
PSPACE hardness of mixed world query answering for Atomic
Queries under Guarded TGDs

Michael Benedikt and Pierre Bourhis

1 Introduction
Consider a vocabulary divided into open-world relations O and closed-world relations C, a set of logical sentences
(“integrity constraints” henceforward) Σ, a boolean query Q, and an instanceD. We say that Q is certain with respect
to O,C, Σ,D if:

for every instanceD′ that extendsD and agrees withD on relations in C, Q holds onD′.

As in most prior work, we focus on the case in which Q is a conjunctive query, an existential quantification of
conjunctions of atoms, and the case where Q is a disjunction of conjunctive queries.

We will be interested in the data complexity of the problem: fixing O,C, Σ,Q and varying D. It is well-known
that even when the constraints Σ have a very restricted form, the data-complexity can be coNP-hard [AD98]. coNP-
hardness in data complexity can even occur when the arity of relations is at most 2 [LSW15, LSW13]. [BBPtC16]
provided examples of schemas with arity larger than 2 where the situation is even worse. We can get O,C, Σ,Q
such that the data complexity is ExpTime-hard and: Q is a UCQ, while Σ consists of linear TGDs. Linear TGDs are
sentences of the form

∀~x A(~x)→ ∃~y B(~x, ~y)

where A(~x) and B(~x, ~y) are relational atoms with variables coming from ~x and ~x ∪ ~y respectively.
[BBPtC16] uses the terminology “visible relation” for a closed-world relation, and “invisible relation” for open-

world relation, and considers only inputs where the open-world relations are empty. Clearly, if one has hardness for
this case, one has hardness for the general case.

The ExpTime-hardness argument in [BBPtC16] required both a higher-arity schema and Q a UCQ. However we
can show that it can be adapted to an atomic query. In this document we do not prove a tight bound, but we provide
a detailed argument that the data complexity can be PSpace-hard for O,C, Σ,Q even if Q is an atomic 0-ary query (a
single 0-ary relation). This cannot happen for linear TGDs, but we show that it can occur even when the constraints Σ

can be Guarded TGDs: of the form
∀~x A(~x) ∧ ϕ(~x)→ ∃~yB(~x, ~y)

where ϕ is a conjunction of atoms and all variables of ϕ occur in the relational atom A(~x).
That is, we show:

Theorem 1. There is a schema consisting of closed and open world relations, a set of guarded TGD constraints Σ,
and an atomic query Q such that the problem of determining whether Q is certain with respect to O,C, Σ,D is is
PSpace-hard. That is, the problem can be PSpace-hard in data complexity.

2 Construction
We will encode the halting problem for deterministic PSpace Turing machines whose tape alphabet has only two values
0 and 1. Thus the transition function δ of a generic machine takes as input a control state x and a number in {0, 1},
returning a head movement ρ (← or→), a new value in {0, 1} to be written, and a new state y. A machine M comes
with a polynomial space bound pM(n), and we will assume that on any input to such a machine of size n, the head of

1

M never moves to the right of pM(n). We also assume that M never attempts a left-ward move when it is on the initial
cell on the tape.

We first give the “closed-world” relations, along with their intended semantics:
We have some relations that code the states and transition function of a machin:

• NonFinalState(x) stores all the non-final states.

• FinalState(x) stores the final states of the machine.

• TransHead1(x, y), which stores the states x and y such that δ(x, 1) = (α, β, y).

• TransHead0(x, y), storing the states x and y such that δ(x, 0) = (α, β, y).

• MoveLeft1(x), storing states x such that δ(x, 1) = (←, α, β).

• MoveLeft0(x), storing states x such that δ(x, 0) = (←, α, β).

• MoveRight1(x), storing states x such that δ(x, 1) = (→, α, y).

• MoveRight0(x), storing states x such that δ(x, 0) = (→, α, y).

• Tran0to1(x), storing states x such that δ(x, 0) = (α, 1, y).

