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Abstract

We consider various well-known, equivalent complexity measures for graphs such as elim-
ination orderings,k-trees and cops and robber games and study their natural translations to
digraphs. We show that on digraphs the translations of thesemeasures are also equivalent
and induce a natural connectivity measure. We introduce a decomposition for digraphs and
an associated width, Kelly-width, which is equivalent to the aforementioned measure. We
demonstrate its usefulness by exhibiting potential applications including polynomial-time
algorithms for NP-complete problems on graphs of bounded Kelly-width, and complexity
analysis of asymmetric matrix factorization. Finally, we compare the new width to other
known decompositions of digraphs.

1 Introduction

An important and active field of algorithm theory is to identify natural classes of
structures or graphs which are algorithmically well-behaved, i.e. on which effi-
cient solutions to otherwise NP-complete problems can be found. A particularly
rich source of tractable cases comes from graph structure theory in the form of
graph decompositions and associated measures of structural complexity such as
tree-width or rank-width. For instance, Courcelle’s celebrated theorem [8] shows
that every property of undirected graphs that can be formulated in monadic second-
order logic can be decided in linear time on any class of graphs of bounded tree-
width. This result immediately implies linear time algorithms for a huge class of
problems on such graphs. Since then, hundreds of papers havebeen published de-
scribing efficient algorithms for graph problems on classesof graphs of bounded

Preprint submitted to Elsevier 23 October 2007



tree-width. (See e.g. [5] and references therein.) Similarly, efficient algorithms can
sometimes be found for planar graphs [13,2] or more general classes of graphs, for
instance classes of graphs of bounded local tree-width [14], or graph classes ex-
cluding a minor (see e.g. [10] and references therein). Another interesting example
are classes of graphs of bounded clique- or rank-width [9,25,24].

All the examples mentioned above are defined by imposing restrictions on the un-
derlying undirected graph structure. However, there are many applications where
the input structures – networks, state transition systems,dependency graphs as in
database theory, or the arenas of combinatorial games such as parity games – are
more naturally modelled as directed rather than undirectedgraphs. In these cases,
the notion of tree-width is unsatisfactory as it does not take the direction of edges
into account. This information loss may be crucial, as demonstrated by the problem
of finding a Hamiltonian path in a digraph: an acyclic orientation of a grid has very
high tree- or clique-width, but the Hamiltonian path problem on the digraph can be
solved efficiently.

As a consequence, several authors have tried to generalise notions like tree- or
path-width from undirected to directed graphs (See e.g. [26,20,3,29,23,4]). In [20],
Johnson, Robertson, Seymour, and Thomas concentrate on theconnectivity aspect
of tree-width, generalising this to strong connectivity inthe directed case, to define
directed tree-width. In the same paper, the authors give an algorithmic applica-
tion of directed tree-width by showing that a number of NP-complete problems
such as Hamiltonicity or thek-disjoint paths problems become tractable on graphs
of small directed tree-width. Berwanger, Dawar, Hunter andKreutzer [4] and, in-
dependently, Obdrz̆álek [23] introduce the notion ofDAG-width. DAG-width is a
slightly weaker notion than directed tree-width, in the sense that more graphs have
small directed tree-width than smallDAG-width, but it has a cleaner characterisa-
tion in terms of cops and robber games and gives more control over the graph, as
the guarding condition used is stricter. In [4], this has been used to show that the
winner of a parity game – a form of combinatorial games playedon digraphs – can
be decided in polynomial time provided the game graph has boundedDAG-width.
The analogous question remains open for graphs of bounded directed tree-width.

Both directed tree-decompositions andDAG-decompositions provide a natural and
interesting connectivity measure for directed graphs. Both, however, also suffer
from some difficulties. As Adler shows [1], directed tree-decompositions are not
closed under even mild forms of directed minors (butterfly minors), the correspond-
ing games are neither cop- nor robber monotone, and there is no precise character-
isation of directed tree-width by these games (only up to a constant factor). Al-
though this is not really a problem for algorithmic applications, it suggests that
the notion of directed tree-width may not be as well-behavedas undirected tree-
width. It may, though, be possible to modify the definition ofdirected tree-width
to overcome some of the difficulties.DAG-decompositions, on the other hand, suf-
fer from the fact that the best upper bound for the size ofDAG-decompositions of

2



graphs of widthk known so far isO(nk). This is a significant problem, as the space
consumption of algorithms is often more problematic than running time. It is not
known whether deciding that a digraph hasDAG-width at mostk is in NP whenk is
part of the input, contrary to the authors’ claims. (It is NP-hard. This follows easily
from the NP-completeness of the corresponding question fortree-width.)

Whereas for undirected graphs it is widely accepted that tree-width is the “right”
notion, the problems described above suggest that more research is needed to decide
what the “right” notion for digraphs is – if there is any. A natural way to search for
practical generalisations of undirected tree-width is to look at useful equivalent
characterisations of it and translate them to digraphs.

In this paper we consider three characterisations of tree-width: partialk-trees, elim-
ination orderings and a graph searching game in which an invisible robber attempts
to avoid capture by a number of cops, subject to the restriction that he may only
move if a cop is about to occupy his position. Partialk-trees are the historical fore-
runner of tree-width and are therefore associated with graph structure theory [28],
elimination orderings have found application in the analysis of symmetric matrix
factorization, such as Cholesky decomposition [22], and graph searching problems
have recently been used to explore and generate robust measures of graph com-
plexity (see e.g. [11,15]). We generalise all of these to directed graphs, resulting
in partial k-DAGs, directed elimination orderings, and an inert robbergame on
digraphs. We show that all of these generalisations are equivalent on digraphs and
are also equivalent to the width-measure associated to a newkind of decomposition
we introduce. As the game is reminiscent of capturing hideout-based outlaws, we
propose the name Kelly-decompositions, after the infamousAustralian bushranger
Ned Kelly. The fact that all these notions are equivalent on digraphs as they are
on undirected graphs suggests that this might be a robust measure of complex-
ity/connectivity of digraphs.

