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Abstract

Consider a set of sensors estimating the state of a process in which only one of these sensors can operate at each time-step
due to constraints on the overall system. The problem addressed here is to choose which sensor should operate at each time-
step to minimize a weighted function of the error covariances of the state estimates. This work investigates the development
of tractable algorithms to solve for the optimal and suboptimal sensor schedules. A condition on the non-optimality of an
initialization of the schedule is developed. Using this condition, both an optimal and a suboptimal algorithm are devised to
prune the search tree of all possible sensor schedules. The suboptimal algorithm trades off the quality of the solution and the
complexity of the problem through a tuning parameter. The performance of the suboptimal algorithm is also investigated and
an analytical error bound is provided. Numerical simulations are conducted to demonstrate the performance of the proposed
algorithms, and the application of the algorithms in active robotic mapping is explored.
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1 Introduction

Recent work in estimation theory has dealt with vari-
ous topics such as sensor fusion from multiple sources,
coverage control in wireless sensor networks, estimation
with intermittent or delayed observations, data associa-
tion for tracking multiple targets, scheduling of sensors’
measurements, to name a few. This work focuses on the
problem of sensor scheduling which consists of select-
ing one (or multiple) sensors out of a number of avail-
able sensors at each time-step to minimize a function
of the estimation error over a finite time-horizon. Ad-
ditionally, this work can be extended to the problem of
optimal positioning of sensors or trajectory planning for
mobile sensors. Other possible applications of this work
include management of sensor networks, energy efficient
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control of buildings, and state estimation with sensor
constraints.

With the advances of sensor networks and the improve-
ment of unmanned systems for reconnaissance and
surveillance missions, the environment is being inun-
dated with sensor networks monitoring external pro-
cesses [2,10,17,19]. In these networks, a sensor schedul-
ing policy might be desired due to constraints on the
communication bandwidth or power requirements that
limit the number of nodes that can operate at each
time-step. Another application of sensor scheduling is in
energy efficient control of buildings through participa-
tory sensing. By leveraging the occupants’ smartphones
to localize the users in the building and to infer their
destinations [34], an energy saving policy can be enabled
by adjusting the lights, the computer power settings,
or the temperature set points. The building occupants
could be localized by using triangulation of the smart-
phone’s Wi-Fi signal [30]; however, this would quickly
drain the battery. Sensor scheduling has the potential to
decrease the power consumption by determining when
to use the Wi-Fi triangulation to accurately locate the
user, or otherwise integrate the smartphone’s inertial
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measurements to provide a rough estimate. In addition
to conserving power, sensors may interfere with one
another, as with sonar range-finding sensors, and thus
may not operate at the same time. One application
where this occurs is in terrain relative navigation [20]
for underwater vehicles which correlates depth readings
from sonar measurements with a pre-existing map to
localize the vehicle. Typically there are several sonar
devices onboard the vehicle with different measurement
patterns as well as different noise characteristics. Given
the interference between the sonar sensors, only one
device may be operated at once and therefore the objec-
tive would be to manage the schedule of sonar devices
to better localize the vehicle.

The sensor scheduling problem has been studied exten-
sively in the past. In a seminal work, Meier et al. [21] pro-
posed a solution to the discrete-time scheduling problem
through the use of dynamic programming which enu-
merates all possible sensor schedules. The combinato-
rial complexity makes this method intractable for long
schedule horizons. A local gradient method was also pro-
posed which is more likely to be computationally feasi-
ble, but only provides a suboptimal solution. Given the
inherent computational complexity in solving the sensor
scheduling problem, the research community has con-
centrated on developing computationally efficient algo-
rithms.

In [1], a relaxed dynamic programming procedure is ap-
plied to obtain a suboptimal strategy that is bounded by
a pre-specified distance to optimality, but is only appli-
cable for an objective function that minimizes the final
step estimation error. A convex optimization procedure
was developed in [15] as a heuristic to solve the problem
of selecting k sensors from a set of m sensors. Although
no optimality guarantees can be provided for the so-
lution, numerical experiments suggest that it performs
well. In [11] and [24], heuristics such as a sliding window
or a greedy selection policy were employed in order to
prune the search tree. Another approach [12] proposed
to switch sensors randomly according to a probability
distribution to obtain the best upper bound on the ex-
pected steady-state performance. Savkin et al. [26] con-
sidered the problem of robust sensor scheduling in which
the noise and uncertainty models were unknown deter-
ministic functions. Their solution was given in terms of a
solution to a Riccati differential equation. Rezaeian [25]
formulated the sensor scheduling problem as a partially
observable Markov decision process (POMDP) and min-
imized the estimation entropy to obtain the optimal ob-
servability. A sensor scheduling algorithm trading off the
performance and sensor usage costs was devised in [13],
and was also formulated as a POMDP and solved via an
approximation process.

