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Abstract

We propose a game-theoretical model to describe intraaeabpredator-prey
interactions between predatory mitescéri: Phytoseiidagand prey mites (also
called fruit-tree red spider mitesp€ari: Tetranychidag that feed on leaves of
apple trees. Its parameters have been instantiated basethaatory and field
studies.

The continuous-time dynamical model comprises predatdpaey densities,
along with corresponding energy levels, over the lengthsafason. It also includes
time-dependent decision variables for the predator angité representing the
current portions of the predator and prey populations ttetative, as opposed to
diapausing (a state of physiological rest).

Our aim is to find the optimal active/diapausing ratio durangeason of in-
teraction between predatory mites and prey mites: thishiseged by solving a
dynamic game between predator and prey. We hereby extengrexious work
that focused solely on the optimal strategy for the preystiirwe analyze optimal
behavior of the prey. Secondly, we show that the optimatessafor the predator
is to stay active the entire season. This result correspanimlogical observa-
tions.

Keywords: Mathematical models, predator-prey interactions, dyeamincoop-
erative game theory, diapause, mites, fruit orchard

1 Introduction and motivations

The work presented in this article is inspired by studieshenuse of predatory mites
(Acari: Phytoseiidagfor biological pest control of fruit-tree red spider mitg@scari:
Tetranychidagthat feed on and thereby damage leaves of apple trees [5, 6].

This system involves continuous interactions and oveifapgenerations in sum-
mer seasons, as well as discrete periods without interes;tand is therefore an exam-
ple of a hybrid system, in the biological literature referte as a semi-discrete system
[10, 14]. Winters (covering 6-7 months) are usually harsti as such endanger the
survival of fruit-tree red spider (prey) mites [5] and (eveore so) that of predatory
mites [4, 5].

Predatory mites and prey mites densities in the followingser season depend
on the number of individuals in the previous year that havéance to survive the
winter. For the prey, this number equals to the number of préiyiduals that are in a



state of physiological rest (the so-called diapause statbe end of the season, as prey
that is active at the end of the summer season does not haanaecto survive. The
decision to enter diapause promotes the survival of the imdiyidual during winter
and it emerges from induction by a combination of sufficigtdhg night lengths and
low temperatures [20]. Focusing on a single season, in [E7hawe shown that if the
predator stays active the entire season the optimal syrafebe prey can be described
as follows (see Figure 1):

1. In the beginning of the summer season the prey can be intaiey(all active, all
in diapause, or anything inbetween), whereas at the endea$ummer season
all prey individuals are in diapause.

2. If all prey individuals are active in early summer, theyprell start entering
diapause at a certain point in time and the proportion ofaliamg individuals
increases monotonically. Similarly, if only part of the pi@opulation is active
in early summer, then all prey end up being in diapause at oimg jm time and
stay in diapause until the next year. Yet, if all prey indivéds are in diapause in
early summer, then they continue to stay in diapause umtih#éxt year.

3. The time (expressed in real time) of diapause onset depamdhe energy of
the prey, on predator population size, and on the rate ofjgnéilization, but it
is independent of prey population size (i.e. timing of dizgmdoes not require
guorum sensing).

4. If predators are absent in the environment, all prey iddials are in diapause
later than if the predators are present (see Figure 2). Eeapabservations on
diapause of fruit-tree red spider mites on apple trees irfigie (Sabelis and
Overmeer, unpublished data) reveal that virtually allvidlials become active
in early summer and starting from a certain point in time tlopwation en-
ters diapause, gradually. Moreover, experimental maatmr of the predator
population in the field showed that the fruit-tree red spidées enter diapause
earlier in the presence of predatory mites and once in dspthey stay in di-
apause. However, apart from an effect of predator presdscdte density of
fruit-tree red spider mites had an effect on the time at whlietpause was ini-
tiated, suggesting that some form of quorum sensing (plgsgid spider-mite
induced plant volatiles) takes place.

