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"... See Alex, let me tell you that feedback
is somehow the motor of the whole world!"





Abstract

This work addresses the problem of nonlinear control of nonholonimic,
nonminimum-phase systems .

More speci�cally, the problem of trajectory tracking for a motorcycle-like sys-
tem will be considered.

The literature on this topic appears to be rather limited, both with regard to
the theorical side, as well as concerning the applications.

The path is considered to be fully known in advance, in other words it's by
itself a deterministic variable. A mathematically rigorous, yet simpli�ed model
of the system will be de�ned and the controller will adopt some features of the
ground-breaking paradigm of model-based predictive control.

Di�erently from previous approaches, the focus will be on de�ning feasible
trajectories for the internal dynamics which, through an optimization procedure,
will cause precise convergence to the desired path. This idea poses clearly de-
�ned bounds on the internal dynamics, thus preventing the whole system from
a situation of instability, and also avoids, through the aforementioned optimiza-
tion, the need of pointing out analytical de�nitions of feasible external connection
trajectories which appear to be much harder to be precisely de�ned.

The whole controller has undergone a process of enhancement and improve-
ment up to its computational weight and algorithmical complexity in order to be
integrated into an existing commercial simulator. New problems connected with
the use of a model for a "real" system had to be faced and solved.

Future trends and ideas for the whole projects are eventually described and
suggested.

Simulations for both the theorical model and the real world application are
provided, analyzed and fully discussed.





Sommario

L'oggetto di questa tesi è lo studio della tematica del controllo non lineare
per sistemi anolonomi a fase non minima.

Più precisamente si focalizzerà l'attenzione al problema dell'inseguimento di
traiettoria da parte di un sistema modellizzabile come una motocicletta.

In letteratura l'argomento appare alquanto nuovo, sia dal lato teorico, data
la mancanza di euristiche o metodologie speci�che, che da un punto di vista di
sviluppo di algoritmi applicativi.

La traiettoria, ovvero la strada, è considerata totalmente nota a priori, ovvero
la si considera deterministicamente �ssata.

Si adotterà , per il sistema in analisi un modello sempli�cato ma rigoroso, e lo
schema di controllo proposto farà sue alcune caratteristiche dalla nuova metodolo-
gia del "controllo predittivo basato su modello".

Di�erentemente dagli approcci precedenti, l'idea chiave è stata quella di svilup-
pare traiettorie virtuali per la dinamica interna del veicolo (ovvero per il rollio)
che, attraverso una procedura di ottimizzazione, portano ad un'e�ettiva conver-
genza verso la traiettoria desiderata, ovvero ad un e�ettivo inseguimento della
strada. L'idea si è dimostrata e�cace in quanto pone dei limiti alla dinamica
del rollio del veicolo, prevenendo dunque potenziali situazioni di instabilità dello
stesso; inoltre risolve il problema del progetto di traiettorie di connessione �siche
nel piano, il quale appare impreciso sia da un punto di vista formale che sotto
l'aspetto delle prestazioni.

L'intera struttura di controllo è stata sottoposta ad un processo di progressivo
miglioramento e di ottimizzazione per ciò che riguarda il peso computazionale,
con l'intento �nale di integrarla in un software commerciale esistente sul mercato.
Si sono di conseguenza dovuti risolvere nuovi problemi pratici al momento dell'
applicazione e�ettiva dello schema sviluppato.

Si suggeriscono nuove idee e potenziali miglioramenti per l'algoritmo.
In�ne, si presentano e discutono simulazioni riguardanti il metodo sia nel

suo sviluppo teorico, che nel suo utilizzo pratico.
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Chapter 1

Introducing the problem

Riding a bicycle is not that hard. Intuitively our body teaches us how to balance
and steer a bicycle, although we may not understand the physical reasons or laws
behind this phenomenon.
Attempting to model such a system and learning how to "mathematically" steer
it is indeed much more di�cult.

A bicycle, as well as a motorcycle, is an intrinsically unstable system because
it can easily reach an unstable state and fall over. This makes it much harder
to control than a car, for instance, as the driver must not only go in the right
direction, but also maintain his or her balance. Moreover, this is a complex
system to model, as it can be only described through the in�uence of many forces
and momenta, which are all included in a series of quite convoluted di�erential
equations. From a purely kinetic point of view, it can be clustered into four
di�erent parts: the rear axle, the front axle, the rear wheel and the front wheel.
Reasoning over all of its constraints, we can conclude that as a whole it is a
system with three degrees of freedom. These degrees can be put in relation with
the possible movements of the vehicle: longitudinal feed (forward and backward
motion), rolling (lateral leaning) and steering (left and right). In a real setting,
we also must consider the fact that tires are never ideal, but indeed they are
subject to slipping or skidding: this non-ideality (dynamic friction relative to the
ground, existing in every active situation) is indeed the main cause of the actual
movement of the whole vehicle.

As it can be inferred from the previous deiscussion, the modelling of a motor-
cycle can present many inherent di�culties: a good job of the control engineer
must mediate between a very adherent model, and a rough one. With the �rst
choice, indeed, it could be possible to include into the modelization many distinc-
tive characteristics, which could turn out in the future to be necessary to justify
some behaviors. Conversely, a too precise model could turn out to be not enough
robust and be suitable not to all the di�erent models of vehicles. In our work,
besides, we'll make a tradeo� of modelling errors for simplicity and tractability.

As the reader will come to know, there's a fairly large leap between a theorical
solution to the problem and a practical one, and many times the integration of
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some mathematical results, proven to be sound and well posed, into an empirical
setting require updating the model itself.

Our approach was to tackle the problem of path following for those nonminu-
mum phase, nonholonomic systems in a theorical framework through the theory
of nonlinear control, and to implement the solution into an existing software
interface.

We will �rst introduce the reader through the mathematical setting of the
problem, after having de�ned the quantities which will come into play. We will
also further explain some of the physical properties of these dynamical systems.
We then give a detailed description of the proposed algorithm, or control scheme.
Lastly, after giving a brief description of a software product that simulates the
behavior of motorbikes, we'll analyze how the proposed algorithm was embedded
into the product and all the improvements that we attained. One chapter will be
dedicated to a mathematical derivation for another new, more complex model of
the system. A discussion and an analysis of the possible future ideas will close
the paper.



Chapter 2

A theorical setting

2.1 The Model
The selection of a model for the system is vital to the �nal performance of the
whole controller. We consider a standard motorcycle model already used in sim-
ilar analyzes, as illustrated in �gure 2.1.

δ

θ

b

c

X

Y

Z

α

m

Vr

Figure 2.1: The Model for the Motorbicycle

The distance between the rear wheel contact point with the ground and the
ground projection of the center of mass m along the contact line is c; the distance
between the two wheels is b.

We make the following assumptions: the wheels have negligible mass, inertial
moments, radius and width (i.e. they are assumed to be �lenticular�); also, they
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roll through static friction without any slip or skid e�ect, and there is no asso-
ciated damping factor with them (i.e., the system does not pitch). The steering
wheel has a vertical axis as long as the bicycle's plane is normal to the �at ground;
also, we neglect any in�uence of inertial moments due to the steering mechanism,
especially in the derivation of the dynamics equations. All the massive e�ects are
clustered into the center of mass, which is set at a height p. In other words, we
assume to deal with what is often characterized as a point-mass bicycle.

2.1.1 Reference frames
Considering the dynamics of our system, we are free to refer its equations either
to a ground-�xed inertial frame, or to a non-inertial, bicycle-�xed one (see �gure
2.2).

θ

Xm

Ym

X

Y

θ

Inertial Frame

Fixed Frame

is the yaw angle 

Figure 2.2: The Di�erent Reference frames

The inertial frame has two of its dextrorotatory axes lying on the �at ground
plane, and its third pointing vertically and opposite to the direction of gravity.
The non-inertial frame is dextrorotatory as well, and has the x axis pointing
forward in the direction of the bicycle, the z axis coinciding with the inertial
equivalent, and the y one in the reasonable third direction, normal to the previous
two.

We de�ne contact line as the intersection of the vehicle's plane and the ground
plane. The orientation of this line (pointed in accordance with the x axis of the
body frame) with respect to the x axis in the inertial frame is named yaw angle,
ϑ.

As long as the vehicle's plane of symmetry has some inclination with the
normal to the �at ground, we have a non-zero angle, known as roll angle, α.
As mentioned above, our bicycle has always null pitch angle.

Rotating the steering wheel allows us to de�ne a steering angle β, which can
be easily connected with the curvature of the rear wheel, σ. More precisely, we
can parameterize the steering angle through the following transformation:
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σ =
tan(β)

b
(2.1)

A more accurate consideration will make the reader realize that the steering
angle does not always match the angle of rotation of the steering shaft; indeed,
calling ψ this last variable, we have that:

tan β cos α = tan ψ (2.2)

In the case when α is null, we obtain obviously that β = ψ.

2.2 Cinematics and Dynamics Equations
We can refer our equations describing the vehicle's motion either to the body
frame, or to the inertial one. Also the dynamics relations can be referred to
the moving or to the �xed reference system, thus highlighting the in�uence of
di�erent forces.

Assuming that the vehicle has a longitudinal velocity vr along the x-direction
in the body frame, and a lateral one vl, parallel to the y-axis, using a well known
orthogonal matrix we easily state that

[
ẋ
ẏ

]
=

[
cos(ϑ) − sin(ϑ)
sin(ϑ) cos(ϑ)

] [
vr

vl

]
, (2.3)

thus obtaining a 1 to 1 relation between the two couples of velocities. Note that
the matrix is always invertible, due to its structure. Along with vr and vl, the
quantities ϑ and σ form the set of generalized velocities. These are the derivatives
of the generalized coordinates referred to a non-inertial system. Expressing the
external forces applied to the system in terms of the generalized coordinates, we
de�ne the generalized forces and distinguish them from the physical forces. These
new quantities help de�ning the dynamic equations of a system referred to any
non-inertial frame. For instance, considering a robot manipulator with its joints
as generalized coordinates, we have that the generalized forces are the torques
applied to the joint axes.

In our case, the two generalized forces are respectively the reaction due to
friction that the ground plane applies to the rear wheel, τ r, and the torque τσ

applied through the steering shaft.

2.2.1 Nonholonomic Constraints
In Robotics, a constraint is a sort of restriction to the movements of a system,i.e.
a reduction to its degrees of freedom or to the paths it can follow. Generally
speaking, a constraint is said to be holonomic if it restricts the motion of the
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system to a smooth hypersurface in its con�guration space; algebraically, it can
be expressed as

hi(q) = 0, i = 1, ..., k; (2.4)
where k de�nes the number of limits imposed to the system and hi is a mapping

from the con�guration space to R.
Assuming the full rank of the Jacobian of (2.4)

∂h

∂q
=




∂h1

∂q1
. . . ∂h1

∂qn. . .
∂hn

∂q1
. . . ∂hn

∂qn


 (2.5)

we infer that those constraints reduce the degrees of freedom of the system of
n dimensions.

Through equation (2.4) we can de�ne a set of constraint forces, which are
linear combinations of the gradients of all the constraint functions hi,

F =
∂h

∂q

T

λ, (2.6)

and they're thought as acting normal to the constraint surface. No work is
originated from them as long as the movements of the systems follow feasible
trajectories.

If these constraints regard velocities instead of coordinates, they can be ex-
pressed as

C(q)q̇ = 0, (2.7)
where C(q) ∈ Rk×n stands for a set of k velocity constraints. Such constraints

are named Pfa�an Constraints. Assumptions on their linear independence are
similar to those aforementioned.

It makes sense to wonder whether these constraints on velocities can be in-
tegrated into corresponding algebraic restrictions on the coordinates: when this
happens the Pfa�an Constraint is called Holonomic; conversely, we de�ne a
Nonholonomic Constraint as one of the form (2.7), which cannot be inte-
grated. This implies that the set of constrained velocities does not match the
(dimension of) the set of constrained coordinates.

2.2.2 Cinematics and Dynamics Equations, cont'd
In order to derive some dynamic equations for our model, we must take in consid-
eration the e�ect of the constraints. We assume the idealized wheels roll without
slip and are free to rotate around their z -axis, due to the steering action.

Remembering the de�nition of the velocities belonging to the system, consid-
ering also the roll and partitioning them into ṙ = [α̇, vr, σ̇] and ṡ = [ϑ̇, vl], we
have the following nonholonomic constraints :
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[
ϑ̇
vl

]
+

[
0 −σ 0
0 0 0

] 


α̇
vr

σ̇


 = 0; (2.8)

From the �rst row, we have that ϑ̇ = σvr, while the second gives vl = 0,
thus verifying our aforecited assumptions. An important entity is the curvilinear
abscissa, which is given in our case by s(t) =

∫ t

0
vr(τ)dτ .

Now that we are ready to write down the equations, let's refresh the reader's
mind about Lagrangian Equations.

2.2.3 Lagrange's Equations
Two are the main motivations which naturally lead to the powerful lagrangian
formalism in Mechanics : �rst, the expression of the dynamics equations in an
arbitrary frame; second, the cancellation of reaction forces for constrained sys-
tems. There exist many approaches for their derivation, here we shall exploit the
energy properties of a mechanical system.

Newton's second law for system of n particles gives

F = mr̈, r ∈ R3×n, (2.9)

where the bold quantities are n-dimensional vectors. These particles may un-
dergo a set of holonomic constraints limiting their degrees of freedom. Constraints
in�uence them through constraint forces Φ, which must appear in a relation of
the form (2.9). As discussed above, a set of constraints induces a vincular man-
ifold or surface in Rn, on which ∇F1 is never null. In other words, forces are
tangent to these manifolds. We must then update equation (2.9) into

F + Φ = mr̈, r ∈ R3×n. (2.10)

A further analysis may show that Φ can be expressed with a basis for the
constraint forces and suitable Lagrange multipliers.

Relation (2.10) in general has two unknown variables, the constraint forces and
the particles' movements. Therefore, we have to look for other relations allowing
us to solve in terms of all the components. We could, for instance, project the
partial derivatives of the coordinates along the vincular manifold, knowing that
this work is always null, as previously stated.

As the reader might be aware, this problem appears to be quite computation-
ally lengthy. Let's select l coordinates qi, with l = 3 · n − c and c=dim(Φ); we
can express a relation similar to (2.9) in terms of them. Obviously, we're forced
to look for a new set of generalized forces for these generalized coordinates. In-
dependent of the choice of these coordinates, the new equations have the same
form.

