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Abstract

We consider various well-known, equivalent complexity swas for graphs such as elim-
ination orderingsk-trees and cops and robber games and study their naturalétiams to
digraphs. We show that on digraphs the translations of thresssures are also equivalent
and induce a natural connectivity measure. We introducecardposition for digraphs and
an associated width, Kelly-width, which is equivalent te eiforementioned measure. We
demonstrate its usefulness by exhibiting potential appbos including polynomial-time
algorithms for NP-complete problems on graphs of boundetl/®eédth, and complexity
analysis of asymmetric matrix factorization. Finally, wengpare the new width to other
known decompositions of digraphs.

1 Introduction

An important and active field of algorithm theory is to idéptnatural classes of
structures or graphs which are algorithmically well-beddvi.e. on which effi-

cient solutions to otherwise NP-complete problems can bedoA particularly

rich source of tractable cases comes from graph struct@eryhin the form of

graph decompositions and associated measures of stiuctumglexity such as
tree-width or rank-width. For instance, Courcelle’s cedtbd theorem [8] shows
that every property of undirected graphs that can be fortadlen monadic second-
order logic can be decided in linear time on any class of ggagtbounded tree-
width. This result immediately implies linear time algbmts for a huge class of
problems on such graphs. Since then, hundreds of paperdkawepublished de-
scribing efficient algorithms for graph problems on classkegraphs of bounded
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tree-width. (See e.g. [5] and references therein.) Sitgjlafficient algorithms can
sometimes be found for planar graphs [13,2] or more gen&ases of graphs, for
instance classes of graphs of bounded local tree-width [drdgraph classes ex-
cluding a minor (see e.g. [10] and references therein). Aeranteresting example
are classes of graphs of bounded clique- or rank-width [245

All the examples mentioned above are defined by imposingegshs on the un-
derlying undirected graph structure. However, there araeyrapplications where
the input structures — networks, state transition systel®gendency graphs as in
database theory, or the arenas of combinatorial games sugardy games — are
more naturally modelled as directed rather than undiregtaghs. In these cases,
the notion of tree-width is unsatisfactory as it does noettde direction of edges
into account. This information loss may be crucial, as destraed by the problem
of finding a Hamiltonian path in a digraph: an acyclic ori¢iata of a grid has very
high tree- or clique-width, but the Hamiltonian path prablen the digraph can be
solved efficiently.

As a consequence, several authors have tried to generalts® like tree- or
path-width from undirected to directed graphs (See e.g2[28,29,23,4]). In [20],
Johnson, Robertson, Seymour, and Thomas concentrate corthectivity aspect
of tree-width, generalising this to strong connectivitytie directed case, to define
directed tree-width. In the same paper, the authors givelgorithmic applica-
tion of directed tree-width by showing that a number of NPaptete problems
such as Hamiltonicity or the-disjoint paths problems become tractable on graphs
of small directed tree-width. Berwanger, Dawar, Hunter &mnelutzer [4] and, in-
dependently, Obdrzalek [23] introduce the notionbaiG-width. DAG-width is a
slightly weaker notion than directed tree-width, in thesethat more graphs have
small directed tree-width than smalhG-width, but it has a cleaner characterisa-
tion in terms of cops and robber games and gives more contmltbe graph, as
the guarding condition used is stricter. In [4], this hasrbased to show that the
winner of a parity game — a form of combinatorial games playedigraphs — can
be decided in polynomial time provided the game graph hasdedDAG-width.
The analogous question remains open for graphs of boundecteli tree-width.

Both directed tree-decompositions abwc-decompositions provide a natural and
interesting connectivity measure for directed graphshBbbwever, also suffer
from some difficulties. As Adler shows [1], directed treezdmpositions are not
closed under even mild forms of directed minors (butterflpons), the correspond-
ing games are neither cop- nor robber monotone, and therepsatise character-
isation of directed tree-width by these games (only up to rsstamt factor). Al-
though this is not really a problem for algorithmic applioas, it suggests that
the notion of directed tree-width may not be as well-behaagdindirected tree-
width. It may, though, be possible to modify the definitiondifected tree-width
to overcome some of the difficultieBAG-decompositions, on the other hand, suf-
fer from the fact that the best upper bound for the sizeat-decompositions of



graphs of widtht known so far isO(n*). This is a significant problem, as the space
consumption of algorithms is often more problematic thamrag time. It is not
known whether deciding that a digraph tmass-width at most is in NP whenk is
part of the input, contrary to the authors’ claims. (It is N&rd. This follows easily
from the NP-completeness of the corresponding questiotiderwidth.)

Whereas for undirected graphs it is widely accepted thatwilth is the “right”
notion, the problems described above suggest that moraradsis needed to decide
what the “right” notion for digraphs is — if there is any. A netl way to search for
practical generalisations of undirected tree-width isdokl at useful equivalent
characterisations of it and translate them to digraphs.

In this paper we consider three characterisations of trehnpartialk-trees, elim-
ination orderings and a graph searching game in which asiliteirobber attempts
to avoid capture by a number of cops, subject to the resindtat he may only
move if a cop is about to occupy his position. Partidtees are the historical fore-
runner of tree-width and are therefore associated withlgsapucture theory [28],
elimination orderings have found application in the analys symmetric matrix
factorization, such as Cholesky decomposition [22], armgblyrsearching problems
have recently been used to explore and generate robust rmaeasfugraph com-
plexity (see e.g. [11,15]). We generalise all of these tea#&d graphs, resulting
in partial k.-DAGs, directed elimination orderings, and an inert robgame on
digraphs. We show that all of these generalisations arevalguit on digraphs and
are also equivalent to the width-measure associated to &ineMof decomposition
we introduce. As the game is reminiscent of capturing hitdb@ased outlaws, we
propose the name Kelly-decompositions, after the infandaistralian bushranger
Ned Kelly. The fact that all these notions are equivalent gnaghs as they are
on undirected graphs suggests that this might be a robussureeaf complex-
ity/connectivity of digraphs.