Using another similar spider mite species (more amenabéxperimental treat-
ment), it was experimentally shown that the decision toresitgpause also depends on
predator density during summer [7-9]. From the point of vidihe prey mite this be-
havior makes intuitive sense as it faces a grim future withaasing predator densities
and thus an increased risk of death: it may then do better\bggyup reproduction,
moving away from leaves to twigs and branches (a refuge fna@dation, but without
food) and by entering diapause earlier than indicated bptédictors of season length
(night length and temperature). However, if many prey mitesild make the same
decision, this could create a negative feedback on the fmadaite population, which
could lead them to enter diapause. Consequently, at someipdime the prey mites
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Figure 1: Scheme of possible optimal strategiBgor the prey. Based on the pro-
posed dynamics and optimization problem, we have showwerséility and (largely)
monotonicity of the strategy profile. Notice that the optistaategies do not need to
be continuous corresponding to the singular events in thmome of the optimization
problem.

would profit from the decreased predation risk by termirgatimeir diapause and re-
turning to the leaves, which in turn could trigger the predammites to become active
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Figure 2: If the number of predators increases, the preyiddals begin to enter
diapause earlier but more gradually.

again. Another complicating factor is that an early preypdisse raises the demands
on the energy level of the individual mite, which needs toes@vlonger period before
terminating diapause at the beginning of the next summesosea the energy level
at diapause termination will determine the reproductiyeaci#ty of the prey mite [9].
Thus, the decision to enter diapause within a year will ddpenthe current internal
energy level of the mite, as this will have far-reaching @nsences for winter survival
and reproduction in the summer season of the next year.

There is less information on the diapause behavior of thégtoey mites. However,
the predatory mites are much more flexible in entering diapéactive state and can
switch multiple times during the season. Physiologicalisien variables depend on
the predator and prey densities reached during summeerréitAn only on reliable
season indicators, such as night/day length and tempe&t9].

This leads us to conclude that the predator’s and prey’'sibecio enter diapause is
part of a game between the two species. While we think thathine is a Stackelberg
game with the population of predatory mites acting as a leadd population of the
prey mites acting as a follower [1, 18], we will elaborate bis tclaim when analyzing
the optimal behavior of both parties involved.

Notation: Inthe rest of this document, unless stated otherwise, tlwvimg notation
will be used:
T - length of the summer season

R(t) - fruit-tree red spider (prey) mite population at titne [0, T|, within the summer
season

P(t) - predatory mite population at tinte [0, T], within the summer season
ER(t) -internal energy of the prey at tintec [0, T], within the summer season
EP(t) -internal energy of the predator at tirhe [0, T], within the summer season

uR(t) - decision variable (control) of the fruit-tree red spideites (prey), within the
summer season

uP(t) -decision variable (control) of the predatory mites (ptedawithin the summer
season



or(T), agr(T), agp(T), ap(T), Br(T), Ber(T), Ber(T), Br(T) - additional variables for
the characteristic system in reverse time

ap, @R - singular surfaces (as used in the analysis of the game)
JP -fitness function for the fruit-tree red spider mites, wittfie summer season

JR -fitness function for the predatory mites, within the sumsesson

The article is structured as follows. Section 2 introdud¢esdynamic game be-
tween the predatory mites and the prey mites. Section 3 yrsiadies the optimal
strategies of the predator and prey in this game. Sectioalibbehtes on the biologi-
cal interpretation of the results and proposes a new mod#dsaribe interactions in
different predator-prey systems. Section 5 concludes ttieleg discusses possible
extensions, and sketches future work.

2 Game-theoretical model of the interaction between
predatory mitesand fruit-treered spider mites

Each year is divided into two parts: tiemmerand thewinter season. The predatory
mites and the fruit-tree red spider mites can consume foy (@nd apple leaves, re-
spectively) only during the summer season (which is essiefioti their reproduction).
Furthermore, both predator and prey can enter diapauseescgut state that protects
from the environment, from predation, or possibly lack addo Hence, this implies
a decoupling of predator and prey depending on the populétiztion in diapause.
During the winter season the species do not interact, andbpulations indepen-
dently decline at a constant rate, therefore we focus onuherer interaction only.
The dynamics during winter are trivial and can be simply niedéy a reset (i.e., a
decrease) of the energy and population levels.

