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Abstract

In this work, probabilistic reachability over a finite horizon is investigated for a class of discrete time stochastic hybrid systems
with control inputs. A suitable embedding of the reachability problem in a stochastic control framework reveals that it is
amenable to two complementary interpretations, leading to dual algorithms for reachability computations. In particular, the
set of initial conditions providing a certain probabilistic guarantee that the system will keep evolving within a desired ‘safe’
region of the state space is characterized in terms of a value function, and ‘maximally safe’ Markov policies are determined via
dynamic programming. These results are of interest not only for safety analysis and design, but also for solving those regulation
and stabilization problems that can be reinterpreted as safety problems. The temperature regulation problem presented in the
paper as case study is one such case.
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1 Introduction

Engineering systems like air traffic management sys-
tems and infrastructure networks, and natural systems
like biological networks exhibit complex behaviors aris-
ing from the interactions between heterogeneous com-
ponents, and are intrinsically characterized by hybrid
dynamics. The uncertainty affecting the interleaved
discrete and continuous evolutions results in a differ-
ent likelihood of the system trajectories, thus naturally
leading to stochastic hybrid models. The analysis and
control of a stochastic hybrid system is generally more
challenging than that of a deterministic hybrid system.
In this paper we concentrate on the reachability prob-
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lem for discrete time stochastic hybrid systems.

Reachability is an important topic in classical control
theory. In general terms, a reachability problem consists
of evaluating whether the state of a system will reach
a certain set during some time horizon, starting from a
given set of initial conditions and possibly subject to a
control input. This problem is of interest, for instance,
in those safety problems where the system should be
kept outside an unsafe region of the state space and the
control input can be chosen so as to avoid this unsafe re-
gion. In a deterministic setting, reachability is a yes/no
problem, where one evaluates if starting from a given
set of initial states the system will reach a certain set
or not. In a stochastic setting, the different trajectories
originating from each initial state have a different likeli-
hood and one can then evaluate what is the probability
that the system will reach the assigned set starting from
a certain initial distribution over the set of initial states.
In safety problems where the evolution of the system
can be influenced by some control input, one should
select it appropriately so as to minimize the probability
that the state of the system will enter the unsafe set.
Much investigation has been done on reachability anal-
ysis for system verification, where the problem consists
in verifying if some designed system satisfies certain
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reachability specifications encoding a correct/desired
behavior.
In the case of deterministic systems, ‘model checking’ is
the most commonly adopted technique for system ver-
ification, where reachability specifications are verified
by constructing reachable sets based on a model of the
system. In the hybrid systems case, set representation
and propagation by continuous flow is generally diffi-
cult, and termination of the algorithm for reachable set
computation is not guaranteed since the state space is
not finite [36]. Decidability results have been proven to
hold only for certain classes of hybrid systems by using
discrete abstraction consisting in building a finite au-
tomaton that is ‘equivalent’ (bisimilar) to the original
hybrid system for the purpose of verification [2].
In the case of complex dynamics, some approximation
methods are needed for reachability computations. Two
main approaches have been introduced to this purpose:
seeking for an abstraction of the system that would
yield a simpler model for solving the original reachabil-
ity problem, or adopting an approximation of sets that
can be easily represented and propagated through the
system dynamics. In the first approach, an approximate
simulation relation is introduced to obtain an abstrac-
tion of the original system [15]. In the second approach,
over-approximations by ellipsoids [20], polyhedra [3],
zonotopes [14], oriented rectangular polytopes [34] were
proposed, or, alternatively, asymptotic approximations
of reachable sets that converge to the true reachable
sets as some accuracy parameter tends to zero. Level
set methods [27] and gridding [5] techniques belong to
this latter category.
A connection of reachability (and related concepts, such
as safety or viability) with optimal control for determin-
istic problems has been pointed out in [22]. The con-
nection between rechability, safety and dynamic games
for deterministic hybrid systems has been stressed in
[23,35], where it is mostly applied to air traffic manage-
ment problems.
Reachability for stochastic hybrid systems has been a
very recent focus of research. Most of the approaches
consider the problem of reachability analysis for contin-
uous time stochastic hybrid systems (CTSHS) without
a control input. The theory of CTSHS, progressively
developed since the early contributions in [10,13,16], is
used in [8] to address theoretical issues regarding the
measurability of the reachability events. In this refer-
ence, the theory of Dirichlet forms associated with a
right-Markov process is employed in studying a proba-
bilistic reachability problem, and upper bounds for the
reach set probabilities are derived. The contributions
in [17,30,31] address the reachability problem using
a Markov chain approximation, [21], to compute the
probability of entering some assigned set, and apply
the concept to air traffic control studies. Probabilities
rather than sets are propagated through the approx-
imating Markov chain transition kernel. In the same
spirit, model checkers for verifying probabilistic reacha-
bility specifications of Markov chains have been devel-

oped, [18]. From a different perspective, in [29] certain
functions of the state of the system known as barrier
certificates are used to compute an upper bound on
the probability of reaching a set. The approach in [11]
is unique in introducing a ‘mean-square’ definition for
the concept of reachability. In [26] the control case is
considered in a rather general game theoretical frame-
work, and a reachability problem is introduced as the
solution of a Hamilton-Jacobi-Isaacs partial differential
equation. [24,32] compute the reachability probability
using randomized algorithms, motivated by air traffic
control applications.

In this study we adopt a discrete time point of view in
order to gain a deeper understanding of the theoretical
and computational aspects associated with reachabil-
ity and safety problems for stochastic hybrid systems,
while avoiding technical measurability issues that arise
in the continuous time case. In particular, we develop a
methodology to compute and maximize the probability
of maintaining the state of the system within a certain
‘safe’ region for a class of discrete time stochastic hybrid
system (DTSHS) whose dynamics can be influenced
by a control input. Unlike previous methods, the safe
set can be time-varying, which allows us to generalize
the approach towards problems of regulation and stabi-
lization, [6,28], by appropriately reinterpreting them as
safety problems.
The proposed methodology is based on formulating the
reachability problem as a stochastic optimal control
problem. Based on the expression of the probability
that the state of the controlled system evolves within
the safe region as a multiplicative cost, dynamic pro-
gramming (DP) can be used to compute the Markov
policy maximizing this cost, and also the ‘maximally
safe’ sets corresponding to different safety levels. These
sets characterize the initial conditions for the system,
such that there exists a Markov policy capable of main-
taining the state of the system within the safe set with
a probability greater than a prescribed safety level (see
[4,35] for a similar notion in the deterministic case).
Adopting a dual perspective, where the objective is that
of minimizing the probability that the system will exit
the safe set, we again formulate the reachability prob-
lem as a stochastic optimal control problem, but this
time with a cost that is the maximum of a function of
the state over the time horizon. DP is shown to be still
effective in this case to determine probabilistic maxi-
mally safe sets for Markov policies. In fact, the value
functions for the multiplicative cost and the max cost
can be properly put in relation, thus formalizing the
intuition that the two viewpoints for reachability are
complementary to each other.
It is perhaps worth noting that, once the reachability
problem is formulated within the stochastic optimal
control framework, one could –in principle– refer to the
related literature for its solution. The key reference for
optimal stochastic control of discrete time stochastic
systems is [7], adopting the dynamic programming ap-
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proach. However, the results in [7] cannot be directly
applied to the case under study but need to be extended
to jointly take care of the fact that the state is hybrid
and characterized by complex interacting continuous
and discrete dynamics, and that the objective function
is a multiplicative/max cost. These two co-existing as-
pects require a thorough analysis involving non trivial
measurability considerations and a rethinking of the
inspiring proof techniques in [7].
Throughout the paper, we shall use a room temperature
regulation problem as running example to illustrate the
DTSHS model formalism and the approach to reachabil-
ity. This case study is inspired by one of the benchmark
problems proposed in [12].

The paper unfolds as follows: Section 2 introduces our
reference DTSHS model. This model is inspired by other
stochastic hybrid systems models previously introduced
in [9,10,13,16] for the continuous time case. In Section 3,
the temperature regulation problem is outlined and the
controlled system is modeled as a DTSHS. In Section 4,
the notion of stochastic reachability for a DTSHS is in-
troduced and the problem of determining probabilistic
maximally safe sets and maximally safe Markov poli-
cies is addressed according to the two complementary
viewpoints, leading to DP schemes using respectively a
multiplicative and a max cost function. The proposed
methodology is applied to the temperature regulation
problem in Section 5. Finally, extensions of the above
study are discussed and concluding remarks are drawn.

