally,
CQE for the OWL 2 QL profile is also NP-complete (Calvanese et al., 2007). Regarding
data complexity, CQE is coNP-complete for non-Horn DLs, such as ALE (Schaerf, 1993).
In contrast, data complexity is PTime-complete for Horn DLs that can encode recursion,
such as Horn-SROIQ and OWL 2 EL (Ortiz et al., 2011; Stefanoni et al., 2014). Finally,
data complexity is known to be in AC0 for the OWL 2 QL profile (Calvanese et al., 2007).

The complexity of CQE is also well understood for rule-based KR languages. For plain
datalog, it is ExpTime-complete in combined complexity and PTime-complete w.r.t. data
complexity. For disjunctive datalog, combined complexity increases to coNExpTime-
complete, whereas data complexity increases to coNP-complete. We refer the reader to
(Dantsin et al., 2001) for details. Datalog± refers to a family of decidable KR languages

36

Revision 2244 – March 19, 2015

based on existential rules (Cal̀ı, Gottlob, & Lukasiewicz, 2012). This includes guarded (Cal̀ı
et al., 2013), sticky (Cal̀ı, Gottlob, & Pieris, 2011), and acyclic (Cuenca Grau et al., 2013)
datalog±. The extension of datalog± languages with disjunctive rules has been recently
studied in (Alviano et al., 2012; Bourhis et al., 2013).

Finally, we refer to ground query entailment (GCQE) as the problem of checking whether
a tuple ~a is a ground answer to q(~x) = ∃~yϕ(~x, ~y) w.r.t. K. In KR languages that allow for
existentially quantified rules, the restriction to ground answers typically makes CQE easier:
the definition of ground answers means that GCQE can be trivially reduced to satisfiability
checking. Consequently, GCQE is decidable for OWL 2 DL.

9.2 Practical Query Answering Approaches

Some off-the-shelf DL reasoners, such as Pellet (Sirin et al., 2007) and HermiT (Glimm
et al., 2014) provide support for query answering. Pellet supports SPARQL conjunctive
queries and also implements the rolling-up technique. In contrast, HermiT does not provide
a SPARQL API and it only supports CQs in the form of (complex) DL concepts. Racer
was among the first DL reasoners to implement and optimise CQ answering under ground
semantics (Haarslev, Hidde, Möller, & Wessel, 2012). Finally, there has also been intensive
work on optimising query answering in DL systems, including filter-and-refine techniques
(Wandelt et al., 2010), ordering strategies of query atoms (Kollia & Glimm, 2013), and data
summarisation (Dolby et al., 2009). Optimising CQ answering in DL reasoners is comple-
mentary to our approach, as the use of a more optimised DL reasoner could significantly
improve the performance of PAGOdA on queries that require full reasoning.

RDF triple stores typically implement materialisation-based (a.k.a. forward chaining)
reasoning algorithms, and answer queries by evaluating them over the resulting materiali-
sation. Jena (McBride, 2001) and Sesame (Broekstra, Kampman, & van Harmelen, 2002)
were among the first such systems to provide support for RDF-Schema. Modern triple stores
such as OWLim (Bishop et al., 2011), and Oracle’s native inference engine (Wu et al., 2008),
provide extended suppport for ontologies in the RL profile. Additionally, RDFox (Motik
et al., 2014) supports arbitrary datalog over unary and binary predicates. Finally, ASP
engines such as DLV (Leone, Pfeifer, Faber, Eiter, Gottlob, Perri, & Scarcello, 2006) imple-
ment sound and complete reasoning for (extensions of) disjunctive datalog. Although triple
stores exhibit appealing scalability, they can support only restricted ontology languages;
however, as with DL reasoners, improving the scalability of triple stores is complementary
to our approach, and advances in this area can be directly exploited in PAGOdA.

CQ answering over Horn ontologies is often realised by means of query rewriting tech-
niques. A rewriting of a query q w.r.t. an ontology O is another query q′ that captures all
information from O necessary to answer q over an arbitrary dataset. Unions of CQs and
datalog are common target languages for query rewriting. Query rewriting enables the reuse
of optimised data management system: UCQs can be answered using standard relational
databases, whereas datalog queries can be evaluated using a triple store. Query rewriting
has been successfully applied to OWL 2 QL ontologies, where rewritability into UCQs is
guaranteed. Example systems include QuOnto (Acciarri, Calvanese, De Giacomo, Lembo,
Lenzerini, Palmieri, & Rosati, 2005) and Mastro (Calvanese, De Giacomo, Lembo, Lenz-
erini, Poggi, Rodriguez-Muro, Rosati, Ruzzi, & Savo, 2011), Rapid (Chortaras, Trivela, &

37

Revision 2244 – March 19, 2015

Stamou, 2011), Prexto (Rosati, 2012), and Ontop (Bagosi, Calvanese, Hardi, Komla-Ebri,
Lanti, Rezk, Rodriguez-Muro, Slusnys, & Xiao, 2014). Datalog-based query rewriting has
been implemented in systems such as REQUIEM (Pérez-Urbina, Motik, & Horrocks, 2010).
However, although some of these systems have been successful in large scale applications,
they are only applicable to Horn ontology languages, and even for OWL 2 QL the size of
the rewriting can be exponential in the size of the ontology (Calvanese et al., 2007).

A technique for CQ answering over lightweight DLs that is receiving increasing attention
is the so-called combined approach (Lutz, Toman, & Wolter, 2009; Stefanoni et al., 2013;
Kontchakov, Lutz, Toman, Wolter, & Zakharyaschev, 2011). In the combined approach
the dataset is first augmented with new facts in a query-independent way to build (in
polynomial time) a model of the ontology. This model can be exploited for query answering
in two equivalent ways. In the approach by (Lutz et al., 2009; Kontchakov et al., 2011) the
query is first rewritten and then evaluated against the constructed model. Alternatively,
in (Stefanoni et al., 2013; Lutz et al., 2013) the query is first evaluated over the model
and then unsound answers are eliminated by means of a polynomial time filtration process.
Combined approaches have been applied to logics of the EL family (Lutz et al., 2009;
Stefanoni et al., 2013) as well as DL-Lite (Kontchakov et al., 2011), and in PAGOdA, we
use the implementation of (Stefanoni et al., 2013) to compute the aggregated lower bound.
However, as in query rewriting techniques, the combined approach is only applicable to
Horn ontology languages.

Finally, similarly to PAGOdA, the system Hydrowl (Stoilos, 2014a) combines an OWL
2 RL reasoner with a query rewriting system and a fully-fledged DL reasoner in order to
answer conjunctive queries over an OWL 2 knowledge base. The techniques in Hydrowl are,
however, rather different to those in PAGOdA. Hydrowl uses two different query answering
strategies. The first one is based on repairing (Stoilos, 2014b) and query rewriting, and is
applicable only to ontologies for which a suitable repair exists. The second strategy exploits
a query base: a set of atomic queries that Hydrowl computes in a pre-processing phase, and
that can be fully answered using the triple store for the given ontology and an arbitrary
dataset. When answering a query q, Hydrowl checks if q is “covered” by query base (Stoilos
& Stamou, 2014); if it is, then q can be completely evaluated using the OWL 2 RL reasoner;
otherwise, the fully-fledged reasoner is used to answer q. However, the computation of the
query base does not appear to be correct in general,7 and we believe that this accounts for
the apparent incompleteness of Hydrowl in some of our tests (see Section 10.3.1).