The model that we propose describes the interactions batwesdatory mites
(predator) and fruit-tree red spider mites (prey) withinirgke summer seasérand
allows characterizing the seasonal strategy of both poedat prey as a solution of a
dynamic game between them.

In the remainder of the text the terms “summer season” andtéwriseason” are
used interchangeably with the terms “summer” and “wintez§pectively.

2.1 Moded formulation

The summer interactions between the predatory mites amatrélyanites can be formu-
lated as a game played with a finite horiZ6riT] in which the predatory mites select a
uP*(t) € [0,1] fort € [0, T], where
T
uP* =argsup/ (- aP(t)+BSuP(t)EP(t)P(t))dt, (2.1)
w() /0

1Extension of our work into multiple seasons is a subject offoture research.



whereas the prey mites choosa™ (t) € [0,1] fort € [0,T], where

R* _ argsup OT(17 uR(t)ER(t)R(t)dt, (2.2)

uR()

u

subject to the following system dynamics:

p
d% = —ac(1-u)EP + e URR—allEP, (2.3)
dER R\ER R R
—— = —dh(1—-uMER+ f(t)g(RuR — duFER, (2.4)
% = —aP+BSUEPP, (2.5)
‘%R” = —eR+ SURERR— yuPURPR (2.6)

In (2.3)a > 0 is the energy decrease rate for the predator when aetivéyith
ce [0,1)) is the energy decrease rate for the predator when in diapaissthe energy
increase rate for the predator when feeding (here the ef@rggase is proportional to
the number of active fruit-tree red spider mites that argguleipon and to the number
of active predatory mites).

In (2.4),d > 2%0 is the energy decrease rate for the prey when active(with
h € [0,1)) is the energy decrease rate for the prey when in diapdysgis a time-
dependent function characterizing the presence of nasrfenthe fruit-tree red spider
mites in the environment (& f(-) < 1), 9(R,) € [0,1] is a non-increasing function of
its variable, which represents competition among indiglddruit-tree red spider mites
— hencef (t)g(R,)uR is a term representing the increase of energy on the preyodue t
its active state.

The number of predatory mites slowly decreases with cate O and increases
proportionally to their energy and number of active indiads with rateB 8, where
B>0,06>0.

The number of fruit-tree red spider mites decreases witthdages > 0, increases
proportionally to their energy and number of active indivaés with rated > 0, and
decreases proportionally to the number of active predatitgs and number of active
fruit-tree red spider mites with raie> 0.

EP andER refer to the energy levels of the predator and prey, resgegti Since
the energy of an organism is not a quantity that can be djreatiasured, we normalize
these variables &, ER € [0, 1], so that they become ratios.

Based on [15] we set parameteto h = Tlod- We assume that the increase of
the energy of the prey from feeding (composition of the effeaf the environment
and competition among the préy(t)g(R)) equals to the decrease rate of energy of
the prey when actived), i.e.,d = f(t)g(R). Based on field data and [15, 16], we set
0= %, o= 2—10. Additionally, observing that predator and prey are of thesaize and
their death rates are approximately equal [15, 16], the eljosin (2.3)—(2.6) can be



rewritten as follows (with3 replaced byb in notation):

de” 1 P\eP P R P

5 = 55l VE +AP R UPE, (2.7)
R

d% = 7%50(1— uRER+-d R~ dRER, (2.8)
P 1_ 1 5.5

E7—20P+5bu EPP, (2.9)
ClIR:_%)FH%URERR—éuPuRPR (2.10)

whereER(t) € [0,1], EP(t) € [0,1], P(t) > 0, R(t) > O for eacht € [0, T] with T known.

Within a summer, the goal of both predator and prey filagerg is to maximize
their chances of survival [2, 21], which translates to thémijzation problems defined
by (2.1) and (2.2), subject to the dynamical constrainfg){£2.10).

3 Solution of the game

Firstly, we formulate the problem of the predator and thebfmm of the prey via
Hamilton-Jacobi-Bellman equations. Subsequently, wdysthe optimal strategies
for both the predator and for the prey, and we discuss thelogical relevance.