In addition to being equivalent to the natural generalisations of the above charac-
terisations, we believe that Kelly-decompositions have many advantages overDAG-
decompositions and directed tree-decompositions. Unlikethe former, the size of
these decompositions can be made linear in the size of the graph it decomposes. On
the other hand, their structure and strict guarding condition make them suitable for
constructing dynamic programming algorithms which can lead to polynomial-time
algorithms for NP-complete problems on graphs of bounded Kelly-width. We also
show how they are applicable to asymmetric matrix factorization by relating them
to the elimination DAGs of [16].

The paper is organised as follows. In Section 3 we formally define elimination
orderings, inert robber games, and partialk-DAGs and show the equivalence of the
associated width measures. In Section 4, we introduce Kelly-decompositions and
Kelly-width. In Section 5, we present applications: Algorithms for Hamiltonian
cycle, weighted disjoint paths and parity games that all runin polynomial time
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on graphs of bounded Kelly-width, and details of the connection between Kelly-
decompositions and asymmetric matrix factorization. Finally, we compare our new
width measure to other known measures on digraphs, in particular to directed tree-
width andDAG-width.

An extended abstract of the paper appeared in [18].

2 Preliminaries

We use standard graph theory notation. See e.g. [12]. LetG be a digraph. We write
V (G) for its vertex set andE(G) for its edge set. ForX ⊆ V (G) we writeG[X]
for the subgraph ofG induced byX andG \ X for G[V (G) \ X]. If X := {v} is
a singleton set, we simply writeG \ v. Finally, we sometimes writeG[v1, . . . , vk]
for G[{v1, . . . , vk}]. For a subgraphH of G andv ∈ V (H), we writeReachH(v)
for the set of vertices inV (H) reachable fromv by a directed path inH. If G is a
directed, acyclic graph (DAG), we write�G for the reflexive, transitive closure of
the edge relation.

3 Elimination Orderings, Inert Robber Games, and Partial k-DAGs

In this section we formally define directed elimination orderings, inert robber games,
and partialk-DAGs and show that the associated width-measures of digraphs are
equivalent.

Our first definition extends the idea of vertex elimination todigraphs. Vertex elim-
ination is the process of removing vertices from a graph but adding edges to pre-
serve reachability. The complexity measure we are interested in is the maximum
out-degree of eliminated vertices.

Definition 1 (Directed elimination ordering) LetG be a digraph.

• An (directed) elimination ordering� is a linear ordering onV (G).
• Given an elimination ordering� := (v0, v1, . . . , vn−1) of G, we define:

· G�

0 := G and
· G�

i+1 is obtained fromG�

i by deletingvi and adding new edges (if necessary)
(u, v) if (u, vi), (vi, v) ∈ E(G�

i ) andu 6= v.
G�

i is thedirected elimination graph at stepi according to�.
• Thewidth of an elimination ordering is the maximum over alli of the out-degree

of vi in G�

i .

For convenience, given an elimination ordering� = (v0, . . . , vn−1), we define the
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support ofvi with respect to� as supp
�
(vi) := {x : (vi, x) ∈ E(G�

i )}. Note that
the width of� is the maximum cardinality of all supports.

Immediately from the definitions, we have this simple lemma relating the support
of an element in an elimination ordering to the set of vertices reachable from that
vertex.

Lemma 2 Let� be a directed elimination ordering of a graphG and letv ∈ V (G).
LetR := {u : v � u}. Then

supp
�
(v) =

{

u :
v � u and there isv′ ∈ ReachG\R(v)

such that(v′, u) ∈ E(G)

}

.

In the sequel we will often use this result without citation.

We proceed with defining inert robber games on digraphs. Intuitively, a robber oc-
cupies some vertex of a graphG. A given number of cops attempt to capture this
robber by occupying the same vertex as the robber. The robberevades capture by
being able to run from his position along any directed path which does not pass
through a cop. Any number of cops can move anywhere on the graph but they do
so by removing themselves completely from the graph and thenannouncing where
they are moving. It is during this transition that the robbermoves. In the inert robber
game, the robber may only move if a cop is about to land on his current position,
however he is not visible to the cops and he knows the cops’ strategy in advance.
The following definition makes this precise.

Definition 3 (Inert robber game) The(k-cop) inert robber gameon a digraphG
is the set of all plays, where aplay is a sequence

(X0, R0), (X1, R1), . . . (Xm, Rm),

such that(X0, R0) = (∅, V (G)) and for all i: Xi, Ri ⊆ V (G); |Xi| ≤ k; and

Ri+1 =

(

Ri ∪
⋃

v∈Ri∩Xi+1

ReachG\(Xi∩Xi+1)(v)

)

\ Xi+1.

Intuitively, in a play (X0, R0), (X1, R1), . . . (Xm, Rm), the Xi represent the cop
locations, and theRi represent the set of potential robber locations (also knownas
contaminated vertices).

In games such as these, we are usually concerned withstrategies. A cop strategy
is a function that, given a play, indicates the next set of coplocations. Arobber
strategyis a function that, given a play and a set of cop locations, indicates the next
set of potential robber locations. However, in this game, weobserve that the next set
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of robber locations is completely determined by the next setof cop locations. Thus
we can simply regard a cop strategy as a sequenceX0, X1, . . . of sets of vertices
such that|Xi| ≤ k for all i. Note that given such a sequence we can reconstruct the
play which arises if the cops always move to the location specified by the strategy.
We call this theassociated play. A strategyX0, X1, . . . , Xn is winning if Rn = ∅

in the associated play. Finally, a strategy ismonotoneif Ri ⊇ Ri+1 for all i in the
associated play.

The last characterisation we consider is a generalisation of partial k-trees, called
partialk-DAGs. The class ofk-trees can be viewed as a class of graphs generated
by a generalisation of how one might construct a tree. In the same way,k-DAGs
are a class of digraphs generated by a generalisation of how one might construct a
directed, acyclic graph in a top-down manner.