• Tran0to0(x), storing states x such that δ(x, 0) = (α, 0, y).

• Tran1to0(x), storing the states x such that δ(x, 1) = (α, 0, y).

• Tran1to1(x), storing the states x such that δ(x, 1) = (α, 1, y).

We also have closed-world relations that code the tape:

• CellSucc(x, y), stores the successor relation among identifiers for each cell of the tape; if the input has size n,
such identifiers can be taken to be a number between 1 and n. The pair (x, y) is in CellSucc iff y is the index of
the cell which is the successor of the cell of x.

• Cell,(x, y) stores the pair of indices of values such that x and y are different.

• FirstCell(x) stores the first cell.

Finally we have closed-world relations concerning the first two configurations:

• Conf0(x, y, z1, q1, z2, q2, z3, z4) where x is the index of the initial configuration, y is the index of the successor
configuration of x, z1 is the position of the head in x, q1 is the state of machine in x, z2 is the position of the head
in y, q2 is the state of machine in y, z3, z4 are the indices of two consecutive cells.

• InitIsOne(x, y) where x is the index of one of the first two configurations, y is the index of the cell.

• InitIsZero(x, y) where x is the index of one of the first two configurations, y is the index of the cell.

We now give the open-world relations (i.e. those that are “hidden” in the terminology of [BBPtC16]), along with
their intended semantics:

• Config(x, y, z1, q1, z2, q2, z3, z4), whose intended semantics is the same as Conf0 but for arbitrary configurations.
That is, x is the index of a configuration, y is the index of the successor configuration of x, z1 is the position of
the head in x, q1 is the state of machine in x, z2 is the position of the head in y, q2 is the state of machine in y,
z3, z4 are the indices of two consecutive cells.

• IsOne(x, y) whose intended semantics is the same as InitIsOne but for arbitrary configurations: x is the index of
any configuration, y is the index of the cell.

2

• IsZero(x, y) where x is the index of any configuration, y is the index of the cell.

• Good(), which represents that the machine halts.

The goal will be to arrange the constraints Σ and query Q so that a counterexample to certainty of Q corresponds
to a halting computation. The difficulty will be to enforce that in a counterexample instance D′, Config represents
a correct transition relation. We cannot use non-guarded constraints to enforce properties of pairs of configurations;
neither can we can discuss pairs of Config atoms in the query, which must be atomic.

We now give the set of constraints Σ. are the following:

• An initial configuration constraint relating the visible relations storing initial configuration information to the
invisible relations storing generic configuration information:

∀x, y, z1, q1, z2, q2, z3, z4 Conf0(x, y, z1, q1, z2, q2, z3, z4)
→ Config(x, y, z1, q1, z2, q2, z3, z4)

• A cell successor constraint ensuring that each cell in a configuration has a successor cell:

∀x, y, q1, q2, z1, z2, z3, z4, Config(x, y, z1, q1, z2, q2, z3, z4) −→ ∃z5 Config(x, y, z1, q1, z2, q2, z4, z5)∧CellSucc(z4, z5)

• A set of transition existence constraints, enforcing that the machine makes progress.

– A constraint enforcing the creation of a new configuration with some correctness conditions related to the
transition, in the case where the label of the cell on which the head lies is equal to 1 and the transition
moves the head to the left.

∀x, y, q1, q2, z1, z2, z3, z4,

Config(x, y, z1, q1, z2, q2, z3, z4) ∧ FirstCell(z3) ∧ IsOne(y, z2) ∧ NonFinalState(q2) ∧MoveLeft1(q2) −→
∃w, z5, q5 Config(y,w, z2, q2, z5, q5, z3, z4) ∧ TransHead1(q2, q5) ∧ CellSucc(z5, z2)

– A constraint enforcing creation of a new configuration with some correctness conditions concerning the
transition in the case where the label of the cell is as in the previou case, but the transition moves the head
to the right.