3.1 Hamilton-Jacobi-Bellman formulation for the predator
Let us introduce a reverse timfe= T —t and value functions for both the predator and

the prey. The value function for the predator in reverse tieagls as

p_ [T 1 pep 1
v :/H(gbu EPP— o P)dr, (3.1)

and the related Hamilton-Jacobi-Bellman (HJB) equatianlmwritten as follows:

HP = aip+max<aEp(fi(lqu’)EPdeuPuRRfduF’EP)
ot 250
+aER(—2—éo(l—uR)ER+duR—duRER)
+ap(72—1OP+%buPEPP)
+aR(—%R—FéuRERR—%upuRPR)+%buPEPP—%)P), (3.2)

i _ ovP _ ovP S\ _ ovP
W|th aEP — a—Ep, aP = P> aER - 0_ER7 andaR— R *

The corresponding system of characteristics in reverse tiis then (withx' de-



noting & = — % for a general state variabig

(EPY = Zéo(l u?)EP —d lPuRR+d WPEP, (3.3)

(ER) = 2&130(1 uMER—d R—d RER, (3.4)

P —%P——bu EPP, (3.5)

R = 2—10R7 é RERR+- ;upuRPR, (3.6)
aép:—aEp(ZSO(l u )+du*°)+ buPapP+ b P, (3.7)

Ogr = —aER(Z—éO(l—u ) +duf) +§aRu R, (3.8)
aé,:ap(fz—lowLSb FEP) - ;aRUPURR+ buPEPf%) (3.9)

af =dage u”uR+ aR (—%+;uRER—%u uRP), (3.10)

with transversality conditionsgr (0) = agr(0) = ap(0) = ar(0) = 0 and withEP (0) €

(0,1), ER(0) € (0,1), P(0) > 0, R(O) 0. The singular surface corresponding to the
HJB equation (3.2) is

1 1
EP +dRR— dEF’)+ bapEPP— = uWRarPR+ = bEpP (3.11)

e = e (755 5

Then the optimal strategy for the predator is obtained’as Heavas, i.e.,

pof L i >0
=10 if <O

Moreoveru® € (0,1) if o = 0[11-13].

From the transversality conditions we can derive tidtr = 0) = Heavah (T =
0) = Heav(ibEP(0) P(0)) = 1. Note thates is independent &R and ofagr. Further,
note that regardless of the strategy of the prey the predatwtive at the end of the
season.

3.2 Hamilton-Jacobi-Bellman formulation for the prey
Similarly as in Section 3.1, we can introduce the reverse tim= T —t so that the
value function for the prey becomes:

i
VA= [ (1~ ) ERRar, (3.12)
Tt



and the corresponding Hamilton-Jacobi-Bellman equaton i

R OVR 1 P\P P R P
AR = 5 +ma (BEP( 5501~ WDE" + AP URR—dPEP)
+ Ber(— 25130(1 uFER+d R~ d uRER)
+5p(f2—OP+ Ly rerp P)
1 1 WRER 1pr R) ER
+Br(— gR+ U ERR—ZPUPR) + (1- UM E R), (3.13)

. VR VR VR VR
with Ber = 35, Bp = 55, Ber = S, andPr = 5.
The corresponding system of characteristics is then (ag&oducing derivative in

d d
reverse time for any state variabdasx' = g1 = — 5
1
(E") = 555(1—U)E” —d P "R+ d P E, (3.14)
1
(B = 5gg(1 - uER—d i+ dfER, (3.15)
P fz—loP——buPEP (3.16)
1.1 1
R = R guRERR+§uPuRPR, (3.17)
/ 1 p
Ber = BEP(250(1 uP) +du )+ buBpP, (3.18)
Bl = fer( — se(1-UR) — dUF) + 2BURR+ (1-tR)R (3.19)
250 5
1
Bp BP(—X)+53U EF) - gUP“RBRR (3-20)
Bh= Bl o+ SUFER ~ WPUP) AR 1 (L ER, 321)

with transversality conditiongr(0) = 0, Bgr(0) = 0, Bp(0) = 0, Br(0) =0, and as-
sumingER EP € [0,1], EP(0) > 0, ER(0) > 0, P(0) > 0, R(0) > 0.
The singular surface corresponding to the HIB equatior3}3sl

grR=dWR+ BER(Z—;OEMd dEF) JrBR(%ERRf %upp R -ERR  (3.22)

