
A Theory of <0 1981 by CAR Hoare. S.D. Brookes. A.W. Roscoe.

Communicating Sequential- Processes. Oxford University Computing La,boratory.

Programming Research Group.
45 Banbury Road.
Oxford. OX2 6PE

C.A.R. Hoare. S.D". Brookes. A.W. Roscoe.

Abstract

Technical Monograph PRG-16

May 1981

Oxford University Computing Laboratory.

Programming Research Group.
45 Banbury Road.

Oxford. OX2 6PE

A mathematical model for communicating sequential processes Is

given. and a number of Its Interesting and useful properties are

stated. The possibilities of non-determinism are fully taken into
account.

--

A THEORY OF
CONTENTS

COMMUNICATING SEQUENTIAL PROCESSES

Page

O. Introduction

1. Definition of a Pr.)cess 5

2. 15

15

16

17

19

21

o Introduction.
Nondetermlnlsm

2.1. Nondeterministic composition
2.2. Distrlbutlvlty
2.3. limits

2.4. Continuity
2.5. Recursion

In the last decade there has been a remarkable growth In general

understanding of the design and definition of computer programming
languages. This understanding has been based upon a recognition that
the text of each program expressed In the language should be given a
mathematically defined meaning or denotation. in the same way as any
other notational system of logic or mathematics. For a conventional
sequential programming language. the simplest mathematical domain
suitable for this purpose Is the space of partial functions which map from
an abstract machine state before execution of a command to the state

of the machine afterwards. For a programming language with jumps. the

appropriate mathematical domain Is slightly more complex. Involving
continuations. For a programming language in which subprograms are
themselves assignable components of the abstract machine state. the
appropriate reflexive domain of continuous functions has been discovered
by Dana Scott (4]. His techniques have been applied to a variety of
familiar and novel programming languages. The concept on which all
these developments rest is the familiar mathematical concept of a partial
function; and its familiarity has undoubtedly contributed to the widespread

acceptance and success of the approach. However. there are two features
of certain new experimental programming languages Involving concurrency
which are not so simply treated as mathematical functions.

3. 23

23

24

25

26

27

29

31

Operators on Processes
3.1. Parallel Composition by Intersection
3.2. Conditional Composition
3.3. Parallel Composition by Interleaving
3.4. Sequential Composition
3.5. Iteration
3.6. Concealment

3.7. Inverse Images

4. Applications
4.1. A COUNT Register
4.2. Channel Naming
4.3. Buffers and Chains

33

33

34

37

5. 42Prospects

6. References 44

? 3

(1) In the parallel execution of commands of a program. the effect of
each command can no longer be modelled as a function from an initial
state to a final state of an abstract machine; it is also necessary also
to model the continuing interactions of a command with its environment.

can be subjected. We then postulate that two processes are identical
if they cannot be distinguished by any such finite observation. This
reasoning leads directly to the construction of our proposed mathematical
space of processes.

Both these problems arise in acute form in the treatment of a language
like that of Communicating Sequential Processes (1].

The next section shows that this space has the usual ordering properties

required of a semantic domain. The relevant partial ordering Is simply
set inclusion in the reverse of the normal direction. so that one process

is an approximation to another If It is less deterministic. We show that
this is a chain-complete partial ordering over the space of all processes.
The important consequence of this is that every set of recursive equations
in process-valued variables has a least solution; and this permits the
use of recursion both in a programming language and In its formal
definition.

(2) In the execution of parallel programs. it is desirable to abstract from
the relative rates of progress of the commands being executed in parallel.
In general. this will give rise to non-determlnacy in the behaviour and
outcome of the program.

It is the purpose of this monograph to construct a mathematical domain
which should play the same role in defining the semantics of
communicating processes as the domain of partial functions does for
sequential and deterministic programming languages. Every effort has
been made to keep the domain simple. and to ensure that the necessary
operators over objects in the domain have elegant and intuitively valid
properties.

(1) the initial state of a process

The third section defines a wide range of operators over the domain of

processes; these include sequential composition. conditional composition.
two forms of parallel composition. and (perhaps the most crucial) a
concealment operator. which permits abstraction from the details of
internal communications between processes connected in a network.
These operators enjoy a number of elegant and useful algebraic
properties. We hope that this range of defined operators will be a
sufficient basis in terms of which to define all other operations required
in the semantics of a parallel programming language. without any further
concern for the details of the underlying mathematical model. Thus these

operators should play the same role as the basic operators defined by
Scott for the LAMBDAcalculus. which shield the practising user of the

calculus from the complexities of the construction of the underlying
domain.

The first section of the monograph contains a definition of the required

domain of processes. Following the lead of (21. we first introduce the

concept of a transition which is a ternary relation between

(2) a sequence describing its interactions with its environment

during its execution

(3) a possible state of the process after those interactions. The fourth section gives some examples of the application of the model.
by showing how It can be used to define some complex but useful
programming language constructs. and to describe some simple but
interesting parallel algorithms.

Next. we note that the internal states of a process are not observable
from its environment. We therefore define the concept of an observation

of a process. which is a finitely describable experiment to which a process

4 5

The fifth section discusses the prospects for the development of formal

methods in increasing reliability of implementation and use of a

programming language which includes parallelism.
Definition of a process

The ultimate unit in the behaviour of a process is an event. Events are

regarded as instantaneous: if we wish to represent an activity with
duration. we must introduce two events to represent its start and Its finish.
so that other events can occur between them, We shall not be interested

in the length of the time interval which separates the events. but only

in the relative order in which they occur. We let A stand for the set
of all events with which we shall be concerned. The behaviour of a

process up to some moment in time can be recorded as the sequence

of all events in which it has participated: this is known as a trace and

the set of all possible traces is denoted by A-,

Let s be a trace and let P and Q be processes. A transition is a

proposition

p ~ Q

which means that s is a possible trace of the behaviour of P up to some

moment in time. and that the subsequent behaviour of P may be the

same as that of Q, Thus if t is a possible trace of Q. after which it

may behave like R. then clearly st (s followed by t) is also a possible
trace of P. after which it can behave like R.