2 Stochastic Hybrid System Model

We define a DTSHS as the discrete time counterpart of
the general continuous time model described in [9], ex-
tending in expressiveness previous continuous time mod-
els [10,13,16].

The state of a DTSHS is characterized by a discrete and
a continuous component. The discrete state component
takes on values in a countable set of modes Q. The con-
tinuous state space in each mode q ∈ Q is given by the
Euclidean space Rn(q), whose dimension n(q) is deter-
mined by the map n : Q → N. Thus the hybrid state
space is S := ∪q∈Q{q} × Rn(q). Let B(S) be the σ-field
generated by the subsets of S of the form ∪q∈Q{q}×Aq,
where Aq is a Borel set in Rn(q). The fact that S can be
endowed with a metric that is equivalent to the usual
Euclidean metric when restricted to each domain Rn(q)

[10], shows that (S,B(S)) is a Borel space, i.e. homeo-
morphic to a Borel subset of a complete separable metric
space.
The continuous state of a DTSHS evolves according to
a probabilistic law that depends on the actual operating
mode. A discrete transition from the current operating
mode to a different one may occur during the continuous
state evolution, again according to some probabilistic
law. This will in turn cause a modification of the prob-
abilistic law governing the continuous state dynamics.

A control input can affect the discrete and continuous
evolution of the system. Moreover, after a discrete tran-
sition has occurred, the continuous state component is
subject to a probabilistic reset that is also influenced
by some control input. We distinguish this latter input
from the former one, naming them respectively reset and
transition input.

Definition 1 (DTSHS). A discrete time stochastic hy-
brid system is a tuple H = (Q, n,U ,Σ, Tx, Tq, R), where

• Q := {q1, q2, . . . , qm}, for some m ∈ N, represents the
discrete state space;

• n : Q → N assigns to each discrete state value q ∈ Q
the dimension of the continuous state space Rn(q). The
hybrid state space is then given by S := ∪q∈Q{q} ×
Rn(q);

• U is a compact Borel space representing the transition
control space;

• Σ is a compact Borel space representing the reset con-
trol space;

• Tx : B(Rn(·)) × S × U → [0, 1] is a Borel-measurable
stochastic kernel on Rn(·) given S × U , which assigns
to each s = (q, x) ∈ S and u ∈ U a probability measure
on the Borel space (Rn(q),B(Rn(q))): Tx(·|s, u);

• Tq : Q× S × U → [0, 1] is a discrete stochastic kernel
on Q given S × U , which assigns to each s ∈ S and
u ∈ U , a probability distribution over Q: Tq(·|s, u);

• R : B(Rn(·))×S×Σ×Q → [0, 1] is a Borel-measurable
stochastic kernel on Rn(·) given S×Σ×Q, that assigns
to each s ∈ S, σ ∈ Σ, and q′ ∈ Q, a probability measure
on the Borel space (Rn(q′),B(Rn(q′))): R(·|s, σ, q′). 2

To describe the semantics of a DTSHS, we need to spec-
ify an initial condition s0 ∈ S (which may be sampled
from an initial probability distribution) and how the re-
set and transition inputs are chosen. Here, we consider
a DTSHS evolving over a finite time horizon [0, N ], with
inputs chosen according to a Markov policy.

Definition 2 (Markov Policy). A Markov policy π for
a DTSHS H = (Q, n,U ,Σ, Tx, Tq, R) is a sequence π =
(µ0, µ1, µ2, . . . ) of universally measurable maps µk : S →
U × Σ, k = 0, 1, 2, . . . , from the hybrid state space S =
∪q∈Q{q} × Rn(q) to the control input space U × Σ. 2

We denote the set of Markov policies asMm.

We recall that a function µk : S → U × Σ is univer-
sally measurable if the inverse image of every Borel set
is measurable with respect to every complete probabil-
ity measure on S that measures all Borel subsets of S.
This measurability condition is weaker than the Borel
measurability condition and is needed to assess proper-
ties which hold uniformly in the initial condition s0, [7].

The semantics of a DTSHS can be algorithmically de-
fined through the notion of execution. In the sequel, we
shall use boldface to denote random variables and nor-
mal typeset to denote sample values.
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Definition 3 (Execution). Consider a DTSHS
H = (Q, n,U ,Σ, Tx, Tq, R) and a time horizon [0, N ].
A stochastic process {s(k) = (q(k),x(k)), k ∈ [0, N ]}
with values in S = ∪q∈Q{q} × Rn(q) is an execution
of H associated with a Markov policy π ∈ Mm and an
initial condition s0 = (q0, x0) ∈ S if its sample paths are
obtained according to the DTSHS algorithm:

set q(0) = q0, x(0) = x0, and k = 0;

while k < N do

set (uk, σk) = µk((qk, xk));
extract from Q a value qk+1 for q(k + 1) according
to Tq(· |(qk, xk), uk);
if qk+1 = qk, then

extract from Rn(qk+1) a value xk+1 for x(k + 1)
according to Tx(· |(qk, xk), uk);

else
extract from Rn(qk+1) a value xk+1 for x(k + 1)
according to R(· |(qk, xk), σk, qk+1);

k → k + 1;

end. 2

By appropriately defining the discrete transition kernel
Tq, it is possible to model the spontaneous jumps that
may occur during the continuous state evolution, as well
as the forced jumps that must occur when the continu-
ous state exits some prescribed domain.
As for the spontaneous transitions, if a discrete transi-
tion from q to q′ 6= q is enabled at (q, x) ∈ S by the
control input u ∈ U , then this can be encoded by the
condition Tq(q′|(q, x), u) > 0.
As for the forced transitions, the invariant set Inv(q) as-
sociated with mode q ∈ Q, namely the set of all the ad-
missible values for the continuous state within q, can be
expressed in terms of Tq by forcing Tq(q|(q, x), u) to be
equal to zero for all the continuous state values x ∈ Rn(q)

outside Inv(q), irrespectively of the value of the con-
trol input u ∈ U . Thus Inv(q) := Rn(q) \ {x ∈ Rn(q) :
Tq(q|(q, x), u) = 0,∀u ∈ U}, and as soon as x /∈ Inv(q)
while the system evolves in mode q, a jump from q to
some q′ 6= q is forced. Then, unlike the continuous time
model in [9], spatial guards here are implicitly defined
through Tq.
Introduce the stochastic kernel τx : B(Rn(·))× S × U ×
Σ×Q → [0, 1] on Rn(·) given S × U × Σ×Q:

τx(· |(q, x), u, σ, q′) =
{
Tx(·|(q, x), u), if q′ = q

R(·|(q, x), σ, q′), if q′ 6= q,

which assigns to each s = (q, x) ∈ S, u ∈ U , σ ∈ Σ
and q′ ∈ Q a probability measure on the Borel space
(Rn(q′),B(Rn(q′))). The kernel τx is used in the DTSHS
algorithm to randomly select a value for the continuous
state at time k+ 1, given the values taken by the hybrid
state and the control input at time k, and that of the

discrete state at time k + 1.
Based on τx we can introduce the Borel-measurable
stochastic kernel Ts : B(S) × S × U × Σ → [0, 1] on S
given S × U × Σ:

Ts((·, q) |s, (u, σ)) = τx(· |s, u, σ, q)Tq(q|s, u), q ∈ Q, (1)

which assigns to each s ∈ S, (u, σ) ∈ U × Σ a probabil-
ity measure on the Borel space (S,B(S)).
Then, the DTSHS algorithm in Definition 3 can be
rewritten in a more compact form as:

DTSHS algorithm

set s(0) = s0 and k = 0;

while k < N do

set (uk, σk) = µk(sk);
extract from S a value sk+1 for s(k + 1) according
to Ts(· |sk, (uk, σk));
k → k + 1;

end. 2

This shows that a DTSHS H = (Q, n,U ,Σ, Tx, Tq, R)
can be described as a controlled Markov process with
state space S = ∪q∈Q{q} × Rn(q), control space A :=
U × Σ, and controlled transition probability function
Ts : B(S)× S ×A → [0, 1] defined in (1) [33]. This will
be referred to in the following as embedded controlled
Markov process.
As a consequence of this representation of H, the ex-
ecution {s(k) = (q(k),x(k)), k ∈ [0, N ]} associated
with s0 ∈ S and π ∈ Mm is a stochastic process de-
fined on the canonical sample space Ω = SN+1, endowed
with its product topology B(Ω), with probability mea-
sure Pπs0 uniquely defined by the transition kernel Ts,
the policy π ∈ Mm, and the initial condition s0 ∈ S
[7, Proposition 7.45]. From the embedded Markov pro-
cess representation of a DTSHS it also follows that the
execution of a DTSHS associated with a Markov policy
π = (µ0, µ1, . . . ) ∈ Mm and an initial condition s0 is
an inhomogeneous Markov process with one-step tran-
sition kernels Ts(·|s, µk(s)), k = 0, 1, . . . , N − 1. In the
sequel we shall use the more compact notation Tµks (·|s)
for Ts(·|s, µk(s)).

