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ABSTRACT
Most previous work on information flow in process algebras
has been based on untimed models of concurrency. It is ob-
vious, however, that an observer might well use time to gain
information about what a high-level user of the system is do-
ing. We use the priority tock view (a discrete timed model)
to extend several traditional untimed noninterference prop-
erties to the timed world. These are the determinism-based
conditions of [14], [15] and [17], and Forster’s local nonin-
terference properties [6], [7].
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1. INTRODUCTION
Noninterference properties are concerned with the secu-

rity of systems. Given a process that has multiple users
interacting with it, we are interested in preventing unspeci-
fied information flow between users. The definition of non-
interference originated with Goguen and Meseguer in [8] and
later in [9].

Their work stimulated much research, for example [20]
and [21]. Determinism-based conditions were introduced in
[14] and [18], which argued that the determinism of the low-
level user’s viewpoint guarantees the security of the system.
Focardi and Gorrieri’s primary condition, bisimulation non-
deductibility on compositions(BNDC), was introduced in [1],
[2] and [3], which requires that a system P is secure iff ∀ Π
where ΣΠ ⊆ H • P\H ≈B (P || Π)\H . Forster proposed
the idea of local noninterference (LNI) in [6]. This intro-
duced a family of security conditions built on the idea that
low-level users should not be able to tell the difference be-
tween system states linked by a high-level action and pointed
out problems with Focardi and Gorrieri’s conditions.

The purpose of this paper is to extend the determinism
and LNI definitions to the timed world. There has been a
huge amount of work on different flavours of noninterference
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besides that cited here. However the only other noninterfer-
ence work on timed process algebras that we are aware of is
[5]. It is for that reason that we use that paper as our point
of comparison.

We assume familiarity with the basic concepts of CSP.
Readers without this can refer to [15] (available on the web).

1.1 Timed versions of CSP
The best known version of CSP [16, 15] does not have an

explicit concept of time, merely the relative order of events.
However we sometimes need to apply its ideas to systems
where timing is important, either for the correct internal
operation or, to meet external constraints. There are a num-
ber of choices of timed extensions to CSP; we need decide
which to follow. The original is the continuous Timed CSP:
a detailed analysis can be found in [13]. That gives a model
in which all events are given an arbitrary real-number time.
We believe that it will be possible to extend concepts of
noninterference to this model, in particular that based on
nondeterminism, though as discussed in Conclusions this is
actually a little paradoxical.

That version, Timed CSP, is, however, significantly more
complex than the untimed ones. For example, it presents a
much greater challenge in trying to verify it automatically.
Therefore in this paper we will concentrate mainly on dis-
crete models.

There have been several discrete time dialects of CSP,
which are all variations on the theme of using a special event
tock to represent the regular passage of time. In [15], a very
general version was presented where tock was essentially al-
lowed into the language like every other event (subject to
tock not being renamed or hidden). This proved to need
a different operational model than standard CSP, because
the principle of maximal progress required that τ events be
given priority over tock . (This principle is used in all timed
variants of CSP, as it is in other timed calculi.)

Ouaknine and Worrell, in [10, 12], showed that a signifi-
cant subset of (continuous) Timed CSP can be related to a
language for discrete timed CSP in which time (i.e. tock)
is only introduced via a timeout operator. In other words
properties can be verified automatically of continuous Timed
CSP by model checking processes in this discrete model.

That variant, like Timed CSP, has the property that when-
ever a visible event has been continuously available up to a
time (or tock in the discrete variant), but not happened,
then the same event is possible at that time (or instantly
after the tock). We will discuss this in the Conclusions.

Ouaknine and Lowe [11] have recently produced a slightly
different variant, though more restrictive since it forbids sig-



nal events (see later), together with an abstract semantic
model that is fully abstract for it. It is clear that this model
can be adapted to encompass all the variants of discrete
timed CSP. Both of these latter variants can be viewed as
sub-languages of the discrete dialect from [15].