∀x, y, q1, q2, z1, z2, z3, z4,

Config(x, y, z1, q1, z2, q2, z3, z4) ∧ FirstCell(z3) ∧ IsOne(y, z2) ∧ NonFinalState(q2) ∧MoveRight1(q2) −→
∃w, z5, q5 Config(y,w, z2, q2, z5, q5, z3, z4) ∧ TransHead1(q2, q5) ∧ CellSucc(z2, z5)

– A constraint enforcing the creation of a new configuration as above but where the label of the cell contaiing
the head is equal to 0 and the transition moves the head to the right.

∀x, y, q1, q2, z1, z2, z3, z4,

Config(x, y, z1, q1, z2, q2, z3, z4) ∧ FirstCell(z3) ∧ IsZero(y, z2) ∧ NonFinalState(q2) ∧MoveRight0(q2) −→
∃w, z5, q5 Config(y,w, z2, q2, z5, q5, z3, z4) ∧ TransHead0(q2, q5) ∧ CellSucc(z2, z5)

– A constraint enforcing the creation of a new configuration in the case where the label of the cell containing
the head is equal to 0 and the transition moves the head to the left.

∀x, y, q1, q2, z1, z2, z3, z4,

Config(x, y, z1, q1, z2, q2, z3, z4) ∧ FirstCell(z3) ∧ IsZero(y, z2) ∧ NonFinalState(q2) ∧MoveLeft0(q2) −→
∃w, z5, q5 Config(y,w, z2, q2, z5, q5, z3, z4) ∧ TransHead1(q2, q5) ∧ CellSucc(z5, z2)

3

• A collection of transition correctness constraints, ensuring that in every transition of the machine the values
assigned to cells are correct.

– A constraint enforcing that the label of z1 is correct after a transition where the head position is z1, the
previous label is 1 and the transition changed it to 0

∀x, y, q1, q2, z1, z2, z3, z4, Config(x, y, z1, q1, z3, q2, z1, z4) ∧ IsOne(x, z1) ∧ Tran1to0(q1) −→ IsZero(y, z1)

– A constraint enforcing that the label of z1 is correct after a transition in which the head position is z1, the
previous label is 1 and the transition changed it to 1

∀x, y, q1, q2, z1, z2, z3, z4, Config(x, y, z1, q1, z2, q2, z3, z4) ∧ IsOne(x, z1) ∧ Tran1to1(q1) −→ IsOne(y, z1)

– A constraint enforcing that the label of z1 is correct after a transition where the head position is z1, the
previous label is 0 and the transition changed it to 0

∀x, y, q1, q2, z1, z2, z3, z4, Config(x, y, z1, q1, z2, q2, z3, z4) ∧ IsOne(x, z1) ∧ Tran0to0(q1) −→ IsZero(y, z1)

– A constraint enforcing that the label of z1 is correct after a transition where the head position is z1, the
previous label is 0 and the transition changed it to 1

∀x, y, q1, q2, z1, z2, z3, z4, Config(x, y, z1, q1, z2, q2, z3, z4) ∧ IsOne(x, z1) ∧ Tran0to1(q1) −→ IsOne(y, z1)

– A constraint enforcing that the label of z3 is still 1 after any transition where z3 was not the head position
in the previous configuration, e.g different than z1.

∀x, y, q1, q2, z1, z2, z3, z4, Config(x, y, z1, q1, z2, q2, z3, z4) ∧ IsOne(x, z3) ∧ Cell,(z1, z3) −→ IsOne(y, z3)

– A constraint enforcing that the label of z3 is still 0 after any transition in which z3 was not the head position
in the previous configuration.

∀x, y, q1, q2, z1, z2, z3, z4, Config(x, y, z1, q1, z2, q2, z3, z4) ∧ IsZero(x, z3) ∧ Cell,(z1, z3) −→ IsZero(y, z3)

Notice that it is in the above constraints that we are taking advantage of the fact that Config atoms code con-
figuration information redundantly with every pair of cell positions z3, z4; this allows the constraint above to be
guarded.