3 Case Study: Temperature Regulation - Model

We consider the problem of regulating the temperature
in r rooms. We suppose that each room can be warmed
by a single heater and that at most one heater can
be active at a time. The problem consists in designing
a control switching strategy that decides which room
should be heated, based on the measurements of the
temperatures of r rooms, so as to maintain the temper-
ature of each room within a prescribed interval.

We next describe the controlled system through a DT-
SHS model H = (Q, n,U ,Σ, Tx, Tq, R), whereas the
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precise formulation of the temperature control synthesis
problem is postponed to Section 5.
The system configuration is naturally described by a hy-
brid state, whose discrete component represents which
of the r rooms is being heated, and whose continuous
component represents the average temperature in each
of the r rooms. The discrete state space can then be de-
fined as Q = {ON1, ON2, . . . , ONr, OFF}, where in mode
ONi it is room i to be heated and in mode OFF no room
is heated. The map n : Q → N, defining the dimension
of the continuous component of the hybrid state space,
is the constant map n(q) = r, ∀q ∈ Q.

A transition input dictates which room is to be heated,
whereas no reset input affects the value of the tem-
perature after a discrete transition occurs–intuitively,
the temperature of a room is instantaneously unal-
tered after a discrete switch. Thus, the reset control
space is Σ = ∅, and the transition control space is
U = {SW1, SW2, . . . , SWr, SWOFF}, where SWi and SWOFF
correspond to the command of heating room i and heat-
ing no room, respectively. Note that if the system is op-
erating in mode ONi and the transition control input SWi
is applied, it means that the heater in room i should stay
active, thus leaving the current situation unchanged.

Regarding the dynamics of the continuous state
x = (x1,x2, . . . ,xr), we model the evolution of the av-
erage temperature xi in room i by the following linear
stochastic difference equation:

xi(k + 1) =xi(k) +
∑
j 6=i

aij
(
xj(k)− xi(k)

)
(2)

+ bi
(
xa − xi(k)

)
+ cihi(k) + ni(k),

which is obtained by discretizing, via the constant-step
Euler-Maruyama scheme with discretization step ∆, the
continuous time equations in [25].
The meaning of the terms appearing in equation (2) is
the following. xa is the ambient temperature, which is
assumed to be constant. bi, aij , and ci are non negative
constants representing the average heat loss rates of
room i to the ambient (bi) and to room j 6= i (aij), and
the rate of heat supplied by the heater in room i (ci), all
normalized with respect to the average thermal capacity
of room i and rescaled by ∆. The values taken by the aij
constants reflect the rooms layout, for instance aij = 0
if rooms i and j are not adjacent. The term hi(k) is a
Boolean function equal to 1 if q(k) = ONi (i.e. if it is
room i to be heated at time k), and equal to 0 otherwise.
Furthermore, the disturbance {ni(k), k = 0, . . . , N − 1}
affecting the temperature evolution is a sequence of i.i.d
Gaussian random variables with zero mean and variance
ν2 proportional to ∆. We suppose for simplicity that
the disturbances affecting the temperatures of different
rooms are independent.
Let N (·;m,V ) denote the probability measure over
(Rr,B(Rr)) associated with a Gaussian density func-
tion with mean m and covariance matrix V . Then, the

continuous transition kernel Tx (implicitly defined via
the stochastic difference equation (2)) can be expressed
as follows:

Tx(· |(q, x), u) = N (·;x+ Ξx+ Γ(q), ν2I), (3)

where Ξ is a square matrix of size r, Γ(q) is an r-
dimensional column vector that depends on q ∈ Q, and
I is the identity matrix of size r.
The element in row i and column j of matrix Ξ is given
by [Ξ]ij = aij , if j 6= i, and [Ξ]ij = −bi −

∑
k 6=i,k∈Q aik,

if j = i, for any i = 1, . . . , r. As for the vector Γ(q), its
ith component is [Γ(q)]i = bixa + ci, if q = ONi, and
[Γ(q)]i = bixa, if q ∈ Q \ {ONi}, for any i = 1, . . . , r.
The independence of the sequence of r-dimensional
random variables {(n1(k),n2(k), . . . ,nr(k)), k =
0, 1, . . . , N − 1} is required for the temperature at time
k+ 1 to be conditionally independent on the past, given
the hybrid state and the transition input at time k,
which allows the description of the temperature evolu-
tion within each mode by a transition kernel Tx. Instead,
the assumption that the disturbances ni, i = 1, 2, . . . , r,
affecting the temperatures of different rooms are inde-
pendent can be easily removed. If this were not the case,
then, the only modification to be introduced is that the
covariance matrix appearing in (3), representing the co-
variance of the r-dimensional Gaussian random variable
(n1,n2, . . . ,nr), would not be diagonal.
Note that the transition kernel Tx governing the tem-
perature evolution within a mode does not depend on
the value u taken by the transition control input. This
follows from the fact that the transition control input
does not affect the temperature dynamics described in
(2). We shall then use the notation Tx(·|(q, x)) in place
of Tx(·|(q, x), u).
We assume that during the time step when a dis-
crete transition occurs, say from mode ONi to mode
ONj , the temperature keeps evolving according to
the dynamics characterizing the starting condition
ONi. This is modeled by defining the reset kernel as
R(· |(q, x), q′) = Tx(· |(q, x)), q, q′ ∈ Q, x ∈ Rr. Note
that R does not depend on the value σ of the reset con-
trol input, since in this example the reset control space
is empty.

The transition control input affects the discrete state
evolution through the discrete transition kernel Tq. In
this example, discrete transitions are not influenced by
the value taken by the continuous state component, so
that we can take Tq : Q×Q×U → [0, 1], with Tq(q′|q, u)
representing the probability that mode q′ is the suc-
cessor of mode q when the transition control input u is
applied. For ease of notation we set

Tq(q′|q, u) = αqq′(u), q, q′ ∈ Q. (4)

Thus, the discrete state evolves according to a (finite
state and finite input) controlled Markov chain, with
controlled transition probability from state q to state q′
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under input u given by αqq′(u) in (4).
Not all the transitions may actually occur from a node q.
For instance, if the control input value u = SWi is applied
at node q = ONi, then with probability one the succes-
sor node is q′ = ONi, because room i is currently heated
and the command of heating room i is issued. If every-
thing worked perfectly, then, the control input u = SWi
would lead to node q′ = ONi from any node q, and, simi-
larly, u = SWOFF would lead to q′ = OFF from any node q.
The definition of the controlled transition probabilities
{αqq′(u), q, q′ ∈ Q} associated with the different u ∈ U
offers the possibility of encoding delays or faulty behav-
iors in the commutations as well as structural constraints
imposing, for instance, that the heat can be conveyed
only from a room to a contiguous one.

4 Probabilistic Reachability and Safety

We consider the problem of determining the probability
that the state of a DTSHSH will remain within a certain
‘safe’ set during a time horizon [0, N ] starting from s0,
under some control policy π ∈ Mm. This probabilistic
safety problem can be clearly classified as a stochastic
reachability analysis problem.