Definition 4 ((Partial) k-DAG) The class ofk-DAGs is defined recursively as fol-
lows:

• A complete digraph1 with k vertices is ak-DAG.
• A k-DAG withn+1 vertices can be constructed from ak-DAGH with n vertices

by adding a vertexv and edges satisfying the following:
· At mostk edges fromv to H are added
· If X is the set of endpoints of the edges added in the previous subcondition, an

edge fromu ∈ V (H) to v is added if(u, w) ∈ E(H) for all w ∈ X \{u}. Note
that if X = ∅, this condition is true for allu ∈ V (H).

A partialk-DAG is a subgraph of ak-DAG.

The second condition on the edges provides a method to add as many edges as pos-
sible going to the new vertex without introducing cycles. Note that this definition
generalisesk-trees, for if the vertices (X) adjacent to the new vertex (v) form a
clique, we will add edges back fromX to v, effectively creating undirected edges
betweenv andX (and possibly some additional edges fromH \X to v). Note that
a partial 0-DAG is a DAG.

Our main result of this section is that the three measures introduced are equivalent
on digraphs.

Theorem 5 LetG be a digraph. The following are equivalent:

(1) G has a directed elimination ordering of width≤ k.
(2) k + 1 cops have a monotone winning strategy to capture an inert robber.
(3) G is a partialk-DAG.

1 By a complete digraph we mean a digraph with edges in both directions between any
pair of distinct vertices.
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Proof. 1 ⇒ 3: Let � = (v0, v1, . . . , vn−1) be a directed elimination ordering of
G of width k. For ease of notation, defineXi := supp

�
(vi) andm := n − k.

Let K0 be a complete graph on thek vertices{vm, vm+1, . . . , vn−1}, and letKj

(j ≥ 1) be thek-DAG formed by addingvm−j to Kj−1, and edges fromvm−j to
Xm−j (together with the other edges necessarily added fromKj−1 to vm−j in the
definition ofk-DAGs.) We claim that for all0 ≤ j ≤ m, G�

m−j is a partial graph of
Kj. The result then follows by takingj = n − k. We prove our claim by induction
on j. For the base case (j = 0) the result is trivial asKj is a complete graph. Now
assume the result is true forj ≥ 0, and consider the graphG�

m−j−1. For simplicity
let i = m − j − 1. For every edge(u, v) in G�

i either: (a)vi /∈ {u, v}, (b) u = vi,
or (c) v = vi.

In the first case,(u, v) ∈ E(G�

i+1) and therefore inE(Kj) ⊆ E(Kj+1) by the
induction hypothesis. For the second case,(u, v) is added during the construction
of Kj+1. For the final case, for anyw ∈ Xi, (vi, w) is an edge ofG�

i , so (u, w)
is an edge ofG�

i+1 (for u 6= w), and therefore ofKj by the induction hypothesis.
Thus(u, vi) is added during the construction ofKj+1, andE(G�

i ) ⊆ E(Kj+1) as
required.

3 ⇒ 2 : Let G be a partialk-DAG. SupposeG is a partial graph of thek-DAG,
K, formed from a complete graph, on the verticesXk := {v1, v2, . . . , vk}, and then
by adding the verticesvk+1, vk+2, . . . , vn in that order. For1 ≤ i ≤ n − k let
Xk+i ⊆ {v1, . . . , vk+i−1} denote the set of successors ofvk+i. That is, whenvk+i

is added during the construction ofK, edges are added fromvk+i to each vertex in
Xk+i. Note that for alli, |Xi| ≤ k. We claim that the sequence:

∅, Xk, Xk+1, Xk+1 ∪ {vk+1}, Xk+2, Xk+2 ∪ {vk+2}, . . . , Xn, Xn ∪ {vn}

is a monotone winning strategy fork + 1 cops. LetRi = {vj : j > i}, then from
the definition ofk-DAGs and theXi, it is easy to see that the play associated with
the strategy is:

(∅, V (G)), (Xk, Rk), (Xk+1, Rk), (Xk+1∪{vk+1}, Rk+1), . . . , (Xn, Rn−1), (Xn∪{vn}, ∅).

As Ri ⊇ Ri+1 for all i, the strategy is monotone and winning as required.

2 ⇒ 1 : Supposek + 1 cops have a robber-monotone winning strategy. We assume
only one cop is placed at a time. Order the vertices in terms ofthe point at which
they are first occupied by a cop and then reverse this order, sothatvj appears later
thanvi if and only if vj was first occupied by a cop beforevi was. Call this ordering
�. We claim� has width≤ k. If this were not the case, there must existvi such
that |supp

�
(vi)| ≥ k + 1. The inert robber can then defeat the strategy of the cops

by starting onvi. At the point when a cop first occupiesvi there are at mostk
cops on supp

�
(vi) so there existsvj ∈ supp

�
(vi) which is not currently occupied.

Furthermore, no cop is on any vertex which appears earlier than vi in �, so the
robber is able to reachvj. However, asj > i, vj has been occupied by a cop in
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the past and was therefore not available as a robber position– contradicting the
robber-monotonicity of the strategy. 2

It follows from this theorem that the minimal width over all directed elimination
orderings ofG and the minimal number of cops required to capture an inert robber
(less one) coincide, and this class of digraphs is characterised by partialk-DAGs.
This leads to the following definition:

Definition 6 (Elimination width) Let G be a digraph. The(directed) elimination
width of G is the minimal width over all directed elimination orderings ofG.

4 Decompositions

With a robust measure for digraph complexity defined, we now turn to the problem
of finding a closely related digraph decomposition.