In addition to being equivalent to the natural generalssatiof the above charac-
terisations, we believe that Kelly-decompositions haveyravantages ove&AG-
decompositions and directed tree-decompositions. Unthkeformer, the size of
these decompositions can be made linear in the size of tiph grdecomposes. On
the other hand, their structure and strict guarding coodithake them suitable for
constructing dynamic programming algorithms which caml leapolynomial-time
algorithms for NP-complete problems on graphs of bounddt/¥edth. We also
show how they are applicable to asymmetric matrix factoidraby relating them
to the elimination DAGs of [16].

The paper is organised as follows. In Section 3 we formalliinéeelimination
orderings, inert robber games, and partidDAGs and show the equivalence of the
associated width measures. In Section 4, we introduce elbpmpositions and
Kelly-width. In Section 5, we present applications: Algbms for Hamiltonian
cycle, weighted disjoint paths and parity games that all irupolynomial time



on graphs of bounded Kelly-width, and details of the connedbetween Kelly-
decompositions and asymmetric matrix factorization. Fnae compare our new
width measure to other known measures on digraphs, in péatito directed tree-
width andDAG-width.

An extended abstract of the paper appeared in [18].

2 Preliminaries

We use standard graph theory notation. See e.g. [12]GL= a digraph. We write
V(G) for its vertex set andZ(G) for its edge set. FoX C V(G) we write G[.X|
for the subgraph of7 induced byX andG \ X for G|V (G) \ X]. If X := {v}is

a singleton set, we simply writ€ \ v. Finally, we sometimes writ&/[vy, . . ., vy]
for G[{v1,...,v}]|. For a subgrapltf of G andv € V(H), we write Reach;(v)
for the set of vertices iV (H) reachable from by a directed path iff. If G is a
directed, acyclic graph (DAG), we writé for the reflexive, transitive closure of
the edge relation.

3 Elimination Orderings, Inert Robber Games, and Partial k-DAGs

In this section we formally define directed elimination aidgs, inert robber games,
and partialk-DAGs and show that the associated width-measures of digrape
equivalent.

Our first definition extends the idea of vertex eliminatiordigraphs. Vertex elim-
ination is the process of removing vertices from a graph bigireg edges to pre-
serve reachability. The complexity measure we are intedest is the maximum
out-degree of eliminated vertices.

Definition 1 (Directed elimination ordering) LetG be a digraph.

e An(directed) elimination orderingn is a linear ordering onV/ (G).
e Given an elimination orderingi := (vg, v, . .., v,_1) of G, we define:
- G§l =G and
- G, is obtained front5;? by deletingy; and adding new edges (if necessary)
(u,v) if (u,v;), (v;,v) € E(GY) andu # v.
G is thedirected elimination graph at sté@ccording to<.
e Thewidth of an elimination ordering is the maximum over adif the out-degree
of v; in G7.

For convenience, given an elimination orderiag= (v, ..., v,_1), we define the



support ofv; with respect to< as supp(v;) := {z : (v;,z) € E(G;')}. Note that
the width of< is the maximum cardinality of all supports.

Immediately from the definitions, we have this simple lemmlating the support
of an element in an elimination ordering to the set of vegioEachable from that
vertex.

Lemma 2 Let< be a directed elimination ordering of a graghand letv € V(G).
LetR := {u:v <u}. Then

v < u and there i € Reachy z(v) }

supp,(v) = {u :
such thatv', u) € E(G)

In the sequel we will often use this result without citation.

We proceed with defining inert robber games on digraphsitlnély, a robber oc-
cupies some vertex of a gragh A given number of cops attempt to capture this
robber by occupying the same vertex as the robber. The rablaetes capture by
being able to run from his position along any directed patlictvidoes not pass
through a cop. Any number of cops can move anywhere on théndrapthey do
so by removing themselves completely from the graph anddneouncing where
they are moving. Itis during this transition that the roblmaves. In the inert robber
game, the robber may only move if a cop is about to land on hieotposition,
however he is not visible to the cops and he knows the copaegfy in advance.
The following definition makes this precise.

Definition 3 (Inert robber game) The(k-cop) inert robber gamen a digraphGG
is the set of all plays, where@ayis a sequence

(X07 RO)a (Xla Rl)a cee (Xma Rm)a

such that Xy, Ry) = (@, V(G)) and for alli: X;, R; C V(G);

X;| < k;and

Ri—l—l = <RZ U U React@\(ximxi_‘_l)(v)) \ Xi—l—l‘

vER;NX 41

Intuitively, in a play (Xo, Ro), (X1, R1), ... (Xm, Rn), the X; represent the cop
locations, and thé; represent the set of potential robber locations (also knasvn
contaminated vertices).

In games such as these, we are usually concernedsivategies A cop strategy
is a function that, given a play, indicates the next set of logations. Arobber
strategyis a function that, given a play and a set of cop locationscatds the next
set of potential robber locations. However, in this gameph&erve that the next set



of robber locations is completely determined by the nexb$ebp locations. Thus

we can simply regard a cop strategy as a sequeéiceX,, . .. of sets of vertices
such thatX;| < k for all i. Note that given such a sequence we can reconstruct the
play which arises if the cops always move to the location ifipeldoy the strategy.