This fact is formalised as a general law:

p ~ Q & Q ~ R = P ~ R. (Ll)

Conversely. if P ~ R . then there must exist some intermediate process

Q. which behaves exactly like P would behave after doing s but before

starting on t. This is expressed in the law:

P ~ R = 3 Q. P ~ Q & Q ~ R. (L2)

6 7

The empty trace <> Is the sequence with no events. It describes the

behaviour of a process which has not yet engaged In any externally

recordable event. We adopt the convention that after doing nothing a
process may remain unchanged:

a case. we say that X is a possible refusal of P. and that P can refuse
X.

p ~ P. (L3)

We want to be able to distinguish between processes by observing their

behaviour in finite environments. It will be possible to distinguish between

P and Q if and only if there Is a finite sequence s of events possible
for P and Q, and a finite set of events X. such that P can refuse X

after doing s but Q cannot (or vice versa>. We adopt this view of

distinguishability because we consider a realistic environment to be one

which is at any time capable of performing only a finite number of events.

Bearing these remarks in mind, we define the set of all P's refusals as:

If Q ". P. then the possibility of the transition P ~ Q means that P

may make Internal progress. which cannot be observed from outside. after

which it can behave like Q rather than p, Since a process Is In general

nondetermlnistic, Its Internal progress will require making of arbitrary
choices. which are wholly uncontrollable and Invisible from outside. Such

a choice can only reduce the range of possible future behaviours of P.

by excluding behaviours which would have remained possible if some

alternative choice had been taken. This fact Is expressed by the theorem:

refusals(P) = {XI X is

3 Q.

(X n

finite &

P ~ Q &

initials(Q) {}) }

P ~ Q & Q -4 R = P -4 R. where {} is the \ empty set.

From this definition it follows that

The Initials of a process P are those events In which It can engage on
Its very first step; they are defined m {} € refusals(P)

initials(P) = {a13 Q. P ~ Q} (2) If Y € refusals(P) and X £ Y then X € refusals(PL

where <a> Is the sequence containing only "a", The choice of which

of these events will actually occur will depend (at least In part> on the
environment In which the process Is placed. Let X be the set of events

which are possible for that environment. Then the event that actually
occurs must be in the intersection (X n inltials(P». If this intersection

is empty. then nothing further can happen; the process and its

environment remain locked forever In deadly embrace [31. Unfortunately.
If P is non-deterministic. deadly embrace is stili possible even when the

Intersection Is non-empty. This occurs when P can progress Invisibly

to become Q. and the Intersection (X n initials(Q» is empty. In such

(3) if X € refusals(P) and Y is a finite subset of (A - Initials(P»

then (X u Y) € refusals(PL

(A - initlals(P» Is the set of events that P cannot perform. The third
theorem above states that P can refuse these events. together with any
other set of events it can refuse.

A trace of a process is a sequence of events in which It may engage

up to some moment in time. The set of all such traces is defined:

traces(P) = {s13 Q. P -4 Q}.

8 9

From this definition It follows that its environment allows any of the events of X. Our next postulate states

that there exists a process corresponding to any possible set of failures.

o I' traces (P)

st € traces(P) ~ s € traces(P).

If F satisfies the five properties of

paragraph then there exists a process
failures(P) = F.

the previous

P such that

(L4)

The second theorem states that any prefix (i.e. initial subseQuence) of

a trace of P Is also a trace of P.

If s is a trace of P. and if. after engaging in the events of s.
refuse the finite set X. we say that the pair (s. X) is a failure
process P. The set of all such failures is defined:

P can

of the

Finally. we postulate that the failures of a process are the only externally

observable aspects of Its behaviour. Thus two processes that fall In

exactiy the same circumstances are indistinguishable by external

observation. Since we deliberately choose to Ignore the details of the

internal construction of processes. It is reasonable to adopt the principle

of identity of indiscernables:

failures(P) (s,X)1 3 Q. P ~ Q &
X £ refusals(Q)}. failures(P) = failures(Q) ~ P = Q. (L5)

From this definition It follows that the set F = fallures(P) has the

properties:

Postulates L4 and LS together state that a process Is uniQuely defined
by its failure set. In future. we shall identify a process with Its failure
set. and define the transition relation thus:

p ~ Q = ('Vt., X. (t., X) € Q ~ (st., X) € P).

From this definition we deduce (using conditions Pl - PS):

P ~ Q .. 3R (P ~ R & R ~ Q)

P ~ Q .. Q £ P

(PS) Let U = fal(s(a),f}) f' FI and let Y be a
finite subset. of (A - U); t.hen

(s, X) € F ~ (s, (X u Y» € F.

traces(P) (sl(s,(}) € P}

initials(P) fal«a),f) € P}

The failures of a process represent possible externally observable aspects
of its behaviour. The fact that (s. X) F.failures(P) means that It is possible
for P to do s and then refuse to do any more. in spite of the fact that

refusals(P) (XI(O,X) € P)

failures(P) = P.