4.1 Kelly-Decompositions

The decomposition we introduce is a partition of the vertex set, arranged as a di-
rected acyclic graph, together with sets of vertices which guard against paths in
the graph that do not respect this arrangement. We have an additional restriction to
avoid trivial decompositions – vertices in the guard sets must appear either to the
left or earlier in the decomposition. More precisely,

Definition 7 (Guarding) Let G be a digraph. We sayW ⊆ V (G) guardsX ⊆
V (G) if W ∩ X = ∅ and for all (u, v) ∈ E(G) with u ∈ X, we havev ∈ X ∪ W .

Definition 8 (Kelly-decomposition and Kelly-width) AKelly-decompositionof a
digraphG is a tripleD := (D, (Bt)t∈V (D), (Wt)t∈V (D)) so that

• D is a DAG and(Bt)t∈V (D) partitionsV (G),
• for all t ∈ V (D), Wt ⊆ V (G) guardsB↓

t :=
⋃

t′�Dt Bt′ , and
• for all s ∈ V (D) there is a linear order on its childrent1, . . . , tp so that for all

1 ≤ i ≤ p, Wti ⊆ Bs ∪ Ws ∪
⋃

j<i B
↓
tj . Similarly, there is a linear order on the

roots such thatWri
⊆
⋃

j<i B
↓
rj

.

ThewidthofD ismax{|Bt∪Wt| : t ∈ V (D)}. TheKelly-width ofG is the minimal
width of any of its Kelly-decompositions.

Our main result of this section is that Kelly-decompositions do in fact correspond
with the complexity measure defined at the end of the previoussection.
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Theorem 9 G has directed elimination width≤ k if, and only if,G has Kelly-width
≤ k + 1.

Proof. Let G be a digraph and(D, (Bt)t∈V (D), (Wt)t∈V (D)) a Kelly-decomposition
of G of width k + 1. Let T be the spanning tree ofD obtained from the depth-first
traversal ofD which always chooses the largest child according to the ordering on
children. Let(t1, t2, . . .) be the order ofV (T ) (and hence,V (D)) visited in the
depth-first traversal ofT which always chooses the smallest child according to the
ordering. We claim that the sequence:

Wt1 , Wt1 ∪ Bt1 , Wt2 , Wt2 ∪ Bt2 , . . .

defines a monotone winning strategy fork + 1 cops. At step2i− 1, it follows from
the definitions that

⋃

j≤i Wtj cannot contain the robber, so the robber cannot move
at this step. At step2i, the robber is forced further down the DAG, and therefore
into a smaller region. Thus, this strategy will monotonely capture the robber.

For the converse, let� be a directed elimination ordering onG of width at most
k. Let v1 � . . . � vn be an enumeration of the vertices ofG ordered by�. For
convenience we associate each vertexvi with its index i. In particular, we write
Gt := G[1, . . . , t] for the induced subgraphG[v1, . . . , vt].

Define(D, (Bt)t∈V (D), (Wt)t∈V (D)) as follows.V (D) := V (G). For all t ∈ V (D)
let Bt := {t} andWt := supp

�
(t). Towards defining the edge relation, lett ∈

V (D) be a vertex. LetC1, . . . , Cp be the strongly connected components ofGt \ t.
Let t1, . . . , tp be the�-maximal elements ofC1, . . . , Cp, respectively. We put an
edge(t, ti) betweent andti if ti is reachable fromt in Gt and there is notj with
ti � tj � t such thattj is reachable fromt in Gt andti is reachable fromtj in Gt \ t.

We claim that(D, (Bt)t∈V (D), (Wt)t∈V (D)) is a Kelly-decomposition of width≤
k + 1. Clearly,D is a DAG, as all the edges inE(D) are oriented following the
ordering�. Further, the width of the decomposition is clearly one morethan the
width of �. To establish the guarding property, we first show the following claim.

Claim. For all t ∈ V (D), ReachGt
(t) = B↓

t .

We first show by induction ont thatReachGt
(t) ⊆ B↓

t . For t = 1 there is nothing
to show. Suppose the claim has been proved for alli < t. Let v ∈ ReachGt

(t).
Let C1, . . . , Cm be the strongly connected components ofGt \ t. Without loss of
generality we assume thatv ∈ C1. Let s be the�-maximal element ofC1 and lett′

be the�-maximal element such that

• t′ is the�-maximal element of someCi

• there is a directed path fromt to t′ in Gt

• there is a directed path fromt′ to s in Gt \ t.
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By construction, there is an edge(t, t′) ∈ E(D). If t′ = v, or in fact if t′ is the
�-maximal element ofC1, then there is nothing more to show. Otherwise, ift′ and
v are not in the same strongly connected component ofGt \ t, thens, and hence
v, must be reachable fromt′ in Gt′ . For, by construction,s is reachable fromt′ in
Gt\ t andt′ is the�-maximal element reachable fromt in Gt and from whichs can
be reached inGt \ t. Thus, ifs was not reachable fromt′ in Gt′ then the only path
from t′ to s in Gt\t must involve an elementw�t such thatt′�w, contradicting the
maximality of t′. Hence,v is reachable fromt′ in Gt′ and therefore, by induction
hypothesis,v ∈ B↓

t′ ⊆ B↓
t .

A simple induction on the height of the nodes inD establishes the converse. ⊣

It remains to show that for alls ∈ V (D) there is a linear ordering⊏ of the
children s satisfying the ordering condition required by the definition of Kelly-
decompositions. For childrenv 6= v′ of s definev ⊏ v′ if v′

�v, i.e.⊏ is the inverse
ordering of�.

Let t1, . . . , tm be the children ofs ordered by⊏. We claim that for alli ∈ {1, . . . , m},

Wti ⊆ Bs ∪ Ws ∪
⋃

j<i

B↓
tj .