We call this theassociated playA strategyXy, X1, ..., X,, iswinningif R, = &

in the associated play. Finally, a strategyrisnotonef R; O R;,; for all i in the
associated play.

The last characterisation we consider is a generalisatigraxial £-trees, called
partial k-DAGs. The class ok-trees can be viewed as a class of graphs generated
by a generalisation of how one might construct a tree. In #meesway,k-DAGS

are a class of digraphs generated by a generalisation of hewnight construct a
directed, acyclic graph in a top-down manner.

Definition 4 ((Partial) k-DAG) The class of-DAGs is defined recursively as fol-
lows:

e A complete digraph with % vertices is a-DAG.
e Ak-DAG withn + 1 vertices can be constructed fronkeDAG H with n vertices
by adding a vertex and edges satisfying the following:
- At mostk edges fromv to H are added
- If X is the set of endpoints of the edges added in the previoussdhion, an
edge fromu € V(H) tov is added if(u, w) € E(H) forall w € X\ {u}. Note
that if X = @, this condition is true for alk. € V(H).

A partial k.-DAG is a subgraph of &-DAG.

The second condition on the edges provides a method to addrasedges as pos-
sible going to the new vertex without introducing cyclest®&that this definition
generaliseg:-trees, for if the verticesX) adjacent to the new vertex)(form a
clique, we will add edges back frod to v, effectively creating undirected edges
betweerv and X (and possibly some additional edges fréim\, X to v). Note that

a partial 0-DAG is a DAG.

Our main result of this section is that the three measuresdnted are equivalent
on digraphs.

Theorem 5 Let G be a digraph. The following are equivalent:
(1) G has a directed elimination ordering of width k.

(2) k+ 1 cops have a monotone winning strategy to capture an inetigob
(3) G is a partial k-DAG.

1 By a complete digraph we mean a digraph with edges in botlctibres between any
pair of distinct vertices.



Proof. 1 = 3: Let < = (vg,v1,...,v,—1) be a directed elimination ordering of
G of width k. For ease of notation, defing; := supp,(v;) andm = n — k.
Let K, be a complete graph on thevertices{v,,, vi+1, ..., v,—1}, and letk;
(7 > 1) be thek-DAG formed by adding,,_; to K,_,, and edges from,,_, to
Xm—; (together with the other edges necessarily added om to v,,_; in the
definition of k-DAGs.) We claim that for alb < j < m, Gy,_; is a partial graph of
KC;. The result then follows by taking= n — k. We prove our claim by induction
onj. For the base casg & 0) the result is trivial agC; is a complete graph. Now
assume the result is true for> 0, and consider the graphi;,_; ;. For simplicity
leti = m — j — 1. For every edgéu, v) in G either: (@)v; ¢ {u,v}, (b) u = v,
or (C)v = v;.

In the first case(u,v) € E(Gy,) and therefore inE(K;) C E(K;11) by the
induction hypothesis. For the second cgsey) is added during the construction
of K;.;. For the final case, for any € X;, (v;, w) is an edge of>7, so (u, w)

is an edge of7;, (for v # w), and therefore ofC; by the induction hypothesis.
Thus(u, v;) is added during the construction &f,,, and E(G;') C E(K;;1) as
required.

3 = 2 : Let G be a partialk-DAG. Suppose- is a partial graph of thé-DAG,
IC, formed from a complete graph, on the verticés:= {vy,vs, ..., v}, and then
by adding the verticesy 1, vxio,...,v, in that order. Forl < i < n — k let
Xiri € {v1,..., 611} denote the set of successorsvpf;. That is, wherv;;
is added during the construction &f edges are added from, ; to each vertex in
Xk+i- Note that for all;, | X;| < k. We claim that the sequence:

D, Xy Xirt, Xipr U{ves1}, Xivo, Xipo U {vpsa s - X, Xy U {wn}

is @ monotone winning strategy fér+ 1 cops. LetR; = {v; : j > i}, then from
the definition ofk-DAGs and theX;, it is easy to see that the play associated with
the strategy is:

(@, V(G))u (Xk7 Rk)? (Xk-l—l? Rk)? (Xk+1U{Uk+1}, Rk-l—l)v SRR (Xn7 Rn—1)7 (XTIU{UH}7 Q)
As R; O R;,, for all 4, the strategy is monotone and winning as required.

2 = 1: Supposé: + 1 cops have a robber-monotone winning strategy. We assume
only one cop is placed at a time. Order the vertices in ternth@point at which
they are first occupied by a cop and then reverse this ordénato; appears later
thanv; if and only if v; was first occupied by a cop befosgwas. Call this ordering

<. We claim< has width< k. If this were not the case, there must exissuch
that|supp,(v;)| > &k + 1. The inert robber can then defeat the strategy of the cops
by starting onv;. At the point when a cop first occupies there are at most

cops on supp(v;) so there exists; € supp,(v;) which is not currently occupied.
Furthermore, no cop is on any vertex which appears earlien thin <, so the
robber is able to reach;. However, asi > i, v; has been occupied by a cop in



the past and was therefore not available as a robber positmontradicting the
robber-monotonicity of the strategy. O

It follows from this theorem that the minimal width over alrected elimination
orderings ofG and the minimal number of cops required to capture an inbteo
(less one) coincide, and this class of digraphs is chaiaeteby partiak-DAGs.

This leads to the following definition:

Definition 6 (Elimination width) Let G be a digraph. Thédirected) elimination
width of GG is the minimal width over all directed elimination ordermgfG.

4 Decompositions

With a robust measure for digraph complexity defined, we naw to the problem
of finding a closely related digraph decomposition.