9.3 Approximate Reasoning

The idea of transforming the ontology, data and/or query to obtain lower and upper bound
answers has been already explored in previous work. The Screech system (Tserendorj et al.,
2008) uses KAON2 (Hustadt, Motik, & Sattler, 2007) to transform a SHIQ ontology
into a (exponential size) disjunctive datalog program in such a way that ground answers to
queries are preserved. Subsequently, Screech can exploit (unsound or incomplete) techniques
to transform disjunctive datalog into plain datalog. In this way, Screech computes only
an approximation of the answer. TrOWL (Thomas et al., 2010) exploits approximation
techniques to transform an OWL 2 ontology into an ontology in the QL profile (Pan &

7. Stoilos (2014a) mentions “a limitation in automatically extracting [the atomic queries]”.

38

Revision 2244 – March 19, 2015

]axioms]rules]∃-rules]∨-rules]facts

LUBM(n) 93 133 15 0 n× 105

UOBM(n) 186 234 23 6 2.6n× 105

FLY 14,447 18,013 8396 0 8× 103

NPD 771 778 128 14 3.8× 106

DBPedia+ 1,716 1,744 11 5 2.9× 107

ChEMBL 2,593 2,960 426 73 2.9× 108

Reactome 559 575 13 23 1.2× 107

Uniprot 442 459 20 43 1.2× 108

Table 3: Statistics for test datasets

Thomas, 2007). The approximation first computes the closure of the input ontology under
entailment of OWL 2 QL axioms, and then disregards all axioms outside OWL 2 QL.
Related approximations into OWL 2 QL have also been proposed, e.g., by Wandelt et al.
(2010) and Console et al. (2014). Efficient approximation strategies for OWL 2 ontologies
are again complementary to our approach, as they can be exploited by PAGOdA in order
to refine lower and upper bound query answers.

10. Evaluation

We have evaluated our query answering system PAGOdA on a range of realistic and bench-
mark ontologies, datasets and queries, and we have compared its performance with state-
of-the-art query answering systems. Our test data and the systems used for comparison
are introduced in Sections 10.1 and 10.2, respectively. Our results are discussed in Section
10.3. Experiments were conducted on a 32 core 2.60GHz Intel Xeon E5-2670 with 250GB of
RAM, and running Fedora 20. All test ontologies, queries, and results are available online.8

10.1 Test Ontologies and Queries

Table 3 summarises our test data. The first two columns in the table indicate the total
number of DL axioms in each test ontology as well as the total number of rules after
normalisation. We are interested in ontologies that are not captured by OWL 2 RL and
hence cannot be fully processed by RDFox; thus, the number of rules containing existential
quantifications and disjunctions is especially relevant and is given in the third and fourth
colummns of the table, respectively. Finally, the rightmost column lists the number of data
facts in each dataset.

LUBM and UOBM are widely-used reasoning benchmarks (Guo, Pan, & Heflin, 2005;
Ma, Yang, Qiu, Xie, Pan, & Liu, 2006). The ontology axioms in these benchmarks have
been manually created and are considered fixed, whereas the data is synthetically generated
according to a parameter n that determines its size. LUBM and UOBM come with 14 and 15
standard queries, respectively. To make the tests on LUBM more challenging, we extended

8. http://www.cs.ox.ac.uk/isg/tools/PAGOdA/2015/jair/

39

Revision 2244 – March 19, 2015

the benchmark with 10 additional queries for which datalog lower-bound answers are not
guaranteed to be complete (as is the case for the standard queries).

FLY is a realistic ontology that describes the anatomy of the Drosophila and which is
currently integrated in the Virtual Fly Brain tool.9 Although the data is rather small
compared to other test cases (about 8, 000 facts), the ontology is very rich in existentially
quantified rules, which makes query answering especially challenging. We tested 6 realistic
queries that were provided by the developers of the ontology.

NPD FactPages is an ontology describing the petroleum activities in the Norwegian
continental shelf. The ontology comes with a realistic dataset containing 3.8 million facts.
Unfortunately, for NPD we have no realistic queries so we tested all atomic queries over the
signature of the ontology.

DBPedia contains information about Wikipedia entries. Although the dataset is rather
large, the ontology axioms are simple and can be captured by OWL 2 RL. To provide
a more challenging test, we have used the ontology matching system LogMap (Jiménez-
Ruiz & Cuenca Grau, 2011) to extend DBPedia with a tourism ontology containing both
existential and disjunctive rules. As in the case of NPD we have no example test queries,
so we focused our evaluation on atomic queries.

ChEMBL, Reactome, and Uniprot are realistic ontologies that have been made pub-
licly available through the European Bioinformatics Institute (EBI) linked data platform.10

These ontologies are especially interesting for testing purposes. On the one hand, both the
ontology axioms and data are realistic and are being used in a number of applications; on
the other hand, the ontologies are rich in both existentially quantified and disjunctive rules,
and the datasets are extremely large. Furthermore, the EBI website provides a number of
example queries for each of these ontologies. In order to test scalability on these datasets as
well as to compare PAGOdA with other systems we implemented a data sampling algorithm
based on random walks (Leskovec & Faloutsos, 2006) and computed subsets of the data of
increasing size. We have used for evaluation those example queries that correspond to CQs
as well as all atomic queries over the relevant signature.

10.2 Comparison Systems

We compared PAGOdA against four ontology reasoners: HermiT (v.1.3.8), Pellet (v.2.3.1),
TrOWL-BGP (v.1.2), and Hydrowl (v.0.2). With the single exception of TrOWL, all these
systems implement sound and complete algorithms for standard reasoning tasks over OWL
2 DL ontologies, including ontology consistency checking and concept instance retrieval.
Additionally, all but HermiT provide support for SPARQL queries.

As pointed out in the Section 9, there are many other systems that can answer queries
over ontologies. However, these systems have generally been designed for specific fragments
of OWL 2, and are incomplete for ontologies outside these fragments. Although TrOWL
is also incomplete for OWL 2, it has been included in the evaluation because it is, on the
one hand, a widely-used system in Semantic Web applications and, on the other hand, it is

9. http://www.virtualflybrain.org/site/vfb site/overview.htm
10. http://www.ebi.ac.uk/rdf/platform

40

Revision 2244 – March 19, 2015

similar to PAGOdA in that it exploits ontology approximation techniques. In what follows,
we describe the capabilities of these systems in more detail.

HermiT is a fully-fledged OWL 2 reasoner based on the hypertableau calculus (Motik
et al., 2009; Glimm et al., 2014). HermiT focuses on standard reasoning tasks in DLs.
It does not provide a SPARQL or conjunctive query answering API, but it is capable of
answering atomic queries over unary predicates and checking fact entailment.