Since this hierarchy of discrete timed models has not fully
settled down, in this paper we consider timed systems from
a mainly operational viewpoint which contains them all,
specifically LTS’s with tock transitions as well as τ and or-
dinary visible ones.

1.2 Noninterference
We are given a timed system S , which has two users

interacting with it, a high-level one and a low-level one.
We want to ensure that no information can flow from high
level to low level through their use and observation of S .
It is assumed that the complete visible alphabet of S is
Σt = Σ ∪ {tock} and Σ can be further partitioned into
disjoint subsets H and L. The high-level user observe the
events set H t = H ∪{tock} and can control those in H which
are not signals (see below). The low-level one can similarly
observe Lt = L ∪ {tock} and control the non-signals in L.

We should also be aware that though neither user can
control the passage of time, the way some timed effects on
other events are modelled sometimes make it look as if tock
can be refused — as discussed in Section 3.1. Obviously we
have to ensure that no information flow can appear from
this.

2. INTRODUCTION TO DISCRETE TIME
CSP

Delayable and signal events
The visible events in the timed world fall into two categories:

• Delayable: the environment can delay one of these by
refusing to agree to it and letting tock pass.

• Signal: these can be observed but not delayed by the
environment.

Frequently, for example, the process outputting on a channel
will treat it as signals, whereas the process it inputs to will
wait for its inputs and so treat the channel as delayable.
Once these two processes are synchronised the event will be
a signal to outside observers.

The notions of delayable and signal events have frequently
been discussed in the untimed world, for example in Chapter
12 of [15]. In many untimed applications it is not necessary
to distinguish between these two sorts of event. The pres-
ence of tock make it vital to do so.

In mapping LTS’s to sets of failures we treat signals ex-
actly as we treat the termination signal � in untimed CSP,
namely:

t 〈̂s〉 ∈ traces[[P ]] ⇒ (t , Σ \ {s}) ∈ failures[[P ]]

(In this paper we do not consider processes that terminate,
so � is not in our set of events.)

Time consistency
The tock event can be used to set out the timed details of a
process. But not all processes that can be defined in this way
make sense. Parallel timed processes always synchronise on

tock so that their timing constraints are aligned. But some-
times, as discussed in [15], these constraints are inconsistent
and generate a time stop.

The following check can discover whether the timed be-
haviour of a process is consistent: we will always assume
that systems we consider satisfy this property, since other-
wise they are not considered to be descriptions of real timed
processes.

Definition 1. We are given a timed process P with al-
phabet Σt = Σ ∪ {tock} whose non-tock alphabet Σ can
be further partitioned into delayable events set D and signal
events set S . It satisfies the Time Consistency Check(TCC )
iff, in the failures/divergences model:

TOCKS 	 (P ‖
D∪{tock}

CHAOST (D))\Σ

where CHAOST (D) is the most nondeterministic non-divergent
timed process using events from D . We will show how to
define CHAOST (D) later, and TOCKS = tock → TOCKS
is the process that just lets time pass. There are only two
ways this refinement can fail: a deadlock corresponds to a
time stop; divergence corresponds to P performing infinitely
many events in a finite time, which we also consider to be
an error.

Priority
It would be ideal if we could treat tock like any other event in
the operational semantics of CSP (see Chapter 7 of [15] for
full details of this). Yet it can be shown that this conflicts
with the very nature of time passing and it is often necessary
to treat tock in a special way. More detailed discussions on
priority in the tock timed model can be found in [15], [10]. In
the following, we start from the transition system produced
by the standard operational semantics, and see that it is
necessary to discard some transitions.

Consider a state which can both accept an h event and a
tock transition. What will happen if one hides that h event?
It is clear that h is changed to τ by hiding. The problem is:
should the tock transition still be possible? For the reasons
set out below, we are forced to conclude that the answer is
no.