4.1 Kelly-Decompositions

The decomposition we introduce is a partition of the vertetx arranged as a di-
rected acyclic graph, together with sets of vertices whighrd against paths in
the graph that do not respect this arrangement. We have atmoaddirestriction to
avoid trivial decompositions — vertices in the guard setstappear either to the
left or earlier in the decomposition. More precisely,

Definition 7 (Guarding) Let G be a digraph. We saj} C V(G) guardsX C
V(G)if WnNX =@andforall(u,v) € E(G) withu € X, we haves € X UW.

Definition 8 (Kelly-decomposition and Kelly-width) AKelly-decompositiorof a
digraphG is atriple® := (D, (By)iev(p), (Wi)iev(py) SO that

e DisaDAG andB;)cv (p) partitionsV (G),

e forallt € V(D), W, C V(G) guardsB} := Uy, B, and

e forall s € V(D) there is a linear order on its childreni, . . ., ¢, so that for all
1 <i<p W, CB,UW,UU,, B . Similarly, there is a linear order on the
roots such thatV,, C U;; B} .

Thewidth of ® ismax{|B,UW,| : t € V(D)}. TheKelly-width of G is the minimal
width of any of its Kelly-decompositions.

Our main result of this section is that Kelly-decompositiato in fact correspond
with the complexity measure defined at the end of the prevseagton.



Theorem 9 G has directed elimination widtk % if, and only if,G has Kelly-width
<k+1.

Proof. Let G be a digraph andD, (B;).cv (py, (Wt)iev(p)) @ Kelly-decomposition

of G of width £ + 1. Let 7 be the spanning tree @ obtained from the depth-first
traversal ofD which always chooses the largest child according to therorge®n
children. Let(ty,1.,...) be the order ofi’(7") (and hence)/ (D)) visited in the
depth-first traversal of” which always chooses the smallest child according to the
ordering. We claim that the sequence:

Wt17Wt1 UBt17m27m2 UBt27“‘

defines a monotone winning strategy fo#- 1 cops. At ste: — 1, it follows from

the definitions thatJ,; W;, cannot contain the robber, so the robber cannot move
at this step. At stefi, the robber is forced further down the DAG, and therefore
into a smaller region. Thus, this strategy will monotonedpture the robber.

For the converse, leti be a directed elimination ordering @r of width at most
k. Letv; < ... < v, be an enumeration of the vertices Gfordered by<. For
convenience we associate each ventgwith its indexi. In particular, we write
G := G]1,...,t] for the induced subgrap[vy, ..., v].

Define(D, (B)tcv(py, (Wi)ev(p)) as follows.V (D) := V(G). Forallt € V(D)
let B, := {t} andW, := supp,(t). Towards defining the edge relation, let
V(D) be a vertex. Let,, ..., C, be the strongly connected components:ef ¢.
Lett,...,t, be the<-maximal elements of’,, ..., C,, respectively. We put an
edge(t, t;) betweent andt; if ¢; is reachable front in G; and there is na; with
t; <Qt; <t such that; is reachable from in G; andt; is reachable from; in G; \ t.

We claim that(D, (By).cv(p), (Wi)ev(p)) is @ Kelly-decomposition of width<
k + 1. Clearly, D is a DAG, as all the edges if(D) are oriented following the
ordering<. Further, the width of the decomposition is clearly one mitian the
width of <1. To establish the guarding property, we first show the folimyclaim.

Claim. For allt € V (D), Reachy, (t) = B;.

We first show by induction onthatReachy, (t) C B;. Fort = 1 there is nothing
to show. Suppose the claim has been proved fof atl . Letv € Reach, ().
Let C1,...,C,, be the strongly connected components3f\ ¢. Without loss of
generality we assume thate (. Let s be the<-maximal element of’; and lett/
be the<-maximal element such that

e t'is the<-maximal element of somg;
e there is a directed path fromto ¢’ in G,
e there is a directed path fromto s in G, \ ¢.



By construction, there is an edget’) € E(D). If ¢ = v, orin fact if ¢’ is the
<-maximal element of’;, then there is nothing more to show. Otherwise, &nd
v are not in the same strongly connected componeidt,of ¢, thens, and hence
v, must be reachable fromin G . For, by constructions is reachable from’ in
G, \ t andt’ is the<t-maximal element reachable frann G, and from whichs can
be reached i+, \ ¢. Thus, ifs was not reachable frori in G- then the only path
from¢' tosin G, \t mustinvolve an element <t such that’ <w, contradicting the
maximality oft’. Hence,v is reachable fromt’ in G, and therefore, by induction
hypothesisy € B}, C B;.

A simple induction on the height of the nodeslinestablishes the converse. -

It remains to show that for alb € V(D) there is a linear ordering- of the

children s satisfying the ordering condition required by the defimtiof Kelly-

decompositions. For children= v’ of s definev C o' if v/ <v, i.e.C is the inverse
ordering of<.

Letty,...,t, bethe children of ordered by—. We claimthatforalf € {1,...,m},

Wi, € B,UW, U By

J<i

Suppose € W,,. If v € B, there is nothing to show. ¥ < v thenv € W ast; < s
is reachable frony and therefordV;, N {s,...,n} = supp,(t;) N {s,...,n} C
supp,(s)N{s,...,n} = Ws;N{s,...,n}. Finally, suppose <1s. Butthenp € B}
and hence € B;, for somel < j < k. By definition of support sets; ¢ 5B/, and
t; <v.Butthenp ¢ Btlj forall j 74, 1.e.j <1, asthen; <v and by construction,
w<t;forallw e Btl],. Hencep € Btll for somet, > t;. This completes the proof of
the theorem. O

The proof of Theorem 9 is constructive in that given an eliation ordering of
width & it constructs a Kelly-decomposition of width+ 1, and conversely. In fact,
the proof establishes a slightly stronger statement.