(Pl) (s, X) € F S € A* & X £ A & X is finite

(P2) (O,f}) € F

(P3) (st,f}) € F (s,f}) f' F

(P4) X £ Y & (s,Y) € F (s,X) € F

10

Since transitions can be defined in terms of failure sets and failure sets

in terms of transitions. it is permiSSible to use either method in the

definition of any particular process. It will be found convenient to give

an intuitive explanation of the intended behaviour of a process by giving

the laws governing its transitions. followed by a formal definition in terms

of refusal sets. Usually. the laws will give only sufficient conditions for

the transitions of the process being defined. Then the formal definition

will specify the smallest refusal set which satisfies the laws: i.e.. the one
with the least failures.

(l) The simplest process is STOP. a process that never does anything.

The only law which it obeys is:

STOP ~ STOP.

The process that obeys only this law is defined:

STOP = {(O, X)IX £; A & X is finite}.

Clearly. it refuses to do whatever the environment may offer.

We also permit Q to make Internal progress while waiting for "a"

Q ~ Q' ~ (a _ Q) ~ (a _ Q').

11

The smallest process which satisfies these laws is:

(a - Q) = {(O,X)I X£; (A-{a}) &

X is finite}

U ((a)s,X)I(s,X) € Q}.

Clearly. It cannot refuse to do "a" if offered: but may (indeed must>
refuse everything else.

Examples: Pa e (a - STOP)

Pb e (b - STOP).

(3) Let B be a subset of A. and let F(x) be a

in B. Then (x:B _ F(x» is a process which
x In B and then behaves like F(x).

process for each x
first does any event

F (b) ~ R
for all b

~ (x:B _ F(x» s, R)
in B.

(~x. X € B ~ (F(x)

(x:B _ F(x»

<>--
<>-- F'(x») =

(x:B_ F'(x».

The smallest definition satisfying these laws is

(x:B _ F(x» {(O,X)I X
X

u {«x)s,X)1

£;A-B &

is finite}
x € B &

(s,X) € F(x)}.

Note that x Is a bound variable of this construction. so that

(x:B- F(x» = (y.:B _ F(y».

(2) If Q Is a process and "a" is an event. then the process

(a _ Q) is a process which first does "a" and then behaves like

Q:

Q R (a - Q) <a>s, R.

Q ;: Qab U STOP.

13

If A = {a.b}. figure 2 shows the initials and refusals of each of
these processes. proving that they are distinct.

p
~~

Cl,

~~5TOP
Y

Figure 1 shows the transitions between these processes (other than
those deducible by transitivity).

Q ~

~

)Y' Qo..~
~b~ ~

Q\,~
<>

Figure 1

(5) RUN is a process which will always do anything offered by the
environment. Thus it satisfies the laws:

RUN ~ RUN for all s in A*.

12

Example: Pab = (X:{a. b} -+ STOP).

(4) Let Qa 9 puPa ab

Qb 9PbUPab

Qab 9 Pa U P b

process initials refusals

a {a.b} { }.{a}.{b}.{a.b}

aab {a.b} { }.{a}.{b}

a {a.b} {}.{b}a

ab {a.b} {}.{a}

Pab {a.b} {}

P {a} {}.{b}a

Pb {b} {}.{a}

STOP {} { }.{a}.{b}.{a.b}

Figure 2.

14 15

The required definition is

RUN = {(8 , { }) I8 € A * } 2 Nondeterminism.

Clearly. RUN can never refuse anything.

CHAOS ~ STOP for all 8 in A*.

ThiS section investigates the properties of nondeterminism. It uses the

methods of lattice theory to show how every recursive equation uniquely

defines a process; the ma!hematics required. Is not difficult.and Is fully

explained.

(6) CHAOS is a process that can do anything at all; but in contrast

to RUN. it can also at any time refuse to do anything at all.

The required definition is
2.1 Nondetermlnistic composition.

CHAOS = {(s,X) 18 € A* & X £ A & X is finite}.
If P and Q are processes. the combination (P n Q) is a process which

behaves exactly like P or like Q: but the choice between them Is wholly

nondeterministic: It is made autonomously by the process (or by its

Implementor>' and cannot be influenced or even observed by the

environment. Thus (P n Q) can do <or refuse to do) everything that P or

Q can:

p~ s s
R vQ--+ R = (pnQ) --+ R.

The smallest process which satisfiesthis law Is simply:

pnQ P lJQ.

This operation is clearly associative. commutative. and idem potent. and

has CHAOS as its zero:

(PnQ)nR = pn(QnR) <associative)

(Pn Q) = (Qnp) (commutative)

(pnp) = P (idempotenl>

CHAOS n P = CHAOS (zero)

16 17

2.2 Distributivlty. each argument separately. Thus nondeterministic composition is itself
distributive. because

One of the main reasons for specifying a nondeterministic process such

as (P n Q) is to allow an implementor the freedom to select and

implement either P or Q. whichever of them is cheaper. or gives better

performance. Suppose F is some function from processes to processes.

"F()" may be regarded as an assembly with a vacant slot into which

an arbitrary component may be plugged. e.g. F(P) or F(Q), The behaviour

of the assembly is then a function of the behaviour of this component.

Suppose that an implementor has to implement (FCP) n F(Q». The

straightforward way of doing this Is to Implement FCP) and FCQ) and then

select between them. An alternative way is first to select the component.

and plug in just that one. This alternative is the same as the standard

way of implementing FCP n Q). We would like to ensure that both

implementations give the same result. Le.

pn(QnR) (PnQ)n(PnR)

and (Q n R) n P = (Q n P) n (R n P) .

Further. the construction (x:B _ F(x» is distributive in F(x) for all x in
B:

(x:B _ (F(x) nG(x»)
(x:B _ F(x» n (x:B _ G(x».