1We de�ne the gradient at point x of a scalar function F in Rn as ∇F(x) =
∑n

i=1
∂F
∂xi

(x)ei.
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De�ning a function L = T − V , called Lagrangian, where T and V are the
kinetic and potential energies, respectively. It can be demonstrated that these
equations have the following form:

d

dt

∂L

∂q̇i

− ∂L

∂qi
= Φi, i = 1, . . . , m, (2.11)

where Φi is the external force along coordinate i.
These are the Lagrange's Equations in the general form.

2.2.4 Cinematics and Dynamics Equations, cont'd
Applying the aforementioned Lagrangian approach, we obtain the following La-
grangian for our system:

L = −mgpsα +
1

2
J(α, σ)σ̇2 +

m

2

(
(vr + psαϑ̇)2 + (vl − pα̇cα + cϑ̇)2 + (−pα̇sα)2

)
,

(2.12)
where J(α, σ) is the moment of inertia of the front steering wheel about the

steering axis, and we have used [sin(α) = sα, cos(α) = cα] 2.
By substitution, we can include the constraints (2.8) into (2.12), obtaining

Lc = −mgpsα+
1

2
J(α, σ)σ̇2+

m

2

(
(vr+psασvr)

2+(cσvr−pcαα̇)2+p2α̇2s2
α

)
, (2.13)

Now, the reader might know that in general the Constrained Lagrangians are
not Lagrange Equations (for an easy demonstration please check [18]). Through
some technicalities (see [13]) and disregarding the term J we can attain a correct,
reduced and decoupled formulation:

σ̇ = wσ;

M

(
α̈
v̇r

)
= F + B

(
wσ

ur

)
, (2.14)

where
M =

(
p2 −cpcασ

−cpcασ 1 + (c2 + p2s2
alpha)σ

2 + 2pσsα

)

F =

(
gpsα + (1 + pσsα)pcασvr

−(1 + pσsα)2pcασvrα̇− cpσsαα̇2

)

B =

(
cpcαvr 0

−(c2σ + psalpha(1 + pσsα))vα 1/m

)

2All the letters have undergone a de�nition in the beginning of the present section.
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Here wσ = σ̇ is intended to be a control, as well as the force ur exerted by the
rear wheel to the �at ground, through the engine's thrust.

From now on, we'll focus our attention just on the �rst row of equation (2.14),
which actually describes the dynamic relation concerning the equilibrium of the
bicycle. Let's rewrite this part separately to highlight it:

pα̈ = gpsα + (1 + pσsα)pcασv2
r + cpcα(vrσ̇ + v̇rσ). (2.15)

2.3 Nonlinear Control
Considering, as in [21], the classical single-input single-output system

{
ẋ = f(x) + g(x)u
y = h(x);

with x ∈ Rn , f , g smooth vector �elds on x ∈ Rn and h a smooth nonlinear
function, i.e. an in�nitely di�erentiable function, we can de�ne the derivatives
of the function h along the vector �elds f and g through the concept of the Lie
Derivative. Di�erentiating the second member of (2.16) w.r.t. time, we obtain:

ẏ = ∂h
∂x

f(x) + ∂h
∂x

g(x)u
.
= Lfh(x) + Lgh(x)u. (2.16)

Here Lfh(x) and Lgh(x) are the Lie Derivatives of h w.r.t. respectively f and
g.

Through an intuitive feedback linearization is possible to render the system
(2.16) linear, granted that Lgh(x) is bounded away from zero in a particular open
subset of Rn. Contrariwise, di�erentiating again (2.16) we have:

ÿ =
∂Lf h

∂x
f(x) +

∂Lf h

∂x
g(x)u

.
= L2

fh(x) + LgLfh(x)u. (2.17)

An attentive reader might have noticed the trend: we can reach a new lin-
earization of (2.17) under the case LgLfh(x) 6= 0 into that open subset.

Generalizing the procedure, we can look for that index ζ > 0 such that
LgL

ζ−2
f h(x) = 0 in the open subset and LgL

ζ−1
f h(x) 6= 0 in there. The non-

linear system (2.16) is de�ned to have strict relative degree ζ in a point belonging
to the mentioned set in case the two previous conditions hold.

Now, under the case ζ < n inside an open subset, it's possible to determine a
Normal Form for the SISO system. De�ne:
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φ1(x) = h(x),

φ2(x) = Lfh(x),
...

φζ(x) = Lζ−1
f h(x). (2.18)

The terms φi(x) are new coordinates corresponding to y and its derivatives
and do not depend on u. Also, it can be proven 3 that the system made up of
the derivatives of (2.18) is linearly independent; by Frobenius theorem 4 we can
de�ne n− ζ functions η1(x), η2(x), . . . , ηn−ζ(x) such that the system




dh(x)
dLfh(x)

...
dLζ−1

f h(x)

dη1(x)
dη2(x)

...
dηn−ζ




(2.19)

has rank n in the same open subset (which could at worst be a single point).
Thus, we can de�ne a local di�eomorphism5 by

Φ : x 7→




h(x)
Lfh(x)

...
Lζ−1

f h(x)

η1(x)
η2(x)
...

ηn−ζ




(2.20)

Referring to the two parts of the whole system as ξ and η, we can express the
system (2.16) as

3Through the use of the so called Lie Brackets and the theory of distributions (which we
skip to cover; the reader can �nd a precise analysis in [21]).

4Given a set of smooth vector �elds X1, X2, . . . , Xn, we de�ne a distribution ∆(x) =
span(Xi); the theorem states that A nonsingular distribution is completely integrable if and
only if it is involutive, where a distribution is involutive if and only if the Lie Bracket of two
of its vectors lies in the same distribution and is integrable if, having dimension d < n, ∃ n− d
functions forming a complementary codistribution.

5A map f is a di�eomorphism if it is a homeomorphism(i.e. a one-to-one continuous map
with continuous inverse) if both f and f−1 are smooth.
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ξ̇1 = ξ2,

ξ̇2 = ξ3,
...

ξ̇ζ = b(ξ, η) + a(ξ, η)u,

η̇ = q(ξ, η),

y = ξ1 (2.21)

This system description is referred to as the "normal" form.
In the fortunate case where the relative degree is exactly n, we obtain a

form for the system (2.16) identical to (2.21), except for the absence of the part
η̇ = q(ξ, η). It is possible to establish some conditions for this to happen. In
general we'll talk about the State Space Exact Linearization Problem when, given
a system of the form (2.16) with no output, we look for a function h(x) s.t. the
relative degree of the resulting system is exactly n.

It's time for an important de�nition, as in [21] (here we'll skip all the speci-
�cations on asymptotic or exponential behavior):

De�nition: The system (2.16) is said to be minimum phase at x0 if the equi-
librium point η = 0 is locally stable.

Everything smooth so far, but the central starting point in our paper is that
the model described above, (2.14) , and in general each other model for vehicles
like bicycles, doesn't verify this property, i.e. it's namely non minimum phase.

As the reader might have already studied, for linear systems with an usual
transfer function, the corresponding de�nition involves the presence of zeros in
the right half-plane of the S-transform of the impulse response. In the case of
discrete systems this condition refers zeros external to the unit circle.
Even if apparently this seems just one among a wide set of conditions, it's indeed a
pretty tough one. For instance, stabilization and tracking for minimum-phase sys-
tems has many pretty e�ective methods, while similar problems for non-minimum
phase systems have just been super�cially addressed. We'll give some contribu-
tions toward this goal.

2.3.1 Jacobian Linearization
We've already spent some lines hinting at the di�erence between the Linearization
by State Feedback procedure and the Jacobian Linearization, so for the sake of
completeness let's devote some more e�orts to brie�y summarize this second one.

While, as previously described, the linearization by state-feedback aims at
obtaining an exactly linear input-output response for the nonlinear system, the
jacobian one just helps to characterize "linearly" a system around some particular
points of the phase plan. Usually this points are equilibrium ones, which means
that the system has a bias in remaining close to them, and indeed this linearization
turns out to be consistent just in a small neighborhood of these points.
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Given the classical relation for the state part of a SISO (scalar) system of the
form

ẋ = f(x, u), (2.22)
and having determined equilibrium values x0, u0, that is, values for which

ẋ0 = 0 = f(x0, u0), we proceed with a small-signal linearization expanding the
nonlinear equation in terms of perturbations from these equilibrium values letting
x = x0 + δx and u = u0 + δu, so that

ẋ0 + δẋ ∼= f(x0, u0) + Fδx + Gδu, (2.23)
where

F =

[
∂f

∂x

]

x0,u0

, G =

[
∂f

∂u

]

x0,u0

. (2.24)

Subtracting the equilibrium solution, this reduces to

δẋ = Fδx + Gδu, (2.25)
which is a linear ODE approximating the dynamics of the motion about the

equilibrium point. Always keep in mind that this expression is only valid in a
close neighborhood of the very same equilibrium point.

2.4 Model-Based Predictive Control
This is a relatively new trend in Controls, and as many dawning methods it
comes with many expectations, as well as many blurry aspects. No deep theorical
research has passed through so far, and many aspects have to be wholly grasped
yet. Still, many applications ensure that it is quite promising. Our work will
conglomerate some of its features.

Consider a nonlinear control system

{
ẋ = f(x(t), u(t)),
x(t0) = x0;

(2.26)

where x ∈ Rn and u ∈ Rm are the state and control vectors respectively. We
impose a bound on the input, u(t) ∈ U , where U ⊂ Rm.

In general, the MPC problem can be stated as:
For any state x at time t, �nd a continuous function û(τ, x(t)) : [t, t + T ] → U
such that the performance index

J = x(t)T Px(t) +

∫ T

0

x̂(t + τ)T Qx̂(t + τ) + û(t + τ)t+τRû(t + τ)dτ (2.27)
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is minimized where Q ≥ 0, P,R > 0 .

Then the nonlinear MPC law is determined by u(t) = û(t, x(t)).
The two main problems this method arises are Computational Burden and Sta-
bility. For a deeper insight about these two aspects refer to [3] and [4]. We will
return to these topics describing our new approach later on.

2.5 Di�erential Flatness
This concept is very interesting and plays indeed a key role in our approach, as
the reader will appreciate in the following parts of the paper. It was introduced
by Fliess et. al. and has a direct application in the control of vehicles. For a
more in-depth look, the reader is invited to refer to [7, 8, 9].

Roughly speaking, �atness is trajectory invertibility. Flat systems are those
systems that are "equivalent" in a certain way to systems with no dynamics,
described by a set of independent variables, namely the �at output. In other
words, having an a-priori trajectory in the output, the state and the input of
the system can be uniquely derived through algebraic relationships. This bijec-
tive relationship simpli�es all the handling of the systems, as we're sure we can
operate in either one of the two descriptions. The tradeo� is that for nonlinear
systems there's no systematic way to �nd a suitable �at output and there is much
computational complexity.

Still, it can be demonstrated that our model for the motorcycle veri�es all
the mathematical assumptions for the di�erential �atness. This concept comes
together with another important one, that of Inverse Dynamics.

2.6 Inverse Dynamics
Given a control system, the problem of determining a state trajectory such that
the output resulting from that state trajectory is an assigned function is named
inversion problem. The feasible state trajectory is called the inverse correspond-
ing to the desired output.

As the reader might easily grasp, di�erential �atness is an important condition
for being able to work with the inverse dynamics; indeed, we will make sure to
express any output function as an algebraic equation for the internal state, as
de�ned in the section on nonlinear control.

This concept of inverse dynamics will turn out to be a key one for the de-
velopment of the proposed control scheme; sometimes through the paper, we'll
work directly with the inverted equations, implying to be able to switch to the
"direct" part whenever we need to refer to and work with the trajectory on the
�at output.
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2.7 Splines and Bézier Curves
We shall be interested in deploying 2D curves on the plane represented paramet-
rically as

C(s) = (X(s), Y (s)),

where X(s) and Y (s) are functions of the parameter s. These functions are
usually polynomials, or more correctly piecewise polynomial curves; thus the pa-
rameter, throughout its extension smin ≤ s ≤ smax, will be broken into a sequence
of values, or knots.

Now, Splines Curves are simply functions which are suited to pass through a
sequence of points in the space. This ordered set of points can then be regarded
as a vector for the curve's parameter. Using a su�cient grade of the polynomials,
we can have the points' constraints satis�ed exactly, or even impose some more
constraints on the function's derivatives, to obtain smooth connections between
the segments.6

We can choose to represent the curve's segments as:

Qi−1(s) = (Xi−1(s), Yi−1(s))

=
(
(1− s)xi−2 + sxi−1, (1− s)yi−2 + syi−1

)

= (1− s)Vi−2 + sVi−1;

(2.28)
Qi(s) = (Xi(s), Yi(s))

=
(
(1− s)xi−1 + sxi, (1− s)yi−1 + syi

)

= (1− s)Vi−1 + sVi

We obtain in this case a linear B-Spline. It has the property of the so called
local control, i.e. altering the position of one vertex only a�ects a part of the curve
to change. These points are named control vertices. In this way, we can represent
any curve in the plane changing the control vertices; the letter "B" stands for
basis by virtue of this fact.

A degree b Bézier Curve is de�ned, similar to B-Splines, as:

Q(u) =
d∑

i=0

ViPi,d(u), 0 ≤ u ≤ 1, (2.29)

where
6This method is regarded as Hermite Interpolation. We skip all the very easy algebraic

explanations thereabout.
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Pi,d(u) =

(
d

i

)
ui(1− u)d−i (2.30)

are known as Bernstein Polynomials. The following is a proposition which
will show itself to be of fundamental success for the heuristic we are proposing
through this report.

Fact: A Bézier Curve lies within the convex hull of its de�ning control ver-
tices.