Corollary 10 Every digraphG' of Kelly-width% has a Kelly-decompositio® =
(D, (By)tev(py, (Wi)iev(py) of widthk such that for allt € V(D):

o [Bi] =1,
e 1V, is the minimal set which guards}, and
e every vertex € lS’tl is reachable inG \ W, from the uniquev € B;.

Further, if G is strongly connected, thed has only one root.

We call such a decompositi@pecial

10



4.2 Computing Kelly-decompositions

In this section we mention algorithms for computing Kellyath and Kelly-decom-
positions. The proofs of Theorems 5 and 9 show that Kellysdgmsitions can
easily (i.e. polynomial time) be constructed from directdichination orderings or
monotone winning strategies, so we concern ourselves hatlptoblem of finding
any of the equivalent characterisations.

In a recent paper [6] Bodlaender et al. study exact algostfon computing the
(undirected) tree-width of a graph. Their algorithms arsdshon dynamic pro-
gramming to compute an elimination ordering of the grapithtnsame paper, the
authors remark on actual experiments with these algorittussig some prepro-
cessing techniques, the dynamic programming approachsseeperform reason-
ably well (in particular for not too large instances). Thgaithms translate easily
to directed elimination orderings and can therefore be itsedmpute Kelly-width.
Hence, we get the following theorem.

Theorem 11 The Kelly-width of a graph with vertices can be determined in time
O*(2") and space&)*(2"), or in timeO*(4") and polynomial space.

Here,O*(f(n)) means that polynomial factors are suppressed.

For a givenk, the problem whether a digraggh has Kelly-width< k is decided in
exponential time with the above algorithms. As the minirtiaproblem is NP-
complete (it generalises the NP-complete problem of degithe tree-width of an
undirected graph), we cannot expect polynomial time atgors to exist. It seems
plausible though that, as in the caseDaiG-width, studying strategies in the inert
robber game will lead to a polynomial time algorithm whers fixed. This is part
of ongoing research.

5 Applications

5.1 Algorithms on graphs of small Kelly-width

In this section we present algorithmic applications of teeamposition introduced
above, including a general scheme that can be used to conalgerithms based
on Kelly-decompositions. We assume that a Kelly-decontiposfor even an elim-
ination ordering) has been provided or pre-computed. Wetimertwo example
algorithms which run in polynomial time on graphs of boundedly-width. The

first is an algorithm for the NP-complete optimization pinl of computing dis-
joint paths of minimal weight in weighted graphs. The sec@dn algorithm to

11



compute the winner of certain forms of combinatorial games.

Similar to algorithms on graphs of small tree-width, Keflgecompositions are
suitable for dynamic programming style algorithms: stagtwith a special Kelly-
decompositioiD, (B;).cv(p), (Wi )iev(py), the algorithm works bottom up to com-
pute for each node € V(D) a data set containing information on the #et:=
Urs¢ By. The general pattern is therefore described by the follgvateps (after
the special Kelly-decomposition has been computed):

Leaves: Compute the data set for all leaves.

Combine:If ¢ € V(D) is an inner node with childrety, ..., ¢, ordered by the
ordering guaranteed by the Kelly-decomposition (we oleséimat such an or-
dering can be computed easily with a greedy algorithm), domthe data sets
computed for3/,, ..., B} to a data set for the unidd <<, B/..

Update: Update the data set computed in the previous step so thaetheertex
u with B, = {u} is taken into account. Usually, the vertexvill have been part
of at least some guard séilg,. Asu ¢ W, it can now be used freely.

Expand: Finally, expand the data set to include guarddiip\ U, W;, and also
paths etc. starting at.

5.1.1 Weighted Hamiltonian Cycle and Disjoint Paths.

A weighted digraph is a pailGG, w) whereG is a digraph and> : V(G) — Risa
weight function. The Kelly-width of G, w) is the Kelly-width ofG. In [20] Johnson
et al. provided a dynamic-programming algorithm for compgitvhether a digraph
has a Hamiltonian-cycle which is based on arboreal decoitiqos. This algorithm
is readily extended to weighted digraphs and Kelly-decasitpms, giving us the
following:

Theorem 12 (essentially [20])For any k, given a weighted digrapfiz,w) and a
Kelly-decompositiotiD, (B:)iev(p), (We)iev(py) of G of width< k, there exists a
polynomial time algorithm which computes a Hamilton-cyafléG, w) of minimal
weight or determines that is not Hamiltonian.

The algorithm introduced above can easily be extended teedble following,
more general problem. Theeightedw-linkage problems the problem, given a
weighted digraph(G,w), a tuples := ((s1,t1),..., (Sw,tw)), and a setM C
{1,...,]V(G)|}, to compute for each € M an s-linkage of order/ of minimal
weight (among alk-linkages of order).

Theorem 13 (essentially [20])For everyw, k € N, given a weighted digraph

(G,w) and a Kelly-decomposition 6f of width< &, the weightedv-linkage prob-
lem can be solved in polynomial time.
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5.1.2 Parity Games.

Another example for an algorithm on graphs of bounded Keligith is an algo-
rithm for solving parity games on game arenas of small Keligith. Parity games
are a form of combinatorial games played on digraphs withyregplications in
the area of verification. See [17] for a definition. It is wetidwn that deciding the
winner of a parity game is in NP co-NP and it is a longstanding open problem if
the problem is in P. In [4], Berwanger et al. describe an aligor for computing
the winner of a parity game of boundedG-width. This algorithm can easily be
translated to arenas of small Kelly-width and, in some seilmseomes more effi-
cient as the size of a Kelly-decomposition of widths linear in the order of the
graph, whereas DAG-decompositions of widtmay contaim* nodes.