Pellet is a tableau-based OWL 2 DL reasoner with support for CQ answering (Sirin et al.,
2007). Pellet provides a SPARQL API, and hence it can compute the set of all ground
answers to arbitrary conjunctive queries expressed in SPARQL. Pellet is also capable of
computing all certain answers to internalisable conjunctive queries using the rolling-up
technique (see Section 2.3).

TrOWL is a system based on approximated reasoning. It accepts as input an arbitrary
OWL 2 DL ontology and a CQ in SPARQL, and aims at computing all ground answers to
the given query (Thomas et al., 2010). TrOWL exploits a technique that approximates the
input ontology into the OWL 2 QL profile, and it does not provide completeness guarantees.

Hydrowl (Stoilos, 2014a) is a hybrid reasoning system that is similar in spirit to PAGOdA
(see Section 9.2 for a detailed comparison). Hydrowl integrates the triple store OWLim and
HermiT. It accepts as input an arbitrary OWL 2 ontology and conjunctive queries as rules,
and then computes the ground answers to the query.

10.3 Experiments and Results

We have performed three different experiments. In the first experiment, we compared
PAGOdA with the above mentioned systems, with respect to both the quality of their
answers (i.e., the number of correctly answered queries) and their performance relative to
PAGOdA. In the second experiment, we evaluated the scalability by considering datasets
of increasing size. Finally, in the third experiment, we evaluated the effectiveness of each
of the different reasoning techniques implemented in PAGOdA.

10.3.1 Comparison with Other Systems

We have compared PAGOdA with the other systems on our test ontologies. We used
LUBM(1) and UOBM(1) since they are already rather hard for some of the systems. Sim-
ilarly, we used relatively small samples of the EBI platform ontologies (1% of the data for
ChEMBL and UniProt, and 10% for Reactome) that can be processed by the majority
of systems. For each test ontology we computed all ground answers to the corresponding
test queries, and whenever possible we used internalisation (see Section 2.3) to additionally
compute all certain answers. In the case of FLY, all test queries yield an empty set of
ground answers, so in this case we computed only the certain answers (all FLY queries can
be internalised). We set timeouts of 20 minutes for answering each individual query, and 5
hours for answering all the queries over a given ontology.

Figure 5 summarises the quality of the answers computed by each reasoner. Each bar
in the figure represents the performance of a particular reasoner w.r.t. a given ontology and
set of test queries. We use green to indicate the percentage of queries for which the reasoner

41

Revision 2244 – March 19, 2015

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

LU
BM
1#

LU
BM
1_
rol
led
Up
#

UO
BM
1#

UO
BM
1_
rol
led
Up
#

FLY
_ro
lle
dU
p#

NP
D#F
ac
tPa
ge
s#

DB
Pe
dia
#

Ch
EM
BL
#1%

#

Re
ac
tom

e#1
0%
#

Un
iPr
ot#
1%
#

correct# incomplete# unsound# error# Kmeout# cannot#handle#

Tr Pe He Hy Tr Pe He Hy Tr Pe He Hy Tr Pe He Hy Tr Pe He Hy Tr Pe He Hy Tr Pe He Hy Tr Pe He Hy Tr Pe He Hy Tr Pe He Hy

Figure 5: Quality of the answers computed by each system. The four bars for each ontology
represent Trowl, Pellet, HermiT and Hydrowl respectively.

0"

1"

10"

100"

1000"

LU
BM
1"

LU
BM
1_
rol
led
Up
"

UO
BM
1"

UO
BM
1_
rol
led
Up
"

FLY
_ro
lle
dU
p"

NP
D"F
ac
tPa
ge
s"

DB
Pe
dia
"

Ch
EM
BL
"1%

"

Re
ac
tom

e"1
0%
"

Un
iPr
ot"
1%
"

TrOWL" Pellet" HermiT" Hydrowl"

Figure 6: Performance comparison with other systems. Each bar depicts the total time to
answer all test queries for the relevant ontology in comparison with PAGOdA.

computed all the correct answers, where correctness was determined by majority voting,
and blue (resp. purple) to indicate the percentage of queries for which the reasoner was
incomplete (resp. unsound). Red, orange and grey indicate, respectively, the percentage of
queries for which the reasoner reported an exception during execution, did not accept the
input query, or exceeded the timeout. Under our criterion of correctness, PAGOdA was
able to correctly compute all answers for every query and test ontology within the given
timeouts. Consequently, the performance of PAGOdA is not represented in the figure.

Figure 6 summarises the performance of each system relative to PAGOdA, but in this
case we considered only those queries for which the relevant system yields an answer (even
if the computed answer is unsound and/or incomplete). This is not ideal, but we chose

42

Revision 2244 – March 19, 2015

to consider all such queries (rather than only the queries for which the relevant system
yields the correct answer) because (i) the resulting time measurement is obviously closer
to the time that would be required to correctly answer all queries; and (ii) correctness is
only relative as we don’t have a gold standard for query answers. For each ontology and
reasoner, the corresponding bar shows t2/t1 (on a logarithmic scale), where t1 (resp. t2) is
the total time required by PAGOdA (resp. the compared system) to compute the answers to
the queries under consideration; a missing bar indicates that the comparison system failed
to answer any queries within the given timeout. Please note that two different bars for the
same ontology are not comparable as they may refer to different sets of queries, so each bar
needs to be considered in isolation.

We can draw the following conclusions from the results of our experiments.

• TrOWL is faster than PAGOdA on LUBM with rolling up, UOBM with rolling up
and FLY with rolling up, but it is incomplete for 7 out of 14 LUBM queries and 3 out
of 4 UOBM queries. For ChEMBL, TrOWL exceeds the timeout while performing the
satisfiability check. For the remaining ontologies, PAGOdA is more efficient in spite
of the fact that TrOWL is incomplete for some queries, and even unsound for several
UniProt queries.

• Pellet is one of the most robust systems in our evaluation. Although it times out for
the FLY ontology, it succeeds in computing all answers in the remaining cases. We
can observe, however, that in all cases Pellet is significantly slower than PAGOdA,
sometimes by more than two orders of magnitude.

• HermiT can only answer queries with one distinguished variable, so we could not
evaluate atomic binary queries. We can see that HermiT exceeds the timeout in many
cases. In the tests where HermiT succeeds, it is significantly slower than PAGOdA.

• Although Hydrowl is based on a theoretically sound and complete algorithm, it was
found to be incomplete in some of our tests. It also exceeded the timeout on all queries
for three of the ontologies, ran out of memory on all queries for another two of the
ontologies, and reported an exception for ChEMBL 1%. In the remaining cases, it
was significantly slower than PAGOdA.

10.3.2 Scalability Tests

We tested the scalability of PAGOdA on LUBM, UOBM and the ontologies from the EBI
linked data platform. For LUBM we used datasets of increasing size with a step of n =
100. For UOBM we also used increasingly large datasets with step n = 100 and we also
considered a smaller step of n = 5 for hard queries. Finally, in the case of EBI’s datasets,
we implemented a data sampling algorithm based on random walks and computed subsets
of the data of increasing sizes from 1% of the original dataset up to 100% in steps of
10%. We used the test queries described in Section 10.1 for each of these ontologies; as in
Section 10.3.1, we computed ground answers and, whenever possible, used internalisation
to additionally compute certain answers. For each test ontology we measured the following:

• Pre-processing time. This includes all pre-processing steps in Section 8 as well as
satisfiability checking (i.e., query processing for the Boolean unsatisfiability query).