Similarly as before, the optimaR = Heava, i.e.,

R_L 0 i ok<O,
11 if k>0,

anduR € (0,1) if @k = 0. The value otR for T = O is equal to 0 as/k(0) = —ER(0) R(0) <
0, i.e., regardless of the strategy of the predator the preydiipause at the end of the
season. Moreover, note that (3.22) is independeBfaind of Bzp.



3.3 Optimal strategy for the prey

In the following analysis, we confine ourselves to a spectfiacture for the strategy
of the prey, which turned out to be optimal if the predatoryemiare active the entire
season [17]. More precisely, we assume that the optimalracofithe prey is as shown

in Figure 3:
1 if te[0t),
u=q =& if teltb), (3.23)
0 if telt,tr).
u=1-: u=1
E 1
u=0 !

Figure 3: Assumed shape for the optimal strategy of the piiggsm

Then the optimization problem of the prey can be written assthiution of

-
(t,t3) = argsup (1—uR(1)ER(t)R(t)dt. (3.24)
t1,to 0
subject to (2.3)—(2.6). The dynamics of the model can thettidiznguished as that for
t €[0,t;) (Phase 1), fot € [t1,t2) (Phase 2), and fdre [t;, T] (Phase 3), as described
in the following.

Phase 1 Notice that fort € [0,t;] we can see thai® = 0 and (2.3)—(2.6) can be
rewritten as:

%P: 25130(1 uP)EP +dPR—d U EP, (3.25)
B aae? (3.26)
P IBUE (3.:27)
%?:72—10R+1ERRf ;u PR (3.28)

Phase 2 Notice that fort € [t1,to] we can see thal® = [ 15 ER(t)r(t)dt and

1 t—t

10



(2.3)—(2.6) can be rewritten as:

dEP
- =
dER
dt
dP
-
dR

a

20

L u)EF’+duF’t R—dPEP,

- 250 t1—1

1 t— _ _
_tl tER dt '[2_ t—t ER,
250t; —t» -1t -1t
1 1

P+§buPEPP,
1 t_tz R 1 pt_tz
— —E"R——u PR
20 5(t1—to) 5 t1-t

(3.29)

(3.30)
(3.31)

(3.32)

Phase 3 Notice that fort € [t,, T] we can see thal® = /7 ER(t)r(t)dt and (2.3)-
(2.6) can be rewritten as:

dE” 1 P\eP P
?_—2—50(1—u JEP —d U EP, (3.33)
dER 1 g
e 72—50E , (3.34)
dP 11 b
E_—Z—OP-i-gbupE P, (3.35)
drR 1
T _E)R' (3.36)
With reasoning in reverse timg, =T —t andt, = T — 1.
3.4 Optimal strategy for the predator
Sinceu®(0) = 1 anduR(0) = 0, (3.3)—(3.10) translates into
(EP) =dE”, (3.37)
1
Ry/ R
(ER) = 55" (3.38)
1
P=_—P--bE"P, :
0 b (3.39)
1
R=25R (3.40)
. 1 1
aEp:—daEP+gbaPP+ gbp, (341)
1
,ER = 2500ER5 (342)
af :ap(fi+ bEP) + —bEFLi (3.43)
P 20 ' 5 20°
1
I -
aR = — 55 0R- (3.44)

11



The solution of (3.37)—(3.44) can be computed explicitlyalows:

EP(1) = EP(0) €7, (3.45)
ER(1) = ER(0) ez0, (3.46)
bEP (0)bEP(0) T | ¢
P(r)=P(0)e 5@ "2, (3.47)
R(T) = R(0)e%, (3.48)
bP(0)e’"  bP(0),

oge (1) = ( R e o, (3.49)

ogr(T) =0, (3.50)

ap (1) = (7 e%)ibEPé(()j)edT e bE;(O) )67%+bEPé?edT , (3.51)

ar(T) =0. (3.52)
Substituting (3.45)—(3.52)° = 1, anduR = 0 into (3.11) yields
bP(0) (EP(0) €™ — EP(0) + 250dEP(0

o DPO)(EP(0)¢" ~EP(0) +-250dE"(0)) 353)

1250d

Note that this expression aways positive (note thatd > 1/250). In other words,
in reverse time, the predator is initially active and rersactive until all prey are in
diapause.