• A unique value constraint ensuring that a configuration does not give any cell two distinct labels.

∀x, y IsOne(x, y) ∧ IsZero(x, y) −→ Bad

• A final state constraint stating that if the configuration reaches a final state the predicate Good holds (which
will ensure that the query holds).

∀x, y, q1, q2, z1, z2, z3, z4,Config(x, y, z1, q1, z2, q2, z3, z4) ∧ FinalState(q2) −→ Good()

The query Q is the atomic query Good().

4

3 Correctness
We now show that there is a reduction from the halting problem for a deterministic PSpace machine M on an input w
to the certain answer problem for O,C, Σ,D where O,C, Σ are defined above.

Given a PSpacemachine M with polynomial space bound pM and input w, our reduction produces InstanceOf(M,w),
the instance for the closed-world predicates formed by filling in the predicates in the “obvious way”. E.g. CellSucc
stores the successor relation among the pM(|w|) cells used by M, FinalState storing the final states of M, and so
forth. The only quirk in our representation will be that the successor of the last cell is itself. Note that computing
Conf0, InitIsOne, InitIsZero requires determining the first two configurations in the unique run of the machine, but this
can clearly be done in polynomial time. All of the open-world relations are empty.

We claim that this gives the desired reduction.
In one direction, suppose that the machine M does not halt on w. Coding the witness run in the obvious way,

we get a counterexample to the closed- and open- world query answering problem for Good on InstanceOf(M). The
self-loop condition on the last cell in our representation is needed in order to ensure that we can add the necessary
successor facts for the last cell of the tape in the transition correctness constraint.

In the other direction, suppose that M does halt on w. We will show that Q = Good is certain under the hybrid
closed- and open- world semantics for InstanceOf(M,w). Suppose by way of contradiction there is a counterexample
instance D′. We inductively create an infinite sequence of tape configurations Config1 . . . which witness that M does
not halt on w. Our inductive invariant on Config1 . . .Confign is that the configurations obey the transition function
of M and the final two configurations Confign−1 and Confign will be associated with configuration ids xn−1 and xn

(respectively) fromD′ such that:

• the second-to-last configuration has head at cell cn−1 in state qn−1 for cn−1, qn−1 such that there is a a fact
Config(xn−1, xn, cn−1, qn−1, . . .) inD′.

• the second-to-last configuration has cell c associated with value 1 if and only if D′ has facts of the form
Config(xn−1 . . .) and IsOne(xn−1, c), and similarly for value 0.

• the last configuration has head at cell cn in state qn for cn, qn such that there is a fact Config(xn−1, xn, cn−1, qn−1, cn, qn . . .)

• the last configuration has cell c associated with value 1 if and only if D′ has facts Config(xn−1, xn . . .) and
IsOne(xn, c), and similarly for value 0.

The base case is handled by the initial configuration constraint.
In the induction step, we assume we have Config1 . . .Confign, and identifiers x1 . . . xn for which the hypothesis

holds; thus in particular there is a fact IsOne(xn, cn) or IsZero(xn, cn) in D′. Further we know that qn is not a final
state, since otherwise the final state constraint would have fired, making the query Q hold inD′.

We do a case analysis based on whether IsOne(xn, cn) or IsZero(xn, cn) holds, and what kind of transition occurs
on qn in M on the corresponding value. We consider only the case where IsOne(xn, cn) holds and the transition of M
on qn with 1 is to the left. The other 3 cases are analogous.