Let the Borel set A ∈ B(S) represent a safe set. Our goal
is setting up a reachability computation procedure to
determine the probability that the execution associated
with the Markov policy π ∈ Mm and the initial con-
dition s0 will remain within A during the time horizon
[0, N ]:

pπs0(A) := Pπs0{s(k) ∈ A for all k ∈ [0, N ]}. (5)

If pπs0(A) ≥ 1 − ε, ε ∈ [0, 1], we say that the system
initialized at s0 is safe with at least probability 1 − ε
under policy π.
Different initial conditions are characterized by different
values of the probability pπs0(A). Fix ε ∈ [0, 1]. We define
as probabilistic safe set with safety level 1−ε under policy
π the set

Sπ(ε) = {s0 ∈ S : pπs0(A) ≥ 1− ε} (6)

of those initial conditions s0 that correspond to a prob-
ability pπs0(A) of remaining within the safe set A that is
greater than or equal to 1− ε.
If for any initial condition s0 ∈ S the control policy
π ∈ Mm can be selected so as to maximize the proba-
bility of staying within A, then, we can define the set

S?(ε) = {s0 ∈ S : sup
π∈Mm

pπs0(A) ≥ 1− ε}. (7)

By comparing the expressions for Sπ(ε) and S?(ε), it is
easily seen that Sπ(ε) ⊆ S?(ε), for each π ∈ Mm and
for any ε ∈ [0, 1], since in fact we are exploiting the best
available control to achieve the ε-dependent reachability

specification for the largest possible subset of the hybrid
state space. The set S?(ε) is named the maximal proba-
bilistic safe set with safety level 1− ε. Computing S?(ε)
involves solving an optimization problem, and is a more
challenging goal than computing pπs0(A) and Sπ(ε).

Note that the probability pπs0(A) defined in (5) can be
expressed as

pπs0(A) = 1− Pπs0(Ā), (8)

where Ā is the complement of A in S, and

Pπs0(Ā) := Pπs0{s(k) ∈ Ā for some k ∈ [0, N ]} (9)

is the probability of entering Ā during the time interval
[0, N ]. This leads to the following alternative expressions
for Sπ(ε) and S?(ε):

Sπ(ε) = {s0 ∈ S : Pπs0(Ā) ≤ ε} (10)

S?(ε) = {s0 ∈ S : inf
π∈Mm

Pπs0(Ā) ≤ ε}. (11)

In the rest of the section, we show that (i) the problem
of computing pπs0(A), Pπs0(Ā), and Sπ(ε) for π ∈ Mm

can be solved by using a backward iterative procedure;
and that (ii) the problem of computing S?(ε) can be
reduced to that of solving an optimal control problem
by the application of dynamic programming.
These results are obtained by representing pπs0(A) as a
multiplicative cost function, and Pπs0(Ā) as a max cost
function.

Let 1C : S → {0, 1} denote the indicator function of set
C ⊆ S: 1C(s) = 1, if s ∈ C, and = 0, if s 6∈ C.

Multiplicative Cost. Observe that

N∏
k=0

1A(sk) =
{

1, if sk ∈ A for all k ∈ [0, N ]
0, otherwise,

where sk ∈ S, k ∈ [0, N ]. Then, pπs0(A) in (5) can be
expressed as the expectation with respect to the prob-
ability measure Pπs0 of the Bernoulli random variable∏N
k=0 1A(s(k)):

pπs0(A) = Eπs0 [
N∏
k=0

1A(s(k))]. (12)

Max Cost. Since

max
k∈[0,N ]

1Ā(sk) =
{

1, if sk ∈ Ā for some k ∈ [0, N ]
0, otherwise,
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where sk ∈ S, k ∈ [0, N ], the probability Pπs0(Ā) in (9)
can be expressed as

Pπs0(Ā) = Eπs0 [ max
k∈[0,N ]

1Ā(s(k))]. (13)

4.1 Probabilistic Reachability Computations

We next show how to compute pπs0(A) and Pπs0(Ā)
through a backward iterative procedure. To this pur-
pose, we recall that a Markov policy π ∈ Mm is a
sequence π = (µ0, µ1, µ2, . . . ) of maps µl : S → U × Σ,
l = 0, 1, 2, . . . , N − 1.

Multiplicative Cost. Define the set of functions V πk :
S → [0, 1], k = 0, 1, . . . , N , as follows:

V πN (s) =1A(s)

V πk (s) =1A(s)
∫
SN−k

N∏
l=k+1

1A(sl)
N−1∏
l=k+1

Tµls (dsl+1|sl)

Tµks (dsk+1|s), (14)

k = 0, 1, . . . , N − 1, s ∈ S, with Tµhs (·|sh) standing for
Ts(·|sh, µh(sh)). The maps Tµhs (·|sh), h = 0, 1, . . . , N −
1, are the one-step transition kernels of the embedded
Markov process obtained by applying the Markov policy
π = (µ0, µ1, . . . ) to the DTSHS (see Section 2). Then,
it is easily seen that, by (12), V π0 (s) evaluated at s = s0

returns pπs0(A) since V π0 (s) = Eπs [
∏N
l=0 1A(s(l))], s ∈ S.

Moreover, the probabilistic safe set with safety level 1−ε,
ε ∈ [0, 1], according to (6), can be expressed in terms
of function V π0 as follows: Sπ(ε) = {s0 ∈ S : V π0 (s0) ≥
1− ε}.
Let F denote the set of functions from S to R, and define
the operator H : S × U × Σ×F → R as follows:

H(s, (u, σ), Z) := Tq(q|s, u)
∫

Rn(q)
Z((q, v))Tx(dv|s, u)

+
∑
q′ 6=q

Tq(q′|s, u)
∫

Rn(q′)
Z((q′, v))R(dv|s, σ, q′), (15)

for any s = (q, x) ∈ S, (u, σ) ∈ U × Σ, and Z ∈ F .
The operator H is easily seen to be a linear operator.
Moreover, H applied to a constant function Z̄(s) = c,
s ∈ S, returns the constant c for any value of the other
arguments s and (u, σ): H(s, (u, σ), Z̄) = c, ∀s ∈ S,
(u, σ) ∈ U ×Σ. This is because H(s, (u, σ), Z) is the in-
tegral over S of function Z with respect to the (condi-
tional) probability measure Ts(·|s, (u, σ)) defined in (1).

With an argument inspired by a logic developed in [19]
for additive costs, we prove the following lemma.

Lemma 1. Fix a Markov policy π = (µ0, µ1, . . . ) ∈Mm.
The functions V πk : S → [0, 1], k = 0, 1 . . . , N − 1, can
be computed by the backward recursion:

V πk (s) = 1A(s)H(s, µk(s), V πk+1), s ∈ S, (16)

initialized with V πN (s) = 1A(s), s ∈ S. 2

Proof: We start by observing that, given the definition
of Ts in (1) in terms of its components, and that of H in
(15), equation (16) can be rewritten as

V πk (s) = 1A(s)
∫
S
V πk+1(sk+1)Ts(dsk+1|s, µk(s)).

From the expression in (14) of V πk , we have that

V πN−1(s) = 1A(s)
∫
S

1A(sN )TµN−1
s (dsN |s)

= 1A(s)
∫
S
V πN (sN )Ts(dsN |s, µN−1(s)),

so that equation (16) is proven for k = N − 1. For
k < N − 1, V πk can be expanded as follows

V πk (s) = 1A(s)
∫
S

1A(sk+1)
(∫
SN−k−1

N∏
l=k+2

1A(sl)

N−1∏
l=k+2

Tµls (dsl+1|sl)Tµk+1
s (dsk+2|sk+1)

)
Tµks (dsk+1|s)

= 1A(s)
∫
S
V πk+1(sk+1)Tµks (dsk+1|s),

which concludes the proof. 2

Max Cost. Define the set of functions Wπ
k : S →

[0, 1], k = 0, 1, . . . , N , as follows:

Wπ
N (s) =1Ā(s)

Wπ
k (s) =1Ā(s) + 1A(s)

∫
SN−k

max
l∈[k+1,N ]

1Ā(sl)

N−1∏
l=k+1

Tµls (dsl+1|sl)Tµks (dsk+1|s), (17)

k = 0, 1, . . . , N − 1, s ∈ S. Given the expression
of Pπs0(Ā) as a max cost in (13), it is easy to show
that Wπ