Proof: Using the Binomial Theorem, �rst we write for a degree d Bézier curve:

1 = [(1− u) + u]d

=
∑d

i=0

(
d
i

)
ui(1− u)d−i

= (1− u)d + du(1− u)d−1 + . . . + dud−1(1− u) + ud

= P0,d(u) + P1,d(u) + . . . + Pd−1,d(u) + Pd,d(u). (2.31)

Thus the Pi,d(u) sum to one. As 0 ≤ u ≤ 1 the quantities u and (1 − u)
are both nonnegative; therefore Pi,d(u) are nonnegative as well. From all this we
infer that any Bézier Curve must lie within the convex hull of its control vertices.
QED





Chapter 3

Previous Approaches

3.1 Introduction
In this chapter we will describe and explain all the previous approaches for control-
ling a nonlinear, nonminimum-phase system subject to nonholonomic constraints.
We will only partially touch a couple of methods which pose heavy conditions
on the system's characteristics; then we'll spend quite a lot of time to the ap-
proach by Neil Getz. Thereafter, we'll analyze a method suggested by Dirk Von
Wissel, and �nally we will assess a methodology already used in some technical
software. All this work turned out to be fundamental to the understanding of the
problem. Also, the new algorithm we're proposing is just the �nal fruit of a long
development which went through the improvement of many parts of the following
heuristics. We shall not describe the whole long path to the eventual solution,
but we will give many explanations about all the problems and drawbacks, as
well as of course all the main achievements.

3.2 Nonlinear Methods
There are two main approaches to solving the problem, system inversion and
output regulation.

The �rst one, proposed by Devasia, Chen and Paden, applies to systems that
have strict relative degree γ and thus have the form (2.21). The reference trajec-
tory has to be bounded and de�ned through the whole time interval. The main
assumption is that the system's zero dynamics can be linearized (see section 2.3.1)
to a kinematically hyperbolic matrix. This is a condition on the stability for the
whole system. After many technicalities, the authors come to de�ne a non-causal
feedforward control law, and also a feedback action for the error coordinates (for
a deeper analysis, please check [21] and [22]). the main drawbacks are its non-
causal form (the reference trajectory should be de�ned ahead of time), and the
fact that it practically works only for trajectories that are small in amplitude and
slowly varying. In other words, it looks like being quite awkward to apply.
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The second method, developed by Byrnes and Isidori, makes the fundamen-
tal assumption that the desired trajectory is generated by a so-called exosystem
described by

ẇ = s(w),

yD = r(w);

Thus we have to regulate (asymptotically) to zero the output e of the system

ẋ = f(x) + g(x)u,

ẇ = s(w),

e = h(x)− r(w);

This is obtained through many convoluted calculations; on overall, it appears
su�ering from the main drawbacks of the previous method: non-causality and
excessive computational weight.
We shall disregard these approaches in the future, trying to obtain something
more substantial and less mathematically burdensome.

3.3 Control for Autonomous Bicycles
In his many papers on the Control for Autonomous Bicycles (cf. for instance
[12], [13], [14]), Neil Getz has suggested a ground-breaking approach to the prob-
lem, proposing a feedback control law for stable tracking of smooth trajectories.

3.3.1 Tracking of roll-angle trajectories and velocities
The author assumes a model for the bicycle identical to the one described in our
introduction. A control scheme is proposed for tracking smooth roll-angle tra-
jectories with non-zero rear-wheel velocity (which aren't really tight constraints
at all), even if the initial conditions are far away from the ideal ones; in other
words, it's been constructed an internal tracking controller. The convergence to
the desired trajectory is exponential.

Although the derivation of the model follows di�erent paths, the �nal form
looks exactly like the one described in page 21. Now, in the case vr 6= 0 and B is
invertible, it's possible to choose as input

[
wσ

ur

]
= B−1(−F + Mv), (3.1)

thus obtaining a linearized form
[

α̈
v̇r

]
= v. (3.2)
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De�ning αd(t) and vd(t) the desired time-trajectories for the roll angle and
the velocity, assumed su�ciently smooth for our purposes, we can choose suitable
coe�cients ci in order to obtain the following form for the variable v:

v =

[
α̈d − c11(α̇− α̇d)− c10(α− αd)

v̇d − c20(vr − vd)

]
. (3.3)

In the case the polynomials formed by the chosen coe�cients have roots with
non-positive real part, we obtain a control law assuring exponential convergence
to the desired trajectories.
This nonlinear controller in other words gives balance to the non-minimum phase
system, but it doesn't solve the problem of tracking trajectories in the x, y plane,
while retaining balance at the same time.

The attentive reader could notice that, de�ned a path in the x, y plane, one
could derive a time-varying function of the desired roll angle in the following
way: it's always possible to derive the curvature radius R of a given the path
in terms of x and y. The curvature at the rear wheel is then σ = 1/R. Now,
given a relation of the form (2.15), page 21, we could in theory solve for α, thus
obtaining the desired roll trajectory. Having still to realize how to algebraically
solve this equation, if it were possible to obtain the αd(t), the tracker would
indeed stabilize the vehicle, but it wouldn't de�nitely cause an exact tracking of
the �at trajectory, as random errors would be integrated in an open-loop cycle
without the possibility to correct them.

3.3.2 Tracking a time parameterized path with stability
Let's reiterate the equation describing the internal dynamics of the bicycle:

pα̈ = gpsα + (1 + pσsα)pcασv2
r + cpcα(vrσ̇ + v̇rσ). (3.4)

It's intuitive to de�ne an equilibrium angle αe as a solution to the implicit
relation

0 = gpsαe + (1 + pσsαe)pcαeσv2
r + cpcαe(vrσ̇ + v̇rσ)

= Fα(α, σ, vr, v̇r, σ̇). (3.5)

Clearly, it would be reasonable to assume that our desired roll matched this
equilibrium solution, as we would be indeed sure that our vehicle retains stability
at this speed and under this current steering action.

Now the problem is to solve the previous equation. It is intuitive that an
algebraic solution is pretty hard to be derived; furthermore, we want to obtain
an online result, i.e. we're interested in the computational weight. Neil Getz has
suggested a brilliant solution to this problem.
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Dynamic Inversion of Nonlinear Maps
Through the following method it will be possible to obtain a running estimate for
αd. In this paper we'll limit our analysis to a brief description, just to give the
reader an idea on how the problem has been tackled(for a deeper and complete
understanding, please refer to [14]).

Dynamic Inversion is a methodology for inverting nonlinear maps. Let's as-
sume we're given a map F : Rn × R+ → Rn and we know somehow that there
exists an unique isolated solution ϑ∗(t) of F (ϑ, t) = 0. We'll match this map with
a new one, namely a dynamic inverse, G(ς, ϑ, t), such that the new system

ϑ̇ = −G[F (ϑ, t), ϑ, t]

has a solution asymptotically convergent to ϑ∗(t).

In the simple case of a real function F : R× R→ R looking like �gure (3.1),

>0

a b

θF( )

θ
*

θ

<0

Figure 3.1: Case Function

we know it has a single isolated solution to ϑ 7→ F (ϑ), F (ϑ) = 0, although
at an unknown point ϑ∗. We claim that G(ϑ) = F (ϑ) is the dynamic inverse;
indeed, the solution of the system ϑ̇ = −F (ϑ) asymptotically converges to θ∗ (to
realize this, just observe �gure (3.2)).

In the general case, the dynamic inverse will be time-varying and vector-
valued, and there are some su�cient conditions(mainly on the regularity of F
around its solution) assuring its existence. Also, given the complex structure of
this inverse, it can be approximated under some assumptions. The next step is to
de�ne a dynamic system whose state is an estimator for the root ϑ∗ of F (ϑ, t) = 0.
A couple of theorems state that, once found the dynamic inverse G[ς, ϑ, t], there
exist an adequate µ > 0 such that the solution to

ϑ̇ = −µG[F (ϑ, t), ϑ, t], ϑ(0) = ϑ0
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Solution to the Dynamical System around the root.

Decreasing
Increasing

θ∗

Figure 3.2: Asymptotic Convergence for the System built over the Case Function.

approximates ϑ∗(t) with estimation error decaying to zero.

It's also possible to clamp together the two procedures, thus obtaining an on-
line procedure for deriving both a dynamic inverse as well as an approximation
for the root of the equilibrium system. Finally, applied algorithms manage to to
estimate the derivatives of the aforementioned roots.

3.3.3 Application of the Dynamic Inversion
Here we will apply the concepts just explained to an example, that of tracking a
path with stability.

We're interested in �nding a running solution to the equation (3.5). As pre-
viously stated, a system whose state is the desired estimator α̂ is

˙̂α = −µFalpha(α̂, σ, vr, v̇r, σ̇) + Lα̂αd
|αd=α.

A Jacobian linearization1 of this di�erential equation would make the reader
realize that there's exponential convergence of the solution to αd in a convenient
neighborhood.

It's even possible, as anticipated, to estimate the derivatives of α̂, therefore
applying a feedback linearization control as that of section (3.3.1) results in ap-
proximate tracking of ground plane trajectories with balance. The convergence
to the desired trajectory for the external system and to the equilibrium angle for
the internal dynamics is even exponential until a certain time, when it persists
bounded in a small region around the desired values.

Remark
Even if this second approach looks de�nitely more precise in tracking the desired
path than the �rst one, especially with reference to the convergence performance,
we still argue that possible errors might be not cancelled in the process of integrat-
ing the equations. More precisely, observing that the two feedback stabilization

1For a de�nition of this important concept, check sec. 2.3.1
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actions work for the roll angle and the velocity, we can realize that there's no
direct relation of the vehicle's position towards the road; this means that possible
errors (for instance due to calculations) on the system's position might be not
compensated just through the use of the roll regulation. These errors might also
be inde�nitely integrated, thus eventually bringing to an increasingly imprecise
tracking for the reference path. In other words, the vehicle retains its balance,
but loses the track of the road, as it's given a wrong reference; the feedback from
the path is explicit through the roll angle but is static in the x,y coordinates.

This apparent problem also has an impact on the next method.

3.3.4 Tracking Implicit Trajectories for a class of Nonminimum-
Phase Systems

As usual, we want to track a prede�ned output trajectory, maintaining the
internal state within a given bound, thus solving all the problems due to its
nonminimum-phase characteristics.

Starting from a model with the same appearance of (2.14), page 20, the author
de�nes some coordinate changes in order to obtain a so called External/Internal
form. This form allows a clear distinction between the internal dynamics (those
referred to the roll angle), and the external one (those referring to the vehicle's
kinetics); this form can be considered a modi�cation of the known normal form,
and it has some useful properties, like the possibility to split the analysis in two
parts (one for the external and another for the internal part of the system) and
the convertibility to a dual structure.

This new form looks like:




[
x(3)

y(3)

]
=

[ −2v̇rsϑ − vrcϑϑ̇

2v̇rcϑ − vrsϑϑ̇

]
ϑ̇ +

[
cϑ − vrsϑ

sϑ vrcϑ

] [
ur

uϑ

]

α̈ = g
p
sα + 1

p
(1 + p ˙ϑsα

vr
)cαϑ̇vr + c

p
cαuϑ,

where we have used slightly di�erent notations and ur := v̈r, uϑ := ϑ̈.

The idea is to de�ne, according to the possibilities o�ered by the E/I form, an
Internal and an External Tracking Controller ; these will both be in the fashion
of that in section 3.3.1.

Choosing coe�cients εi and εi such that the polynomials x3 + ε3x
2 + ε2x + ε1

and x2 + ε2x + ε1 have roots with negative real parts and having smooth enough
referencee trajectories (xd, yd) and αd, we can de�ne:

[
ur

contr

uϑ
contr

]

ext

=

[
cϑ sϑ

−sϑ/vr cϑ/vr

]



[ −2v̇rsϑ − vrcϑϑ̇

2v̇rcϑ − vrsϑϑ̇
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as the External Tracking Controller and, as in section 3.3.1,

uϑ
contr,int =

( c

p
cα

)−1(
− g

p
sα− 1

p

(
1+

pϑ̇sα

vr

)
cαϑ̇vr + α̈d− ε2(α̇− α̇d)− ε1(α−αd)

)

as the Internal Tracking Controller.
Searching for a closed form for αd, the author applies the dynamic inverter

to equation (3.5). He thereafter de�nes an Equilibrium Manifold in which the
equilibrium point becomes an attractor through the application of the Internal
Tracking Controller.

A controller providing tracking of smooth reference trajectories while retain-
ing balance has been obtained. Issues might be raised concerning computational
easiness and load, as well as e�ective tracking performance. Indeed, the au-
thor quotes the necessity of addressing a computational-time axis along with a
dynamic-time one. Also, it's conceded that the solutions provided aren't optimal
in any sense. Finally, some doubts concerning the algorithm's robustness near
singularities for the inverse kinetics aren't totally eliminated yet.

Remark
It's interesting to ponder whether it's really necessary to obtain such precise
dynamical solutions to equation (3.5), coping with evident complexity and com-
putational burden. We'll show in the next sections that approximate solutions
can achieve still precise results for the tracking, conceding the fact that they
might be not rigorously correct. Thus we can abandon mathematical rigour for
speed and easiness in implementation. We'll come back to this point later.

3.4 DAE Control of Dynamical Systems
This work can be synthesized as an extension of the previous research: it accepts
many concepts from the work of Getz and still introduces some novelties, mainly
regarding the Descriptor Predictive Control (DPC 2) and the study of obstacle
avoiding trajectories for driving through a cluttered environment. The author is
Dirk von Wissel.

3.4.1 DPC
This method is a combination of a feedforward and a feedback action. We can
state that MPC is a development of this technique. DPC allows to have a state
feedback even if the controller is expressed through an implicit formula; this fact
makes the system's inversion, often pretty hard for nonlinear systems, almost
useless. The control is often computed numerically rather than algebraically,

2For a better understanding, please refer to [22].
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as a solution to a Di�erential Algebraic Equation (DAE). As a matter of fact,
author's attention is then attracted by the search of some reliable methods for
DAE's integration.

3.4.2 Application of the concept
The author shows how the inverse linearization method works mainly just for
minimum-phase systems, and how it can be practically applied almost only to
linear systems.

The use of DPC can instead be used with any complex dynamical system;
here it's used a constant control over the sampling period, eventually updated at
each sampling period. It can be demonstrated that the controller's performance
equals that of system's inversion, i.e. it's asymptotic. A preliminary feedback is
also used to give more strength and robustness to the control.

This method is then employed to control a Riderless Bicycle. The model the
author addresses is almost the same as the one described in the theory section,
eq. (2.15), except that it doesn't neglect the moment of inertia for steering. A
so called separated form (i.e. highlighting the distinction between cinematics and
dynamics) is privileged.

An open-loop, bang-bang control is then proposed for making the bicycle turn
a prescribed angle. This is actually applied only to the bicycle's cinematics, thus
we have always to check for balance: the two-points boundary value problem
turns out to be quite expensive.

It's way better to implement an asymptotic tracking for the roll angle, in the
fashion of Getz's, through the use of DPC.