Theorem 14 For anyk, given an arenad of a parity game and a Kelly-decomposition
of A of width < £, the winning region of4 can be computed in polynomial time.

5.2 Asymmetric matrix factorization

The use of elimination orderings and elimination trees tegtigate symmetric
matrix factorizations is well documented (see e.g. [220). &ample, the height of
an elimination tree gives the parallel time required todaet matrix [7]. In [16],
Gilbert and Liu introduced a generalisation of eliminattoges, called elimination
DAGs, which can be similarly used to analyse factorizationshe asymmetric
case. Kelly-decompositions are closely related to thesetstres, as we show in
this section.

Let M = (a;;) be a square x n matrix. We defing,,; as the directed graph with
V(Gun) = {v1,...,v,}, and fori # j, (v;,v;) € E(G)y) if, and only if, a;; # 0.
We define<y, = (vq,...,v,), and®,, to be the Kelly-decomposition af ,
obtained by applying the proof of Theorem 9 with eliminaterdering<i,,.

Definition 15 (Upper and Lower elimination DAGs [16]) Let M be a square ma-
trix that can be decomposed a$ = LU without pivoting. Theipper (lower) elim-
ination DAGis the transitive reduction of the directed graply (G, respectively).

The connection between Kelly-decompositions and elinonaDAGs is reflected
in the following observation.

Theorem 16 Let M be a square matrix that can be decomposedias= LU
without pivoting. Le® ; = (D, (Bt)iev(p), (Wi)iev(py)- Then

(@) (D, (B:)wev(p)) is equivalent to the lower elimination DAG, and

(b) Gy = (V(Gu), {(v,w) : w € W,}), thus the upper elimination DAG is
equivalent to the transitive reduction of the relatipfv, w) : w € W, }.
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Proof. Forv € V(Gy), let X, = {v} U{w € V(Gy) : w <y v}, and let
G, = Gu|[X,]. We require two observations. First, from Theorem 1 of [27]:

(BE(Gp))'C = {(v,w) : w <1y v, andv € Reacky, (w)}, (1)

whereR”¢ denotes the transitive closure Bf Secondly, from Theorem 4.6 of [16],
we have

E(Gy) = {(v,w) : v<ipr w, andF’ € Reachy, (v) with (v',w) € E(Gy)}. (2)

Now the first result of the theorem follows from the obsematihat in the construc-
tion of the Kelly-decomposition,D, (B;):.cv(p)) is the transitive reduction of the
right-hand side of (1). The second result follows from Leninahich shows that
{(v,w) - w € Wy} = {(v,w) : w € supp,,, (v)} is equivalent to the right-hand
side of (2). O

We can use the results of [16] to make the following obseovatrthen we construct
Kelly-decompositions on undirected graphs.

Corollary 17 LetG be an undirected graphs an elimination ordering ortz and
(D, (By)tev(py, Wi)ev(py) the Kelly-decomposition af (considered as a bidi-
rected graph) obtained by applying the proof of Theorem @ efiimination order-
ing <. ThenD is a tree, and more preciselyD, (B;).cv(p)) is equivalent to the
elimination tree associated with the (undirected) elintioa ordering <.

6 Is it better to be invisible but lazy or visible and eager?

In this section we use graph searching games to compare-ellyr to DAG-width
and directed tree-width. In the undirected case, all gam@gsire the same number
of searchers, however we show that in the directed case &énergraphs on which
all three measures differ by an arbitrary amount. Our restidt imply that Kelly-
width bounds directed tree-width within a constant fadbo, the converse fails as
there are classes of graphs of bounded directed tree-widthuabounded Kelly-
width. We also provide evidence to suggest that Kelly-widtid DAG-width are
within a constant factor of each other. We begin by introdgdhe games associ-
ated withDAG-width and directed tree-width (see [4,23,20] for formalidigons).

Definition 18 (Visible robber game) Thevisible robber gamés played as the in-
ert robber game except that the robber’s position is always#n to the cops and
the robber is free to move during a cop transition irrespeetof where the cops
intend to move (however, he still cannot run through a stetrg cop). Thestrong
visible robber gamadds the further restriction that the robber can only move in
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the same strongly connected component (of the graph witlstdtenary cops’
locations removed). Atrategyfor the cops is a function that, given the current lo-
cations of the cops and the robber, indicates the next looaif the cops. A strategy
is winning if it captures the robber, and it immonotondf the set of vertices which
the robber can reach is non-increasing.

The following theorem summarises the results of [4,23,2@. refrain from giv-
ing the definitions and background on directed tree-decaitipos and DAG-
decompositions and refer to [20,4] instead.

Theorem 19 Let G be a digraph.

(1) G hasbaG-width £ if, and only if, £ cops have a monotone winning strategy
in the visible robber game ofi.

(2) G has directed tree-widtkt 3k + 1 or k£ cops do not have a winning strategy
in the strong visible robber game ain

Ouir first result shows that a monotone winning strategy initieet robber game
can be translated to a (not necessarily monotone) winniagesty in the visible
robber game.

Theorem 20 If £ cops can catch an inert robber with a robber-monotone sgwte
then2k — 1 cops can catch a visible robber.