0 (s) evaluated at s = s0 returns Pπs0(Ā) since
Wπ

0 (s) = Eπs [maxl∈[0,N ] 1Ā(s(l))], s ∈ S. Also, based
on (10), the probabilistic safe set with safety level
1 − ε, ε ∈ [0, 1], can be expressed in terms of Wπ

0 as
Sπ(ε) = {s0 ∈ S : Wπ

0 (s0) ≤ ε}. From the definition of
Wπ
k in (17), and that of H in (15), Lemma 2 follows.
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Lemma 2. Fix a Markov policy π = (µ0, µ1, . . . ) ∈Mm.
The functions Wπ

k : S → [0, 1], k = 0, 1 . . . , N − 1, can
be computed by the backward recursion:

Wπ
k (s)=1Ā(s) + 1A(s)H(s, µk(s),Wπ

k+1), s ∈ S, (18)

initialized with Wπ
N (s) = 1Ā(s), s ∈ S. 2

Proof: From the definition (17) of Wπ
k , we have that

Wπ
N−1(s) = 1Ā(s) + 1A(s)

∫
S

1Ā(sN )TµN−1
s (dsN |s)

= 1Ā(s) + 1A(s)
∫
S
Wπ
N (sN )TµN−1

s (dsN |s)

so that equation (18) is proven for k = N − 1. For k <
N − 1, Wπ

k can be expanded as follows

Wπ
k (s) = 1Ā(s) + 1A(s)

∫
S

(
1Ā(sk+1) + 1A(sk+1)∫

SN−k−1
max

l∈[k+2,N ]
1Ā(sl)

N−1∏
l=k+2

Tµls (dsl+1|sl)

Tµk+1
s (dsk+2|sk+1)

)
Tµks (dsk+1|s)

= 1Ā(s) + 1A(s)
∫
S
Wπ
k+1(sk+1)Tµks (dsk+1|s)

which concludes the proof. 2

It is worth noting that the iterative backward recursion
derived in Lemma 2 is similar to that in [30,31] for reach-
ability computations on the Markov chain approxima-
tion of certain classes of uncontrolled continuous time
stochastic hybrid systems.

Equivalence of the two Representations. Since
for any sequence of state values sl ∈ S, l = 0, 1, . . . , N ,∏N
l=k 1A(sl) = 1 − maxl∈[k,N ] 1Ā(sl), k = 0, 1, . . . , N ,

not surprisingly the following equivalence result holds.

Lemma 3. Fix a Markov policy π = (µ0, µ1, . . . ) ∈Mm.
Then, for any k ∈ [0, N ], Wπ

k (s) = 1− V πk (s), s ∈ S. 2

Proof: The statement trivially holds for k = N . Assume
now that it holds at time k + 1. Then,

Wπ
k (s) =[by Lemma 2]

=1Ā(s) + 1A(s)H(s, µk(s),Wπ
k+1)

=[by induction assumption]
=1− 1A(s) + 1A(s)H(s, µk(s), 1− V πk+1)
=[by the properties of the operator H]
=1− 1A(s) + 1A(s)(1−H(s, µk(s), V πk+1))
=1− 1A(s)H(s, µk(s), V πk+1))
=[by Lemma 1]
=1− V πk (s), s ∈ S,

so that the statement holds for any k = 0, 1, . . . , N . 2

4.2 Maximal Probabilistic Safe Sets Computation

The calculation of the maximal probabilistic safe set
S?(ε) defined in (7) amounts to finding the supremum
over the Markov policies of the probability pπs0(A) of re-
maining within the safe set A starting from s0, for all s0

inside A (the probability of remaining within A starting
from s0 /∈ A is 0 for any policy). A policy that achieves
this supremum is said to be maximally safe. More pre-
cisely,

Definition 4 (Maximally safe policy). Let H be a
DTSHS, and A ∈ B(S) a safe set. A Markov policy
π? is maximally safe if pπ

?

s0 (A) = supπ ∈Mm
pπs0(A),

∀ s0 ∈ A. 2

Note that, in view of Lemma 3, a maximally safe pol-
icy can be equivalently characterized as that policy
π? ∈Mm that achieves the minimum over A of Pπs0(Ā):
Pπ

?

s0 (Ā) = infπ∈Mm
Pπs0(Ā), ∀s0 ∈ A.

In general, a maximally safe policy is not guaranteed to
exist. We next provide sufficient conditions for the exis-
tence of a maximally safe Markov policy, and describe
an algorithm to compute supπ∈Mm

pπs0(A) in terms of
the multiplicative cost, and infπ∈Mm Pπs0(Ā) in terms
of the max cost.

Multiplicative Cost. We now show how to compute
a maximally safe Markov policy π? ∈ Mm through a
recursion similar to that in Lemma 1, based on the rep-
resentation (12) of pπs0(A) as a multiplicative cost. The
proof is inspired by [7, Section 11.3] addressing a finite
horizon stochastic optimal control problem with a mul-
tiplicative cost to be minimized.

Theorem 1. Define V ?k : S → [0, 1], k = 0, 1, . . . , N , by
the recursion:

V ?k (s) = sup
(u,σ)∈U×Σ

1A(s)H(s, (u, σ), V ?k+1), (19)

s ∈ S, initialized with V ?N (s) = 1A(s), s ∈ S.
Then, V ?0 (s0) = supπ∈Mm

pπs0(A), s0 ∈ S.
If µ?k : S → U × Σ, k ∈ [0, N − 1], is such that

µ?k(s) ∈ arg sup
(u,σ)∈U×Σ

H(s, (u, σ), V ?k+1), s ∈ A, (20)

then, π? = (µ?0, µ
?
1, . . . , µ

?
N−1) is a maximally safe

Markov policy. A sufficient condition for the existence
of such a π? is that Uk(s, λ) = {(u, σ) ∈ U × Σ :
H(s, (u, σ), V ?k+1) ≥ λ} is compact for all s ∈ A, λ ∈ R,
k ∈ [0, N − 1]. 2
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Proof: For ease of reference to [7, Section 11.3], we set
Jπk := −V πN−k, π ∈ Mm, and J?k := −V ?N−k, k =
0, 1, . . . , N , and rewrite equation (20) and the recursions
(16) and (19) in terms of these functions as:

µ?k(s) ∈ arg inf
(u,σ)∈U×Σ

H(s, (u, σ), J?N−k−1), s ∈ A, (21)

Jπk (s) = 1A(s)H(s, µN−k(s), Jπk−1) (22)

J?k (s) = inf
(u,σ)∈U×Σ

1A(s)H(s, (u, σ), J?k−1), (23)

initialized with Jπ0 (s) = J?0 (s) = −1A(s), s ∈ S. Notice
that the inclusion signs in (20)-(21) indicate the possible
non-uniqueness of the optimal policy.

Consider a (universally measurable) function µ :
S → U × Σ and define the map Tµ : F → F as
Tµ[J ](s) = K(s, µ(s), J), s ∈ S, where K(s, (u, σ), J) =
1A(s)H(s, (u, σ), J), s ∈ S, (u, σ) ∈ U × Σ, J ∈ F .
Let F̃ ⊂ F denote the set of universally measurable real
functions J : S → R. The map Tµ preserves the univer-
sal measurability property: if J ∈ F̃ , then, Tµ[J ] ∈ F̃ .
This is because the integration of a universally mea-
surable function with respect to the stochastic kernel
involved in the computation ofH(s, µ(s), J) (see (15)) is
a universally measurable function, and its product with
the Borel measurable function 1A(s) remains univer-
sally measurable. Observe that, since the recursion (22)
can be rewritten as Jπk = TµN−k [Jπk−1] and by definition
Jπ0 ∈ F̃ , we then have that Jπk ∈ F̃ , k = 1, 2, . . . , N .
The map Tµ also satisfies the following properties: for
all J, J ′ ∈ F̃ such that J(s) ≤ J ′(s), ∀s ∈ S, then
Tµ[J ](s) ≤ Tµ[J ′](s), ∀s ∈ S (monotonicity, [7, Section
6.2]), and for any J ∈ F̃ and any real number r > 0,

Tµ[J ](s) ≤ Tµ[J + r](s) ≤ Tµ[J ](s) + r, s ∈ S. (24)