In untimed CSP, a τ transition is invisible and must hap-
pen at once unless some other action occurs instantly. The
problem here is that unlike other visible events, it is likely
that tock cannot happen soon enough to be available. If we
want to have a consistent and uniform interpretation of how
a node with both a τ and a tock available behaves then the
tock can not occur — otherwise a succession of this would
lead to τ being indefinitely delayed. Therefore the maximal
progress assumption that no tock ever happens when τ is
available, which is common across a variety of timed mod-
els, makes sense. To ensure that this assumption does not
exclude any behaviours that are really possible, we will pos-
tulate that any event which happens at the same instant as
a tock follows it in a trace: anything preceding it happens
some positive time before it.

Recall the definition of a signal event. Just as with τ , in
the timed world all signal events must happen immediately
(before a tock can happen), and if a state has a signal event
transition, it cannot permit a tock transition either. Simi-
larly, if a state has both a signal event and a delayable event,
unless the delayable event happens at once, it will never get
opportunity to be executed because the signal one is sure to
happen immediately.



Since higher priority should be assigned to all signal events
and τs, some tock transitions that can be inferred from the
standard operational semantics for CSP must be prohib-
ited. In order better to understand the real possible tran-
sitions and study the timed details and properties of these
processes, all impossible tock transitions should be removed
from the original LTSs by inspecting that transition system.

In the rest of this paper, we assume that all impossible
tock transitions have been removed and all non-tock events
are delayable unless defined to be signals.

Looking at a timed system in this prioritised way gives a
(possibly strict) refinement of the way one would interpret
the same process definition over the untimed models of CSP,
thinking of tock as a normal visible event. This is because
all the choices which are forced by the priority view are ones
an untimed process would be free to make in the untimed
view.

To simulate a system running under these new rules we
have to give internal and signal events priority over tock .
(Other events are not affected by this, which means de-
layable events have no relative priority with others.) In
terms of operational semantics, what one needs to do is to
describe a new transition rule −−x−→T in terms of the old one
−−x−→: here T is a set of time-like actions (tock).

Unless x ∈ T , P −−x−→T Q ⇔ P −−x−→ Q
and if x ∈ T then P −−x−→T Q ⇔ P −−x−→ Q ∧ ¬ ∃Q ′ • P −−τ−→ Q ′

If there is a set of signal events S ,
P −−x−→T Q ⇔ P −−x−→ Q ∧ ¬ ∃Q ′ • (P −−τ−→ Q ′ ∨ P −−s−→ Q ′) where

s ∈ S .
The traces, failures etc of any process can therefore be

calculated by extracting them from this reduced transition
system.

3. DETERMINISM-BASED CONDITIONS
Determinism-based noninterference conditions originated

in [17] and [14], and are based on the idea that if the view
of a low-level user is a deterministic process, nothing that a
high-level user does can affect what he sees. The following
is a natural extension of the untimed definition.

Definition 2. A timed process P is timed deterministic if
and only if it is non-divergent and

∀ s ∈ (Σt)∗, a ∈ Σt • ¬((s, {a}) ∈ failures[[P ]] ∧ s�〈a〉 ∈
traces[[P ]])

T- L-Independence
The following is a natural noninterference condition: it states
that nothing that a high-level user can do affects, either ex-
plicitly or implicitly, what a low-level one sees. Its untimed
analogue may be found in [14].

Definition 3. L is T -L-Independent in process P , written
T -L-Ind(P), if and only if it is non-divergent and

(s1, {a}) ∈ failures[[P ]] ⇔ (P/s2)0 ∩ {a} = ∅
∀ a ∈ Lt , s1, s2 ∈ traces[[P ]] with s1 � Lt = s2 � Lt

3.1 Timed abstractions
An abstraction operator hides or removes some compu-

tational details of a process. In a security context, an ab-
straction of one process might be the low-level or high-level
user’s viewpoint of that process. Abstractions have been
used to give a more process-oriented view, in the untimed

world, of the sort of noninterference property captured in
the previous section.