If uR changes from 0 to different values, the expression for thgusar surface
(3.11) changes. While the system of characteristics (83)9) with u” = 1 and
uR € (0,1] cannot be solved explicitly, we can observe (Section 3&)ithiR € (0,1),
then (W?)' = — 2 = =25 = A and (UR)” = 0. If uP € (0,1), conditions = 0,
o = {ap,h} =0, o = {3, h} =0, where{-, -} denotes Jacobi brackets [13] and
h is the expression supremized in (3.2), have to be satisfietking this system of
three equations, withuR)’ = A, (uR)” = 0, and subject to (3.3)—(3.10), leads to only
degenerate solutiomzp = 0, ap = —1, ar = 0. This degenerate solution, which can be
easily derived directly from (3.11), cannot be achieved nvamitting characteristics
(3.3)—(3.10) from their initial values. Moreover, the sadegenerate solution will be
found if we replaceR in the equations# = 0, @ = {op,h} =0, & = {4, h} =0
by 1. Therefore, we can conclude that the predator will not chatrgéegy fromu” = 1
and will stay active the entire season.

Remark 3.1 In [17] a three-dimensional model, in which the energy of pinedator
was not included, was used to show that the optimal beha¥itheoprey is the one
shown in Section 3.3. The underlying assumption was thapr@ator stays active
the entire season. As this strategy turned out to be the apstrategy of the predator
in the model proposed in this paper, we could use the arguatientfrom [17] to
confirm our hypothesis regarding the structure 8f‘uTechnically, the proofs will be
the same if we assume thatsl 0, while for d close toz—éO the underlying analysis
becomes much more complex.

One can see that as the optimal strategy of the predator cadelseupled from
the optimal strategy of the prey, it does not matter whethergroblem is defined as

12



a Stackelberg game or as a Nash game because the result ef tthesgames will
coincide.

4 Discussion

In this paper we have searched optimal active/diapausesrdr the predatory mites
and the fruit-tree red spider mites when there are no extagetic costs to go in or out
of diapause and when their decisions depends on both denaitd energy levels of
either species. The optimal strategy for the prey mitesaidés with the results of our
previous work [17]: Even if the prey mites do not encountestsdo enter the diapause,
their optimal strategy is to go into diapause only once pasge. This implies that,
once decided, the diapause is irreversible. In this antidéhave shown that the best
response of the predatory mites to this strategy of the priégsnshould be to stay
active for the entire season, again assuming no energedis for entering or leaving
the diapause state.

The outcome of our analysis regarding the prey mites is rkatdy close to the
empirical observations: in reality the fruit-tree red sgidnites have an irreversible
diapause. Additionally, the prey mites also enter a scedditleep diapause”. Once
the prey mites are in the ‘deep’ diapause, it is not easy tggtiiem to a non-diapause
state (e.g. they require a cold period of a certain lengtbreethey can come out of
diapause). It is possible that this deep diapause evoltedthk selection for an irre-
versible diapause predicted by our model (assuming at pedishtially a very flexible
decision without costs for entering or leaving the diapastage). Once this choice
was made, there were probably other reasons why it was iselgcadvantageous to
evolve a deep diapause (such reasons may be to invest mané-fre@ze chemistry
at the expense of energy for other purposes such as repraaucthe deep diapause
allows the spider mites to survive the winter better thanefcample predatory mites
that exhibit a very flexible diapause state (crude estimefteginter survival for the
prey mites are in the order of 50% whereas for predatory rfigare in the order of
5%).