Sensor selection for target tracking has also been exten-
sively studied. Isler et al. [14] proposed a sensor selec-
tion approximation algorithm to minimize the estima-

tion error of a target that is guaranteed to be within
a factor of 2 of the smallest error. An entropy-based
heuristic algorithm proposed in [31] greedily selects the
next sensor that provides the greatest reduction in en-
tropy at the next time-step. Ertin et al. [8] proposed a
greedy algorithm by choosing the sensor which maxi-
mizes the mutual information at the next time-step. The
target tracking problem has also been formulated as a
POMDP [13] and solved through a Monte Carlo method
using a sampling-based Q-value approximation for com-
puting the cost of a sensor schedule. Another Monte
Carlo method is proposed in [6] which chooses the sensor
to minimize the predicted mean-square error of the tar-
get state estimate. Two greedy based sensor scheduling
algorithms were developed in [7]; they formulated the
problem as a mixed integer optimization program and
solved it through a branch and bound technique.

As compared to previous works, the main distinction of
this paper is the development of several efficient schedul-
ing algorithms that drastically reduce the computational
complexity while also providing an analytical bound for
the solution quality. This is accomplished by leveraging
the recent results of optimal control for switched systems
which can be thought of as the dual of the sensor schedul-
ing problem. A switched system consists of a family of
subsystems, each with specific dynamics, and allows for
controlled switching between the different subsystems.
The analysis and design of controllers for hybrid systems
has received a large amount of attention from the re-
search community [3–5,18,29,32,33]. Zhang et al. [32,33]
proposed a method based on dynamic programming to
solve for the optimal discrete mode sequence and con-
tinuous input for the discrete-time linear quadratic reg-
ulation problem for switched linear systems. They pro-
posed several efficient and computationally tractable al-
gorithms for obtaining the optimal and bounded sub-
optimal solution through effective pruning of the search
tree, which grows exponentially with the horizon length.

This work presents three main contributions, arising
out of the insights from the control of switched systems
in [32,33], to reduce the computational complexity of the
sensor scheduling problem. First, the properties of the
estimation process are analyzed to develop a condition
on the non optimality of the initialization of a sensor
schedule. Second, based on the previous condition, two
efficient pruning techniques are developed which provide
optimal and suboptimal solutions. These algorithms can
significantly reduce the computational complexity and
thus enable the solution of larger systems with longer
scheduling horizons. The suboptimal algorithm includes
a tuning parameter which trades off the quality of the
solution with the complexity of the problem, for small
and large values respectively. Third, an analytical bound
on the quality of the solution from the suboptimal algo-
rithm that provides insight into the performance of the
algorithm is presented. Specifically, as the tuning pa-
rameter decreases, the suboptimal solution approaches
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the optimal solution asymptotically; and as the tuning
parameter increases, the error only grows linearly. The
properties of the optimal and suboptimal algorithms are
demonstrated through several numerical examples. Al-
though the paper focuses on choosing only one sensor,
the proposed algorithms also apply to the case of select-
ing multiple sensors at each time-step at the cost of in-
creased complexity.

The paper is structured as follows. Section 2 describes
the standard sensor scheduling problem formulation.
Then, several properties of the objective function are
explored in Section 3. In Section 4, a pruning algorithm
is proposed which provides the optimal solution. In Sec-
tion 5, the optimal algorithm is generalized to provide a
suboptimal solution while reducing the computational
complexity, and the error of this suboptimal solution
is bounded. Numerical examples on the performance of
the suboptimal solutions are presented in Section 6 and
an application in active robotic mapping is presented in
Section 7. The paper concludes with directions of future
work.