Supposev ∈ Wti . If v ∈ Bs there is nothing to show. Ifs � v thenv ∈ Ws asti � s
is reachable froms and thereforeWti ∩ {s, . . . , n} = supp

�
(ti) ∩ {s, . . . , n} ⊆

supp
�
(s)∩{s, . . . , n} = Ws∩{s, . . . , n}. Finally, supposev �s. But then,v ∈ B↓

s

and hencev ∈ B↓
tj for some1 ≤ j ≤ k. By definition of support sets,v 6∈ B↓

ti and

ti � v. But then,v 6∈ B↓
tj for all j ⊐ i, i.e.j � i, as thentj � v and by construction,

w � tj for all w ∈ B↓
tj . Hence,v ∈ B↓

tl
for sometl � ti. This completes the proof of

the theorem. 2

The proof of Theorem 9 is constructive in that given an elimination ordering of
width k it constructs a Kelly-decomposition of widthk +1, and conversely. In fact,
the proof establishes a slightly stronger statement.

Corollary 10 Every digraphG of Kelly-widthk has a Kelly-decompositionD =
(D, (Bt)t∈V (D), (Wt)t∈V (D)) of widthk such that for allt ∈ V (D):

• |Bt| = 1,
• Wt is the minimal set which guardsB↓

t , and
• every vertexv ∈ B↓

t is reachable inG \ Wt from the uniquew ∈ Bt.

Further, if G is strongly connected, thenD has only one root.

We call such a decompositionspecial.
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4.2 Computing Kelly-decompositions

In this section we mention algorithms for computing Kelly-width and Kelly-decom-
positions. The proofs of Theorems 5 and 9 show that Kelly-decompositions can
easily (i.e. polynomial time) be constructed from directedelimination orderings or
monotone winning strategies, so we concern ourselves with the problem of finding
any of the equivalent characterisations.

In a recent paper [6] Bodlaender et al. study exact algorithms for computing the
(undirected) tree-width of a graph. Their algorithms are based on dynamic pro-
gramming to compute an elimination ordering of the graph. Inthe same paper, the
authors remark on actual experiments with these algorithms. Using some prepro-
cessing techniques, the dynamic programming approach seems to perform reason-
ably well (in particular for not too large instances). The algorithms translate easily
to directed elimination orderings and can therefore be usedto compute Kelly-width.
Hence, we get the following theorem.

Theorem 11 The Kelly-width of a graph withn vertices can be determined in time
O∗(2n) and spaceO∗(2n), or in timeO∗(4n) and polynomial space.

Here,O∗(f(n)) means that polynomial factors are suppressed.

For a givenk, the problem whether a digraphG has Kelly-width≤ k is decided in
exponential time with the above algorithms. As the minimization problem is NP-
complete (it generalises the NP-complete problem of deciding the tree-width of an
undirected graph), we cannot expect polynomial time algorithms to exist. It seems
plausible though that, as in the case ofDAG-width, studying strategies in the inert
robber game will lead to a polynomial time algorithm whenk is fixed. This is part
of ongoing research.

5 Applications

5.1 Algorithms on graphs of small Kelly-width

In this section we present algorithmic applications of the decomposition introduced
above, including a general scheme that can be used to construct algorithms based
on Kelly-decompositions. We assume that a Kelly-decomposition (or even an elim-
ination ordering) has been provided or pre-computed. We mention two example
algorithms which run in polynomial time on graphs of boundedKelly-width. The
first is an algorithm for the NP-complete optimization problem of computing dis-
joint paths of minimal weight in weighted graphs. The secondis an algorithm to
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compute the winner of certain forms of combinatorial games.

Similar to algorithms on graphs of small tree-width, Kelly-decompositions are
suitable for dynamic programming style algorithms: starting with a special Kelly-
decomposition(D, (Bt)t∈V (D), (Wt)t∈V (D)), the algorithm works bottom up to com-
pute for each nodet ∈ V (D) a data set containing information on the setB↓

t :=
⋃

t′�t Bt′ . The general pattern is therefore described by the following steps (after
the special Kelly-decomposition has been computed):

Leaves:Compute the data set for all leaves.
Combine: If t ∈ V (D) is an inner node with childrent1, . . . , tp ordered by the

ordering guaranteed by the Kelly-decomposition (we observe that such an or-
dering can be computed easily with a greedy algorithm), combine the data sets
computed forB↓

t1 , . . . ,B
↓
tp to a data set for the union

⋃

1≤i≤p B
↓
ti .

Update: Update the data set computed in the previous step so that the new vertex
u with Bt = {u} is taken into account. Usually, the vertexu will have been part
of at least some guard setsWti . As u 6∈ Wt, it can now be used freely.

Expand: Finally, expand the data set to include guards inWt \
⋃

i Wti and also
paths etc. starting atu.

5.1.1 Weighted Hamiltonian Cycle and Disjoint Paths.

A weighted digraph is a pair(G, ω) whereG is a digraph andω : V (G) → R is a
weight function. The Kelly-width of(G, ω) is the Kelly-width ofG. In [20] Johnson
et al. provided a dynamic-programming algorithm for computing whether a digraph
has a Hamiltonian-cycle which is based on arboreal decompositions. This algorithm
is readily extended to weighted digraphs and Kelly-decompositions, giving us the
following:

Theorem 12 (essentially [20])For anyk, given a weighted digraph(G, ω) and a
Kelly-decomposition(D, (Bt)t∈V (D), (Wt)t∈V (D)) of G of width≤ k, there exists a
polynomial time algorithm which computes a Hamilton-cycleof (G, ω) of minimal
weight or determines thatG is not Hamiltonian.

The algorithm introduced above can easily be extended to solve the following,
more general problem. Theweightedw-linkage problemis the problem, given a
weighted digraph(G, ω), a tuples := ((s1, t1), . . . , (sw, tw)), and a setM ⊆
{1, . . . , |V (G)|}, to compute for eachl ∈ M an s-linkage of orderl of minimal
weight (among alls-linkages of orderl).

Theorem 13 (essentially [20])For everyw, k ∈ N, given a weighted digraph
(G, w) and a Kelly-decomposition ofG of width≤ k, the weightedw-linkage prob-
lem can be solved in polynomial time.