The second step is tracking for x, y paths with non-zero velocities, retaining
balance. The previous approach is again used, although conceived as a DPC,
rather than a feedback linearization. This works in a slightly more general case
than in Getz's, but still raises many doubts on the actual implementation. Ad-
ditionally, no formal demonstration of the stability is given.

3.5 Current Algorithms for Controlling a Motor-
cycle

In the present section we'll introduce the reader to some ideas which, imple-
mented in some current software, have allowed to control some NonMinimum
Phase System, and more precisely a Motorcycle.

3.5.1 A Fuzzy Approach
This very e�ective approach distinguishes between di�erent kinds of control schemes,
implementing three diverse controllers: the �rst is a longitudinal controller, in-
tended to regulate the vehicle's speed, the second is a lateral controller which
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presides over the trajectory following, while the last one is a balance controller
which, in the fashion of Getz's approach, provides stability, avoiding the bicycle
to fall. There's also a so-called yaw controller, which acts in order to prevent the
vehicle from falling under unlikely situation, as for instance abrupt accelerations
or brakes, or sudden lateral disturbances; we won't focus on this very last part,
though. All the elements are eventually clustered to work together through an
intelligent fuzzy regulator.

3.5.2 Connection Trajectories on the �at output
Let's start with the core part of the controller, i.e. the lateral section: here some
ideas must provide the tracking of the desired path. Let's assume we have out
motorcycle slightly aside of the path, running with a certain velocity which we
can assume to be constant without any loss of generality (see �gure 3.3).

Vehicle

Trajectory

Connection Trajectory

m

(preview distance)

pwd

Vr
θ

δ

X

Y

Figure 3.3: Project of a Connection Trajectory

Now, we obviously want the bicycle to converge to the path. It's very adherent
to the physical reality to stare ahead of the vehicle at a particular distance, usually
dependent of the current speed. We shall henceforth name this distance preview
distance, or pwd for short.

It's even more realistic to put in relation the point ahead of the driver at
the pwd with a nearby point on the path; here many approaches can be thought
of (for instance, the point minimizing the Euclidean distance, or the orthogonal
projection as in �gure). The idea here is to de�ne a connection trajectory among
a pool of functions, bringing from the current state to the de�ned point ahead.
As we have already studied in the theory section, a trajectory in the x,y plane can
be conducted to a function dependent of the curvature σ of the vehicle. From the
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curvature we can easily derive a time-dependent function for the steering action
β through σ = tan(β)/b, where b is the bike wheel base. We can apply this control
for any time we want, taking into consideration that we'll be in open-loop, and
recalculate this at any time we want, thus giving as a feedback the state of the
motorcycle 3.

What kind of connection trajectories are more suitable? The �rst idea is to
deploy some polynomials; we have to keep in mind that the motorcycle has the
following states, at a precise time t∗: α(t∗),dα(t∗)

dt
and α(t∗ + T ). Therefore, if we

consider a third order polynomial, we determine three of them as given, and we
use the fourth one as an optimization index.

Considering the point lying on the trajectory calculated as in �gure 3.3, we
can de�ne a weighting function based on the Euclidean distance between this
position and the �nal point of all the polynomials belonging to the prede�ned
set.

The attentive reader might have noticed the trend: we apply a kind of MPC,
in that we employ an optimization function to apply an open-loop control, based
on the state of the system as a feedback.

We shall refresh this trajectory with any frequency we desire, this would be a
project parameter as in MPC. Also, the preview distance can be conceived as a
project parameter: we can build up a more foresighted controller (longer pwd),
as well as a more reactive one (shorter pwd).

This approach seems certainly to be very convenient, and indeed the idea
works out pretty well, except that it does not resolve the issue of stability.

3.5.3 Bank Angle Stabilizer
Let's undertake Getz's approach for the roll angle stability, i.e. state-feedback
linearize the famous eqn. (2.15), page 21, to obtain exponential convergence to
the desired roll-angle trajectory. In this case the idea is also to determine the
desired α with an easier formula, not having to make use of the dynamic inverter
and therefore speeding up all the calculations. A problematic issue naturally
raising here, as remembered before, is the choice for the coe�cients rendering the
polynomial with negative real-parts roots.

3.5.4 Put the Pedal To the Metal
The last part of the regulating scheme is the longitudinal controller. We want out
vehicle to match a certain desired speed, possibly time varying 4.

3Here please note that the connection trajectory depends from the vehicle's state, i.e. from
its x,y,ϑ positions as initial conditions.

4In reality the software product takes into account the possibility of changing gear, with the
consequent speed modi�cations. We won't report any detail here, as this would go beyond the
scope of the current paper.
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The approach, similar to the one used for the lateral regulator, de�nes a speed
preview distance and devises a �rst order polynomial as the connection function,
i.e. applies a proportional and derivative control to obtain the desired velocity at
the speed-pwd.

3.5.5 The Fuzzy Approach
It's necessary to "blend together" the three stages. Disregarding the third one,
which stands by itself as it just acts on the velocity derivative, let's focus on the
�rst two (having as the actuator the steering shaft). The idea here is to make
the lateral controller act more in case the motorbike loses the path or in case of
a curve, while the roll stabilizer is activated through a dynamic weight, inversely
proportional to the second derivative of the roll.

3.5.6 Analysis and Evaluation
The method clearly detaches from Getz's approach, which as far as now has been
the only one giving rather good and ground-breaking results. The heuristic works
indeed quite well, especially regarding robustness and stability. Still, the fuzzy
approach looks from the beginning too much tailored to the speci�c problem, and
it poses the question whether it will work for any manoeuver. Also, the choice
of the two coe�cients for the state-feedback control are left to the end user and
looks too much empiric.

One main drawback is given by the choice of the polynomials as the connec-
tion trajectories: they're reasonable as for easiness and to avoid computational
bottlenecks, but they almost always represent unfeasible trajectories. We shall
come back to this point describing how to entangle this bundle with the proposed
new approach. We'll also describe later (read section 4.2.2) the main cause of this
failure: countersteering. Let's say, just for now, that the method isn't theo-
retically wrong only for restricted, smooth cases, like straight motion, or circular
curves.

The reader should be aware of the fact that, in case the trajectory isn't feasible,
the control we're applying through the term σ in equation (2.15) is leading the
roll to an unstable state, which we'll have to steer back to the equilibrium through
the application of the state feedback. This means a higher calculus load, as well
as a theorically incorrect approach.

Just a couple of words for the longitudinal controller : it's not very e�ective,
particularly in the case of high frequency changes in the real velocity, like those
due to the gear shift. Conceding that the idea of making use of a preview speed
may look like being quite appealing, we have to underline that more straightfor-
ward implementations would lead to de�nitely better results. This will lead us
to rede�ne this part in later parts of our work.





Chapter 4

The New Method

4.1 The setting

In this chapter, a new control methodology will be proposed.

To �rst accomplish this, we must �rst de�ne exactly which side we have tackled
our task from. It is necessary to make a distinction between trajectory tracking
and path following.

The former problem concerns a reference trajectory which isn't �xed a-priori,
but has indeed proper and partially unknown dynamics; let us assume that we
have a causal knowledge of this reference trajectory that can possibly be a�ected
by some sort of noise, which is said to be wholly referred to the input. Noise can
arise from a limited knowledge of the output (as in vision for example), as well
as from any sort of signal corruption. This setting spontaneously paves the way
for the application of statistical �ltering.

With path following, conversely, we're given a deterministic trajectory, or
path, which can actually be time-dependent, i.e. non-autonomous, but which
can be possibly fully known a-priori. We shall not be forced to make use of
all this information at any time step, but this eliminates any necessity to use
stochastical control. Moreover, noises are said to be referred to the output.

Our problem is limited to the second setting, i.e. we shall be interested
in Path Following for NonHolonomic, NonMinimum Phase Systems
through the application of Nonlinear Control Methodologies. This task-horizon
isn't limited at all, as too few methods can be found in literature regarding these
problematics, with also questionable results. A possible shift toward the �rst
issue might make the actual problems we want to deal with be partly concealed
by other di�culties, thus let's stick for the moment to this second task. Results
can be subject to future extension.
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4.2 The Main Idea
So far we have analyzed mainly three methods providing working results: Getz's,
von Wissel's and the one based on Connection Trajectories. Robust applications
to actual software products have worked mainly only through the �rst and the
third methods. The �rst one has been theorically proven to be stable, even if
the robustness is still questionable. Moreover, it su�ers from Computational
Burden issues. The third method has performed rather well, especially regarding
its robustness (which is actually quite astonishing), although the fuzzy approach
looks pretty blurry. Also, no stability has been yet proved (and in our opinion
the fuzzy structure makes this last quite a tough task!).

The new approach proposed throughout this paper encompasses some of the
very smart concepts from the third method and almost skips all the theory (and
the calculations) which underlies the �rst approach, still retaining some of its key
features.

Summarizing it in short, it eliminates all the problems of roll balancing.
This result is obtained devising connection trajectories for the system's roll

angle. More precisely, we make use of the concept of a preview horizon, although
we are speci�cally interested in a preview time, rather than a preview distance.
De�ning opportunely the desired equilibrium roll angle at the preview time, and
exploiting this roll and possibly any number of its derivatives as the vehicle's
state, we can devise some connection trajectories for the roll itself.

This new yet simple idea provides a simpli�cation for many problems we had
previously described and attains some new results and performances, as we'll
explain and thoroughly describe in the following sections.

4.2.1 Path De�nition
As said before, the desired path is prede�ned as a function of the curvilinear
abscissa and the curvature radius. We assume that the desired velocity vd is
constant1, therefore we can state that the path is a function of time and again
the curvature radius. Assuming an initial kinetic condition for the bicycle, for
instance x0 = 0, y0 = 0, ϑ0 = 0, we obtain the following path on the (x, y)
coordinates:

from ϑ̇ = σvd,
we have ϑ(t) = ϑ0 +

∫ t

0
ϑ̇(τ)dτ ;

moreover :
x(t) = x0 +

∫ t

0
vd(τ) cos(ϑ(τ))dτ ,

y(t) = y0 +
∫ t

0
vd(τ) sin(ϑ(τ))dτ ;

this is a classical de�nition of a curve in the (x, y) plane in function of time2.
1As we shall see in upcoming paragraphs, this assumption can be eventually relaxed.
2Please note that we could keep it de�ned w.r.t the curvilinear abscissa, still obtaining the
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4.2.2 Devising Connection Trajectories
As previously stated, the new method makes use of an MPC Heuristics, and
in doing so it has to exploit the idea of Connection Trajectories. This time,
however, we'll refer to this concept applied not on plane trajectories (or, in other
words, trajectories devised directly for the steering action), but indeed on roll
trajectories, i.e. referring to the vehicle's bank angle.

Let's �rst go back to illustrate a concept which will enable the reader under-
stand why this new idea is much more convenient than the one exploited in the
previous approach.

The Countersteering Phenomenon
A subtle reasonment over the equations for the balance of the motorcycle makes us
understand a speci�c phenomenon due to the nonminimum phase characteristics
of the vehicle: Countersteering.
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Figure 4.1: The Countersteering Phenomenon.

Roughly speaking, countersteering involves rotating the driving shaft opposite
to the direction the driver wants the vehicle to go to. For instance, starting from
an upright position and willing to bend the vehicle towards the right, one has �rst
to make a (slight) turn to the left, and then converge to the desired direction.

very same curve on the �at plane.
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Also, dynamically starting from any steer angle, with the corresponding roll equi-
librium position, this behavior is still required to leave this equilibrium situation.
Often this manoeuver is not practically performed, for instance while driving a
bike, as the driver uses his body to lean the vehicle in the desired direction. Still,
this behavior can be seen while observing an experienced motorcycle driver, like
during pro races.

All this has naturally a mathematical explanation, which we're going to de-
scribe in the following. Taking into consideration the classic equation (2.15) and
assuming that vr is constant, i.e. v̇r = 0, we obtain:

0 = gsα + cασv2
r + cαsαpσ2v2

r + ccαvrσ̇

= gsα + cαsαpσ2v2
r + cαvr(σvr + cσ̇); (4.1)

now, considering the case α > 0 and small enough, we see that the �rst two
terms are always greater than zero and that the equation can be solved only if
the last term in parentheses is negative; in other words, we require that

σvr + cσ̇ < 0.

If we assume we started from an upright position, i.e. σ = 0, we see the
equation admits a solution in the case σ̇ < 0; in other words we have to �rst steer
contrary to the required direction of motion.

Same thing happens in the opposite case, i.e. when we want to reach a roll
angle with opposite sign.

In �gure 4.1 we plotted a MATLAB output, referring to the following situa-
tions: α0 = 0, α̇0 = α̈0 = 0, σ0 = 0, preview time T = 1[s] and αT = 0.3[rad],
α̇T = 0.2[ rad

s
]; a fourth order polynomial was deployed as connection trajectory

(read later sections for further detail thereon).
As quite evident from the plots3, starting from an upright position over the

reference trajectory (dashed straight in the upper graph), we want to bend right,
in order, say, to turn right as well. To do that, before turning right (second plot),
we have to �rst slightly steer left: the e�ect of this action is a steady shift of
the roll angle toward positive values (third plot). The overall outcome on the
vehicle's dynamics is a slight turn on the left, before bending to the right with
the correct inclination.

A deeper analysis of the equation may show that this is valid under gen-
eral circumstances, i.e. starting from any position of the steering shaft and any
(corresponding) bank angle.

For instance, considering �gure 4.2, we are in the situation: α0 = −0.08136[rad],
α̇0 = α̈0 = 0, σ0 = 0.0125[rad] 4, preview time T = 1[s] and αT = 0[rad],
α̇T = 0[ rad

s
] ; a fourth order polynomial was deployed as connection trajectory.

3Please get acquainted with the reference frames for the angles involved reading section 2.1
and observing �gure 2.1.

4The motorbicycle is assumed to run at 8m
s in a curve of radius 80 m = 1

0.0125 m; the relative
roll angle has been obtained through the solution of equation (3.5).
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Figure 4.2: General Validity of the Countersteering Phenomenon.

As evident from the second plot, it's necessary to steer even further left to
regain balance on the roll angle, before bending to the right.