Several abstractions have been developed in the untimed
world for this and other purposes, see [15]. The primary
sorts have been the lazy and mixed abstractions.

3.1.1 Lazy Abstraction
The low-level view of the system should be consistent with

all possible high-level behaviours. So the untimed lazy ab-
straction suggests that the most general low-level view (over
the stable failures model F) is to put P in parallel with the
most non-deterministic and most general process that the
high-level user can behave like, and then hide all high-level
events. The most non-deterministic divergence-free high-
level process in the untimed world of failures is

ChaosH = Stop � ?x : H → ChaosH

which may both accept and refuse any high-level event after
any trace at all.

We can then argue that, however the high-level user does
behave, it must refine this abstraction.

Definition 4. Given a process P , its untimed lazy abstrac-
tion (over F) is

LF
H (P) =∧ (P ‖

H
ChaosH )\H

As argued in [15], we take this stable failures version as
definitive, and simply specify that the abstraction never di-
verges. The corresponding security condition requires this
abstraction to be deterministic: namely there is no trace
after which it can both accept and refuse one of the events
(the low-level ones) that remain visible.

Definition 5. Given an untimed process P , it is lazily se-
cure if LH (P) is deterministic.

The lazy security condition works well in the untimed
world, with many attractive properties. Yet, as formulated
above, it turns out that it is inappropriate for the timed
world.

Example 1. Let H = {d} and L = {l}. Consider the
following process P :

P = tock → Q �� d → TOCKS
Q = tock → Q �� d → l → TOCKS

P is not secure since when the l event is present, the low-
level user can deduce that a d has been performed. Yet the
untimed lazy abstraction of P over F is TOCKS , which is
timed deterministic. The problem is that if the tock transi-
tion from P to Q is allowed then the STOP branch of Chaos
is blocking the d event from Q and does not change state.

Rather than use the untimed process CHAOSH we need to
use a timed one that can change its mind when time passes.
A good way to define this is the following, where tn is a new
event:

CHAOST (D) = CHAOST ′(D)\{tn}
CHAOST ′(D) = ?x : D → CHAOST ′(D)

�� tn → tock → CHAOST ′(D)

This offers events in H as alternatives to τ , not tock , and
so the members of H do not preempt tock since they are



never possible in the same operational state. Furthermore
this version changes state each time a tock occurs so does
not cause the problem seen in the example above.

Definition 6. Given a process P , its timed lazy abstrac-
tion is

LtH (P) =∧ (P ‖
Ht

CHAOSTH )\H

Definition 7. Given a process P , it is timed lazily secure
iff LtH (P) is timed deterministic.

3.1.2 Mixed abstraction
The lazy security condition assumes that all high-level

events can be delayed, yet sometimes this is not the case. If
the event is not an action by the high-level user, but rather
some feedback, it may be reasonable to assume that this
event cannot be delayed or refused. For example, if the
event represents some output to the high-level user’s VDU
or an alarm, it may not be possible to prevented or delay it.

If the set of high-level events can be divided into two parts,
the delayable events D and the signal events S , the following
hybrid condition has been used for untimed CSP (see [15]
for more detail and examples).

Definition 8. Let H = D ∪S with D ∩S = ∅ where events
in D are delayable and those in S are signals. Given a
process P , its mixed abstraction is

MS
H (P) =∧ LH (P\S)

It satisfies the mixed security condition if this abstraction
is deterministic.

In the timed world, timed lazy abstraction shows how to
manipulate delayable events. So its natural timed extension
is: hide all high-level signal events and then apply the timed
lazy security condition.

Definition 9. Let H = D ∪S with D ∩S = ∅ where events
in D are delayable and those in S are signal. Given a process
P , its timed mixed abstraction is MS

tH (P) =∧ LtH (P\S)
Given a process P , it satisfies the timed mixed security

condition if MS
tH (P) is timed deterministic.