12



5.1.2 Parity Games.

Another example for an algorithm on graphs of bounded Kelly-width is an algo-
rithm for solving parity games on game arenas of small Kelly-width. Parity games
are a form of combinatorial games played on digraphs with many applications in
the area of verification. See [17] for a definition. It is well known that deciding the
winner of a parity game is in NP∩ co-NP and it is a longstanding open problem if
the problem is in P. In [4], Berwanger et al. describe an algorithm for computing
the winner of a parity game of boundedDAG-width. This algorithm can easily be
translated to arenas of small Kelly-width and, in some sense, becomes more effi-
cient as the size of a Kelly-decomposition of widthk is linear in the order of the
graph, whereas DAG-decompositions of widthk may containnk nodes.

Theorem 14 For anyk, given an arenaA of a parity game and a Kelly-decomposition
ofA of width≤ k, the winning region ofA can be computed in polynomial time.

5.2 Asymmetric matrix factorization

The use of elimination orderings and elimination trees to investigate symmetric
matrix factorizations is well documented (see e.g. [22]). For example, the height of
an elimination tree gives the parallel time required to factor a matrix [7]. In [16],
Gilbert and Liu introduced a generalisation of eliminationtrees, called elimination
DAGs, which can be similarly used to analyse factorizationsin the asymmetric
case. Kelly-decompositions are closely related to these structures, as we show in
this section.

Let M = (aij) be a squaren × n matrix. We defineGM as the directed graph with
V (GM) = {v1, . . . , vn}, and fori 6= j, (vi, vj) ∈ E(GM) if, and only if, aij 6= 0.
We define�M := (v1, . . . , vn), andDM to be the Kelly-decomposition ofGM

obtained by applying the proof of Theorem 9 with eliminationordering�M .

Definition 15 (Upper and Lower elimination DAGs [16]) LetM be a square ma-
trix that can be decomposed asM = LU without pivoting. Theupper (lower) elim-
ination DAGis the transitive reduction of the directed graphGU (GL respectively).

The connection between Kelly-decompositions and elimination DAGs is reflected
in the following observation.

Theorem 16 Let M be a square matrix that can be decomposed asM = LU
without pivoting. LetDM = (D, (Bt)t∈V (D), (Wt)t∈V (D)). Then

(a) (D, (Bt)t∈V (D)) is equivalent to the lower elimination DAG, and
(b) GU = (V (GM), {(v, w) : w ∈ Wv}), thus the upper elimination DAG is

equivalent to the transitive reduction of the relation{(v, w) : w ∈ Wv}.

13



Proof. For v ∈ V (GM), let Xv = {v} ∪ {w ∈ V (GM) : w �M v}, and let
Gv = GM [Xv]. We require two observations. First, from Theorem 1 of [27]:

(E(GL))TC = {(v, w) : w �M v, andv ∈ ReachGv
(w)}, (1)

whereRTC denotes the transitive closure ofR. Secondly, from Theorem 4.6 of [16],
we have

E(GU) = {(v, w) : v �M w, and∃v′ ∈ ReachGv
(v) with (v′, w) ∈ E(GM)}. (2)

Now the first result of the theorem follows from the observation that in the construc-
tion of the Kelly-decomposition,(D, (Bt)t∈V (D)) is the transitive reduction of the
right-hand side of (1). The second result follows from Lemma2, which shows that
{(v, w) : w ∈ Wv} = {(v, w) : w ∈ supp

�M
(v)} is equivalent to the right-hand

side of (2). 2

We can use the results of [16] to make the following observation when we construct
Kelly-decompositions on undirected graphs.

Corollary 17 LetG be an undirected graph,� an elimination ordering onG and
(D, (Bt)t∈V (D), (Wt)t∈V (D)) the Kelly-decomposition ofG (considered as a bidi-
rected graph) obtained by applying the proof of Theorem 9 with elimination order-
ing �. ThenD is a tree, and more precisely,(D, (Bt)t∈V (D)) is equivalent to the
elimination tree associated with the (undirected) elimination ordering�.

6 Is it better to be invisible but lazy or visible and eager?

In this section we use graph searching games to compare Kelly-width toDAG-width
and directed tree-width. In the undirected case, all games require the same number
of searchers, however we show that in the directed case thereare graphs on which
all three measures differ by an arbitrary amount. Our results do imply that Kelly-
width bounds directed tree-width within a constant factor,but the converse fails as
there are classes of graphs of bounded directed tree-width and unbounded Kelly-
width. We also provide evidence to suggest that Kelly-widthand DAG-width are
within a constant factor of each other. We begin by introducing the games associ-
ated withDAG-width and directed tree-width (see [4,23,20] for formal definitions).

Definition 18 (Visible robber game) Thevisible robber gameis played as the in-
ert robber game except that the robber’s position is always known to the cops and
the robber is free to move during a cop transition irrespective of where the cops
intend to move (however, he still cannot run through a stationary cop). Thestrong
visible robber gameadds the further restriction that the robber can only move in
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the same strongly connected component (of the graph with thestationary cops’
locations removed). Astrategyfor the cops is a function that, given the current lo-
cations of the cops and the robber, indicates the next location of the cops. A strategy
is winning if it captures the robber, and it ismonotoneif the set of vertices which
the robber can reach is non-increasing.

The following theorem summarises the results of [4,23,20].We refrain from giv-
ing the definitions and background on directed tree-decompositions and DAG-
decompositions and refer to [20,4] instead.

Theorem 19 LetG be a digraph.

(1) G hasDAG-width k if, and only if,k cops have a monotone winning strategy
in the visible robber game onG.

(2) G has directed tree-width≤ 3k + 1 or k cops do not have a winning strategy
in the strong visible robber game onG.

Our first result shows that a monotone winning strategy in theinert robber game
can be translated to a (not necessarily monotone) winning strategy in the visible
robber game.

Theorem 20 If k cops can catch an inert robber with a robber-monotone strategy,
then2k − 1 cops can catch a visible robber.