Why is Countersteering so important?
The reader might remember that we called the Connection Trajectories on the
Flat Output in one of the previous approaches (check Section 3.5.2, page 37)
Non Feasible . The Coutersteering e�ect justi�es and explains this nickname.
Indeed, we described the use of very simple functions, like polynomials (more
precisely paraboloids) as connection trajectories: it's clear now that they aren't
suited to describe with their shape this quite complex e�ect. Therefore they are
often inadequate to obtain a theorically correct steering action. Moreover, they
tend to steer the motorcycle to an unstable state (exactly in the opposite side),
as well as to a further point in the plane.

The reader has to ponder that this problem doesn't a�ect Getz's or von Wis-
sel's approaches, which always present a correct behavior from this point of view
5.

The motivations to use Connection Trajectories for the Roll Angle should now
be more clear: given the uneasiness of the feasible functions for the steering, it's
proven by experience that, while driving, the driver performs easy and smooth
rolling movements. Consequently, we can exploit relatively easy to de�ne func-
tions, like polynomials, and be sure that they'll match pretty closely the actual

5The convergence to the desired path is indeed exponential (albeit only to a desired region
closed to the �nal point), while retaining balance for the vehicle.
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ones. Also, the reader might notice that the Countersteering phenomenon doesn't
a�ect the roll, but it's indeed a feature of the steering dynamics.

4.2.3 How to disregard the Stability Problems all at once

The choice of working out Connection Trajectories for the Roll has another major
basis: it allows us to avoid all the problems related to the vehicle's stability issues.
To understand this, we make use of Bèzier Curves as Connection Functions :
they're indeed no more computationally complex than a simple polynomial 6 and
they also have some more properties which arise from their structure(see section
2.7).

From now on, we'll consider a four-points function: the �rst one is the vehicle's
state at time t∗, α0 = α(t∗), the last is the desired roll at the preview time T ,
α(t∗ + T ); the other two points will be the control points. We might associate
these points with other dynamic states for the vehicle, as well as consider them
as simple points we can act upon (see �gure 4.3).

C2

Pi

Pf

C1

Figure 4.3: A simple Bèzier Curve, controlled by the two points C1 and C2.

Now, considering t∗ = 0, we develop the following relations, which could be

6Indeed, they're just polynomials expressed in a particular form.
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obtained formally through the theory as well:

being P0 = Pi , P3 = Pf ,

and P3 = C1 , P4 = C2;

for 0 ≤ t ≤ T,

P
′
0(t) = P0(t)t + P1(T − t)

P
′
1(t) = P1(t)t + P2(T − t)

P
′
2(t) = P2(t)t + P3(T − t);

P
′′
0 (t) = P

′
0(t)t + P

′
1(T − t)

P
′′
1 (t) = P

′
1(t)t + P

′
2(T − t);

P
′′′
0 (t) = P

′′
0 (t)t + P

′′
1 (T − t);

(4.2)

we obtain through substitution

P
′′′
0 (t) = P0t

3 + 3P1t
2(1− T ) + 3P2t(1− T )2 + P3(1− T )3.

We shall then consider from now on equations for the roll like the following
one, simply based on coe�cients:

α(t) = η0t
3 + η1t

2(T − t) + η2t(T − t)2 + η3(T − t)3 (4.4)

Now, it should be clear that if the vehicle is balanced and is required to reach
a possible state at the preview time, imposing bounds on the two control points
will ensure that the dynamics for the roll will stay bounded. This is quite an
important point: if we start working directly on the vehicle's roll, we can
skip all the balancing procedures devised for the preceding methods.

We'll de�ne these coe�cients in the following sections. Let's �rst give an
explanation on how these functions are intended to be exploited.

4.3 MPC in action: the receding horizon and the
state feedback

As already stated, the Model Based Predictive Control algorithm can be summa-
rized in the following steps:

1. At time t∗ devise a control action over some future interval (we'll directly
refer to the aforementioned preview time T henceon);

2. Apply the �rst step of this control operation in an open loop fashion;
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3. Refresh the kinetic and dynamic states of the vehicle and work out a control
scheme using this information as feedback 7;

4. Skip to step 2.

The reader might understand that after the very �rst step the control scheme
closes the loop, thanks to the feedback we exploit from the vehicle's current
states. That's the important point about MPC: it encompasses a rather simple
algorithmic scheme with the powerful e�ects of feedback.

Now, we still have to understand which can be regarded as the states of the
vehicle. Let's devote a whole paragraph for that.

4.3.1 The Vehicle's States and the Connection Trajectory
The �rst kinetic states for the vehicles are very naturally its position and orien-
tation, or yaw ; thus, at time t∗, we'll make use of the variables x, y, ϑ.

As for its dynamic states, it's up to us to decide how many of them to exploit.
At time t∗ we'll look at α(t∗) and any time derivatives of it, as requested by
equation (2.15).

We then have to de�ne once and for all how to obtain the desired roll angle
at the preview time t∗ + T .

Solving the equation for the Desired Roll
As we want to obtain balance, we'll look at the equation

0 = gpsα + (1 + pσsα)pcασv2
r + cpcα(vrσ̇ + v̇rσ), (4.5)

as previously discussed in the theorical settings.
At this time we have to decide how to solve this equation: we can either

embrace Getz's method, estimating the dynamical inverse, or propose some sim-
pli�cations. Conceding that the approach proposed in section 3.3.1 is theoretically
de�nitely more correct (and is indeed mandatory in case we want to demonstrate
the stability of our approach), we shall nevertheless focus on a slight variation of
the equation. We'll be indeed interested in obtaining a very simple and closed-
form solution, which could be utilized running through the whole algorithm.

Let's �rst observe that, after having singled out each term in (4.5), the one
which can be easily disregarded is

pσ2sαcαv2
r

7Under the case that the information from the vehicle isn't exactly know, we might still use
certain kinds of estimation of it; this will be the case for the desired roll at the preview time,
when we'll not solve the di�erential equation exactly, but indeed we'll simplify it conveniently.
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because of the presence of the term sα and the square of σ. Eliminating the
terms p, we obtain the simpli�ed relation

0 = gsα + cασv2
r + ccα(vrσ̇ + v̇rσ). (4.6)

Dividing by cα
8 and separating the term in α, we get

tan(α) = −1

g
σ(v2

r + c(σ̇vr + σv̇r)), (4.7)

which o�ers an easy solution,

α = − arctan
(1

g
σ(v2

r + c(σ̇vr + σv̇r))
)
. (4.8)

It can be shown that the di�erence between this solution and the one obtained
through dynamical inversion is, for nonpathological cases, less then one degree.
Thus obtaining this last solution is not worth the e�ort. We could even obtain a
more simple form disregarding the derivatives in the preceding form, still without
making a sensible mistake, but we'll stick to equation (4.7) from now on.

The reader might remember that Getz proposed a method for obtaining the
time derivatives of the dynamical inverse. In case we'll be interested in deriving
equation (4.8), we'll naively proceed in that: might this seem quite awkward in
theory, it doesn't anyways produce any problem when solved through the usual
numerical calculus algorithms9.

Power is nothing without Feedback!
We have seen that the MPC approach requires the use of connection functions
for the bank angle, as well as the feedback action of the vehicle's dynamic states.
Here we'll see how these two aspects blend.

Taking into consideration functions like (4.4), we have to specify the coe�-
cients. We can easily do that through the vehicle's states and its derivatives, as
well as thanks to the desired roll plus its derivatives.

Considering a third order function,

α(t) = η0t
3 + η1t

2(T − t) + η2t(T − t)2 + η3(T − t)3

= (η0 − η1 + η2 − η3)t
3 + (η1 − 2η2 + 3η3)Tt2 +

+(η2 − 3η3)T
2t + η3T

3 (4.9)

and deriving it,

dα(t)

dt
= 3(η0 − η1 + η2 − η3)t

2 + 2(η1 − 2η2 + 3η3)Tt +

+(η2 − 3η3)T
2 (4.10)

8Which makes sense as this term is not null in any ordinary situation.
9We refer here to the widely known methods of Euler, or Runge Kutta - 4th order.
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and assuming without loss of generality t∗ = 0, we can regard as vehicle's states
its current roll and its derivative, i.e. α(0) = α0 and α̇(0) = α1. As already
stated, solving for α in equation (4.8), we attain the desired roll at the preview
time T, i.e. α(T ) = α2.

In conclusion we get the following system:

η3T
3 = α0

(η2 − 3η3)T
2 = α1 (4.11)

η0T
3 = α2

In other words, this system speci�es three of the four coe�cients in our con-
nection trajectory for the roll. It's our choice to look at higher degree functions,
or to a larger number of states for the vehicle (and more precisely to the time
derivatives of the quantities above), or to any combination of the two quantities,
given that the degree of the function is higher than or equal to the number of the
states we examine.

The choice of considering more states implies requesting a more precise and
smooth de�nition for the connection function, i.e. a trajectory which could be
precise also "at higher orders". The drawback of considering more states is surely
the higher number of calculations we'd be required to perform. Hands on the
project, the vehicle is supposed to output more information, and we have to be
able to process it on the �y.

In our example, we still have to justify our choice of leaving one of the coe�-
cients undetermined a priori. Let's understand why.

4.4 MPC in action: the Optimization Step
We realize what is now missing to complete the puzzle: the remaining coe�cient
plays the role of adding one degree of freedom, as well as bounding the function
inside a desired region, namely such that the vehicles doesn't approach near-to-
fall situations. Simple calculations would show how this is possible. In other
words we exploit this coe�cient as if we could directly act upon the two control
points of the Bézier Curve, and, by the theorem mentioned in section 2.7 in page
26, we're sure to obtain limited dynamics.

Combining the two main ideas we have conveyed so far, that is deploying
Bézier Curves for the bank angle to bound their dynamics and using the power of
feedback, we practically see that each time we work out a connection trajectory,
we indeed obtain a limited set of them, or an ensemble (see �gure (4.4)), which
is parameterized by the unknown left coe�cient(s). Refer for instance to �gure
(4.4) for a set of connection trajectories (the fact that they don't intersect is not
casual, as we shall see soon).

More precisely, we see how this coe�cient changes the shape of the function,
still maintaining the end conditions.
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the Euler−distance Optimal has been highlighted

Trajectory

Vr

X

Y

Bundle of Connection Trajectories 

Figure 4.4: Ensemble of Connection Trajectory: we choose the optimal inside
this pool.

4.4.1 Time Parameterization
A rational way to in�uence the outline of the function is to exploit a time pa-
rameterization. For the classical Bèzier Curve just considered, the time evolves
linearly; how would we reshape this evolution into a nonlinear behavior, as por-
trayed in �gure (4.5)?

In other words, having a function for the roll α(τ), we could think of using
another function for the time, like τ = τ(t).

Delayed Action

0 T

T

Linear

Anticipated Action

Figure 4.5: Time Reparameterization

That would mean in�uencing at the very end the steering action. Therefore
we can have the left coe�cient depend on the kind of control we might want to
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apply, for instance more steady or conversely smoother. More precisely, in case
the parametrization function has a small derivative in the �rst instants, we'll
know that the control is going to be rather calm initially; conversely, in case
the same function increases abruptly, we know we'll be applying a brusque steer.
Keep in mind that eventually we'll be e�ectively applying only the �rst step of
the steering action, as in the MPC fashion; still, experience shows that it's the
whole outline of the connection trajectory that in�uences the general behavior of
the control algorithm.

From this perspective, the di�erent functions belonging to the ensemble would
mean a diverse kind of control action. How can we single out the most suitable
option?

4.4.2 The Performance Index
Let's go back for a moment to the dynamics equation (2.15) already considered.
It has been conceived as a nonlinear di�erential equation for α so far but, as
already said, it can also be comfortably seen as a relation w.r.t σ, being the term
α known in advance.
Assuming we can somehow obtain a correct solution to this equation through
the knowledge of α(t), t∗ ≤ t ≤ t∗ + T , we can now manipulate a function σ(t),
t∗ ≤ t ≤ t∗ + T .
Thus, from the relation,

ϑ̇ = σvr

and knowing the state ϑ0 = ϑ(t∗), we can obtain

ϑ(t) = ϑ0 +

∫ t

t∗
σ(τ)vr(τ)dτ, t∗ ≤ t ≤ t∗ + T.10

Similar to what developed in section 4.2.1, we also obtain for the motion of
the vehicle on the plane:
for t∗ ≤ t ≤ t∗ + T ,

x(t) = x(t∗) +

∫ t

t∗
vr(τ) cos(ϑ(τ))dτ ;

y(t) = y(t∗) +

∫ t

t∗
vr(τ) sin(ϑ(τ))dτ. (4.12)

Now, keeping in mind that we've assumed vd constant, we can relate the points
on the desired path at time t∗ + T , say xd(t

∗ + T ) and yd(t
∗ + T ) and the actual

points x(t∗ + T ) and y(t∗ + T ). Let's therefore de�ne:

J(t∗) = (xd(t
∗ + T )− x(t∗ + T ))2 + (yd(t

∗ + T )− y(t∗ + T ))2.

10Remember that in our case we have assumed that the velocity is even constant.
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This is proven to be a Convex Performance Index. Note from �gure (4.4)
that, if we use this method and be precise in integrating the equations, we ob-
tain a bundle of non-intersecting curves; this means that the optimization index,
depending on the Euler distance, will be intrinsically convex, having one single
global minimum.

Matching all the paradigms of MPC, we'll choose the undetermined coef-
�cient(s) that minimizes this Index, that is the index which corresponds to a
trajectory for the roll which refers to a steering action which brings the closest
possible to the desired points in space.

This corresponds in other words to the Optimization Step.

4.4.3 Suitable Functions for the Time Parametrization
Backtracking to the problem of devising a suitable time parametrization function,
we face the problem of choosing on which might respect the boundary conditions,
i.e. the states for α at t∗ and t∗ + T .

For instance, in case we wanted to pick un some degree-varying polynomials,

τ(t) = tν , −∞ < ν < +∞,

we would have problems under the case |ν| < 1, as it time derivative would
boost for t = 0. In other words, after plugging this time parametrization into
the expression for α, we would have an unstable function for t −→ 0. The
other boundary values could be kept the same through convenient choice of the
coe�cients.

A second idea is to make use of a rescaled arctangent, but calculations might
show that, choosing coe�cients such that the initial conditions for the derivatives
at t∗ aren't modi�ed, we can't avoid to a�ect negatively those at t∗ + T .