Thus all operators introduced so far are distributive. and we shall make
this a requirement for all operators introduced hereafter.

F(pnQ) = F(P) nF(Q).
2.3 Limits.

A function F which satisfies this condition for all processes P and Q is

said to be distributive. Another reason for preferring distributive functions

is that they simplify prOOfs of the properties of processes. by case analysis
of the alternative behaviours.

The relation P ~ Q means that the process P may. as a result of
internal progress. transform Itself automatically to the process Q. A chain

of processes is an infinite sequence {Pi Ii)O}. each of which may
transform itself into its successor; thus it satisfies the laws;

As an example. the construction Ca _ P) is distributive in P. since: <>
Pi ~ Pj+1 for all I.

(a _ (PnQ») (a_P)n(a_Q).

This means that there is no discernible difference whether the choice

between P and Q is made before or after the occurrence of "a". A

function of two or more arguments is distributive if it is distributive in

For each such chain there exists a limit process (UIP,), which can do
(or refuse) anything that every member of the chain can do (or refuse);

. <> s s
(V1. Pi ~ Pi+1 & Pi -- Q) = (UjPj) -- Q.

18 19

The definition of the smallest process which satisfies these iaws is: to allow an implementor (if he wishes) to take a/l the non-deterministic

choices in advance of delivering his product.
(U.P.) = npI I i i provided that Vi . P ~ P

I 1+ I

This operator is distributive: 2.4 Continuity.

Ui (Pi n Qj) = CUlj) n (UjQj) Let F be a distributive function from processes to processes. and

let {Pi I i~O} be a chain. Then r- is monotonlc in the sense that
provided that {Pi Ii~O} and {Qj Ii~O} are chains.

P ~ Q ~ F(P) ~ F(Q)
Furthermore:

(Vi, P ~ Q) ~ CUP) ~ Q.I I I

for all P and Q. Suppose now that an implementor is faced with the

task of implementing F<Utj)' The straightforward method would be to
obtain the limit <UjPj) and then "plug" it Into the assembly f<). But
suppose that the limit <UjPj)is in some sense unattainable. Then we can
apply r- to each of the approximations Pr obtaining the chain
(F<Pj) I i~O}. and then take the limit of that. We would like to be sure
that both implementations are the same:

p ~ CUP) for all i., I ,

and for all processes Q

The relation P ~ Q means simply that the set Q is contained in the

set P. Thus everything that Q can do so can P Ui F (Pj) = F CUjPj).

traces(Q) S traces(p), Then. even if the limit Uj F<Pj) is unattainable. we can be sure of getting
as close to it as we need by the sequence of approximations
F<PJ. If this condition hoids for all chains. then f is said to be,
continuous. Another good reason for preferring continuous functions is
that they simplify proofs of the properties of processes. A third reason
will be explained in the next section.

and everything that Q can refuse so can P

refusals(Q) S refusals(P).

In other words P differs from Q only in that it is less deterministic. and

that Q can result from P by resolution of some of p's inherent
nondeterminism. Thus if Vi. p'. ~ P ,. this can mean that there isI "
a potential infinity of nondeterministic decisions to be taken; but perhaps

none of them will actually reach the limit <UjPj). Thus <Utj) can be
regarded as an "ideal" element. of which the Pj are an ever improving
sequence of approximations. getting as close as we may wish to the ideal.

but never actually reaching it. However. in implementing <utj) we wish

As an example. the construction <a ~ P) is continuous in P. since

(a ~ CUjPj» Uj(a ~ Pj).

20

A function of two or more arguments
in each argument separately. Thus
continuous. because

is continuous if it is continuous

nondeterministic composition is

<UjPj) n Q Uj (Pj n Q)

and Q n <UjPi) = Ui(Q n Pi)

provided that {Pi I i)O} is a chain.

Furthermore. the construction (x:B -+ F(x» is continuous in F(x) for all
x in B:

(X : B -+ <UjFj (x) ») = Uj(X : B -+ F j (x)) .

Finally. the limit construction is itself continuous:

Uj<U/ij) = Uj<UiPjj)

provided that for all i, {Pjj Ij)O} is a chain. and for all j, {Pjj I i)O}
is a chain.

Thus all operators introduced so far are continuous. and we shall make

this a requirement for all operators introduced hereafter. This will ensure

that any expression composed from named components by applying
continuous operators will also be continuous in each of its named
components.

!

1

1

21

2.5 Recursion.

Let F be a continuous function from processes to processes.
the n-fold composition of F by induction on n:

We define

FO(p) = P

Fn+1 (p) = F (Fn (p)) .

Since F is continuous. it is also monotonic. so the set

{Fn(CHAOS) In~O}

constitutes a chain; and its limit is defined

/Lp. F (p) = U Fn (CHAOS) .n

Note that in this construction. "p" plays the role of a bound variable.
.so that:

/Lp. F(p) = /Lq. F(q).

Let p be a variable standing for an "unknown" process. which is known

only to satisfy the equation:

p = F(p).

Provided that F is continuous. It is clear that /Lp.F(p) Is a solution

p in this equation. Furthermore. it is the most general solution. in

sense that it can progress autonomously to every other solution:

for
the

Q = F(Q) ~ /Lp.F(p) ~ Q.

22 23

Thus the equation

p = F(p) 3 Operators on processes.

can be regarded as a recursive definition of the process p.p.f-Cp); for
example. we could have defined

In this section we define the most important primitive operators on

processes. and state their chief properties. The section is sadly devoid
of examples: these will be found In the next section.