The monotonicity property immediately follows from
the definition of Tµ. As for property (24), it is eas-
ily shown observing that, by the definition of K and
the properties of the following chain of equalities
holds: K(s, (u, σ), J + r) = 1A(s)H(s, (u, σ), J + r) =
1A(s)H(s, (u, σ), J) + 1A(s)r, s ∈ S, (u, σ) ∈ U × Σ,
and, hence, given that 1A(s) is either equal to 0 or to 1,
K(s, (u, σ), J) ≤ K(s, (u, σ), J+r) ≤ K(s, (u, σ), J)+r,
s ∈ S, (u, σ) ∈ U × Σ.
Now, define the map T : F → F as T [J ](s) =
inf(u,σ)∈U×ΣK(s, (u, σ), J), s ∈ S. Then, the re-
cursion (23) can be rewritten as J?k = T [J?k−1],
and, from this latter expression, it follows that
J?k = T k[J?0 ], k = 0, 1, . . . , N , where T 0[J ] = J and
T k[J ] = T [T k−1[J ]]. Let F∗ ⊂ F̃ denote the set of
lower-semianalytic functions. The map T preserves the
lower-semianalytic property: if J ∈ F∗, then, T [J ] ∈ F∗.
This follows from [7, Proposition 7.47], given that
H(s, (u, σ), J) is lower-semianalytic as a function of its
arguments s ∈ S and (u, σ) ∈ U × Σ [7, Proposition

7.48], and, hence, K(s, (u, σ), J) = 1A(s)H(s, (u, σ), J)
is lower-semianalytic as well [7, Lemma 7.30(4)]. Since
J?k = T [J?k−1] and J?0 ∈ F∗, we then have that J?k ∈ F∗,
k = 1, 2, . . . , N .

After these preliminary considerations, we prove by in-
duction on the horizon N the following two statements:

1. inf
π
Eπs [−

N∏
k=0

1A(sk)] = TN [J?0 ](s), s ∈ S

2.∀ε > 0, ∃πε = (µε,0, µε,1, . . . ) ∈Mm : ∀s ∈ S,

inf
π
Eπs [−

N∏
k=0

1A(sk)] ≤ JπεN (s) ≤ inf
π
Eπs [−

N∏
k=0

1A(sk)] + ε.

Note that by the first statement, it follows that V ?0 (s0) =
−J?N (s0) = −TN [J?0 ](s0) = supπ∈Mm

pπs0(A), for any
s0 ∈ S, so that the first part of the theorem is proven. As
for the second statement, observe that, for any πε ∈Mm

JπεN (s) = −V πε0 (s) = Eπεs [−
N∏
k=0

1A(sk)]

≥ inf
π
Eπs [−

N∏
k=0

1A(sk)],

so that the part of the second statement that needs to
be actually proven is the right-hand-side.

The statements clearly hold for N = 0. Suppose that
they hold for N = h. This implies that ∀ε > 0, ∃πε =
(µε,0, µε,1, . . . ) ∈Mm such that

Jπεh (s) ≤ inf
π
Eπs [−

h∏
l=0

1A(sl)] + ε, s ∈ S.

For any universally measurable function µ : S → U ×Σ,
we then have that, by the monotonicity of Tµ and by
(24),

Tµ[Jπεh ](s) ≤ Tµ[inf
π
Eπs [−

h∏
l=0

1A(sl)] + ε]

≤ Tµ[inf
π
Eπs [−

h∏
l=0

1A(sl)]] + ε, s ∈ S.

Now, if we consider policy π̄ε = (µ, µε,0, µε,1, . . . ), it is
easily seen that

inf
π
Eπs [−

h+1∏
l=0

1A(sl)] ≤ J π̄εh+1(s) = Tµ[Jπεh ](s), s ∈ S,
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which, combined with the inequality above, leads to:

inf
π
Eπs [−

h+1∏
l=0

1A(sl)] ≤ Tµ[inf
π
Eπs [−

h∏
l=0

1A(sl)]] + ε, s ∈ S,

for any universally measurable function µ : S → U ×Σ.
From this, it follows that

inf
π
Eπs [−

h+1∏
l=0

1A(sl)] ≤ T [inf
π
Eπs [−

h∏
l=0

1A(sl)]]

= Th+1[J?0 ](s), s ∈ S,

where the last equality is due to the induction hypothe-
sis. On the other hand, we clearly have that

Th+1[J?0 ](s) ≤ inf
π
Eπs [−

h+1∏
l=0

1A(sl)], s ∈ S,

which allows to conclude that

inf
π
Eπs [−

h+1∏
l=0

1A(sl)] = Th+1[J?0 ](s), s ∈ S. (25)

Let us now proceed with the second statement.
By the induction hypothesis, for any ε̄ > 0 there exists
a π̄ = (µ̄0, µ̄1, . . . ) ∈Mm such that

J π̄h (s) ≤ inf
π
Eπs [−

h∏
l=0

1A(sl)] +
ε̄

2
, s ∈ S.

Also, by [7, Proposition 7.50] there exists a universally
measurable function µ̄ : S → U × Σ such that

Tµ̄[Eπs [−
h∏
l=0

1A(sl)]](s) ≤ T [Eπs [−
h∏
l=0

1A(sl)]](s) +
ε̄

2
,

s ∈ S. Then, if we consider πε̄ = (µ̄, µ̄0, µ̄1, . . . ), by the
monotonicity of Tµ̄ and (24), we obtain

Jπε̄h+1(s) = Tµ̄[J π̄h ](s) ≤ Tµ̄[inf
π
Eπs [−

h∏
l=0

1A(sl)]] +
ε̄

2

≤ T [inf
π
Eπs [−

h∏
l=0

1A(sl)]] + ε̄, s ∈ S.

By the induction hypothesis and (25), we finally get

Jπε̄h+1(s) ≤ Th+1[J?0 ] + ε̄ = inf
π
Eπs [−

h+1∏
l=0

1A(sl)] + ε̄,

s ∈ S, which concludes the proof of the two statements.

Next, we show that π? = (µ?0, µ
?
1, . . .) satisfying (21) is

a Markov policy and that it is maximally safe. To this
purpose, note first that a function µ?k satisfying (21) can
be characterized through the equation

Tµ?
k
[J?N−k−1](s) = inf

(u,σ)∈U×Σ
K(s, (u, σ), J?N−k−1)

= J?N−k(s), s ∈ S.

As discussed at the beginning of this proof, J?N−k ∈ F∗
and, hence, K(s, (u, σ), J?N−k) is lower-semianalytic as
a function of s ∈ S and (u, σ) ∈ U × Σ. Then, if its
infimum with respect to (u, σ) ∈ U × Σ is attained for
any s ∈ S (for s ∈ Ā this is always the case, given the
sufficient condition), the resulting function µ?k : S →
U × Σ is universally measurable, [7, Proposition 7.50].
Now observe that

inf
π
Eπs [−

N∏
l=0

1A(sl)] = J?N (s)

= Tµ?0 [J?N−1](s) = Tµ?0 [Tµ?1 [J?N−2]](s)
= · · · = Tµ?0 [Tµ?1 [. . . Tµ?

N−1
[J?0 ]]](s)

= Jπ
?

N (s) = Eπ
?

s [−
N∏
l=0

1A(sl)],

s ∈ S, which shows that π? is maximally safe.
For any s ∈ S and k ∈ [0, N − 1], a sufficient condition
for the existence of a minimum over U × Σ of function
K(s, (u, σ), J?N−k−1) is that Zk(s, α) = {(u, σ) ∈ U×Σ :
K(s, (u, σ), J?N−k−1) ≤ α} is compact, [7, Lemma 3.1].
Since J?N−k−1 = −V ?k+1, then K(s, (u, σ), J?N−k−1) =
1A(s)H(s, (u, σ), J?N−k−1) = −1A(s)H(s, (u, σ), V ?k+1),
from which the condition on Uk(s, λ) easily follows. 2

Max Cost. In the following theorem, we describe an
algorithm to compute a maximally safe Markov policy
π? ∈Mm based on the representation (13) of Pπs0(Ā) as
a max cost, by a recursion similar to that in Lemma 2.