The probably best choice appears to be the easiest: exploiting a low order
polynomial with null zero-grade coe�cient. For the sake of example, in the case
we desired to reparameterize a cubic polynomial with one free parameter (i.e.,
de�ning three out of four coe�cients), we'd need a second order polynomial, that
is a parable, with null zero-order coe�cient:

τ(t) = εt2 + εt;

we'll further on de�ne the two parameters through conditions on τ̇(t∗) = ε and
τ(t∗ + T ) = ε(t∗ + T )2 + ε(t∗ + T ).

4.4.4 Mimicking the Time Parametrization
Instead of making use of time parametrization, we could create out trajectories'
bundle in other, more exotic ways.

A �rst idea has been to modulate part of the connection trajectory through a
cosinusoidal function, just to boost the �rst part and smoothly damp the foregoing
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behavior. The time span during which this parametrization acts is variable, and
actually represents a parameter.

Another idea has been to start from a piecewise linear polynomial to be further
smoothed out in its connection points: the very �rst part would be a straight line
with inclination corresponding to α̇(t∗), while the last one would be a horizontal
line at the height α(t∗+T ), or even a straight line slanted according to the value
α̇(t∗ + T ). In between, there would be a connection polynomial controlled at
the starting and ending points. In �gure 4.6 this is depicted clearly: the control
points here are C1 and C2.

α

t

(t)

t* t*+TC1x C2x

C1y

C2y

Connection Polynomial

 (t*+T)/dt

(t*)/dtd α

αd

(t*)α

(t*+T)α

Figure 4.6: Connection Trajectory for the Roll: another example.

4.4.5 Degree of Precision
The attentive reader could question which (dynamic) States to consider for the
vehicle; indeed, it can be still considered a state any time derivative of α at time t∗.
From the preceding discussions, it can be understood that it would be compelling
to increase the degree of the connecting polynomial to keep in consideration all
those states 11.

It can be shown that, examining a higher number of states, we can attain a
more precise control, i.e. we can be much more informed about the outcome of
the control-to-be. For example, it can be proven, as well as derived staring at
equation (2.15), that the properties for σ are re�ected onto those for α̈. As a
matter of fact, if we express that term in function of σ, we have:

σ̇ =
pα̈

ccαvr

− gpsα

pccαvr

− σv̇r

vr

− σvr

c
− c2psαvr

c

Reasoning over the magnitude of the terms comparing in the expression, we
can discern that, through convenient actions on α̈, we can in�uence the behavior

11Indeed, we've mentioned that the function's degree has to be higher or at most equal to
the number of states.
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of the �rst term. Check �gures 4.1 and 4.2 to have some physical justi�cation to
that.

Thus, in the process of optimizing for α̈, we can be sure about what we're
going to attain for σ. This can turn out to be of a certain help.

As the reader might have recognized, the disadvantage is always either compu-
tational and physical12. Also, after a particular limit, the di�erences between all
the controls appear to be too small to take care of, meaning that they correspond
to similar steering actions.

4.5 Speeding up the Algorithm: A Hamiltonian
Approach

We have already highlighted the fact that, given a connection trajectory for the
roll, αopt, we're supposed to solve the classical equation (2.15) to obtain the control
action in terms of σ. Moreover, we have to pass through all the integrations to
attain the vehicle's position at the preview time during the optimization process.

There's a canny mathematical trick to boost this whole process. Let's �rst
dub the product

σvr = u.13

Equation 2.15 now looks like

pα̈ = gsα + cαuvr + pcαsαu2 + ccαu̇; (4.13)

we can divide all the members by ccα, given that α 6= π
2
(which is always the

case for normal situations),

pα̈− gsα

ccα

=
vr

c
u +

p

c
sαu2 + u̇; (4.14)

let's de�ne
u =

q

s
, where s 6= 0, ∀t;

thus the derivative is
u̇ =

q̇s− ṡq

s2
. (4.15)

Plugging these two terms into (4.14) and proceeding with some manipulations
we get

s2pα̈− gsα

ccα

=
vr

c
qs +

p

c
sαq2 + q̇s− qṡ. (4.16)

12For this second case, we have to have a su�cient number of sensors on the vehicle for
detecting all the states.

13This notation resembles one used in Getz's work, and turns out to be indeed very convenient
in some cases.
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It's easy to split this equation into a system
{

q̇ = −vr

c
q + pα̈−gsα

ccα
s

ṡ = p
c
sαq,

or, neatly, [
q̇
ṡ

]
=

[ −vr

c
pα̈−gsα

ccα
p
c
sα 0

] [
q
s

]
. (4.17)

Through these passages, we've reached a two-dimensional �rst order di�er-
ential equation in the unknown q and s, which is way easier to solve than the
starting equation (2.15).

Indeed, our equation is in the form
[

q̇
ṡ

]
(t) = A(t)

[
q
s

]
(t); (4.18)

integrating the time-varying "coe�cient",

B(t) =

∫
A(τ)dτ, (4.19)

the general solution to the system is
[

q
s

]
(t) = eB(t)

[
q
s

]
(t0), (4.20)

where t0 is the starting point and
[

q
s

]
(t0) is the initial condition, which

itself corresponds to some physical conditions on u, or in other words on σ and
vr

14.
We have many ways to computationally work out these integrals, namely

through approximation methods, from the �rst order Euler Integral to the fourth
order Runge-Kutta Algorithm. In the �rst case the equations look simple and
easy, thus it's worthwhile to record them.

Assuming the integration step is Tc and that the starting point is t0 = 0, we
recursively have:

B(kTc) = B((k − 1)Tc) +

+ Tc

[
−vr

c
pα̈((k−1)Tc)−g sin(α((k−1)Tc))

c cos(α((k−1)Tc))
p
c
cos(α((k − 1)Tc)) 0

]
;

k ≥ 0. (4.21)

The solution looks like
[

q
s

]
(kTc) = eB(kTc)

[
q
s

]
(0). (4.22)

14For instance, setting s = 1/σ, we can be sure to refer always to nonsingular situations.
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Backtracking to the previous notations,

u(kTc) =
q(kTc)

s(kTc)
= σ(kTc)v(kTc), (4.23)

where v(kTc) = vd is a constant value.
We obtain

σ(kTc) =
u(kTc)

vd

=
q(kTc)

vds(kTc)
. (4.24)

This is one of our e�ective Control Actions15.
From the kinetic states of the motorbike, namely x(0) = x0, y(0) = y0 and

ϑ(0) = ϑ0, we can determine the position at the preview time:
for k>0,

ϑ(kTc) = ϑ((k − 1)Tc) + Tcσ((k − 1)Tc)vd

x(kTc) = x((k − 1)Tc) + Tcvd cos(ϑ((k − 1)Tc))

y(kTc) = y((k − 1)Tc) + Tcvd sin(ϑ((k − 1)Tc))

(4.25)

Now, as stated before, from these �nal states we can proceed with the opti-
mization paradigm.

As we'll always have to pass through equation (2.15), this method plays a key
role in the whole algorithm: it's understandable that it would be easier to solve
algorithmically a �rst order di�erential equation than a second order one.

For the sake of honesty, we have to concede that eventually the implementa-
tion of the direct method of integration of the original equation (with numeric
algorithms) isn't that bad. The results are comparable, at least when the whole
dynamics isn't really fast or close to unstable situations. In general this new
method is more robust though, thus we'll keep sticking to that from now on.

4.5.1 An apparently smart idea
In the case we want to apply the Hamiltonian Approach, we can have the pos-
sibility to privilege speed rather than space. As already explained, even though
the Hamiltonian Method shows to be de�nitely more robust, it su�ers from the
many computations needed to build up the B matrix. Indeed, we need all the
values through B(0), B(Tc), . . . , B(kTc) to further obtain [q(kTc), s(hTc)].Also, we
need to build one dedicated B matrix for every di�erent parameterized α in the
ensemble.

One idea to eliminate this bottleneck has been to implement a lookup table
which might store some values, like the second term in equation (4.21) for all

15Remember here that we substitute into the matrix A(t) the expressions for α, where all but
some coe�cients (we choose the actual number through the polynomial's grade) are determined
from the initial conditions, i.e. the states, of the vehicle.
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possible values of α(kTc), varying with the unde�ned coe�cient(s). This method
has main drawbacks: �rst, it requires a booting procedure at the beginning of the
algorithm to actually build up this weighty table; second, the massive table, which
complexity depends exponentially on the number of parameters, the integration
step and the length of the preview time, turns out to �ll too much memory
resource16. Also, memorizing some values of the B matrix means prede�ning some
possible values for the coe�cients of the connection trajectory; in other words,
we have to approximate the states of the vehicle, sampling a range of possible
values for each of them. This means that we use an imprecise feedback action,
or that we devise connection trajectories starting from wrong initial conditions
which have been sampled. This is in other words a further error we are prone to
introduce, along with all those computationally dependent.

4.6 Other Fruits of Brainstorming
In this section we spend some time in describing some other ideas which cropped
out during the time spent on the project; some of them haven't actually been
included in the �nal version of the proposed algorithm, but they're part of that
"mental wire" which helps understanding the reason of many choices.

Starting from the optimization function, one further issue has been the fol-
lowing: how can we be sure that our Performance Index is actually a convex
function? Facing this doubt, we thought about realizing a famous search algo-
rithm: Simulated Annealing

4.6.1 Simulated Annealing
This method has the aim of �nding a minimum in a very general system and
the main advantage that has the ability to avoid becoming trapped at local min-
ima. The algorithm employs a random search which not only accepts changes
that decrease objective function , but also some changes that increase it with a
probability

p = exp

(
−δf

T

)
,

where δf is the increase in f and T is a control parameter.
The idea here has been to apply both the classical search method and the

Simulated Annealing to the problem of �nding the optimal solution to our prob-
lem. The results turning out to match, we understood that our search space
was enough "convex" to allow us apply the simplest (and fastest) search method,
without the peril to be stuck to incorrect local minima.

16The apparent further trouble of having a table with a prede�ned velocity, namely �xed
through the �rst term of (4.21), can be worked out memorizing only positions (1, 2) and (2, 3)
of the array. Apart from this, the whole algorithm would work also for time-varying actual
speeds.
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4.6.2 Other Search Methods
More methods have been suggested and e�ectively employed to speed up the
optimization procedure; in other words, is that possible to somehow prune the
search tree(due to the coe�cients in the functions) of some of its branches, being
still sure that the disregarded solutions refer to ine�cient steering actions?
The subtle point to grasp here is that the �rst step where we perform a full search
through the coe�cients' tree submits an optimal solution; then, as we assume
that the system runs smoothly and that the integration steps give nonsingular
solutions, we're prone to believe that the next optimal solution will be found
"next" to the �rst one. Indeed, if the sampling time isn't that wide, the new
initial conditions for the whole system will stay close to the ones considered for
the previous step; there'll be also a proximity referring to the desired value on
the trajectory to track.

Here comes into use the idea of Local Search: the optimization process will
run only through a local set around the previous result. It's up to the programmer
to decide the width of this set. It's even possible to zoom into it, augmenting the
discretization of the same interval.

Another pretty easy, yet amazingly powerful search method is theDichotomic
Search : as studied in Numerical Calculus, this algorithm proceeds splitting the
search span apart and taking the "best half". This assumes the convexity of the
function over which we perform our search, otherwise we could get stuck at local
minima; nevertheless, as seen, it turns out that in our case this search method
works regularly. This last algorithm is indeed the most suitable for our purposes
and the best up to precision and running time.

4.6.3 A new and more complex Optimization Function
As will be described in a later section, there's been another idea for the Optimiza-
tion Parameter, namely to exploit more than one reference point on the path to
compare with a set of points at the preview distance. Let's take a look at �gure
(3.3): it's quite clear that the approximation of considering the preview distance
linearly proportional to the preview time through a constant velocity (the known
current speed examined at time t∗) is not only a possibly wrong approximation17,
but also a misleading one: if the track is bending the vehicle won't ever be able
to reach exactly the desired point over the path, which is predetermined through
the path de�nition; what we'll be obtaining is instead a point calculated through
the known projection method.

The bootstrapping idea here has been to allow one more degree of freedom on
the preview distance. If the track were a perfect curvature, in fact, we would aim
at a point which is, over the track, distant 2π

4
pwd = pi

2
pwd ' 1.5pwd, instead of

an actual point which is pwd ahead on the curvilinear abscissa. In other words,
17Indeed the speed could vary due to a steering action, or to a gear change, or to some skid

e�ects, as we'll see in one of the next chapters.
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we would overestimate the distance made of more than 50% its value.
Thus, if we plan to build trajectories for alpha with a varying �nal point (i.e. the
preview time), we would de�nitely obtain more precise results. So, the Optimiza-
tion Function stays the same up to the values given by the track's de�nition, but
is somehow less conservative on the values obtained through calculation, which
won't lie on a straight line any more.
Another feasible modi�cation could be to compare not only one point at the
preview distance (possibly obtained as just described), but, say, three of them,
one of whom taken ahead of the �rst one, the other behind it. This would pose
a condition on the derivative of the roll angle at the preview time, which can
be easily obtained in a simple loose way. The reader should remember that this
would pose one further condition on the states of the connection trajectory, which
by itself would have to have a higher degree.

Those two ideas, improving the performance, clearly present the drawback of
being more complex and computationally intensive.

4.7 The Algorithm in a glimpse
We summarize and plot a scheme of the whole Algorithm in �gure 4.7.
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Figure 4.7: A visual representation of the proposed control scheme.



Chapter 5

The Control Algorithm applied to
the real world

5.1 Introduction
So far, we have described the structure of our controlling scheme, justi�ed some
of its features and unveiled how to demonstrate its stability.

Some of the previous approaches have been booted out mainly for their awk-
ward behavior or clumsy performance. So the question is: does this new approach
work when applied to a real situation? The answer is positive, and this chapter
gives grounds for that.

5.2 The ADAMS Software
The ADAMS Motorcycle Software is a powerful tool for simulating the behavior
of a motorcycle. Its main application is for Virtual Prototyping in Motorcycle and
Scooter Development. Put more simply, the aim of this product is to virtually test
the performance of a vehicle under certain situations, thus avoiding the need to
build actual physical prototypes of it. The claimed advantages of this approach
are lower test costs, faster engineering decisions and higher performance rate,
with less possible structural problems.

The vehicle has to be modelled very precisely from a mechanical point of view,
thanks to the �nite element approach. Many characteristics, such as the compo-
nents' materials, some mechanical features or non linear qualities, are included
into the system itself, which turns out to be eventually very realistic.