RUN

RUNs

(JLp.(x:A

(p.p. (x: B

-+ p»
-+ p» for any B S A.

3.1 Parallel composition by intersection.
A similar construction can be used to find the solution of mutually

recursive equations such as

p = F(p,q)
q = G(p,q)

The combination CP" Q) is intended to behave like both P and Q.

progressing in parallel. Thus an event can occur only when both P and

Q are able to participate in it simultaneously. The same is therefore
true of sequences of events:

even when the number of equations is Infinite. P ~ p' & Q ~ Q' => (PIIQ) -4 (P'II Q')

The desire to define processes freely by recursion is one of the major

motives for requiring all operators to be continuous.
The smallest process which satisfies this law is defined:

(PIIQ) = f(s,XlJY)I(s,X) f P & (s,Y) f Q}.

~huS CP11Q) can refuse a set if P can refuse some of it and Q can
refuse the rest.

The operator 11 is distributive. continuous. associative and commutative.
It has STOP as its zero and RUN as its unit. i.e..

(P 11STOP) = STOP and (P 11RUN) = P.

Furthermore:

(x : R -+ F (x)) 11(y: C -+ G (y.» =

(z:(Rnc) -+ (F(z)IIG(z»).

24
25

3.2 Conditional composition.
When F = G. this last theorem is much more simply expressed:

The process (P 0 Q) behaves either like P or like Q: but it differs from

(P n Q) in that the choice between them can be influenced by the
environment on the very first step. If the environment offers an event

"a" which is possible for P but not for Q. then P is selected; and

conversely for Q; but if "a" is possible for both P and Q. the selection

between them is nondeterminate. and the environment does nol get a
second chance to influence it. Thus

(x:BUC _ F(x» =

(x:B- F(x» 0 (x:C- F(x».

3.3 Parallel composition by interleaving.

p ~ R v Q <a>s) R ==> (p 0 Q) <a>s) R

The process (P III Q) behaves like P and Q operating in parallel; but it

differs radically from (P 11 Q) in that each event requires participation of
only one of the processes rather than both. Thus each trace of (P III Q)
is an interleaving of a trace of P and a trace of Q. as stated in the
lawBefore occurrence of the first event. P and Q may progress IndepE:<ndently:

p ~ p' & Q ~ Q' ==> (p 0 Q) ~ (P' 0 Q') p ~ p' & Q ~ Q' ==> (PIIIQ) -4 (P'IIIQ')

The least process which satisfies these laws Is defined: where r is an Interleaving of sand t.

(P 0 Q) = f«>,X)I«>,X) f P & «>,X) € Q}
U f(s,X) I s ~ (> &

«s,X) ~ p v (s,X) € Q)}.

The smallest process which satisfies this law is

(P III Q) { (r , X) I 3s, t. (s, X) € P & (t, X) € Q &

r is an interleaving of sand t}
(P 0 Q) refuses a set if and only if it is refused by both P and Q.

The operator 0 is distributive. continuous. associative. commutative. and
idempotent. It has unit STOP. Furthermore it admits distribution thus:

(P III Q) can refuse a set only if both P and Q refuse it.

The operator III is distributive. continuous. associative. and commutative.
It has unit STOP and zero RUN.

pn(Q 0 R) = (PnQ) 0 (pnR)

Furthermore. if P (x:B - F(x»)andQ = (y:C _ G(y» then
(z:(B U C)

(x:B _
where H(z)

- H(z»

F (x» 0 (y.: C _ G(y.))
if Z f (B-C) thenF(z)
else if Z € (C-B) then G(z)

else F(z) n G(z).

(P III Q)
o

«x:B

(y:C

- (F(x)III Q»- (PIIIG(y»».

Thus if an event can be performed by both

nondeterministic which of them actually performs it.

processes. it Is

26 27

3.4 Sequential Composition. Sequential composition is distributive, continuous, and associative.
furthermore:

Let ..v" denote an event which we interpret as successful termination of
a process. Then SKIP is defined as a process which does nothing but
terminate successfully:

(SKIP;P) P

(STOP;P) = STOP

SKIP = (v ~ STOP).

The process (P;Q) behaves like P until P terminates successfully. after
which it behaves like Q. However. the occurrence of the "V" at the end

of P does not appear in any trace of (P;Q); "V" occurs automatically
without the knowledge or participation of the environment. Thus. if s
does not contain "tick", we formulate the laws:

(x:B ~ F(x»;P = (x:B ~ (F(x) ;P»

(since V i B)

(SKI P 0 Q); P = P n (P 0 (Q ; P)) .

p ~ p' & Q ~ Q' => (P;Q) ~ (P';Q') 3.5 Iteration.

P ~ p' & Q R = (P;Q) ~ R. The process .p behaves like an infinite sequential composition of the
process P:

The definition which satisfies these laws is

P;P;P;
(P;Q) = {(s,X) I s does not contain V &

(s, XU {V}) € P}

u {(st,X)1 s does not contain V &

(s <v>, {}) € P & (t , X) € Q}.

It can be simply defined by recursion:

*p = tLq. P;q

This definition shows that while P is stili running. (P;Q) cannot refuse

X unless P can also refuse to terminate successfully.
Iteration has the following properties:

(P; *P) = *p

In general. it is a useful convention that "v" should be used only In the
process SKIP. In particular, In the construction (x:B ~ F(x», the set
B should never contain "v"; and in future we shall assume that this
convention is observed.