Proof. Supposeé: cops have a robber-monotone winning strategy on a géaph
By Theorem 5 this implies that there is a directed eliminatodering<t on G of
width < k£ — 1. We use the elimination ordering to describe the winningtstyy of
2k — 1 cops against a mobile, visible robber, thereby establgsthie result.

The cops are split into two groups cops called thlockersandk — 1 cops called
thechasers Similarly, the cop moves are split in two phases, a blockimaye and
a chasing phase.

In the first move i cops are placed on thiehighest elements with respect ¢a
These cops form the set of blockers. Let the robber choose sbement). This
concludes the first (blocking) move. We observe:

If u is the <-smallest vertex occupied by a blocker, then
every directed path from to a vertex greater tham has at (%)
least one vertex occupied by a cop.

This invariant is maintained by the blocking cops during piey. Now suppose
afterr rounds have been played, the robber occupies verted the blockers oc-
cupy vertices inX so that the invariant«) is preserved. Let: be the<-smallest
element inX and letC, ..., C be the set of strongly connected components of
G[{v' : u' < u}]. Further, letC be a linear ordering o8 := {C4,...,Cs} so
thatC; C Cj if, and only if, the g<-maximal element irC; is <-smaller than the
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<-maximal element of’;. Now the cops move as follows. Lét € C be the com-
ponent such that € C and letw € C be the<-maximal element irC'. The cops
place thek — 1 cops not currently on the graph on sugp). These cops are the
chasers. Seeing the chasers approach, the robber has twnsotither he stays
within C or he escapes to a vertex in a different strongly connectetpooent
C'. If the robber runs to a vertex € C' or x € (' for someC’ C C then after
the chasers land ofi := supp,(w) there is no path from: to a nodeu such that
ut>u' for the <-minimal vertexu’ in S. Hence, the chasers become blockers and the
chasing phase is completed. Otherwise, if the robbers esda@’’ with C C
then the chasers repeat the procedure and move tq supjpfor the <-maximal
element inC’. However, as the robber always escapes to-larger strongly con-
nected component and also can not bypass the blockers hiéssng phase must
end after finitely many steps with the robber being on a ventex C' for some
component” and the chasers being on sug) for the <-maximal element it
At this point the chasers become blockers. One of the oldkelscis now placed
onw and all others are removed from the board. The copvanakes sure that in
each such step the robber space shrinks by at least one.\M@yternstruction, the
invariant in ¢) is maintained. Further, as the robber space shrinks byaat tene
after every chasing-phase, the robber is eventually camgtite cops. O

One consequence of this theorem is that Kelly-width bounéstdd tree-width by
a constant factor.

Corollary 21 If G has Kelly-width< k thenG has directed tree-widtkl 6k — 2.

Since it is not known whether monotone strategies are seiffich the visible rob-
ber game, we cannot obtain a similar bound faG-width. We can, however,
ask whether we can improve the bound, i.e. assumingkittaips have a robber-
monotone winning strategy against an invisible, inert erbdan we define a win-
ning strategy for less thatk — 1 cops in the visible robber game? Although it might
be possible to improve the result, the next theorem shovwissté@annot do better
than with3k cops.

Theorem 22 For everyk € N, there is a digraph such that cops have a robber-
monotone winning strategy in the inert robber game but neféthan4% cops can
catch a visible robber.

Before we prove this result we need to introduce the ideaxa¢dgraphic product.
Definition 23 (Lexicographic product) Let G, H be graphs. Thdexicographic
productG e H of G and H is defined as the graph with vertex 3&tG e H) :=
V(G) x V(H) and edge set

E(GeH) := {((x,y), (x’,y')) (z,2") € E(G)orxz =2"and(y,y') € E(H)}.
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The lexicographic product is also known giph compositiorasG e H can also
be viewed as a graph obtained framby replacing vertices by copies éf. This
observation is useful for the following proposition:

Proposition 24 Consider the cops and robber game on a directed grapland
let IC,, be the complete digraph anvertices. Then at leadt cops have a winning
strategy oGz if, and only if, at least. - k£ cops have a winning strategy dhe C,,.

Proof. If k cops have a winning strategy @¥ then a winning strategy fot - &
cops onGz e K, is obtained by simulating the game 6h If the robber’s position is
(r,s) € V(G e K,,) then we position a robber anc V' (G). We then consider the
cops’ play onGG and play onGG e IC,, by placingn cops on{(z,y) : y € V(K,)}
whenever a cop would be placed ore V (G).

For the converse we show that if the robber can defeatl cops onGz then he can
defeatnk — 1 cops onGG e KC,,. Again we simulate the game féf ¢ 1C,, on GG, but
this time from the robber’s perspective. We place a copcon V(G) only if all
vertices inV (G e IC,,) of the form(z,y), y € V(K,,) are occupied. By the pigeon-
hole principle, this places at mokt— 1 cops onG. The robber’s current position
is projected as before. The robber’s resporisen G is lifted to G e IC,, by playing
to an unoccupied vertex of the for(n’, y). As ' is unoccupied in the simulated
game, at least one such vertex exists. We need to be caréfel firojected play is
to remain at the same vertex because the robber’s positigroe@ome occupied.
But as the projected vertex remains unoccupied, there isast lone unoccupied
vertex in the block isomorphic t&,, and so the robber is able to run to that vertex.
As the robber can defeat— 1 cops onGz, the strategy is winning. O

It is worth observing that Proposition 24 holds regardlesthe visibility or mo-
bility of the robber, as well as when the cops are restricteghdnotone strategies,
giving us the following:

Corollary 25 For any directed grapld:

(i) DAG-Width(G e K,,) = n - DAG-widthG).
(i) Kelly-width(G e C,,) = n - Kelly-width Q).