In this case we have the fact NonFinalState(qn) and MoveLeft1(qn) in D′, since these facts held in D and these
involved closed-world relations. There is also some z3 such that FirstCell(z3) holds, since this held in D and involved
a closed-world relation. The second part of the induction hypothesis implies that for some z4 we had a fact

Config(xn−1, xn, cn−1, qn−1, cn, qn, z3, z4)

inD′.
The first transition existence constraint now guarantees that for some xn+1, cn+1, qn+1 Config(xn, xn+1, cn, qn, cn+1, qn+1, z3, z4)∧

TransHead1(qn, qn+1) ∧ CellSucc(cn+1, cn) holds inD′.
We consider the configuration Confign+1 formed as follows:

• the configuration has head at cell cn+1 in state qn+1

• the configuration has cell c associated with value 1 if and only if IsOne(xn+1, c) holds in D′ and similarly for
value 0

5

We claim that Confign+1 is a valid configuration, and that extending the sequence to Config1 . . .Confign+1 and
x1 . . . xn+1 preserves the inductive invariant.

We first consider the properties required for the second-to-last element of the sequence. The first property we need
to verify is that Confign has head at cell cn in state qn for cn, qn such that there is a a fact Config(xn, xn+1, cn, qn, . . .) in
D′. This is immediate from the construction of xn+1. The second property is that Confign has cell c associated with
value 1 if and only if there are facts Config(xn . . .) and IsOne(xn, c) inD′, and similarly for value 0. Note that we have
a fact Config(xn . . .) and the facts IsOne(xn, c) and IsZero(xn, c) corresponding to Confign by induction.

We now show that above we have defined a valid configuration Confign+1, and one that obeys the transition func-
tion. We need first to show that for each cell c, exactly one of IsOne(xn+1, c), IsZero(xn+1, c) holds in D′. The fact
that both of these cannot hold follows from the unique value constraint and the fact that Bad does not hold in D, and
hence (since Bad is closed-world) does not hold inD′. To see that one of them holds inD′, we do case analysis based
on where c is relative to cn, the symbol of c in the configuration associated with xn, and the kind of transition there is
going from qn to qn+1. We consider the subcase where c is not cn and the value at c in the configuration associated with
xn is 1. The first fact implies Cell,(cn, c) holds in D; hence (since the predicate is closed-world) it holds in D′. The
second fact and the induction hypothesis imply that IsOne(xn, c) holds inD′. Note that CellSucc is closed-world, and
hence inD′ there is a chain of CellSucc facts leading from z3 to c. Inductively applying the cell successor constraint,
we see that Config(xn, xn+1, cn, qn, cn+1, qn+1, c, z4) holds in D′ for some z4. By the transition correctness constraints,
since IsOne(xn, c) and Cell,(c2, c) holds in D′, we have that IsOne(xn+1, c) holds in D′. Notice that this argument
shows also that the value at c is the one required by the transition function.

Note that since IsOne(xn, cn) and Config(xn−1, xn, cn−1, qn−1, cn, qn, . . .) hold in D′ the inductive hypothesis guar-
antees that Confign has the tape head at cn, control state qn, and a 1 under the head. Since TransHead1(qn, qn+1) holds
in D′ and TransHead1 is closed-world, TransHead1(qn, qn+1) holds in D, and thus qn+1 is the correct successor state
of qn under the transition function.

Finally, we note that the resulting run can never reach a halting state, since otherwise the final state constraint
would imply that the query Q is true onD′, contrary to the fact thatD′ is a counterexample instance.

References
[AD98] Serge Abiteboul and Oliver Duschka. Complexity of answering queries using materialized views. In

PODS, 1998.

[BBPtC16] Michael Benedikt, Pierre Bourhis, Gabriele Puppis, and Balder ten Cate. Querying visible and invisible
information. In LICS, 2016.

[LSW13] C. Lutz, I. Seylan, and F. Wolter. Ontology-based data access with closed predicates is inherently in-
tractable(sometimes). In IJCAI, 2013.

[LSW15] Carsten Lutz, Inanç Seylan, and Frank Wolter. Ontology-mediated queries with closed predicates. In
IJCAI, 2015.

6