43

Revision 2244 – March 19, 2015

• Query processing time. This is the time to perform the query processing steps for
a query in the given ontology. We organise the test queries into the following three
groups depending on the techniques exploited by PAGOdA to compute their answers:

– G1: queries for which the lower and upper bounds coincide;

– G2: queries with a non-empty gap, but for which summarisation is able to filter
out all remaining candidate answers; and

– G3: queries where the fully-fledged reasoner is called over an ontology subset on
at least one of the test datasets.

In the scalability test, we set a timeout of 5 hours for answering all queries and 2.5 hours
for each individual query. For LUBM and UOBM, we increased the size of the dataset until
PAGOdA exceeded the timeout; for the other ontologies, PAGOdA was able to answer all
queries within the timeout, even with the largest dataset.

Pellet was the only compared system found to be sound and complete for our test
ontologies and queries, so we have also conducted scalability tests on it. The scalability of
Pellet is, however, limited: it already failed on LUBM(100), UOBM(5), as well as ChEMBL
10% and Uniprot 10%. The only dataset were Pellet managed to process at least two data
samples was Reactome, where it succeeded on all samples smaller than 40%. The case for
Reactome is discussed in detail later on.

Our results are summarised in Figures 7 and 8. For each ontology, we plot time against
the size of the input dataset, and for query processing we distinguish different groups of
queries as discussed above. PAGOdA behaves relatively uniformly for queries in G1 and
G2, so we plot only the average time per query for these groups. In contrast, PAGOdA’s
behaviour for queries in G3 is quite variable, so we plot the time for each individual query.

LUBM(n) As shown in Figure 7a, pre-processing is fast, and times appear to scale lin-
early with increasing dataset size. All LUBM queries belong to either G1 or G3 with the
latter group containing just two queries. Figure 7b illustrates the average query processing
time for queries in G1, which never exceeds 13 seconds, as well as the time for each of the
two queries in G3 (Q32 and Q34), which reaches 8,000 seconds for LUBM(800), most of
which is accounted for by HermiT.

UOBM(n) As shown in Figure 7c, pre-processing times are significantly higher than for
LUBM, reflecting the increased complexity of the ontology, but still appear to scale linearly
with dataset size. As with LUBM, most test queries were contained in G1, and their
processing times never exceeds 8 seconds from UOBM(1) to UOBM(500). We found one
query in G2. Processing times for this query were somewhat longer than for those in G1
and reached 569s for UOBM(500). Finally, we found one query (Q18) that, due to UOBM’s
randomised data generation, was in different groups for different datasets: in UOBM(1),
UOBM(10) and UOBM(50) it was in G3, and HermiT was called on the relevant subsets
to fully answer the query; in UOBM(40) it was in G2, and HermiT was called on only the
summary of the relevant subset; and in all the remaining cases shown in Figure 7d it was
in G1, and the lower and upper bounds coincided. This query timed out in UOBM(50),
due to the time taken by HermiT to reason over the relevant subset, but we have shown
the times for the remaining G1 and G2 queries up to UOBM(500).

44

Revision 2244 – March 19, 2015

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

1	
 100	
 200	
 300	
 400	
 500	
 600	
 700	
 800	

Th
ou

sa
nd

s	
 s
ec
on

ds
	

(a) LUBM pre-processing

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

1	
 100	
 200	
 300	
 400	
 500	
 600	
 700	
 800	

Th
ou

sa
nd

s	
 s
ec
on

ds
	

G1(18)	
 Q32	
 Q34	

(b) LUBM query processing

0	

2	

4	

6	

8	

10	

12	

14	

1	
 100	
 200	
 300	
 400	
 500	

Th
ou

sa
nd

s	
 s
ec
on

ds
	

(c) UOBM pre-processing

0	

0.5	

1	

1.5	

2	

2.5	

0	
 100	
 200	
 300	
 400	
 500	

Th
ou

sa
nd

s	
 s
ec
on

ds
	

G1(18)	
 G2(1)	
 Q18	

(d) UOBM query processing

Figure 7: Scalability tests on benchmarks

ChEMBL As shown in Figure 8a, pre-processing times are significant but manageable,
and again appear to scale linearly with dataset size. All test queries were contained in G1.
Figure 8b illustrates the average processing times for all queries, which was less than 0.5s
for all datasets and increases smoothly with dataset size.

Reactome As shown in Figure 8c, pre-processing times again appear to scale quite
smoothly. Groups G2 and G3 each contained one query, with all the remaining queries
belonging to G1. Query processing times are shown in Figure 8d. Average query process-
ing time for queries in G1 never exceeded 10 seconds. Average processing times for G2
queries appeared to grow linearly to the size of datasets, and average time never exceeded
10 seconds. Finally, it can be seen that the G3 query (Q65) is much more challenging, but
it could still be answered in less than 900 seconds, even for the largest dataset.

As already mentioned, we also tested the scalability of Pellet on Reactome, where Pellet
is able to process the samples of size 10%, 20% and 30%. The pre-processing time of Pellet
on these datasets is comparable with PAGOdA as shown in Figure 8c. Average query-
processing times for queries in G1 and G2 are slightly higher than those of PAGOdA. In
contrast, times for query Q65 were significantly higher: 445s, 518s and 2, 626s for Reactome
10%, 20% and 30%, respectively (see Figure 8d). Processing times for Q65 in PAGOdA,

45

Revision 2244 – March 19, 2015

0	

2	

4	

6	

8	

10	

12	

1%	
 10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

Th
ou

sa
nd

s	
 	

se
co
nd

s	

(a) ChEMBL pre-processing

0.00	

0.05	

0.10	

0.15	

0.20	

0.25	

0.30	

0.35	

0.40	

0.45	

0.50	

1%	
 10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

Se
co
nd

s	

G1(1896)	

(b) ChEMBL query processing

0	

2	

4	

6	

8	

10	

12	

14	

10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

Hu
nd

re
ds
	
 se

co
nd

s	

PAGOdA	
 Pellet	

(c) Reactome pre-processing

0	

200	

400	

600	

800	

1000	

10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

Se
co
nd

s	

G1(128)	
 G2(1)	
 Q65	
 Pellet_Q65	

(d) Reactome query processing

0.0	

0.5	

1.0	

1.5	

2.0	

1%	
 10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

Th
ou

sa
nd

s	
 s
ec
on

ds
	

Satsifiable	
 Unsa9sfiable	

(e) Uniprot pre-processing

0	

5	

10	

15	

20	

25	

1%	
 10%	
 20%	
 30%	
 40%	

Se
co
nd

s	

G1(236)	
 G2(4)	

(f) Uniprot query processing

Figure 8: Scalability tests on EBI linked data platform

however, grow smoothly thanks to the effectiveness of the subset extraction technique, which
is able to keep the input to the fully-fledged reasoner small, even for the largest datasets.