(*(x:B ~ F(x»);P = *(x:B ~ F(x»

(since V i B)

28 29

*STOP STOP The third result is again surprising; it could be argued that in the

implementation of (SKIP until Q), the opportunity to behave like Q occurs

infinitely often; and it is "unfair" to neglect such an opportunity forever.
But it seems impossible to define a notion of "fairness" such that a "fair"

process can be distinguished from an "unfair" one by any finite
observation. That is why our theory makes no stipulation of fairness,

and treats every race condition as a possible cause of breakage.

*SKIP = CHAOS.

This last result is the most surprising; it would seem more intuitive that

'"SKIP should equal STOP. Indeed, it is permitted to implement it as

STOP. But in general it is very important to distinguish '"SKIP from STOP.

For example. an implementation of STOP uses no electricity, whereas an

implementation of '"SKIP may use an unlimited amount. Since It never

interacts with its environment. there is no way of switching it off! Such

a process must never be switched on, in any environment. CHAOS is

another process that must never be used in any environment. It is not

unreasonable to equate such equally useless processes.

Some of these problems can be avoided if we Insist that '" and until

are used only on processes whose first event cannot be "'1/"

*(x:B -+ F(x» = ~p.(x:B -+ F(x); p)

It can be argued that the process CHAOS might actually do something,

whereas intuitively '"SKIP cannot. But consider the analogy of an
electronic circuit with a race condition. Such a circuit must never be

used; but if it is used it may break; and a broken device may behave

in any way whatsoever. We allow the same possibility for '"SKIP.

(x: B -+ F (x» until (y.:C -+ G (y.))

~p.«y:C -+ G(y» 0 (x:B -+ (F(x);p»),

The .same technique can be

each activation of the body

previous activations:

used to define a parallel Iteration, in which

of the loop progresses in parallel with all

A terminating form of iteration can be defined ** (x: B -+ F (x» = ~p. (x: B -+ (F (x) IIIp)) .

P until Q = ~p. (Q 0 (P; p». Unfortunately, this technique cannot be applied when the same problem
arises in the next section.

This repeats P any number of times. possibly ending with a single

execution of Q. It has properties:
3.6 Concealment.

*p = P until (*P) = P until STOP

«x:B -+ F(x» until (y:C -+ G(y»);P
(x:B -+ F(x» until (y.:C-+ (G(y.);P»

Let Ob" denote an event (other than ",'1/") which is to be regarded as an

internal operation of the process P; for example, It may be an interaction

between some component processes from which P has been constructed.

We wish such events to occur automatically whenever they can, without

the participation or even the knowledge of the environment of P. We

therefore define (P\b) as the process which behaves like p, except that
SKIP until Q = (CHAOS 0 Q).

30 31

every occurrence of "b" Is removed from Its traces; it therefore satisfies
the law:

P ~ R -= (P\b)
s\b~ (R\b)

where s\b is formed from s by removing all occurrences of Ob".
CHAOS\b = CHAOS

For reasons explained In the previous section.
infinite sequence of occurrences of "b", without
environment. then (P\b) equals CHAOS.

If P can engage in an
ever Interacting with Its (b ~ P)\b = P\b.

(x:B ~ F(x»\b = (x:B ~ (F(x)\b» if b ! B.

(\1n.Pn -4 Pn+1) ~ Po\b
<>~ CHAOS.

The required definition is:

«b ~ P) 0 (x:B ~ F(x»)\b =
(P\b) n «P\b) 0 (x:B ~ (F(x)\b») if b ! B

P\b {(s\b, X)I(s,

u {«s\b)t, X)I

xu{b}) €

\1n. (abn,

(t, X) €

P}
(}) € P &

CHAOS} 3.7 Inverse images.

where sbn is s followed by n occurrences of b. Let f be any function from events to events. Then'- 1(P) is a
process which can do "a" whenever P could have done Ha):

This operation is distributive and continuous, and
P ~ Q ~ f-l(p) ~ f-l(Q)

(P\b)\c
(P\b)\b

(P\c)\b
P\b. where f(s) is formed by applying f to each symbol of s.

Therefore if B is any finite set of symbols. {b1, b2, bn}, we can
define

The required definition is:

Cl(p) = {(s, X) I(f(s), f(X» € P & X is finite}

P\B = (. . . «P\b1)\b2)\ . . .\bn).
where f(X) = (f(x) Ix € X & x is the domain of f}

Other theorems are

STOP\b = STOP

RUN\b = CHAOS

32
33

f- 1 is distributive and continuous; furthermore

C1(g-1(p» = (g 0 f)-l(p)
4 Applications.

C 1 (STOP) STOP

f-l(RUN) = RUNf-l(A)

C1(x:B -+ F(x» = (y.:C1(B) -+ C1(F(f(y»»

In this section we give a number of examples of the use
defined above in the description of simple processes.
we use laws about transitions to specify the required
process before constructing it.

of the operators
In each case.

behaviour of a

f-1 distributes through D. 11. Ill. and ; (provided f-l<-./> = {v)> and
4.1 A COUNT register.

f-l(p\B) = f-1(P)\f-1(B)

where f-l(X) = {ylf(y) € X} A COUNT is a process which behaves like an unbounded non-negative
integer register. with initial value zero. It engages in three kinds of event:

provided each element of X is in the range of f.
"up" denotes incrementation of the register and can occur at any

time.

"down" denotes decrementation of the register and cannot occur
when its value is zero.

"iszero" can occur only when the value is zero.

Thus the behaviour of COUNT is specified by the law

COUNT ~ Q ~ EQ & initials (Q) = {up,iszero}v
LESS & initials (Q) = {up,down}

where EQ means the number of "up"s and "down"s in s are equal and
LESS means there are less "down"s than "up"s in s.