3.2 Further discussion
We have defined several timed security conditions in this

section. These included T -L-Ind and timed lazy security.
Just as in the untimed world, these two are equivalent: this,
of course, gives us extra confidence in our conditions. It
should be remarked that the proof of this is not simply a
trivial extension of the untimed version, thanks to the influ-
ence of priority.

Theorem 1. Given a process P, LtH (P) is timed deter-
ministic ⇔ T-L-Ind(P)

It is an elementary consequence of our definitions that a
process refining another that satisfies these two properties
also satisfies them.

3.2.1 Composability
Whether a security condition is composable is important

in practice. If the condition is composable, a complex system
can be built by composing some smaller, simpler systems,
so we may be able to guarantee the security of the complete
system from that of its parts. Composability results for the
untimed determinism-based conditions were established in
[22], [19]. They extend naturally to the timed world.

Theorem 2. Suppose P and Q are processes with alpha-
bets A and B, and each of P and Q is T-L-independent.
Then so is P A‖B Q.

3.2.2 Separability
In the untimed world, a process is separable if it is equiva-

lent to a parallel composition of sub-processes with disjoint
alphabets. In the timed world, a process is separable if it is
equivalent to a parallel composition of sub-processes which
only synchronise on tock . The fact that both processes,
thanks to timed consistency, let time simply progress, mean
that no information can flow via this synchronisation.

Definition 10. Let P be a process whose non-tock alpha-
bet can be partitioned into disjoint subsets H and L. P is
said to be timed separable with respect to {H , L} if there
are processes PH and PL with TCC (PH ) ∧ TCC (PL) and
αPH = H t , αPL = Lt such that P = PH ‖

{tock}
PL.

As argued in [14], separability is, surprisingly, not suf-
ficient to exclude information flow: mere equivalence to a
process that is structurally secure might conceal insecurity.

Definition 11. Let P be a process whose non-tock alpha-
bet can be partitioned into disjoint subset H and L. P is
said to be strongly timed separable with respect to {H , L}
if there exist timed deterministic processes PH and PL with
TCC (PH ) ∧ TCC (PL) and αPH = H t , αPL = Lt such that
P = PH ‖

{tock}
PL.

Theorem 3. A process P is strongly timed separable with
respect to the partition {H ,L} iff T-H -Ind(P) ∧ T-L-Ind(P)

4. CONDITIONS ALLOWING NONDETER-
MINISM

There is no doubt that, within the behaviours observable
in the respective models, the determinism-based conditions
do ban any information flow. It is also true to say that
they deem many actually secure processes to be insecure.
As discussed extensively in the literature on the untimed
properties, the root cause of this is the way CSP and other
theories of concurrency identify different sorts, and causes
of, nondeterminism.

We can only allow low to see nondeterminism if we know
that none of that is influenced by high, either in a way that
we can demonstrate explicitly in our semantics, or via some
subtle influence on the system that is not picked up by our
model. An example of the latter is some timing effect below
the resolution of our clock.

4.1 Timed Local Noninterference
In [6], Forster presented the local noninterference condi-

tions (LNI). They require a secure system to guarantee that
a low-level user can not tell the difference between system
states linked by a high-level action. All of this was on the as-
sumption that all nondeterminism which is apparently pos-
sible in the LTS representing the operational semantics of a
process is genuinely possible on every run of the process. In
this regard we have to abandon the concept of refinement:
since the possibility of nondeterminism is an important part
of how a process now functions, we cannot throw it away.



By considering two equivalences: failures/divergences equiv-
alence and weak bisimulation, and taking into account the
non-determinism that arises from identically labelled high-
level transitions which lead from the same state, Forster in-
troduced four kinds of local noninterference conditions and
they were also proven to be equivalent and agree with the un-
timed determinism-based conditions under certain circum-
stances. See [6] or [7] for details.