Uniprot In contrast to the other cases, Uniprot as a whole is unsatisfiable; our sampling
technique can, however, produce a satisfiable subset. Figure 8e illustrates pre-processing
times. As can be seen, these drop abruptly for unsatisfiable samples (50% and larger); this
is because unsatisfiability can be efficiently detected in the lower bound. The figure shows

46

Revision 2244 – March 19, 2015

LUBM UOBM
FLY NPD DBPedia

ChEMBL Reactome Uniprot
(100) (1) 1% 10% 1%

Total 35 20 6 478 1247 1896 130 240
L1 + U1 26 4 0 442 1240 1883 82 204
L2 + U1 33 4 5 442 1241 1883 82 204
L2 + U2 33 12 5 442 1241 1883 98 204
L2 + U2|3 33 16 5 473 1246 1896 128 236

Table 4:]Queries answered by different bounds

that time to detect inconsistency for 100% is even less than that for 90%; this is because
the time is dominated by loading time, and I/O performance varies from run to run. Query
processing times were only considered for satisfiable samples (see Figure 8f). There were
no queries in G3, and only four in G2. We can observe that average times for all queries
appear to scale linearly with data size for both groups.

10.3.3 Effectiveness of the Implemented Techniques

We have evaluated the effectiveness of the various reasoning techniques implemented in
PAGOdA by comparing the numbers of test queries that can be fully answered using the
relevant technique.

Query bounds In Sections 4 and 5 we described different techniques for computing lower
and upper bound query answers. Table 4 illustrates the effectiveness of each of these bounds
in terms of the number of queries for which the bounds coincided on our test ontologies. In
the table, we refer to the lower bound described in Section 4.1 as L1 and to the aggregated
lower bound described in Section 4.3 as L2. Similarly, we refer to the three upper bound
computation techniques discussed in Section 5.4 as U1, U2, U3 and the combined upper
bound U2|3. We can observe the following from our experiments:

• The basic lower and upper bounds suffice to answer most of the queries in many
test ontologies. In particular, L1 and U1 matched in 26 out of the 35 queries for
LUBM(100), 442 out of 478 for NPD, 240 out of 1247 for DBPedia, 1883 out of 1896
for ChEMBL, and 204 out of 240 for Uniprot.

• The aggregated lower bound L2 was very effective in the case of FLY, where the basic
bounds did not match for any query. It was also useful for LUBM, yielding matching
bounds for 7 more queries.

• The refined treatment of existential rules described in Section 5.2, which yields the
upper bound U2, was especially effective for UOBM(1) and Reactome, where many
existentially quantified rules were already satisfied by the lower bound materialisation.

• Finally, the refined treatment of disjunctive rules in Section 5.3, which yields the com-
bined upper bound U2|3, was instrumental in obtaining additional matching bounds
for non-Horn ontologies. We could answer an additional 4 queries for UOBM(1), 31
for NPD, 5 for DBPedia, 13 for ChEMBL, 30 for Reactome, and 32 for Uniprot.

47

Revision 2244 – March 19, 2015

LUBM UOBM Fly NPD DBPedia Reactome Uniprot

Facts 0.5% 10.4% 7.3% 16.5% 9× 10−5% 5.2% 4× 10−4%
Rules 3.7% 10.9% 0.9% 18.4% 2.4% 5.3% 1.1%

Table 5: Size of the largest subsets given as percentage over input rules and facts.

LUBM UOBM FLY DBPedia NPD Reactome UniProt

L2 + U2|3 26 14 264 112 1470 264 344 10 326 18 52 168
+ Sum 26 14 264 0 1444 264 344 0 0 0 52 0
+ Dep 1 1 1 0 1 1 7 0 0 0 37 0

Table 6: The number of hard calls to HermiT to fully answer each query

Overall, we obtained matching bounds for most queries in all our test ontologies: we
could answer all queries for ChEMBL, and all but 1 for FLY and DBPedia, all but 2 for
Reactome and LUBM(100), all but 4 for UOBM(1) and Uniprot, and all but 5 for NPD.

Subset extraction Table 5 shows, for each dataset, the maximum percentage of facts
and rules that are included in the relevant subset over all test queries with non-matching
bounds. We can observe that subset extraction is effective in all cases in terms of both facts
and rules. For Uniprot and DBPedia, the reduction in data size was especially dramatic.
It is also interesting to observe the large reduction in the number of rules for FLY, which
is a rather complex ontology. Finally, subset extraction was least effective for NPD and
UOBM, but even in these cases there was a reduction of almost one order of magnitude in
the size of both ontology and dataset.

We now turn our attention to summarisation and dependency analysis. The effectiveness
of these techniques was measured by the number of ‘hard’ calls to HermiT that were required
to fully answer each query, where a call to HermiT is considered hard if the knowledge base
passed to HermiT is not a summary. The first row of Table 6 shows the number of gap
answers for each query where the L2 and U2|3 bounds don’t match. Without optimisation,
we would have to call HermiT this number of times to fully answer each query. Row 2
(resp. row 3) shows the number of hard calls to HermiT after applying summarisation (resp.
summarisation plus dependency analysis). As we mentioned above, there are respectively 5
and 4 queries with non-matching bounds for NPD and UniProt. However, for each of these
groups, summarisation and dependency analysis have identical effects on all the queries in
the group, so we present just one representative query for each ontology.

Summarisation As already discussed, summarisation enables PAGOdA to fully answer
a number of test queries with non-empty gaps. It was instrumental in fully answering one
query for each of UOBM(1), DBPedia and Reactome, as well as 5 queries for NPD, and 4
queries for Uniprot. Even in the cases where summarisation did not suffice to fully answer
the query, it was effective in reducing the size of the gap. For instance, for one of the queries
for UOBM(1) we obtained 1,470 gap answers, of which 26 were ruled out by summarisation.

Dependency analysis In LUBM(100) there were two queries with a gap of 26 answers
and 14 answers, respectively; in both cases, all answers were merged into a single group, and

48

Revision 2244 – March 19, 2015

hence a single call to HermiT sufficed to complete the computation. Similarly, in UOBM(1)
a single call to HermiT was again sufficient, even though the three queries with a gap
involved a large number of candidate answers. For FLY, there are 344 answers remaining
to be verified after summarisation, but only 7 hard calls to HermiT were required. Finally,
in the case of Reactome one query had 52 gap answers, but dependency analysis reduced
the number of calls to HermiT to 37.

11. Conclusions

In this paper, we have investigated a novel ‘pay-as-you-go’ approach to conjunctive query
answering that combines a datalog reasoner with a fully-fledged reasoner. The key feature
of our approach is that it delegates the bulk of the computation to the datalog reasoner
and resorts to the fully-fledged reasoner only as necessary to fully answer the query.