Theorem 2. Define W ?
k : S → [0, 1], k = 0, 1, . . . , N ,

by the recursion:

W ?
k (s) = inf

(u,σ)∈U×Σ

(
1Ā(s) + 1A(s)H(s, (u, σ),W ?

k+1)
)
,

s ∈ S, initialized with W ?
N (s) = 1Ā(s), s ∈ S.

Then, W ?
0 (s0) = infπ∈Mm Pπs0(Ā), s0 ∈ S.

If µ?k : S → U × Σ, k ∈ [0, N − 1], is such that

µ?k(s) ∈ arg inf
(u,σ)∈U×Σ

H(s, (u, σ),W ?
k+1),∀s ∈ A,

then, π? = (µ?0, µ
?
1, . . . , µ

?
N−1) is a maximally safe

Markov policy. A sufficient condition for the existence
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of such a π? is that Uk(s, λ) = {(u, σ) ∈ U × Σ :
H(s, (u, σ),W ?

k+1) ≤ λ} is compact for all s ∈ A, λ ∈ R,
k ∈ [0, N − 1]. 2

Proof: We start proving that for any k ∈ [0, N ],

W ?
k (s) = 1− V ?k (s), s ∈ S. (26)

The statement is trivially satisfied for k = N , since
W ?
N (s) = 1Ā(s) = 1 − 1A(s) = 1 − V ?N (s), s ∈ S. As-

sume that it is valid for k + 1. Then,

W ?
k (s) = inf

(u,σ)∈U×Σ
(1Ā(s) + 1A(s)H(s, (u, σ),W ?

k+1))

= [by induction assumption]
= inf

(u,σ)∈U×Σ
(1Ā(s) + 1A(s)H(s, (u, σ), 1− V ?k+1))

= [by the properties of the operator H]
= inf

(u,σ)∈U×Σ
(1Ā(s) + 1A(s)(1−H(s, (u, σ), V ?k+1)))

= 1− sup
(u,σ)∈U×Σ

1A(s)H(s, (u, σ), V ?k+1)

= [by Theorem 1]
= 1− V ?k (s), s ∈ S.

It then easily follows from Theorem 1 and the definitions
of pπs0(A) and Pπs0(Ā) that

W ?
0 (s0) = 1− V ?0 (s0) = 1− sup

π∈Mm

pπs0(A)

= inf
π∈Mm

(1− pπs0(A)) = inf
π∈Mm

Pπs0(Ā).

Furthermore, in view of the duality equation (26) the
characterization through the V ?k functions of a maxi-
mally safe policy µ?k : S → U × Σ, k ∈ [0, N − 1], in
Theorem 1 can be equivalently expressed in terms of the
W ?
k functions as follows:

µ?k(s) ∈ arg sup
(u,σ)∈U×Σ

H(s, (u, σ), V ?k+1);

µ?k(s) ∈ arg sup
(u,σ)∈U×Σ

H(s, (u, σ), 1−W ?
k+1);

µ?k(s) ∈ arg inf
(u,σ)∈U×Σ

H(s, (u, σ),W ?
k+1), s ∈ A.

A sufficient condition on the control space to ensure the
existence of this optimal argument at each time step
is again easily derived from the corresponding one in
Theorem 1. 2

Remark 1. If the control input spaces U and Σ are both
finite sets, then a maximally safe policy is guaranteed to
exist. 2

Probabilistic Reachability

Probabilistic Safe Sets

Maximal probabilistic safe set 
and Maximally safe policy
DP - Multiplicative Cost

Theorem 1 Theorem 2

Maximal probabilistic safe set 
and Maximally safe policy

DP - Max Cost

Lemma 3

Fig. 1. Dual interpretation of the probabilistic reachability
and safety problem.

5 Case Study: Temperature Regulation - Control

We address the temperature regulation problem de-
scribed in Section 3.
The objective is to maintain the temperature of r rooms
within a certain range over some finite time horizon by
heating one room at a time. To this purpose we devise a
Markov policy that decides at each time instant which
room should be heated based on the current value of
the temperature in the r rooms. This control design
problem can be reformulated as a safety problem. The
‘safe’ set is represented here by the desired temperature
range for any discrete state.

We present the results obtained in the r = 2 rooms case.
The temperature is measured in degrees Celsius and one
discrete time unit corresponds to ∆ = 10 minutes. The
discrete time horizon is [0, N ] with N = 60, which cor-
responds to an effective length of N∆ = 600 minutes.
The discrete state space is Q = {ON1, ON2, OFF} and the
continuous state space is R2 in each mode q ∈ Q. The
desired temperature interval is [17.5, 22] in both rooms.
Thus, the safe set A is given by A = Q × Ax with
Ax := [17.5, 22] × [17.5, 22]. The parameters values in
equation (2) are set equal to: xa = 6, b1 = b2 = 0.0167,
a12 = a21 = 0.022, c1 = 0.8, c2 = 0.9333, and ν2 = 0.06.
The transition control input takes on values in
U = {SW1, SW2, SWOFF} and affects the evolution of the
controlled Markov chain governing the discrete transi-
tions of the DTSHS model. We suppose that when a
command aimed at commuting from a mode to a differ-
ent one is issued, then the prescribed transition actually
occurs with a probability 0.8, whereas with probability
0.1 the situation remains unchanged (which models a
delay) and with probability 0.1 a transition to the third,
non-recommended node, occurs (which models a faulty
behavior). Instead, when a command of remaining in
the current node is issued, this happens with probabil-
ity 1. These specifications can be precisely formalized
by appropriately defining the controlled Markov chain
transition probabilities {αqq′(u), q, q′ ∈ Q} introduced
in (4), for any u ∈ U . For instance, for u = SW1,
αON1ON1(SW1) = 1, αON2ON1(SW1) = 0.8, αON2ON2(SW1) = 0.1,
αOFFON1(SW1) = 0.8, and αOFFOFF(SW1) = 0.1, the other
probabilities αqq′(SW1) being determined by the normal-
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Fig. 2. Sample paths of the two rooms temperatures for ex-
ecutions corresponding to different initial conditions, under
the same maximally safe policy.

ization condition
∑
q′∈Q αqq′(SW1) = 1, q ∈ Q.

The dynamic programming recursion described in
Section 4.2 can be used to compute a maximally
safe policy π? = (µ?0, µ

?
1, . . . , µ

?
N−1), µ?k : S → U ,

k = 0, 1, . . . , N − 1, and the maximal probabilistic safe
sets S?(ε), ε ∈ [0, 1]. In the implementation, the mul-
tiplicative setup was chosen, and computations were
performed in MATLAB.
Figure 2 shows some ‘optimal’ sample paths of the
continuous state component of the DTSHS executions
associated with the maximally safe policy π? and differ-
ent initial conditions. The initial conditions were chosen
at random, according to the uniform distribution, over
the safe set A. Note that, as expected, most of the tem-
perature sample paths tend toward the central area of
Ax, and those sample paths that exit Ax correspond
to initial conditions close to its boundary. This is due
partly to the delay in the commutations, and partly to
the noise affecting the temperature dynamics.
In Figure 3, we represent the component of the maximal
probabilistic safe set S?(ε) associated with the discrete
state OFF, that is {x ∈ R2 : (OFF, x) ∈ S?(ε)} ⊆ Ax,
for different safety levels 1− ε. The plots corresponding
to the discrete modes ON1 and ON2 are similar. As ex-
pected, the maximal probabilistic safe sets get smaller
as the required safety level 1− ε grows. Also, their shape
reveals some asymmetry due to the structure of the
temperature dynamics. Because of the low value of the
ambient temperature (xa = 6), the temperature tends
naturally to decrease (see equation (2)).
The values taken by function µ?0 : S → U over the set Ax
when q = OFF are plotted in Figure 4. µ?0(OFF, x) is the
maximally safe transition control input issued at time
k = 0 when s(0) = (OFF, x). The maximally safe con-
trols for the other time steps k within the horizon [0, N ]
are indeed really similar to the one in Figure 4, except
for the very final time steps in the interval [0, N ]. This
means that, in practice, the stationary Markov policy
with µk = µ?0, k = 0, 1, . . . , N − 1, is nearly maximally

0.5 0.5

0.5

0.50.5

0.5

0.6 0.6

0.6

0.6

0.6

0.6

0.7 0.7

0.7

0.7

0.7

0.7

0.8 0.8

0.8

0.8
0.8

0.8

0.85

0.85

0.85

0.85

0.85 0.85

0.9

0.9

0.9

0.9

0.9

0.9

0.95

0.95

0.95

0.95
0.95

0.96

0.96

0.96

0.96

0.960.97

0.97

0.97

0.97

17.5 18 18.5 19 19.5 20 20.5 21 21.5 22
17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

Fig. 3. Maximal probabilistic safe sets corresponding to dif-
ferent safety levels (0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95,0.96, and
0.97) within the discrete state OFF. The temperature of room
1 is reported on the horizontal axis, and that of room 2 on
the vertical axis.
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Fig. 4. Value taken by the maximally safe transition input
at time k = 0 over the set of desired temperatures, when the
heating system is in the OFF mode. The temperature of room
1 is reported on the horizontal axis, and that of room 2 on the
vertical axis. The colors black, white, and grey respectively
stand for the transition input command SWOFF, SW1, and SW2.

safe. The interested reader is referred to a related, lower
dimensional, case study reported in [1], where this issue
of nearly-stationarity is addressed in details.