34 35

A simple definition of a process COUNTo' which satisfies these laws.
can be given by infinite mutual recursion. The process

COUNTn defines the behaviour of a count register holding the value n.

If P is a process which engages in events without a channel named.

then (m.P) Is the process which engages in m.t whenever P would have
engaged in t:

COUNTO (iszero - COUNTo)[) (up - COUNT1) (m.P) cont - 1 (P) .m

COUNTn+1= (down - COUNTn)[) (up - COUNTn+2). For example.

Another process which satisfies these laws Is ZERO. where m. COUNT3 (m.down - (m.COUNT2»[)
(m.up - (m.COUNT4».

ZERO (iszero - ZERO)[) (up _ (POS;ZERO»

and P~S = (down _ SKIP) [) (up _ (POS;POS».
We can now construct two separate COUNTs. communicating along
differentiy named channels:

Note that POS terminates successfully when it first performs one more

"down" than "up". In order to compensate for an initial "up". it needs

to perform two more "down"s than "up"s. This is achieved by first

performing one more. and then one more again. A third definition of

the same process Is CO' where

(n. COUNTo) III (m. COUNT3).

Co = (iszero - Co) [) (up - Cl)

Suppose now that a process MASTER requires to use a count register.

communicating with it along channel named "m". To use the register.

it engages in the events "m.up". "m.down". and "m.iszero". By using 11.
we can ensure that the process (m.COUNT) engages in these events at
the same time as the MASTER. But first we need to ensure that

(m.COUNT) will ignore all communications of the MASTER. except those

which are directed along channel "m". This is done by using the III

parallel operator.
Cn+1 = POS; Cn'

4.2 Channel naming. Let M = {m.up, m.down, m.iszero}.

In this and later sections. we shall assume that the only events are

communications between processes. Thus each event consists of two

parts "m.t". where "m" is the name of a channel along which the

communication takes place. and "t" is the content of the message which

passes. We define:

P ignoring X = (P I1I RUNx)'

Then we define:

[m: COUNT311 MASTER]

(((m. COUNT3) ignoring (A - M)) 11MASTER) \M .
chan(m.t) m, contm(m.t) t.

36
37

If the MASTER requires to use two differently named counts. we can

similarly define:

4.3 Buffers and chains.

For example. the MASTER may contain the following process

terminates successfully when It has added the current value

current value of n. leaving the former unchanged:

code. which

of m to the

We define a BUFFER (of type T> as a process which inputs any sequence

of values (of type T) from a channel named "In". and outputs the same

sequence of values along a channel named "out". Let m be a channel
name. and

[n:COUNTOII (m: COUNT3 11MASTER)).

ro.T = {m.tlt € T}

ADD ~p«m.iszero -+ SKIP) 0
(m. down -+

(n.up -+ (p;(m.up -+ SKIP»»)

(srm) = contm(s\(A-m.T».

ADD has the property that:

Less formally. .(s r m) Is the sequence of

along the channel "m" is recorded in s.
which for all Q satisfies the laws:

values whose communication

Now a BUFFER is a process

[n: COUNTj 11 (m: COUNT j 11 ADD; RESTOFMASTER)) =

(n:COUNTj + jll (m: COUNTj 11RESTOFMASTER)).

BUFFER ~ Q = *
S € (in.T U out.T) &
(srout) is an initial subsequence of (srin) &

(srout = srin = initials (Q) = in.T) &

(srout~srin -= initials (Q) n (ouLT) ~ (}).
This example shows how simultaneous participation in events by parallel

processes can achieve the effect of communication between them.

COUNT = ~p.«iszero -+ p) 0
(up -+ ([m:pIILOOP);p»)

The third line states that an empty buffer must Input any value of type

T. and the fourth line states that a nonempty buffer must always be

prepared to output some value of type T. It is left undetermined whether

a nonempty buffer may refuse to input.

11 Is possible (with care) to use the master/slave relation recursively. as

shown by yet another definition of the COUNT register.

where LOOP ~q.«up -+ (m.up -+ q» 0
(down -+ «m.iszero -+ SKIP) 0

(m.down -+ q»».

A simple example that meets this specification Is the single-portion buffer
B1:

Bl = *(x:(in.T) -+ (ouL(contin(x» -+ SKIP»

The LOOP passes on to its subordinate process (m.p) all incoming "up"s

and "down"s. until a "down" happens when the subordinate process is

zero. The LOOP then terminates successfully. Thus [m:p 11 LOOP] behaves

like POS. provided that p behaves like ZERO.

38 39

In future we shall use abbreviations: A buffer which stores two portions before refusing further input can be
defined:

(?x:T _ F(x» for (y.:(in.T)- F(contin(y»)
B2 = Bl»B1.

and !x for (out.x _ SKIP).

In general. a buffer with n portions Is defined by induction:

Thus the example B1 could be rewritten:

Bl = *(?x:T _ !x).
BI = Bl
Bn+1= B1»Bn'

An unbounded buffer can be

recursive equations. Indexed on

starts empty:

defined by an infinite set of mutually
the current content of the buffer. which

An unbounded buffer can be defined:

Boo = ~p. (?x:T - (p » (!x ; Bl»).

BUFF <> = (?x:T - BUFF <x» A buffer which may have any bound or none is

BUFF<x>s = (?y.:T - BUFF<x>s<y» 0 (!x; BUFFs)' B? = ~p. (Bln(?x:T - (p» (!x; Bl»».