The reasoning techniques we have proposed here are very general and are applicable to
a wide range of knowledge representation languages. Our main goal in practice, however,
has been to realise our approach in a highly scalable and robust query answering system for
OWL 2 DL ontologies, which we have called PAGOdA. Our extensive evaluation has not only
confirmed the feasibility of our approach in practice, but also that our system PAGOdA
significantly ourperforms state-of-the art reasoning systems in terms of both robustness
and scalability. In particular, our experiments using the ontologies in the EBI linked data
platform have shown that PAGOdA is capable of fully answering queries over highly complex
and expressive ontologies and realistic datasets containing hundreds of millions of facts.

Acknowledgments

This is an extended version of the papers ‘Pay-As-You-Go OWL Query Answering Us-
ing a Triple Store’ published at AAAI 2014, and ‘Complete Query Answering over Horn
Ontologies Using a Triple Store’ published at ISWC 2013.

This work has been supported by the Royal Society under a Royal Society Research
Fellowship, by the EPSRC projects MaSI3, Score! and DBOnto, and by the EU FP7
project Optique.

References

Abiteboul, S., Hull, R., & Vianu, V. (Eds.). (1995). Foundations of Databases: The Logical
Level. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri, M., &
Rosati, R. (2005). QuOnto: Querying ontologies. In Veloso, M. M., & Kambhampati,
S. (Eds.), AAAI 2005, Proceedings of the Twentieth National Conference on Artifi-
cial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence
Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pp. 1670–1671. AAAI
Press / The MIT Press.

Alviano, M., Faber, W., Leone, N., & Manna, M. (2012). Disjunctive datalog with existential
quantifiers: Semantics, decidability, and complexity issues. Theory and Practice of

49

Revision 2244 – March 19, 2015

Logic Programming, 12 (4-5), 701–718.

Baader, F., Brandt, S., & Lutz, C. (2005). Pushing the EL envelope. In IJCAI 2015,
Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence,
Edinburgh, Scotland, UK, July 30-August 5, 2005, pp. 364–369.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-Schneider, P. F. (2003).
The Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge Univ. Press.

Bagosi, T., Calvanese, D., Hardi, J., Komla-Ebri, S., Lanti, D., Rezk, M., Rodriguez-Muro,
M., Slusnys, M., & Xiao, G. (2014). The Ontop framework for ontology based data ac-
cess. In Zhao, D., Du, J., Wang, H., Wang, P., Ji, D., & Pan, J. Z. (Eds.), CSWS 2014,
Proceedings of the Semantic Web and Web Science - 8th Chinese Conference, Wuhan,
China, August 8-12, 2014, Revised Selected Papers, Vol. 480 of Communications in
Computer and Information Science, pp. 67–77. Springer.

Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., & Velkov, R. (2011).
OWLIM: A family of scalable semantic repositories. Semantic Web, 2 (1), 33–42.

Bourhis, P., Morak, M., & Pieris, A. (2013). The impact of disjunction on query answer-
ing under guarded-based existential rules. In IJCAI 2013, Proceedings of the 23rd
International Joint Conference on Artificial Intelligence, Beijing, China, August 3-9,
2013, pp. 796–802. AAAI Press.

Broekstra, J., Kampman, A., & van Harmelen, F. (2002). Sesame: A generic architecture
for storing and querying RDF and RDF schema. In Horrocks, I., & Hendler, J. A.
(Eds.), ISWC 2002, Proceedings the Semantic Web - First International Semantic
Web Conference, Sardinia, Italy, June 9-12, 2002, Proceedings, Vol. 2342 of Lecture
Notes in Computer Science, pp. 54–68. Springer.

Cal̀ı, A., Gottlob, G., & Kifer, M. (2013). Taming the infinite chase: Query answering
under expressive relational constraints. Journal of Artificial Intelligence Research, 48,
115–174.

Cal̀ı, A., Gottlob, G., & Lukasiewicz, T. (2012). A general datalog-based framework for
tractable query answering over ontologies. J. Web Sem., 14, 57–83.

Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., & Pieris, A. (2010). Datalog+/-: A
family of logical knowledge representation and query languages for new applications.
In LICS 2010, Proceedings of the 25th Annual IEEE Symposium on Logic in Computer
Science, 11-14 July 2010, Edinburgh, United Kingdom, pp. 228–242. IEEE Computer
Society.

Cal̀ı, A., Gottlob, G., & Pieris, A. (2011). New expressive languages for ontological query
answering. In Burgard, W., & Roth, D. (Eds.), AAAI 2011, Proceedings of the Twenty-
Fifth AAAI Conference on Artificial Intelligence, San Francisco, California, USA,
August 7-11, 2011, Vol. 2, pp. 1541–1546. AAAI Press.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M.,
Rosati, R., Ruzzi, M., & Savo, D. F. (2011). The MASTRO system for ontology-based
data access. Semantic Web, 2 (1), 43–53.

50

Revision 2244 – March 19, 2015

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2007). Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning, 39 (3), 385–429.

Chortaras, A., Trivela, D., & Stamou, G. B. (2011). Optimized query rewriting for OWL
2 QL. In Bjørner, N., & Sofronie-Stokkermans, V. (Eds.), CADE 23, Proceedings of
the 23rd International Conference on Automated Deduction, Wroclaw, Poland, July
31 - August 5, 2011, Vol. 6803 of Lecture Notes in Computer Science, pp. 192–206.
Springer.

Console, M., Mora, J., Rosati, R., Santarelli, V., & Savo, D. F. (2014). Effective computation
of maximal sound approximations of description logic ontologies. In ISWC 2014,
Proceedings of the Semantic Web - 13th International Semantic Web Conference,
Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part II, pp. 164–179.

Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B., & Wang, Z.
(2013). Acyclicity notions for existential rules and their application to query answering
in ontologies. Journal of Artificial Intelligence Research, 47, 741–808.

Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P. F., & Sattler, U.
(2008). OWL 2: The next step for OWL. Journal of Web Semantics, 6 (4), 309–322.

Cuenca Grau, B., Motik, B., Stoilos, G., & Horrocks, I. (2012). Completeness guarantees for
incomplete ontology reasoners: Theory and practice. Journal of Artificial Intelligence
Research, 43, 419–476.

Dantsin, E., Eiter, T., Gottlob, G., & Voronkov, A. (2001). Complexity and expressive
power of logic programming. ACM Computing Surveys, 33 (3), 374–425.

Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas, K., &
Ma, L. (2007). Scalable semantic retrieval through summarization and refinement. In
AAAI 2007, Proceedings of the Twenty-Second AAAI Conference on Artificial Intel-
ligence, July 22-26, 2007, Vancouver, British Columbia, Canada, pp. 299–304. AAAI
Press.

Dolby, J., Fokoue, A., Kalyanpur, A., Schonberg, E., & Srinivas, K. (2009). Scalable highly
expressive reasoner (SHER). Journal of Web Semantics, 7 (4), 357–361.

Eiter, T., Fink, M., Tompits, H., & Woltran, S. (2004). Simplifying logic programs under
uniform and strong equivalence. In LPNMR 2004, Proceedings of Logic Programming
and Nonmonotonic Reasoning - 7th International Conference, Fort Lauderdale, FL,
USA, January 6-8, 2004, Proceedings, pp. 87–99.