6 Extensions

The described approach to stochastic reachability can
be extended in several directions to address different in-
teresting analysis and control design problems.

Other approaches in the literature, which focus on the
infinite time horizon case and resort to the solution of
a continuous-time dynamic programming equation, [26],
are structurally constrained to consider a fixed set. In
contrast, in the present work the problem of evaluat-
ing the probability that the state of the stochastic hy-
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brid system will remain within a time-varying set during
some finite time horizon can be easily addressed. The
dynamic programming equations in Section 4 should be
simply adapted by considering at each iteration the cor-
responding set, and initializing the recursion with the
appropriate indicator function. More specifically, given
a safe set A(k) ∈ B(S), k = 0, 1, . . . , N , the backwards
recursions appearing in Lemma 1 and Theorem 1 should
be changed by considering at each iteration k the corre-
sponding set A(k). Similarly for Lemma 2 and Theorem
2, where sets Ā(k) should be used.

Some problems arising in regulation theory can be re-
formulated within a reachability framework [6]. Sup-
pose that the aim is to steer the state of the system
close to some operating condition and that the require-
ments are such that one can introduce a small neighbor-
hood around such a condition and a time-varying region
shrinking to that neighborhood, reflecting admissible de-
viations from the desired system behavior in the tran-
sient. Then, the regulation problem can be rephrased as
a safety problem where the ‘safe’ set is represented by the
introduced time-varying region. The interested reader is
referred to [1] for an example of application of the pro-
posed reachability methodology to one such a regulation
problem.
By extending the approach to stochastic reachability to
the infinite time horizon case, [1], practical stabilization
problems, [28], could be addressed. If the state of the
system has to be driven to a certain neighborhood of an
operating point and maintained there indefinitely, then
one can think of structuring the problem in two stages:
a first stage where a finite horizon time-varying reacha-
bility problem is solved (regulation part) and a second
stage where an infinite horizon time-invariant problem
is solved (invariance part).

More challenging extensions of the approach include the
treatment of optimal control problems with safety con-
straints, as in [23]. It is in fact quite common when
the controlled system is required to behave optimally
according to some performance criterion, while evolv-
ing within a safe/desired set. In some cases, for exam-
ple when the system performance is evaluated in terms
of an additive cost, a relaxed version of the optimal
constrained control problem can be formulated where a
new state component representing at each time instant
the cumulative cost is introduced and the objective is
to maintain the system within an extended safe region
where the cost is sufficiently low. As an example, sup-
pose that in the considered temperature regulation case
study we want to limit the number of transitions. We
could then assign a unitary cost to each commutation,
add a state variable counting the number of commu-
tations, and keep this new variable within a bounded
region around the origin, with an upper limit corre-
sponding to the total number of allowed commutations.
Clearly, the caveat to this approach is that an increase
in dimensionality has to be taken in consideration as a
tradeoff.

7 Conclusions

In this paper, we introduced a model for controlled dis-
crete time stochastic hybrid systems. With reference to
such a model, we formalized the finite-horizon stochastic
reachability problem, which consists in maintaining the
state of the system within a given safe set over some finite
time horizon. We showed how the problem can be solved
by designing an appropriate Markov policy through two
equivalent dynamic programming schemes. For illustra-
tive purposes, the problem of maintaining the tempera-
ture of two rooms within a desired range was considered
as a case study.
Promising future directions for this research, from both a
theoretical and an application-oriented viewpoint, were
outlined in Section 6.
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systems verifications. In R. Alur and G.J. Pappas, editors,
Hybrid Systems: Computation and Control, Lecture Notes
in Computer Science 2993, pages 326–341. Springer Verlag,
2004.

[13] M. K. Ghosh, A. Araposthasis, and S. I. Marcus. Ergodic
control of switching diffusions. SIAM Journal of Control and
Optimization, 35(6):1952–1988, November 1997.

[14] A. Girard. Reachability of uncertain linear systems using
zonotopes. In M. Morari and L. Thiele, editors, Hybrid
Systems: Computation and Control, Lecture Notes in
Computer Science 3414, pages 291–305. Springer Verlag,
2005.

[15] A. Girard, A. Julius, , and G. J. Pappas. Approximate
simulation relations for hybrid systems. In Proceedings of
the 2nd IFAC Conference on Analysis and Design of Hybrid
Systems, Alghero, IT, 2006.

[16] J. Hu, J. Lygeros, and S. Sastry. Towards a theory of
stochastic hybrid systems. In N. Lynch and B. Krogh, editors,
Hybrid Systems: Computation and Control, Lecture Notes
in Computer Science 1790, pages 160–173. Springer Verlag,
2000.

[17] J. Hu, M. Prandini, and S. Sastry. Aircraft conflict prediction
in the presence of a spatially correlated wind field. IEEE
Transactions on Intelligent Transportation Systems, 3:326–
340, 2005.

[18] J.P. Katoen. Stochastic model checking. In C.G.
Cassandras and J. Lygeros, editors, Stochastic Hybrid
Systems, Automation and Control Engineering Series 24,
pages 79–106. Taylor & Francis Group/CRC Press, 2006.

[19] P. R. Kumar and P. P. Varaiya. Stochastic Systems:
Estimation, Identification, and Adaptive Control. Prentice
Hall, Inc., New Jersey, 1986.

[20] A. B. Kurzhanski and P. Varaiya. On reachability under
uncertainty. SIAM Journal of Control and Optimization,
41(1):181–216, 2002.

[21] H. J. Kushner and P.G. Dupuis. Numerical Methods for
Stochastic Control Problems in Continuous Time. Springer-
Verlag, New York, 2001.

[22] J. Lygeros. On reachability and minimum cost optimal
control. Automatica, 40 - 6:317–927, 2004.

[23] J. Lygeros, C. Tomlin, and S. Sastry. Controllers for
reachability specifications for hybrid systems. Automatica,
35(3):349–370, 1999.

[24] J. Lygeros and O. Watkins. Stochastic reachability for
discrete time systems: an application to aircraft collision
avoidance. In Proceedings of the 42nd IEEE Conference of
Decision and Control, Maui, Hawaii USA, 2003.

[25] R. Malhame and C.-Y. Chong. Electric load model synthesis
by diffusion approximation of a high-order hybrid-state
stochastic system. IEEE Transactions on Automatic Control,
30(9):854–860, 1985.

[26] I. Mitchell and J. Templeton. A toolbox of Hamilton-
Jacobi solvers for analysis of nondeterministic continuous and

hybrid systems. In M. Morari and L. Thiele, editors, Hybrid
Systems: Computation and Control, LNCIS 3414, pages 480–
494. Springer Verlag, 2005.

[27] I. Mitchell and C. Tomlin. Level set methods for computation
in hybrid systems. In B. Krogh and N. Lynch, editors,
Hybrid Systems: Computation and Control, Lecture Notes in
Computer Science, pages 310–323. Springer Verlag, 2000.

[28] B. Picasso and A. Bicchi. Control synthesis for practical
stabilization of quantized linear systems. Ren. Sem. Mat.
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