Definition 12. 1 A relation R ⊆ Proct × Proct ∈≈t (is a
weak bisimulation) iff for every (p, q) ∈ R, ∀ a ∈ Σt,τ ,

• if p −−a−→ p′, ∃ q ′ • q ==
a

=⇒ q ′ and (p′, q ′) ∈ R

• if q −−a−→ q ′, ∃ p′ • p ==
a

=⇒ p′ and (p′, q ′) ∈ R

Definition 13. A process P with H -labelled events re-
stricted, written P/H , has the LTS of P with all H -labelled
transitions removed. It is equivalent to P ‖

H
Stop. Note that

this is just the CSP analogue of the CCS restriction operator
P \ H .

Definition 14. A timed process P whose non-tock alpha-
bet is partitioned by H and L satisfies timed strong lo-
cal noninterference, written tSLNIL(P), if σ1 −−h−→ σ2 where
σ1, σ2 ∈ states[[P ]] and h ∈ H , implies σ1/H ≈t σ2/H .

Definition 15. A timed process P whose non-tock alpha-
bet is partitioned by H and L satisfies timed local nonin-
terference, written tLNIL(P), if σ −−h−→ σ1,. . . , σ −−h−→ σn where
h ∈ H , σ, σ1, . . . , σn ∈ states[[P ]], n > 0 and the states σi

are a complete enumeration of the h-reachable states from
σ, implies σ/H ≈t � σi/H .

Definition 16. A timed process P whose non-tock alpha-
bet is partitioned by H and L satisfies timed strong FD lo-
cal noninterference, written tSLNI FD

L (P), if σ1 −−h−→ σ2 where
σ1, σ2 ∈ states[[P ]] and h ∈ H , implies σ1/H =FD σ2/H .

Definition 17. A timed process P whose non-tock alpha-
bet is partitioned by H and L satisfies timed FD local non-
interference, written tLNI FD

L (P), if σ−−h−→ σ1,. . . , σ−−h−→ σn where
h ∈ H , σ, σ1, . . . , σn ∈ states[[P ]], n > 0 and the states σi

are a complete enumeration of the h-reachable states from
σ, implies σ/H =FD � σi/H .

It can be demonstrated that these conditions collapse un-
der certain conditions.

Theorem 4. Let P be a non-divergent process. If P/H
is timed deterministic,

tSLNIL(P) ⇔ tLNIL(P) ⇔ tSLNI FD
L (P) ⇔ tLNI FD

L (P)

and furthermore each of these conditions is then equivalent
to T-L-Ind(P).

4.2 Timed Delayable Local Noninterference
The timed local noninterference conditions are too strict

for processes with signal events since a signal event, which
is neither delayable nor refusable by the high-level user, is
like a τ in the low-level user’s viewpoint. It is possible to
loosen this requirement.
1This definition is the same as Focardi’s timed weak bisim-
ulation which is introduced in [5].

Example 2. Given S = {s1, s2}, L = {l1, l2}. Consider
the following processes

P = s1 → tock → l1 → P
Q = s1 → tock → l1 → Q �� s2 → tock → l1 → Q
R = s1 → tock → l1 → R �� s2 → tock → l2 → R

For process P , although a low-level user who knows the
system design can detect the occurrence of s1, he can not
use it to get any information leak from high-level since a
high-level user has no other choice other than s1 thus the
occurrence of s1 does not really show the action/inaction of
the high-level user.

For process Q , although a low-level user knows that a
high-level event is communicated he knows that the high-
level process could not have influenced this. Thus this pro-
cess should also be labelled as secure.

In process R it is apparently the case that the high-level
user gets to choose between the signals, and that which sig-
nal happens then affects what low sees. However, we have
already stated that signal events are not controllable by the
user, merely observable. Recall that whenever a signal event
is possible, the process can refuse anything else. Therefore
R is actually equivalent to

R′ = s1 → tock → l1 → R′ � s2 → tock → l2 → R′

so the high-level user cannot actually influence what low
sees. There is an interesting issue which arises from this
example, since plainly low can see which way nondetermin-
ism has been resolved towards high. What we are trying to
capture is, however, just ways in which high’s actions can
affect what low sees, and plainly this is impossible in R′.