Proof. Supposek cops have a robber-monotone winning strategy on a graphG.
By Theorem 5 this implies that there is a directed elimination ordering� on G of
width≤ k − 1. We use the elimination ordering to describe the winning strategy of
2k − 1 cops against a mobile, visible robber, thereby establishing the result.

The cops are split into two groups,k cops called theblockersandk− 1 cops called
thechasers. Similarly, the cop moves are split in two phases, a blockingmove and
a chasing phase.

In the first move,k cops are placed on thek highest elements with respect to�.
These cops form the set of blockers. Let the robber choose some elementv. This
concludes the first (blocking) move. We observe:

If u is the �-smallest vertex occupied by a blocker, then
every directed path fromv to a vertex greater thanu has at
least one vertex occupied by a cop.

(∗)

This invariant is maintained by the blocking cops during theplay. Now suppose
afterr rounds have been played, the robber occupies vertexv and the blockers oc-
cupy vertices inX so that the invariant (∗) is preserved. Letu be the�-smallest
element inX and letC1, . . . , Cs be the set of strongly connected components of
G[{u′ : u′

� u}]. Further, let⊏ be a linear ordering onC := {C1, . . . , Cs} so
thatCi ⊏ Cj if, and only if, the�-maximal element inCi is �-smaller than the
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�-maximal element ofCj. Now the cops move as follows. LetC ∈ C be the com-
ponent such thatv ∈ C and letw ∈ C be the�-maximal element inC. The cops
place thek − 1 cops not currently on the graph on supp

�
(w). These cops are the

chasers. Seeing the chasers approach, the robber has two options. Either he stays
within C or he escapes to a vertex in a different strongly connected component
C ′. If the robber runs to a vertexx ∈ C or x ∈ C ′ for someC ′

⊏ C then after
the chasers land onS := supp

�
(w) there is no path fromx to a nodeu such that

u�u′ for the�-minimal vertexu′ in S. Hence, the chasers become blockers and the
chasing phase is completed. Otherwise, if the robbers escapes to aC ′ with C ⊏ C ′,
then the chasers repeat the procedure and move to supp

�
(w′) for the�-maximal

element inC ′. However, as the robber always escapes to a⊏-larger strongly con-
nected component and also can not bypass the blockers, this chasing phase must
end after finitely many steps with the robber being on a vertexv ∈ C for some
componentC and the chasers being on supp

�
(w) for the�-maximal element inC.

At this point the chasers become blockers. One of the old blockers is now placed
on w and all others are removed from the board. The cop onw makes sure that in
each such step the robber space shrinks by at least one vertex. By construction, the
invariant in (∗) is maintained. Further, as the robber space shrinks by at least one
after every chasing-phase, the robber is eventually caughtby the cops. 2

One consequence of this theorem is that Kelly-width bounds directed tree-width by
a constant factor.

Corollary 21 If G has Kelly-width≤ k thenG has directed tree-width≤ 6k − 2.

Since it is not known whether monotone strategies are sufficient in the visible rob-
ber game, we cannot obtain a similar bound forDAG-width. We can, however,
ask whether we can improve the bound, i.e. assuming thatk cops have a robber-
monotone winning strategy against an invisible, inert robber can we define a win-
ning strategy for less than2k−1 cops in the visible robber game? Although it might
be possible to improve the result, the next theorem shows that we cannot do better
than with 4

3
k cops.

Theorem 22 For everyk ∈ N, there is a digraph such that3k cops have a robber-
monotone winning strategy in the inert robber game but no fewer than4k cops can
catch a visible robber.

Before we prove this result we need to introduce the idea of lexicographic product.

Definition 23 (Lexicographic product) Let G, H be graphs. Thelexicographic
productG • H of G andH is defined as the graph with vertex setV (G • H) :=
V (G) × V (H) and edge set

E(G • H) := {
(

(x, y), (x′, y′)
)

: (x, x′) ∈ E(G) or x = x′ and(y, y′) ∈ E(H)}.
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The lexicographic product is also known asgraph compositionasG • H can also
be viewed as a graph obtained fromG by replacing vertices by copies ofH. This
observation is useful for the following proposition:

Proposition 24 Consider the cops and robber game on a directed graphG, and
let Kn be the complete digraph onn vertices. Then at leastk cops have a winning
strategy onG if, and only if, at leastn · k cops have a winning strategy onG • Kn.

Proof. If k cops have a winning strategy onG, then a winning strategy forn · k
cops onG •Kn is obtained by simulating the game onG. If the robber’s position is
(r, s) ∈ V (G • Kn) then we position a robber onr ∈ V (G). We then consider the
cops’ play onG and play onG • Kn by placingn cops on{(x, y) : y ∈ V (Kn)}
whenever a cop would be placed onx ∈ V (G).

For the converse we show that if the robber can defeatk − 1 cops onG then he can
defeatnk − 1 cops onG • Kn. Again we simulate the game forG • Kn onG, but
this time from the robber’s perspective. We place a cop onx ∈ V (G) only if all
vertices inV (G • Kn) of the form(x, y), y ∈ V (Kn) are occupied. By the pigeon-
hole principle, this places at mostk − 1 cops onG. The robber’s current position
is projected as before. The robber’s responser′ onG is lifted toG • Kn by playing
to an unoccupied vertex of the form(r′, y). As r′ is unoccupied in the simulated
game, at least one such vertex exists. We need to be careful ifthe projected play is
to remain at the same vertex because the robber’s position may become occupied.
But as the projected vertex remains unoccupied, there is at least one unoccupied
vertex in the block isomorphic toKn and so the robber is able to run to that vertex.
As the robber can defeatk − 1 cops onG, the strategy is winning. 2

It is worth observing that Proposition 24 holds regardless of the visibility or mo-
bility of the robber, as well as when the cops are restricted to monotone strategies,
giving us the following:

Corollary 25 For any directed graphG:

(i) DAG-width(G • Kn) = n · DAG-width(G).
(ii) Kelly-width(G • Kn) = n · Kelly-width(G).