The vehicle is fully parameterized on design variables and geometric locations,
and all these parameters can be accessed by the customer. Also, many vehicles
models are deployed, thus allowing pretty various analyzes.

Summarizing, ADAMS Motorcycle gives the manufacturers the ability to sim-
ulate full vehicles in a virtual test environment.



64 Chapter 5. The Control Algorithm applied to the real world

Physical

design

design
MECHANICAL

PROJECT

CONTROL

PROJECT

VALIDATION 

and

TESTING

VALIDATION

and

TESTING

CONCEPT

Prototype

Figure 5.1: Traditional Mechanical and Control Design.

Prototype

MECHANICAL

PROJECT

PROJECT

CONTROL

MODEL

Complete

PROTOTYPE

VIRTUAL
CONCEPT

design

design

Validation

Testing

and

Physical 

Figure 5.2: Integrated Approach to the Mechanical and Control Design.



5.3. The old Controller 65

At this point it's clear that, having a model and being able to de�ne a road
pro�le1 and some performance benchmarks, we just need a pilot : that's where
the controller comes into play.

The model has many sensors and actuators and conveys informations about
its states to the controller part, along with obtaining commands from it to deploy
through its actuators. This is the feedback step we always claim the importance
of.

The controller works under SIMULINK, possibly through MATLAB (using
S-Functions) and also through RTW, the automatic code generator.

Let's take a look from a distance on how the controller used to be conceived,
and on how the new one is instead.

5.3 The old Controller
The previous version of the controller was based on a fuzzy approach (see �gure
5.3). This would merge a longitudinal controller for the velocity with a lateral
one for the position referred to the track and the balance and �nally with a yaw
controller 2.

The approach accepted is the one of the Connection Trajectories in the �at
plane, i.e. for the steering action in σ. As described in section 3.5.2, it works
rather good in tracking the desired path, needing a balance controller to prevent
the system from falling. The di�erence with Getz's approach is that here the
two steering actions are not integrated, but just switched in between in a fuzzy
fashion, depending on the magnitude value the second derivative of α assumes.

The longitudinal controller makes use of a perhaps overexploited idea of pre-
view distance for the speed. As we've said, the desired velocity is expressed in
terms of the curvilinear abscissa s; if we look ahead of a certain preview time and
hypothesize a constant speed, we can devise a very simple connection trajectory
for the speed as well: in our case, that would be a simple straight line (i.e., a �rst
order polynomial). This method is also important for the robustness to speed
changes due to the gear shifts.

5.4 The new Controller
Trough this section, we'll show how to change the structure of the software to take
into account the e�ects of the new controller. We'll see how the new arrangement
will from one side result way neater, from the other need some modi�cations .

1The 2D-road pro�le has many similarities to the one used for our theorical studies: the road
is either de�ned by segments as function of "s" coordinates or by points in (x,y) coordinates.
The road curvature is assumed to be smooth, and this is obtained through the use of Clotoids
as connections between straight lines and constant-radius curves.

2We'll disregard this last one for now, albeit it plays a key role on the substantial performance
of the old system.
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Longitudinal Controller

Sensors
Actuators

Lateral Controller

Roll Balancer

Yaw Controller

Figure 5.3: Block Structure for the old Controller.

First, as already stated, the new approach will prevent from using the roll
balancer, as the connection trajectories for the bank angle eliminate away all
at once all the problems which come along with the minimum phase feature of
the system. Also, this new method appears to be pretty robust toward those
behaviors once solved through the yaw controller, like brusque braking or abrupt
lateral noise provoking an undesired steering action.

See �gure 5.4 for a glimpse to the new method's structure.
The new approach solves then many of the issues referred to the method once

known as lateral controller.

ADAMS

Actuators

New Longitudinal Controller

New Algorithm, Trajecroty Tracker

Sensors

Figure 5.4: Block Structure for the New Controller.

5.4.1 Description
While the old controller was wholly implemented in SIMULINK, the new algo-
rithm needs to be run under the MATLAB environment. This poses the question
of how to switch between the twos: we need indeed some values provided by the
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sensors, such as for instance the vehicle's states, as well as some forces or me-
chanical parameters, like the tires' slip factors. Besides, our control action has to
be exerted through some actuators, thus still present in the SIMULINK setting.

The algorithm by itself, on the contrary, needs the speed and the precision
of MATLAB. Consequently, the choice has been to exploit the usefulness of the
S-Function structure3.

This structure provides the programmer with the automatic possibility of
de�ning some states, as well as receiving some inputs and de�ning outputs, along
with the feature of refreshing them through any calculations at each time step.

The timing issue has been assessed choosing the same clock for the SIMULINK
program and the underlying MATLAB algorithm.

At each time step (actually Tc = 0.01[s]) the sensors provide information
about the motorcycle, like the necessary states. From many of these values, the
actual optimization algorithm is applied on a preview time which can actually
be set or prede�ned (it's customary to leave it at 1secs). Many variables are
refreshed, and other values are given as outputs in the form of a control action,
which will be used only in its �rst term (MPC approach). Also all the information
about the kinetic states of the bike are provided by the vehicle's sensors (included
all those referring to the connection trajectories); here the path is prede�ned and
possibly modi�able by the end user.

The control values, passed to the actual "mechanical" simulator, modify the
position of the motorbike and so pass through the real system, which we assume
to be modelled by our theorical kinetics and dynamics equations.

All this procedure is repeated each time step, as in the fashion of the MPC
approach.

Here one can understand how important role the modelization procedure
plays: too a precise model would be way much complex and not suitable for
real-time use, as well as rigid to unexpected behaviors. Conversely, a loose model
could be inadequate to take into account some features. We claim that our model
attains good performances, with some notable exceptions we had to �gure out
how to solve.

5.4.2 Tires Modelization
In our theorical analysis, we've always assumed that the tires had no lateral
slip, indeed we made the hypotheses that the whole system underwent the so
called nonholonomic constraints. Here this assumption fails to ba valid; it can be
seen that skidding e�ects are always present while the motorcycle is bending or
turning, and they're indeed the very cause of the movements inside a curve.

The reader might remember that, ideally,

σ =
tan(β)

b
, (5.1)

3Please note that future releases will include the possibility of the automatic language gen-
erator(RTW) for optimization purposes.
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where σ is the motorbike's curvature (i.e. the inverse of the radius de�ned
through the normal to the front and rear wheel) and β is the e�ective steering
angle obtained moving the steering shaft 4. In other words,

β = arctan(σb). (5.2)
Now, we can have some skidding e�ect both on the front and the rear wheel;

dubbing λf and λr respectively the front and rear slip coe�cients, there's a rela-
tion that generalizes the previous one:

β = arctan(
bσ − sin(λr)

cos(λr)
) + λf . (5.3)

Clearly, equation (5.2) is a particular case that can be obtained from (5.3).
The problem was to correct the imperfect values obtained and due to the

skidding e�ects; equation (5.3) was used in the following fashion: we already
know that the actual control is expressed in form of σ and then fed as an actuator
signal; from the previous relation, let's obtain β with those values for λf and λr

(obtained from two dedicated sensors) and, from relation (5.2) the corresponding
σ again; now, let's refer all the calculations during the optimization procedure to
this value.

That's a classical example where the model was unable to justify some new
behaviors and needed some further modi�cations and re�nements.

5.4.3 The new Longitudinal Controller
A very large quantity of test performed during the time passed over the project,
as well as some experience and sensibility earned throughout the whole activity
made clear that the idea to employ a preview time also for the speed, while
matching the winning idea used for other parts, o�ered low quality achievements.
This both for matching the desired velocity and during the frequent gear changes.

Here the solution was nice and easy: PID control. Having set up the necessary
blocks to attain it, we just had to �gure out which were the time constants for the
system and calibrate the gains and the pole positions in our transfer functions.

Given the necessity to place a saturator right at the output of the whole sys-
tem, we provided an anti-saturation block 5 to improve the system's performance
and avoid the problems referred to the saturation itself.

From �gure (5.5), one can understand that when the actuator saturates the
feedback loop opens, due to the non-zero error u − v, and decreases v with a
velocity which is inversely proportional to Tt. In other words, the integrator
arrives discharged at the possible saturation condition and consequently doesn't
produce any overshoot.

4The reader should remember also another important relation, the one relating the steering
angle with the roll angle: tan β cosα = tan ψ, where ψ is the rotation angle for the steering
shaft.

5This scheme is widely known as Anti-reset wind-up.
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Figure 5.5: Scheme for the anti reset wind up.





Chapter 6

System's Modelling: an Application

6.1 Introduction
As we mentioned in the introductory section, as well as throughout the theorical
chapter, one pretty interesting engineering problem is System's Modelling. The
issue here is always to choose between accuracy and robustness: a very precise
model could take into account many behaviors of the system but at the same time
fail under the case of unexpected happenings, i.e. unforeseen events which could
a�ect and perturb the same system. Conversely, a somehow rough modelization,
being by itself pretty robust, could be inadequate to describe some occurrences
that we expect from the real world.
In our case, we decided to make use of a model for the motorcycle in some way
simple, but de�nitely really robust and enough precise to mirror all the events
we were interested in.
Throughout this chapter, we're introducing a new model, which could be suitable
to highlight some new features related to the driver. We'll then emphasize some
possible applications and a control synopsis for this new model.

6.2 The new Model
The new task here is to model the driver, along with the vehicle; having used a
very simple Inverted Pendulum for the motorcycle, the most direct idea here is
to exploit an Inverted Double Pendulum.

We'll dub the vehicle's mass M , while the driver's one m. The angle that
m describes referred to the straight line passing through the mass M and the
contact point with the ground will be γ, and the roll angle for the vehicle will
be α from now on. The distance of the mass M to the contact point with the
ground will be p, while the space between M and m is going to be q.
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Figure 6.1: The new Model.

6.3 Mathematical derivation of the Dynamics Equa-
tions

In the theory review, we have gone through the Lagrange's Equations and high-
lighted how they can be used to describe any system in any coordinates we wanted.
these new coordinates are named Generalized Coordinates : here we want to write
new Dynamics Equations referred to these coordinates.
We'll tackle the problem from the most convenient side: expressing the system's
states, i.e. position, velocity and acceleration, in function of these new coordi-
nates, as well as de�ne some Generalized Forces acting along them.
Let's start with the Lagrange's Equations for the two masses; being L = T − V ,

LM = 1
2
Mp2α̇2 −Mgpcα; (6.1)

Lm = 1
2
m (p2α̇2 + q2(α̇ + α̇)2 + 2pqα̇(α̇ + γ̇)cγ)−

−mg(pcα + qcα+γ); (6.2)
Unfolding all the necessary calculations, we �rst consider the coordinate α:

∂LM

∂α
= Mgpsα;

∂LM

∂α̇
= Mp2α̇;

∂Lm

∂α
= mg(psα + qsα+γ);

∂Lm

∂α̇
= m

(
p2α̇ + q2( ˙α + γ) + pq(2α̇ + γ̇)cγ

)
;
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The same computations with respect to γ:
∂LM

∂γ
= 0;

∂LM

∂γ̇
= 0;

∂Lm

∂γ
= −mpqα̇(α̇ + γ̇)sγ;

∂Lm

∂γ̇
= mq(q(α̇ + γ̇) + pcγα̇);

Now, working out the terms in the de�nition of the Lagrange's Equations:
d

dt

∂LM

∂α̇
= Mp2α̈;

d

dt

∂Lm

∂α̇
= m

(
p2α̈ + q2(α̈ + γ̈) + pq ((2α̈ + γ̈)cγ − (2α̇ + γ̇)sγ γ̇)

)
;

d

dt

∂LM

∂γ̇
= 0;

d

dt

∂Lm

∂γ̇
= mq (q(α̈ + γ̈) + p(−sγ γ̇α̇ + cγα̈)) ;

As described in the theory section, we now have to go look for an expression of
the Generalized Forces acting along the coordinates α and γ.

It turns out to be quite tough to single out each force acting along these direc-
tions, especially because of the reaction forces between the two masses, as well as
due to the fact that the system is not Inertial ; this means we'd have to consider
also the dragging forces and the Coriolis forces also.

It's conceptually way easier and straightforward to use Newton's law for the
whole force acting on each point, and then project it along the generalized coor-
dinates. Considering �gure 6.2, we have:

~rm = x0 + jy0 + cejϑ − j(psα + qsα+γ)e
jϑ; (6.3)

~vm = vre
jϑ + jcejϑϑ̇− jpcαα̇ejϑ + psαϑ̇ejϑ −

−jqcα+γα̇ejϑ − jqcα+γ γ̇ejϑ + qsα+γ θ̇e
jϑ; (6.4)

~am = v̇re
jϑ + jvrϑ̇ejϑ − cϑ̇2ejϑ + jcejϑϑ̈ +

+jpsαα̇2ejϑ − jpcαα̈ejϑ + pcαα̇ϑ̇ejϑ + pcαα̇ϑ̇ejϑ + psαϑ̈ejϑ +

+jpsαϑ̇2ejϑ + jqsα+γα̇
2ejϑ + jqsα+γα̇γ̇ejϑ − jqcα+γα̈ejϑ +

+qcα+γα̇ϑ̇ejϑ + jqsα+γα̇γ̇ejϑ + jqsα+γ γ̇
2ejϑ − jqcα+γ γ̈ejϑ +

+qcα+γ γ̇ϑ̇ejϑ + qcα+γα̇ϑ̇ejϑ + qcα+γ γ̇ϑ̇ejϑ +

+jqsα+γϑ̇
2ejϑ + qsα+γϑ̈ejϑ. (6.5)
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Figure 6.2: Vehicle's top view.