P , Q and R do not satisfy the timed local noninterference
conditions defined in last section: we therefore need a mixed
version of this condition.

Definition 18. Given a timed process P whose non-tock
alphabet is partitioned by H and L. H can further be par-
titioned by signal events set S and delayable events set D .

• it satisfies timed delayable strong local noninterfer-
ence,

written tDSLNIL(P), if tSLNIL(P\S) holds.

• it satisfies timed delayable local noninterference,

written tDLNIL(P), if tLNIL(P\S) holds.

• it satisfies timed delayable strong FD local noninter-
ference,

written tDSLNI FD
L (P), if tSLNI FD

L (P\S) holds.

• it satisfies timed delayable FD local noninterference,

written tDLNI FD
L (P), if tLNI FD

L (P\S) holds.

The following is a corollary of Theorem 4.

Proposition 1. Let P be a non-divergent timed process
and (P\S)/H is timed deterministic,

tDSLNIL(P) ⇔ tDLNIL(P) ⇔ tDSLNI FD
L (P) ⇔ tDLNI FD

L (P)
and furthermore each of these conditions is then equiva-

lent to mixed abstraction security.



5. CASE STUDY
In this section, we will consider a small case study to show:

• A timed “implementation” of a secure untimed process
may be insecure. This demonstrates the necessity of
abandoning the concept of refinement when using LNI-
based security.

• We can use the conditions developed in this paper to
help design a secure timed implementation.

Example 3. Let there be two users and one file in a sys-
tem. The high-level user can read the file and the low-level
one can write it. So information can flow from low level to
high level. To avoid access conflict, it is required that be-
fore both users can access the file, they must make requests
and since the high-level user should read the latest data, the
low-level user is permitted to make requests and write file
between a high-level request and a high-level read action.
So the system process is:

System = reqH → System1
�� reqL → writeL → System

System1 = readH → System
�� reqL → writeL → System1

Here reqH and readH are high-level events while reqL and
writeL are low-level ones. This system is both L-Ind and
SLNI secure.

reqH

System1

tock

tock

writeL

reqL

tock
System

tock

reqL

tock

readH

tock

tock
tock writeL

Figure 1: A timed implementation of Example 3

In the above specification, time is not modelled and all
time details of the system are hidden. But in a real imple-
mentation, any communication is sure to spend some time,
which adds time details in the system and brings possibilities
for illegal information flow.

Example 4. Assume that when implementing that system
described in Example 3, we need to fulfil the following re-
quirement: all actions need one time unit; it requires an
additional time unit to manage the low-level user’s request
if it follows a high-level one; the system can idle until a user

makes a request.

System = tock → System �� reqH → System1
�� reqL → tock → writeL → tock → System

System1 = tock →
(readH → tock → System
�� reqL → tock → tock → writeL

→ tock → System1)

The LTS of this process is shown in Figure 1
This process is not secure for the following reasons

• The low-level user can notice the existence of two tock
events between the reqL and writeL after reqH .

• At the System state, the low-level user can communi-
cate a reqL and at the System1 state, he can not.

A new “implementation” of Example 3 which is tDSLNIL
secure is:

Example 5. The readH action is a system response to the
reqH action, so we assume that S = {readH} and D =
{reqH}. Figure 2 shows the LTS of the new timed “im-
plementation” of System which also fulfils the requirement
described in Example 4.

reqH

System1

tock

reqL

readH

tock

tock
tock writeL

System

tock

reqL
tock

tock

writeL

tock

tock

P1

P4

P5

P6

P2

P3

tock

Q2

Q6

Q1

Q3

Q4 Q5

Figure 2: A secure timed implementation of Exam-
ple 3

There is only one delayable action between System and
System1. The following relationship R can be used to guar-
antee that System\S/H ≈t System1\S/H .