Eiter, T., Lutz, C., Ortiz, M., & Simkus, M. (2009). Query answering in description logics
with transitive roles. In Boutilier, C. (Ed.), IJCAI 2009, Proceedings of the 21st
International Joint Conference on Artificial Intelligence, Pasadena, California, USA,
July 11-17, 2009, pp. 759–764.

Eiter, T., Ortiz, M., & Simkus, M. (2012). Conjunctive query answering in the description
logic SH using knots. Journal of Computer and System Sciences, 78 (1), 47–85.

Erling, O., & Mikhailov, I. (2009). Virtuoso: RDF support in a native RDBMS. In Virgilio,
R. D., Giunchiglia, F., & Tanca, L. (Eds.), Semantic Web Information Management
- A Model-Based Perspective, pp. 501–519. Springer.

51

Revision 2244 – March 19, 2015

Glimm, B., Horrocks, I., Motik, B., Stoilos, G., & Wang, Z. (2014). HermiT: An OWL 2
reasoner. Journal of Automated Reasoning, 53 (3), 245–269.

Glimm, B., Lutz, C., Horrocks, I., & Sattler, U. (2008). Conjunctive query answering for
the description logic SHIQ. Journal of Artificial Intelligence Research, 31, 157–204.

Grosof, B. N., Horrocks, I., Volz, R., & Decker, S. (2003). Description logic programs:
combining logic programs with description logic. In Hencsey, G., White, B., Chen,
Y. R., Kovács, L., & Lawrence, S. (Eds.), WWW 2003, Proceedings of the Twelfth
International World Wide Web Conference, Budapest, Hungary, May 20-24, 2003,
pp. 48–57. ACM.

Guo, Y., Pan, Z., & Heflin, J. (2005). LUBM: A benchmark for OWL knowledge base
systems. Journal of Web Semantics, 3 (2-3), 158–182.

Haarslev, V., Hidde, K., Möller, R., & Wessel, M. (2012). The RacerPro knowledge repre-
sentation and reasoning system. Semantic Web, 3 (3), 267–277.

Horrocks, I., Kutz, O., & Sattler, U. (2006). The even more irresistible SROIQ. In KR
2006, Proceedings of the Tenth International Conference on Principles of Knowledge
Representation and Reasoning, Lake District of the United Kingdom, June 2-5, 2006,
pp. 57–67.

Horrocks, I., Patel-Schneider, P. F., & van Harmelen, F. (2003). From SHIQ and RDF
to OWL: the making of a web ontology language. Journal of Web Semantics, 1 (1),
7–26.

Horrocks, I., & Tessaris, S. (2000). A conjunctive query language for description logic
aboxes. In Kautz, H. A., & Porter, B. W. (Eds.), AAAI/IAAI 2000, Proceedings of the
Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on
on Innovative Applications of Artificial Intelligence, July 30 - August 3, 2000, Austin,
Texas, USA., pp. 399–404. AAAI Press / The MIT Press.

Hustadt, U., Motik, B., & Sattler, U. (2007). Reasoning in description logics by a reduction
to disjunctive datalog. Journal of Automated Reasoning, 39 (3), 351–384.

Jiménez-Ruiz, E., & Cuenca Grau, B. (2011). LogMap: Logic-based and scalable ontology
matching. In Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy,
N. F., & Blomqvist, E. (Eds.), ISWC 2011, The Semantic Web - 10th International
Semantic Web Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part
I, Vol. 7031 of Lecture Notes in Computer Science, pp. 273–288. Springer.

Kaminski, M., Nenov, Y., & Grau, B. C. (2014). Computing datalog rewritings for dis-
junctive datalog programs and description logic ontologies. In Kontchakov, R., &
Mugnier, M. (Eds.), Web Reasoning and Rule Systems - 8th International Confer-
ence, RR 2014, Athens, Greece, September 15-17, 2014. Proceedings, Vol. 8741 of
Lecture Notes in Computer Science, pp. 76–91. Springer.

Kollia, I., & Glimm, B. (2013). Optimizing SPARQL query answering over OWL ontologies.
Journal of Artificial Intelligence Research, 48, 253–303.

Kontchakov, R., Lutz, C., Toman, D., Wolter, F., & Zakharyaschev, M. (2011). The com-
bined approach to ontology-based data access. In Walsh, T. (Ed.), IJCAI 2011,

52

Revision 2244 – March 19, 2015

Proceedings of the 22nd International Joint Conference on Artificial Intelligence,
Barcelona, Catalonia, Spain, July 16-22, 2011, pp. 2656–2661. IJCAI/AAAI.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., & Scarcello, F. (2006).
The DLV system for knowledge representation and reasoning. ACM Transactions on
Computational Logic, 7 (3), 499–562.

Leskovec, J., & Faloutsos, C. (2006). Sampling from large graphs. In KDD 2006, Proceedings
of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Philadelphia, PA, USA, August 20-23, 2006, pp. 631–636.

Lutz, C. (2008). The complexity of conjunctive query answering in expressive descrip-
tion logics. In Armando, A., Baumgartner, P., & Dowek, G. (Eds.), IJCAR 2008,
Proceedings of the 4th International Joint Conference Automated Reasoning, Sydney,
Australia, August 12-15, 2008, Vol. 5195 of Lecture Notes in Computer Science, pp.
179–193. Springer.

Lutz, C., Seylan, I., Toman, D., & Wolter, F. (2013). The combined approach to OBDA:
Taming role hierarchies using filters. In Alani, H., Kagal, L., Fokoue, A., Groth, P. T.,
Biemann, C., Parreira, J. X., Aroyo, L., Noy, N. F., Welty, C., & Janowicz, K. (Eds.),
ISWC 2013, Proceedings of the Semantic Web - 12th International Semantic Web
Conference, Sydney, NSW, Australia, October 21-25, 2013, Proceedings, Part I, Vol.
8218 of Lecture Notes in Computer Science, pp. 314–330. Springer.

Lutz, C., Toman, D., & Wolter, F. (2009). Conjunctive query answering in the descrip-
tion logic EL using a relational database system. In Boutilier, C. (Ed.), IJCAI
2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009, pp. 2070–2075.

Ma, L., Yang, Y., Qiu, Z., Xie, G. T., Pan, Y., & Liu, S. (2006). Towards a complete OWL
ontology benchmark. In Sure, Y., & Domingue, J. (Eds.), ESWC 2006, The Semantic
Web: Research and Applications, 3rd European Semantic Web Conference, Budva,
Montenegro, June 11-14, 2006, Proceedings, Vol. 4011 of Lecture Notes in Computer
Science, pp. 125–139. Springer.

Manola, F., & Miller, E. (2004). RDF primer. W3C Recommendation. Available at
http://www.w3.org/TR/rdf-primer/.

Marnette, B. (2009). Generalized schema-mappings: from termination to tractability.
In PODS 2009, Proceedings of the Twenty-Eigth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, June 19 - July 1, 2009, Providence,
Rhode Island, USA, pp. 13–22.

McBride, B. (2001). Jena: Implementing the RDF model and syntax specification. In
SemWeb 2001, Proceedings of the Second International Workshop on the Semantic
Web.