Note that the �rst term in the equation for the velocity is one of the NonHolo-
nomic Constraints1.
As already mentioned, the second constraint is ϑ̇ = σvr.
Here we'll make some more conjectures, namely that α̈ = α̇ = γ̈ = γ̇ = 0; these
hypotheses are actually those implied for the derivation of the preceding model,
and correspond to assuming null Coriolis Forces. Moreover we'll consider the
steering shaft with no momentum associated with, as well as no gyroscopic e�ects
onto the wheels.
We obtain for the last term,

~am|hp
=

(
v̇r − cσ2v2

r + psα
˙(σvr) + qsα+γ

˙(σvr)
)

ejϑ +

+ j
((

v2
rσ + c ˙(σvr) + psασ2v2

r + qsα+γσ
2v2

r

)
ejϑ

)
; (6.6)

We have just obtained a simpli�ed expression for the acceleration of the driver's
mass; applying Newton's law to obtain the Generalized Forces requires to attain
an expression of,say, the Generalized Acceleration. This is obtained by projecting
the previous expression along the generalized coordinates, i.e. in out case along
the plane described by the movement of α or γ. Also, it should be clear that, at
his point, the term dependent on the yaw ϑ can be disregarded; it a�ects indeed

1More precisely, dubbing z0 = x0 + jy0, we have that, being v⊥ = 0, ż0 = vre
jϑ; in other

words the vehicle, as assumed, doesn't skid apart.
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only the phase of the vector ~am|hp
. Hence, we obtain,

~am|hp|j,ϑ=0
= (1 + (psα + qsα+γ)σ) σv2

r + c(σ̇vr + σv̇r). (6.7)

Proceeding in the same way, we obtain for the mass M ,

~aM |hp|j,ϑ=0
= (1 + pσsα)σv2

r + c(σ̇vr + σv̇r). (6.8)

Now, the Lagrange's Equations appear to have the form:

d

dt

∂L

∂α̇
− ∂L

∂α
= Φα; (6.9)

d

dt

∂L

∂γ̇
− ∂L

∂γ
= Φγ. (6.10)

As referred in the Theory Section, Φi is the Generalized Force related to the
generalized coordinate i.
As of now, we just have to express the Generalized Forces in a suitable and
correct way, having already derived a close form for the respective accelerations.
As suggested in [15] and [2], it's necessary to take into consideration a virtual
displacement referred to the new coordinates and multiply it by the force obtained
through Newton's Equation. More precisely, in the case of the driver's mass, we
have (see �gure 6.1):

xm = psα + qsα+γ;

x
′
m = psα + qs(α+γ)+δγ =

= psα + q (sα+γcδγ + sδγcα+γ) ≈
≈ psα + qsα+γ + qcα+γδγ,

as we're considering a di�erentials and, being δγ ≈ 0, cδγ ≈ 1 and sδγ ≈ 0. We
obtain

x
′
m − xm = qcα+γδγ.

We de�ne the Virtual Displacement2 as:

δx |γ= x
′
m − xm

δγ
, (6.11)

and the Generalized Force referred to coordinate γ is:

Φγ = m‖ ~am|hp|j,ϑ=0
‖qcα+γ. (6.12)

Working out all the math for α, we similarly get:

Φα =
(
M‖ ~aM |hp|j,ϑ=0

‖+ m‖ ~am|hp|j,ϑ=0
‖)pcα. (6.13)

2Here we exploited the concept of Virtual Displacement only in function of our current
purposes; for a deeper insight of this important topic refer to [15] and [2].
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reordering all the previous equations and plugging some results into them, the
New Dynamics Equations for the Model turn out to be:

(Mp2 + mp2 + mq2 + 2mpqcϑ) α̈ + (mq2 + mpqcγ) γ̈ −
−mpq (2α̇ + γ̇) sγ γ̇ −Mgpsα −mg (psα + qsα+γ) =

M ((1 + σpsα) σv2
r + c (σ̇vr + σvr)) +

+m ((1 + (psα + qsα+γ) σ) σv2
r + c (σ̇vr + σv̇r)) pcα; (6.14)

(mq2 + mpqcγ) α̈ + mq2γ̈ −mpqsγ γ̇α̇ +

+mpqα̇ (α̇ + γ̇) sγ −mgqsα+γ =

m (1 + (psα + qsα+γ) σ) σv2
r +

+c (σ̇vr + σv̇r) qcα+γ. (6.15)

Note that these equations have been derived under all the assumptions holding
also for the calculation of the old model; as a matter of fact, restricting those
relations through hypotheses like m = 0 or q = 0, we attain the equation (referred
to the angle α) (2.15), of page 21. As a counterproof to all this math, we could
try to derive these formulas through the approach in [12] and [13]: writing the
Lagrangians as here, we have to constraint them, thus obtaining a formula which
could not be used directly to derive the dynamics equations3. We must therefore
pass through a set of transformations, named d'Alembert maps, to �nally get the
equations referred to our desired coordinates.
Using some software programs like MAPLEr, one can check the validity of our
results.

6.4 New Control Heuristics
After having de�ned a consistent and sound model, we have to suggest a control
methodology which might encompass new characteristics of the whole system and
possibly improve the performances.

A couple of approaches have been thought thereabout, the more brilliant of
which is the following: starting from our new model, we can try to think it
as a new big unique mass (the sum of the twos), plus a structure of the simple
inverted pendulum, with a certain height calculated through the center of mass of
the double system. Writing down the equations and simplifying them, we obtain
a relation similar to (2.15), only depending on new parameters. We can then
operate in parallel between this new relation and the new dynamics equations :
we can obtain a certain behavior for the whole system operating either on the
velocity, or the steering shaft, or even on the new mass position (movement of
the pilot). We get in other words a new degree of freedom, which we can fully

3See the Theory section.
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exploit.
This can be just an example of heuristics for the control action.

We leave this new goal to future works.





Chapter 7

Results, Conclusions and Future
Work

7.1 Outcomes
In this chapter we'll focus our attention to the performance analysis of the whole
algorithm as evident from simulations and real-world results.

7.1.1 Simulations
Having implemented the core of the algorithm in a MATLAB �le, we had somehow
to test it. Thanks to the theorical meditations lying beneath the heuristic and
having somehow proven the stability of the method, we were quite con�dent about
the simulations outcomes.

The idea was to implement many version of a motorcycle simulator through
the SIMULINK interface, which could mimic the real ADAMS software. Obvi-
ously, our simulator had no mechanical features, but could only cover the dynamic
behavior of the system. In other words, through simulations we were still con-
trolling a point-mass vehicle, subject to some instability constraints on its roll,
but free from all its burdens regarding mechanical nonlinearities.

Seen from another side, we just veri�ed that we were able to validate the roll
dynamics equations, i.e. maintain the vehicle's stability, along with tracking any
feasible and considerate trajectory on the plane.

As stated in section 4, we had to build up a reference path, which we did
through �rst de�ning a velocity pro�le and a curvature pro�le, all referred to the
curvilinear abscissa. Then, we implemented a road builder, which created the
path in the x,y reference frame (even if always referred to the abscissa), as well
as calculating the desired roll in terms of the same abscissa.

As already said, the algorithm produces a control action in terms of the steer-
ing angle and feeds the simulator with it; conversely, the very simulator processes
this data and outputs the new dynamic states for the vehicles, as well as the ki-
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netic ones (position). We used a sampling time step of Tc = 0.01[sec]1, and a
preview time of T = 1[sec], albeit this last term was prone to be modi�ed as
desired2.

Next, some plots referring to simulations will be displayed. Let's de�ne some
elements: usually the desired trajectory appears thicker than the other items;
the position of the rear wheel contact point with the ground is a star, while
the projection of the vehicle's mass on the �at plane is a little circle; detaching
from the vehicle's state point are either some connection trajectories or just the
optimal one chosen, as well as a straight dashed line slanted accordingly to the
yaw ϑ (from which the reference point(s) on the desired trajectory are calculated).
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Figure 7.1: The Countersteering Phenomenon.

From �gure 7.1, we have that the motorcycle is required to make a turn left,
starting right over the desired path; the Countersteering Phenomenon is here
evident: to reach a negative required roll, the driver �rst has to steer right, i.e.
negative, and then positive after some fractions of second. It's kind of interest-
ing to notice that this behavior blossoms out just from the dynamics equations,
nobody imposed that, it's just a natural manoeuver which the driver is required
to perform.

In �gure 7.2 again, we make use of a more sophisticated parametrization to
1Remember the paradigm of Model Based Predictive Control.
2Actually the real preview distance is dynamically modi�ed linearly accordingly to the ve-

locity, or even possibly quadratically depending on the instant acceleration.
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Figure 7.2: The Countersteering Phenomenon.

obtain the desired tracking, and again it's noticeable the countersteering e�ect,
as well as a very precise performance for the tracking itself.

In �gure 7.3 the vehicle is in a state not over the path and is "looking ahead"
to devise some connection trajectories. Here we're using simple cubic polynomials
for the roll, thus depending only on one parameter (more precisely, the derivative
at the arrival point; no time parametrization is here exploited). Applying the
optimization procedure, the outcome is simply the best trajectory on the plane
based on the end point distance, which in turns corresponds to the optimal control
in σ.

In �gures 7.4 and 7.5 the reader can assess the tracking performance, which
we judged to be pretty accurate. Here the motorbike is speeding at 20m

s
, that is

roughly around 70km
h
, and entering in a curve of radius 80 meters. Please notice

that, for the sake of neatness and clarity, we limited the plot to once every 10
steps, i.e. the state of the vehicle and the connection trajectories are drawn every
0.1 seconds.

In �gure 7.6 the reader can take a look at the shift in roll happening when the
curvature of the road changes sign. The manoeuver is rather steady and de�nitely
robust.

Plot 7.7 refers to the evolution of the roll angle and the steering action through
time.

The previous three �gures describe some robustness tests performed, namely
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Figure 7.3: A bundle of trajectories, with the optimal one highlighted.
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Figure 7.4: Trajectory tracking: an example.
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Figure 7.5: Trajectory tracking: another example.
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Figure 7.6: Trajectory tracking: shift on the roll sign.
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Figure 7.7: Trajectory tracking: Progress of the roll α and the steering angle σ.
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Figure 7.8: Trajectory tracking: Robustness Test.
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Figure 7.9: Trajectory tracking: Robustness Test (zoom in).

0 10 20 30 40 50

0

5

10

15

20

Trajectory Tracking

[m]

[m
]

Figure 7.10: Trajectory tracking: Robustness Test, with di�erent initial condi-
tions.
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here the ability of the controller to recover from anomalous situations can be
assessed.

Figures 7.8 and 7.9 refer to a vehicle starting not over the path and slightly
out of the path direction, while plot 7.10 described an opposite start up. In both
cases, but especially in the �rst one, it can be noted how the motorbike recovers
and converges smoothly to the path.

The reader might be aware that this behavior has been obtained through a
cubic polynomial as connection trajectory for the roll, and with a smooth time
parametrization. Search for the optimal has been kept local, although one might
�rst think that a global one could de�nitely help the swing in the control action.
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Figure 7.11: Trajectory tracking: Signals evolution during the robustness test.

Finally, in �gure 7.11 the reader can check out the time evolution of the two
signals α and σ.

7.1.2 ADAMS Performance
It should be quite indisputable that the simulations done in MATLAB are from
one side pretty promising if referred to the algorithm's heuristic, but from the
other side incapable of testing the method applied to a real-world problem; our
simulator, indeed, is based on the very same equations we used to build up
the algorithm, thus we're unable to test its robustness on a real system which
undergoes equations only similar to ours.

Integrating our new method into the ADAMS software 3 gave us the possibility
to check its consistency when coping with reality. Here it comes to mind the
discussion on the importance of the modelization procedure: will our model be
enough accurate to power up a real motorbike, being our method stable enough

3For more details on this software, please refer to section 5, page 61.
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when many of the assumed premises won't hold any more? Again, will our
model be enough robust when coping with unexpected nonlinearities of the whole
system?

As described in section 5, we actually had to have our system re�ned in some
of its characteristics, for instance when facing the problem of tires'slip, over- and
under-steering.

Nevertheless, in general, we didn't have to make such drastic variations on the
very same algorithm, thus its application turned out to be rather straightforward.

The outcomes appeared to be ful�lling our expectations, and our main achieve-
ments can be summarized as follows:

• Better performance at low speed, from 3m
s
on;

• Improved performance at small curvature radius' roads;

• Neater control signals, especially the steering action;

• More compact and clean setting for the algorithm (take a look at �gures
(5.3) and (5.4)); most important, no more use of the fuzzy approach;

• Good performance to disturbances, like lateral thrusts or abrupt decelera-
tions;

• Due to the idea of devising connection trajectories for the roll, the vehicle
cannot actually fall down, unless there's a singularity in the solutions of the
internal ODEs; at worst the vehicle doesn't track the path close;

• Actual understanding of the physical behavior of the tires'skid e�ects, and
project of a method to compensate them;

• New method for the longitudinal controller, i.e. for the speed regulator, as
described in section 5;

• Comparable robustness to the previous method; this was the previous re-
lease's most positive aspect;

• Ability to run through opportunely devised closed circuits;
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• Debug of some software errors referring to the previous release;

Summarizing, we can claim that our new algorithm has passed all the bench-
marks for state-of-the-art software products, and thus can be exploited for com-
mercial purposes.
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7.2 Conclusions
The goal of this paper has been to describe how a new heuristic approach can
be �rst embedded into a method and an actual algorithm for tracking a deter-
ministic and prede�ned track on the �at ground with precision, while retaining
the vehicle's balance, accordingly to the dynamics equations. Also, a further step
has been to apply this new methodology for a real problem, that of devising an
automatic pilot for a virtual motorcycle or, in other words, to engineer the con-
trolling scheme which could underlie a software product dedicated to motorcycle
simulations.

After describing the control synopsis, we actually constructed step by step the
whole algorithm and explained how to demonstrate its stability and robustness.

Many di�erent ideas have been described, all of which are not included in
the �nal optimized version of the same algorithm, but which provide a better
understanding of the problem.

Another step has been the integration of this algorithm into a real software
product, with all the correlated problems regarding real-world nonlinearities. The
goal of obtaining an actual brand new product has been fully attained, along with
more re�ned features, thus eventually obtaining a new improved and enhanced
version of the product.
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7.3 Future Work
We cannot claim to have reached a �nal outcome; both the theorical study and
the practical work are prone to further re�ned improvements. First, there might
be some new approach in de�ning the system's model, which could possibly bring
new results. For instance, in section 6 we mathematically worked out a new model
which could take into account also the pilot; clearly, it would be reasonable to
exploit it and devise some controlling schemes which could make use of this new
degree of freedom, as suggested in that chapter.

Attention will be surely brought to the problem of demonstrating the vehicle's
stability, and results will be assessed in future works.

From an applicative point of view, it's clear that many other ideas could help
in improving the software e�ciency and performance. We coped in rendering
the whole system modular and dynamic, and we concede that we just partially
achieved our task: some constants still have to be triggered by hand, and it's up to
the engineer's sensibility to understand which value could be the most suitable.
In general, results will be at least linearly correlated to the time spent on the
software, but we're sure the advantages this software brings are worth the e�ort.
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