We now use this result to complete the proof of Theorem 22.

Proof. Consider the graphG in Figure 1. It is easy to see that onG, 3 cops do not
have a (non-monotone winning) strategy to catch a visible robber, however4 cops
do. On the other hand,3 cops suffice to capture an invisible, inert robber with a
robber-monotone strategy. The result follows by taking thelexicographic product
of this graph with the complete graph onk vertices. 2
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Fig. 1. GraphG to show difference betweenDAG-width and inert robber game

In fact,4 cops can capture a visible robber with a monotone strategy onthe graph
in the previous proof, giving us the following:

Corollary 26 For all k ≥ 1 there are graphs ofDAG-width4k and Kelly-width3k.

Despite this4
3

bound, for graphs of small Kelly-width we can do better.

Theorem 27 For k = 1 or 2, if G has Kelly-widthk, G has DAG-widthk.

Proof. If G has an elimination ordering of width0 then it must be acyclic, as all
support sets are empty. Thus it has DAG-width1. If G has an elimination ordering
� = (v1, v2, . . . , vn) of width 1 then a cop-monotone strategy for two cops against
a visible robber is as follows. Initially, leti = n and place one cop onvi. At this
point, the robber is restricted to{v1, . . . , vi−1}. Let j < i be the maximal index
such that the robber can reachvj. Place a cop onvj . After the cop has landed, we
claim that the robber is unable to reach bothvi andvj. For otherwise, letr be the
maximal index such that the robber can reachvr (with cops onvi andvj) and from
vr can reachvi (with a cop onvj) andvj (with a cop onvi). By the maximality of
j, r < j. Let s > r be the first index greater thanr which occurs on a path from
vr to vi that does not go throughvj , andt > r be the first index greater thanr
which occurs on a path fromvr to vj that does not go throughvi. Then from the
maximality of r, s 6= t. Furthermore,{vs, vt} ⊆ supp

�
(r), so |supp

�
(vr)| > 1,

contradicting the width of the ordering. So we can remove thecop from whichever
vertex the robber can no longer reach without changing the robber space, and either
the robber is now restricted to{v1, . . . , vj} or the maximal index which the robber
can reach is smaller. Clearly, this is a monotone winning strategy for two cops. 2

We now turn to the converse problem, what can be said about theKelly-width of
graphs given their directed tree-width orDAG-width? First, we consider the binary
tree with back-edges example in [4], where it was shown this class of graphs has
bounded directed tree-width but unboundedDAG-width. A “binary tree width back-
edges” is a balanced binary tree of heightk, for somek, where all edges are oriented
from the root towards the leaves. In addition every vertex has a directed edge to each
of its predecessors on the unique path from the root to itself. Figure 2 shows a tree
with back-edges of height2.
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Fig. 2. Binary tree with back-edges of height2.

It is readily shown that this class of graphs also has unbounded Kelly-width.

Theorem 28 There exists classes of digraphs with bounded directed tree-width and
unbounded Kelly-width.

Our final result is a step towards relating Kelly-width toDAG-width by showing
how to translate a monotone strategy in the visible robber game to a (not necessarily
monotone) strategy in the inert robber game.

Theorem 29 If G hasDAG-width≤ k, thenk cops have a winning strategy in the
inert robber game.

Proof. Given aDAG-decomposition(D, (Xd)d∈V (D)) of G of width k, the strategy
for k cops against an invisible, inert robber is to follow a depth-first search on the
decomposition. More precisely, we assume the decomposition has a single rootr,
and we have an empty stack of nodes ofD.

(1) Initially, place the cops onXr and pushr onto the stack.
(2) At this point we assumed is on the top of the stack and the cops are onXd.

We next “process” the successors ofd in turn. To process a successord′ of d,
we remove all cops not onXd∩Xd′ , place cops onXd′ , pushd′ onto the stack,
and return to step2. Note that a node may be processed more than once.

(3) Once all the successors of a node have been processed, we pop the node off
the stack and if the stack is non-empty, return to step2.

Because the depth-first search covers all nodes of the DAG andhence all vertices
of the graph are eventually occupied by a cop, the robber willbe forced to move
at some point. Due to the guarding condition for DAG-decompositions, when the
robber is forced to move this strategy will always force the robber into a smaller
region and eventually capture him. 2

Again we observe that it is unknown if monotone strategies suffice in the inert
robber game, so this result does not allow us to compare Kelly-width andDAG-
width.

19



7 Open Problems and Further Remarks

Let us first remark on the following recent result. In [21], Kreutzer and Ordyniak
give examples showing that neither the visible robber game associated with DAG-
width nor the inert robber game associated with Kelly-widthare monotone. The
examples show that for eachk ∈ N there are graphs where the difference between
the number of cops needed for monotone and non-monotone winning strategies
differ by k cops. However, it is not clear if the monotonicity cost can beincreased
any further or if there is a constantc > 1 such that wheneverk cops have a winning
strategy in one of the games thenc · k cops have a monotone winning strategy.

Note that if there was such a constant factor giving an upper bound for the mono-
tonicity costs in both games, then the Kelly-width and the DAG-width of a digraph
would be within constant factors of one another. We believe that this is the case and
therefore propose the following conjecture.

Conjecture 30 The Kelly-width andDAG-width of a graph lie within constant fac-
tors of one another.

In [20], an min-max theorem between directed tree-width andthe number of cops
required to catch a robber in the visible robber game where the robber moves in
strong components is given. However, this theorem is only upto a constant fac-
tor and for various reasons there is no hope to make it exact. It might be possible,
though, to define a modified version of directed tree-width that does have an ex-
act min-max theorem with non-monotone strategies. One natural candidate is the
version of directed tree-width given in [19], to which the reasons ruling out such
an exact theorem for the standard definition do not apply. This is part of ongoing
research.
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