R = {(X \S/H ,Y \S/H ) | (X ,Y ) ∈ R′}
where
R′ = {(System, System1), (P1,System1), (System,Q1),
(P2,System1), (P3,Q1), (P4,Q3), (P5,Q4),
(P6,Q5), (System,Q6), (P1,Q6), (P2,Q6),
(P1,Q2), (P3,Q2), (P3,System), (P3,P1),
(P3,P2), (P3,P3)}

6. RELATIONSHIP WITH TBNDC, TBSNNI,
TSBSNNI

In [5], tBNDC , tBSNNI and tSBSNNI were introduced,
which are the timed extensions of the conditions proposed
in [1], [2] and [3]. In this section, we briefly discuss the
relationship between those conditions and ours.

A timed language called tSPA was used to describe pro-
cesses in [5]. Unlike our model it assumes time determinacy:



each state has at most one tock action, and the model does
not have signals.

Rewriting some of the definitions and result from [5] in
CSP gives:

Definition 19. A process E is directly weakly time alive
iff E ==

tock
=⇒. A process E is weakly time alive iff for all E ′ ∈

states[[E ]], we have E ′ is directly weakly time alive.

In our language, this is similar to TCC in a world where
all events are delayable.

Definition 20. Let E ∈ Proct . Then, E ∈ tBNDC if and
only if ∀Π ∈ E t

H we have (E ‖
Ht

Π)\H ≈t E\H , where E t
H

is the set of weakly timed alive processes that can perform
only actions in H τ,t .

Definition 21. E ∈ tBSNNI iff E/H ≈t E\H .

Definition 22. E ∈ tSBSNNI iff ∀E ′ ∈ state[[E ]] : E ′ ∈
tBSNNI .

The relationship between these three conditions is:

Proposition 2. tSBSNNI ⊆ tBNDC ⊆ tBSNNI .

Just as in the untimed world, one can question whether
these three conditions are really strong enough: the exam-
ples from [7] translate easily to the timed world. However
there are natural relationships between these conditions and
our own.

Theorem 5. Given a timed process P, tSLNIL(P) ⇒
tSBSNNI (P).

We conjecture that tBNDC is equivalent to timed lazy se-
curity when P is non-divergent and P/H is timed determin-
istic just as in untimed world. But further work is required
to prove this.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have shown that noninterference condi-

tions already investigated for untimed CSP transfer natu-
rally to the tock -timed world and have the same interrela-
tionships both with each other and which alternative prop-
erties, despite the complexities introduced by priority and
maximal progress.

Following [7], we believe that the two styles of noninter-
ference condition examined in this paper are safer than the
style in which a process is declared to be secure if its com-
position with any high-level process produces equivalent re-
sults. These arguments apply unaltered in the case of timed
systems. In any case our version extends the earlier work
by incorporating signal events, a class that are important in
timed systems. Our work was operationally based, thanks
partly to the absence for the time being of an agreed de-
notational model for tock -timed CSP. Our decision was also
pragmatic because the priority-based operational semantics
we use is available in FDR, making most of our properties
mechanically checkable with and existing tool.

We are confident that this work will transfer naturally
to denotational models once these are settled, and also to
continuous Timed CSP. An interesting question that arises
here is that both Timed CSP and the discrete version of [12]

there are very few deterministic processes. This is because
of the feature described earlier that an available action can-
not be withdrawn deterministically on a tock or the passage
of time. Hence any process that can withdraw an event is
bound to be formally nondeterministic: there is a moment
when it can both accept and refuse this event. There are,
however, refinement-maximal processes, namely ones that
only have nondeterminism that cannot be removed because
of this principle. It is certainly possible to re-constitute
our security definitions by demanding that the appropri-
ate abstractions are refinement maximal. We believe that
this will make sense, but further research is needed on it
and its possible relationships to operationally-based condi-
tions like LNI – which will themselves presumably need to
be rethought. This will also pose interesting philosophical
questions about the meaning of nondeterminism and nonin-
terference.
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