The process (P»Q) is one in which everthing output by P on channel
"out" is simultaneously input by process Q on channel "in"; and all such
communications are concealed from their common environment. Thus

all external communication on channel "in" is received by P and Ignored

by Q; and all external communication on channel "out" Is sent by Q and

ignored by P. Communication between P and Q is established by
transforming each event "out.x" of P and each event "in.x" of Q into the

same event "x". This is achieved by the inverse of the function

Note that it is not possible in our model to define a buffer with a

nondeterministically chosen finite bound. without also allowing an

unbounded buffer as an implementation. This is because there is no
finite test which could detect that the buffer is unbounded.

Let f : T' _ T" be an arbitrary monotonic function on strings. Le. f(s)

is always an initial subsequence of f(st>. A process P is said to be
a pipe for f if it satisfies the following laws:

insertm(x) m.x
x

ifx€T
otherwise

P~Q=:> *
s € (in.T U out.T) &

(srout) is an initial subsequence of f(srin) &

«srout) = f(srin) =:> initials(Q)= in.T) &
«srout).. f(srin) =:>initials(Q) n ouLT .. (}).

(P»Q) «insert t-1(P» ignoring out.T)ou
11 «insert. -l(p» ignoring in.T »\TIn

. (here we have assumed that T Is finite>.

40 41

Thus a buffer is just a pipe for the identity function.

for f and Q is a pipe for g, then (P»Q) is a pipe for (g
example Is a pipe for the sine function:

If P is a pipe

o 1>. A simple

A process definition satisfying these laws is:

VART = (?x:T -4 Vx)

SIN = *(?x:REAL -4 ! sine (x» where Vx = (?y.: T -4 V) 0 (! x ; V) f or all x in T.y x

and so are (SIN» B3), (Be» SIN), etc. V is the behaviour of a variable with value x. A fresh local instancex
of such a variable can be declared thus:

Suppose now a MASTER process requires to use the SIN process to

compute sines, using a channel name "sin". It sends the argument x

by sin!x (an abbreviation for (sin.in.x -4 SKIP», and it inputs the result

by (sin?y:REAL -4 F(y», which is also an abbreviation for something
similar. (Note the coding trick that assimilates output by the master with

input by the slave.> The required effect can be achieved by the
combination

[m:VART 11 MASTER] .

A stack (for type T) is a process P which outputs everything that it has

Input, on a last-in/first-out principle; and outputs the signal "Isempty'
when empty. For all Q It obeys the laws:

[sin:SINIIMASTER] .
P~Q=>

(length(srin) = length(srout) =>

initials(Q) = (in.T U (out.isempty}»
& (length (s r in) > length'(s rout) =>

in.T £ initials (Q) &

initials(Q) nout.T,;. (})

A pipe for the tangent function can be defined:

[sin:SINII [cos:COSIITAN]]

where TAN = *«?x:REAL -4 sin! x;cos!x);

(sin?y:REAL -4 (cos?z:REAL -4 !(yiz»»
P st<oulx» Q & length (t r in) = length (t rout) =>

x = last (s r in) .

A process P is said to be a variable (of type f) if it is always prepared

to output the value it has most recently input; i.e. for all Q:

Three different implementations of a stack can be modelled on three

different implementations of the COUNT. We hope the reader will enjoy
constructing them.

P ~ Q => (srin = <> => initials(Q) = in.T)
& (s r in ,;. <> =>

initials(Q)
(in. T U {out. last (s r in)}».

42 43

5 Prospects.

solve differential equations using only the original definitions of derivatives

in the epsilon-delta terminology of analysis. What is required for practical

program development and proof is a formal calculus. similar to the

assertional calculus for sequential programs. which will permit a

reasonably direct expression of the purpose of each command. and a

method of proving that it meets its purpose. Such a calculus must be

firmly based on a proof of its conformity with the mathematical model.

just as the differential calculus is ultimately based on the Dedekind model

of real numbers. But these are topics for future research.

The original objective of denotational semantics was to provide a clear.

consistent. and unambiguous definition of a programming language which

is likely to have more than one implementation. Such a definition could

serve usefully as a national or international standard; it would give a

precise specification which must be met by each implementor; and it would

tell each programmer exactly what he can rely on In all implementations.

Thus it would achieve the primary objective of standardisation. namely

the reliable conjunction of programs and implementations from widely

differing sources. The deficiencies of existing language standards can be

directly attributed to their failure to take advantage of this known

technology - a failure which to future generations will seem amazing.
In the area of parallel programming languages. we hope that the

development of a suitable semantic model at an early stage will forestall

a repetition of the problems that have beset the development and

standardisation of sequential programming languages.

Apart from the improved quality of programming language standards. the

techniques of mathematical semantics have much to offer In improving

the reliability of computer programs. In the first place. they offer the

possibility that an implementor can prove with mathematical rigour that

his implementation meets the standard specification of the language.

Clearly. no program can be more reliable than the implementation of the

language in which it is expressed for input to a computer.

A second advantage of a mathematical description of a programming

language is that it offers the individual programmer the opportunity to

prove the correctness of his program with respect to some description

of its intended behaviour. For this. he would need to identify the

mathematical object denoted by his program. and then prov~ that this

object exhibits the required mathematical properties. Unfortunately. this

method of program proving is impractically laborious; it is like trying to

44

References

[1] C. A. R. Hoare Communicating Sequential Processes

Commun. A. C. M 21 8. Aug 1978

[2] Robin Milner Calculus

Springer Lecture Notes

Springer Verlag 1980.

of Communicating Systems
in Computer Science 92

[3] E. W. Dijkstra Cooperating Sequential Processes

in Programming Languages. ed. F. Genuys
Academic Press.

[4] D. S. Scott Data Types as Lattices

SIAM Journal on Computing 5 1976. pp. 522-587