Möller, R., Neuenstadt, C., Özcep, Ö. L., & Wandelt, S. (2013). Advances in accessing
big data with expressive ontologies. In Timm, I. J., & Thimm, M. (Eds.), KI 2013,
Proceedings of Advances in Artificial Intelligence - 36th Annual German Conference
on AI, Koblenz, Germany, September 16-20, 2013, Vol. 8077 of Lecture Notes in
Computer Science, pp. 118–129. Springer.

53

Revision 2244 – March 19, 2015

Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., & Lutz, C. (2009).
OWL 2 Web Ontology Language Profiles. W3C Recommendation. Available at
http://www.w3.org/TR/owl2-profiles/.

Motik, B., Nenov, Y., Piro, R., Horrocks, I., & Olteanu, D. (2014). Parallel materialisation
of datalog programs in centralised, main-memory RDF systems. In Brodley, C. E., &
Stone, P. (Eds.), AAAI 2014, Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada., pp. 129–137.
AAAI Press.

Motik, B., Shearer, R., & Horrocks, I. (2009). Hypertableau reasoning for description logics.
Journal of Artificial Intelligence Research, 36, 165–228.

Ortiz, M., Rudolph, S., & Simkus, M. (2011). Query answering in the horn fragments of
the description logics SHOIQ and SROIQ. In IJCAI 2011, Proceedings of the 22nd
International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain,
July 16-22, 2011, pp. 1039–1044.

Pan, J. Z., & Thomas, E. (2007). Approximating OWL-DL ontologies. In AAAI 2007,
Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, July
22-26, 2007, Vancouver, British Columbia, Canada, pp. 1434–1439.

Pérez-Urbina, H., Motik, B., & Horrocks, I. (2010). Tractable query answering and rewriting
under description logic constraints. Journal of Applied Logic, 8 (2), 186–209.

Robinson, J. A., & Voronkov, A. (Eds.). (2001). Handbook of Automated Reasoning (in 2
volumes). Elsevier and MIT Press.

Rodriguez-Muro, M., & Calvanese, D. (2012). High performance query answering over
DL-Lite ontologies. In Brewka, G., Eiter, T., & McIlraith, S. A. (Eds.), KR 2012,
Proceedings of Principles of Knowledge Representation and Reasoning, the Thirteenth
International Conference, Rome, Italy, June 10-14, 2012, pp. 308–318. AAAI Press.

Rosati, R. (2012). Prexto: Query rewriting under extensional constraints in DL - lite.
In Simperl, E., Cimiano, P., Polleres, A., Corcho, Ó., & Presutti, V. (Eds.), ESWC
2012, Proceedings of the Semantic Web: Research and Applications - 9th Extended
Semantic Web Conference, Heraklion, Crete, Greece, May 27-31, 2012, Vol. 7295 of
Lecture Notes in Computer Science, pp. 360–374. Springer.

Rudolph, S., & Glimm, B. (2010). Nominals, inverses, counting, and conjunctive queries or:
Why infinity is your friend!. Journal of Artificial Intelligence Research, 39, 429–481.

Schaerf, A. (1993). On the complexity of the instance checking problem in concept languages
with existential quantification. In Komorowski, H. J., & Ras, Z. W. (Eds.), ISMIS
1993, Proceedings of Methodologies for Intelligent Systems, 7th International Sympo-
sium, Trondheim, Norway, June 15-18, 1993, Vol. 689 of Lecture Notes in Computer
Science, pp. 508–517. Springer.

Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics, 5 (2), 51–53.

Staab, S., & Studer, R. (Eds.). (2004). Handbook on Ontologies. International Handbooks
on Information Systems. Springer.

54

Revision 2244 – March 19, 2015

Stefanoni, G., & Motik, B. (2015). Answering conjunctive queries over EL knowledge bases
with transitive and reflexive roles. In Bonet, B., & Koenig, S. (Eds.), AAAI 2015,
Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, TX, USA.
AAAI Press. To appear.

Stefanoni, G., Motik, B., & Horrocks, I. (2013). Introducing nominals to the combined
query answering approaches for EL. In AAAI 2013, Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence, pp. 1177–1183.

Stefanoni, G., Motik, B., Krötzsch, M., & Rudolph, S. (2014). The complexity of answering
conjunctive and navigational queries over OWL 2 EL knowledge bases. Journal of
Artificial Intelligence Research, 51, 645–705.

Stoilos, G. (2014a). Hydrowl: A hybrid query answering system for OWL 2 DL ontologies.
In RR 2014, Proceedings of Web Reasoning and Rule Systems - 8th International
Conference, Athens, Greece, September 15-17, 2014, pp. 230–238.

Stoilos, G. (2014b). Ontology-based data access using rewriting, OWL 2 RL systems and
repairing. In Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., & Tordai,
A. (Eds.), The Semantic Web: Trends and Challenges - 11th International Conference,
ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014. Proceedings, Vol. 8465 of
Lecture Notes in Computer Science, pp. 317–332. Springer.

Stoilos, G., & Stamou, G. B. (2014). Hybrid query answering over OWL ontologies. In
Schaub, T., Friedrich, G., & O’Sullivan, B. (Eds.), ECAI 2014 - 21st European Con-
ference on Artificial Intelligence, 18-22 August 2014, Prague, Czech Republic - Includ-
ing Prestigious Applications of Intelligent Systems (PAIS 2014), Vol. 263 of Frontiers
in Artificial Intelligence and Applications, pp. 855–860. IOS Press.

Thomas, E., Pan, J. Z., & Ren, Y. (2010). Trowl: Tractable OWL 2 reasoning infrastructure.
In ESWC 2010, Proceedings of the Semantic Web: Research and Applications, 7th
Extended Semantic Web Conference, Heraklion, Crete, Greece, May 30 - June 3, 2010,
Part II, pp. 431–435.

Tserendorj, T., Rudolph, S., Krötzsch, M., & Hitzler, P. (2008). Approximate OWL-
reasoning with screech. In Calvanese, D., & Lausen, G. (Eds.), RR 2008, Proceedings
of Web Reasoning and Rule Systems, Second International Conference, Karlsruhe,
Germany, October 31-November 1, 2008, Vol. 5341 of Lecture Notes in Computer
Science, pp. 165–180. Springer.

W3C SPARQL Working Group (2013). SPARQL 1.1 Overview. W3C Recommendation.
Available at http://www.w3.org/TR/sparql11-overview/.

Wandelt, S., Möller, R., & Wessel, M. (2010). Towards scalable instance retrieval over
ontologies. International Journal of Software and Informatics, 4 (3), 201–218.

Wu, Z., Eadon, G., Das, S., Chong, E. I., Kolovski, V., Annamalai, M., & Srinivasan, J.
(2008). Implementing an inference engine for RDFS/OWL constructs and user-defined
rules in oracle. In Alonso, G., Blakeley, J. A., & Chen, A. L. P. (Eds.), ICDE 2008,
Proceedings of the 24th International Conference on Data Engineering, April 7-12,
2008, Cancún, México, pp. 1239–1248. IEEE.

55

Revision 2244 – March 19, 2015