We now use this result to complete the proof of Theorem 22.

Proof. Consider the graply in Figure 1. It is easy to see that 65 3 cops do not
have a (nhon-monotone winning) strategy to catch a visidideo, howeved cops
do. On the other hand, cops suffice to capture an invisible, inert robber with a
robber-monotone strategy. The result follows by takingltheécographic product
of this graph with the complete graph érvertices. a
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Fig. 1. GraphG to show difference betweewnG-width and inert robber game

In fact, 4 cops can capture a visible robber with a monotone strategh@graph
in the previous proof, giving us the following:

Corollary 26 For all & > 1 there are graphs obAG-width 4% and Kelly-width3k.
Despite this% bound, for graphs of small Kelly-width we can do better.
Theorem 27 For k = 1 or 2, if G has Kelly-widthk, G has DAG-width.

Proof. If G has an elimination ordering of widththen it must be acyclic, as all
support sets are empty. Thus it has DAG-widthf G has an elimination ordering
< = (v, v9,...,v,) of width 1 then a cop-monotone strategy for two cops against
a visible robber is as follows. Initially, let = n and place one cop om. At this
point, the robber is restricted tov,...,v;_;}. Let j < ¢ be the maximal index
such that the robber can reach Place a cop on;. After the cop has landed, we
claim that the robber is unable to reach botlandv;. For otherwise, let be the
maximal index such that the robber can reagclwith cops onv; andv;) and from
v, can reachy; (with a cop onv;) andv; (with a cop ornv;). By the maximality of
j,r < j.Lets > r be the first index greater thanwhich occurs on a path from
v, to v; that does not go through;, andt > r be the first index greater than
which occurs on a path from. to v; that does not go througty. Then from the
maximality of r, s # t. Furthermore{v,,v,} C supp,(r), so|supp,(v,)| > 1,
contradicting the width of the ordering. So we can removecthiefrom whichever
vertex the robber can no longer reach without changing theepspace, and either
the robber is now restricted oy, . . ., v; } or the maximal index which the robber
can reach is smaller. Clearly, this is a monotone winnirafsgy for two cops. O

We now turn to the converse problem, what can be said abolwKehg-width of
graphs given their directed tree-width D&G-width? First, we consider the binary
tree with back-edges example in [4], where it was shown tlisscof graphs has
bounded directed tree-width but unbounded-width. A “binary tree width back-
edges” is a balanced binary tree of heighfior somek, where all edges are oriented
from the root towards the leaves. In addition every vertexddirected edge to each
of its predecessors on the unique path from the root to itejlure 2 shows a tree
with back-edges of height
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Fig. 2. Binary tree with back-edges of height

It is readily shown that this class of graphs also has unbedally-width.

Theorem 28 There exists classes of digraphs with bounded directedxrdth and
unbounded Kelly-width.

Our final result is a step towards relating Kelly-widthmaG-width by showing
how to translate a monotone strategy in the visible robbereg® a (not necessarily
monotone) strategy in the inert robber game.

Theorem 29 If G hasDAG-width < k, thenk cops have a winning strategy in the
inert robber game.

Proof. Given aDAG-decompositior{ D, (X4)qev(p)) of G of width k, the strategy
for k£ cops against an invisible, inert robber is to follow a defutst search on the
decomposition. More precisely, we assume the decompngifig a single roat,
and we have an empty stack of nodedof

(1) Initially, place the cops oX,. and pushr onto the stack.

(2) At this point we assumé is on the top of the stack and the cops areXgn
We next “process” the successorsdah turn. To process a successbiof d,
we remove all cops not oN ;N X, place cops oX, pushd’ onto the stack,
and return to step. Note that a node may be processed more than once.

(3) Once all the successors of a node have been processedpvikepnode off
the stack and if the stack is non-empty, return to gtep

Because the depth-first search covers all nodes of the DAGanck all vertices
of the graph are eventually occupied by a cop, the robberheilforced to move
at some point. Due to the guarding condition for DAG-decosifpans, when the
robber is forced to move this strategy will always force thblyer into a smaller
region and eventually capture him. O

Again we observe that it is unknown if monotone strategidficguin the inert
robber game, so this result does not allow us to compare Ketlgh andDAG-
width.
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7 Open Problems and Further Remarks

Let us first remark on the following recent result. In [21],8dtzer and Ordyniak
give examples showing that neither the visible robber gasse@ated with DAG-
width nor the inert robber game associated with Kelly-widte monotone. The
examples show that for eaéhe N there are graphs where the difference between
the number of cops needed for monotone and non-monotonangirstrategies
differ by k£ cops. However, it is not clear if the monotonicity cost canrieeased
any further or if there is a constant> 1 such that whenevércops have a winning
strategy in one of the games thenk cops have a monotone winning strategy.

Note that if there was such a constant factor giving an uppand for the mono-
tonicity costs in both games, then the Kelly-width and the@>&idth of a digraph
would be within constant factors of one another. We beliea¢ this is the case and
therefore propose the following conjecture.

Conjecture 30 The Kelly-width andAG-width of a graph lie within constant fac-
tors of one another.

In [20], an min-max theorem between directed tree-width gaednumber of cops
required to catch a robber in the visible robber game wheserobber moves in
strong components is given. However, this theorem is onlyou@ constant fac-
tor and for various reasons there is no hope to make it extactight be possible,
though, to define a modified version of directed tree-widét thoes have an ex-
act min-max theorem with non-monotone strategies. Oneralatandidate is the
version of directed tree-width given in [19], to which theasens ruling out such
an exact theorem for the standard definition do not applys ©hpart of ongoing
research.
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