The outcome of our analysis regarding the predatory miteatier close to real
observations: while in our model the predatory mites stdiv@the entire season, in
reality the predatory mites might enter diapause at the @adyof the summer season
(actually in autumn, which is part of the winter season inmadel), i.e., when there
is no prey. Moreover, the predatory mites have a very flexilidgpause. Collecting
predatory mites in the winter and bringing them to the labfteraghem prey virtually
always results in the predatory mites resuming feedingiwitio days and reproduc-
ing within four days. This represents a great flexibility wiewmpared to the fruit-tree
red spider mites (it may take one or two months for the pregsnio become active
again depending on the cold period they already experigntéd “light diapause” of
the predatory mites may have have as a consequence thautivexeshe winter less
well (less than 5% of them survives) than the spider mites.

Under natural conditions the predatory mites usually kéepspider mites at very
low levels, meaning that they may experience prey shortageme periods (and pos-
sibly a motivation to enter diapause in summer). Under tlvoselitions it is not easy
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to find the predatory mites on leaves as well as elsewhereeplémt. Hence, any
predatory mite entering diapause will be difficult to find tolb is expected that the
predatory mites respond to low prey density by enteringaliap, but become active
again as soon as there is prey available.

Under agricultural conditions, however, predatory mites/rauffer from pesticide
use (against spider mites or against pests other than gpites) and there is much
evidence that this allows the spider mites to increase inbmrmand reach the status
of a pest. Under those conditions, spider mites may suffearedood competition and
then they may also respond to plant food shortage by goigliajpause.

Predatory mites rarely enter diapause before the end oéts®s under agricultural
conditions and if they do they have a flexible diapause tHatalthem to enter and
leave the diapause state, e.g. depending on temperatyrayaiéability. Such flexible
strategies do not emerge as a solution from the model abovehéy may arise as
optimal strategies in different models.

Let us consider another game, in which predator and preysehdo’ and u®*,
respectively, such that

T
uP(-) = argsup [ (UWP(~P+ yuRPR))dt, (4.1)
uP()e(0.]/0
T
uR*(.) = argsup [ (1—uR(t)ER(t)R(t)dt, (4.2)
uR(-)el0,1]/0
while
dE” RyeR Ry, R
F:—(l—u)E +d(1-ENUuT, (4.3)
% = uP(-P+nRPR), (4.4)
%R —ERR-bUPPR (4.5)

with y € (0,1). Adopting the HIB approach again, we can show that while thienay
strategy of the prey does not change, the predator will end d@apause unlike what
was predicted by the model discussed in this paper. Morethismew model is much
simpler to solve as it is only three-dimensional and the attaristic system for both
predator and prey can be solved explicitly if they adopt bhagg actions. The com-
parison of different models, those including energy leageld those excluding them, is
a subject of our ongoing research.

5 Conclusions and future work

In this article, a dynamical model of the predator-preyratéions between predatory
mites and fruit-tree red spider mites during summer has desoribed and analyzed.
This model is an extension of the classic Lotka-Voltera nimdethat it includes not
only the dynamics of predator and prey populations, but #isodynamics of their
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energy levels and energy decision controls for both predetd prey. We have consid-
ered the case where both predator and prey can enter diapfledeve shown that it
is optimal for the predator to stay active the entire seaadnile the prey stays active
in the beginning of the season, later enters the diapausstapdh diapause until the
end of the season.

While the correspondence between theoretical predicodsempirical observa-
tions on mites is encouraging, there are also limitationssfty analytical) that should
spawn new work. Moreover, it is still to be shown that optireainmer behavior of
the predator and prey populations, as derived in this siadgsistant against invasion
by mutant strategies and robust against structural motidits, such as the inclusion
of predator decisions to enter diapause or not. Ultimateé/hope to explain winter
dynamics of predatory mites and fruit-tree red spider niigesed on optimal timing of
diapause induction in summer. The use of bifurcation amalysn help determining
for which parameter domains the proposed optimal strageggie evolutionarily stable.

Different models of the predator-prey interactions wilhdeto different optimal
strategies of the predator and prey. Analysis and compadéeuch different models
is a subject of our future research.
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