2 Problem Formulation

Consider the following linear stochastic system defined
by

x (k + 1) = Ax (k) + w (k) , ∀k ∈ TN , (1)

where x (k) ∈ Rn is the state of the system, w (k) ∈
Rn is the process noise and TN = {0, . . . , N − 1} is the
time horizon. The initial state, x(0), is assumed to be
of a zero mean Gaussian distribution with covariance
Σ0 � 0, i.e., x(0) ∼ N (0,Σ0) 2 . At each time-step,
only one sensor is allowed to operate from a set of M
sensors. The measurement of the ith sensor is,

yi (k) = Cix (k) + vi (k) , ∀k ∈ TN , (2)

where yi(k) ∈ Rp and vi(k) ∈ Rp are the measurement
output and noise of the ith sensor at time k, respec-
tively. The process and measurement noise have zero
mean Gaussian distributions, w (k) ∼ N (0,Σw),

vi (k) ∼ N (0,Σvi), ∀i ∈ M, where M , {1, . . . ,M}
is the set of M sensors. The process noise, measurement
noise and initial state are assumed to be mutually inde-
pendent. Let λ−w be the smallest eigenvalue of Σw and
assume that λ−w > 0. In addition, assume that Σvi � 0,
∀i ∈ M. Denote by Mt the set of all ordered sequences
of sensor schedules of length t where t ≤ N . An ele-
ment σ = {σ0, σ1, . . . , σt−1} ∈Mt is called a (t-horizon)
sensor schedule. Under a given sensor schedule σ, the

2 In this paper, the notations M � 0, M � 0, M � 0, and
M ≺ 0 represent that the matrix M is positive semidefinite,
positive definite, negative semidefinite, and negative definite,
respectively.

measurement sequence is

y(k) = yσk(k) = Cσkx(k) + vσk(k),∀k∈{0, . . . , t− 1}.

For each k ≤ t with t ≤ N and each σ ∈ Mt, let Σ̂σk be
the predictor covariance matrix of the optimal estimate
of x(k) given the measurements {y(0), . . . , y(k−1)}. By
a standard result of linear estimation theory, the Kalman
filter is the minimum mean square error estimator, and
the predictor covariance of the system state estimate
evolves according to the Riccati recursion [16]

Σ̂σk+1 =AΣ̂σkA
T + Σw−

AΣ̂σkC
T
σk

(
CσkΣ̂σkC

T
σk

+Σvσk

)−1

CσkΣ̂σkA
T

(3)

with initial condition Σ̂σ0 = Σ0 and k ≤ t. Let R+ and
Z+ be the set of nonnegative real numbers and integers,
respectively. Define J (σ) : Mt → R+ as the accrued
estimation error under schedule σ, i.e.,

Jt(σ) =

t∑
k=1

tr
(

Σ̂σk

)
. (4)

The sensor scheduling problem is formulated as the fol-
lowing discrete optimization problem:

minimize
σ∈MN

JN (σ) , (5)

and its optimal value is denoted by VN .

3 Characterization of the Objective Function

The main challenge in solving Problem (5) lies in the ex-
ponential growth of the discrete set MN with respect to
the horizon length N . This exponential growth requires
careful development of computationally-tractable solu-
tions, which are derived from the properties developed
in this section.

Let A denote the positive semidefinite cone, which is
the set of all symmetric positive semidefinite matrices.
A Riccati Mapping ρi : A → A is defined that maps the
current covariance matrix, Σ̂k, under a new measure-
ment from sensor i ∈M to the next covariance matrix,

ρi(Σ̂k)=AΣ̂kA
T−

AΣ̂kC
T
i

(
CiΣ̂kC

T
i + Σvi

)−1

CiΣ̂kA
T + Σw.

(6)
A k-horizon Riccati mapping, φσk : A → A is similarly
defined that maps the covariance matrix at time 0, Σ0,
to the covariance matrix at time-step k, using the first
k elements of the sensor schedule σ:

φσk (Σ0) = ρσk−1
(. . . ρσ1

(ρσ0
(Σ0))) . (7)
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Fig. 1. The search tree and characteristic set for the sensor scheduling problem for an example with two sensors. This tree is
the enumeration of all possible sensor schedules with the corresponding covariance and running cost at each time-step. The

superscript for each covariance matrix, e.g. Σ̂(1,2), denotes the sensor schedule used to obtain that estimate of the state.

An example of the search tree, for two sensors, corre-
sponding to the problem defined in Eqn. (5) is shown
in Figure 1. Each node on the kth level of the tree cor-
responds to a k-horizon sensor schedule σ ∈ Mk and is
represented by the so-called characteristic pair (Σσk , γ

σ
k )

that consists of the covariance matrix Σσk and the ac-
crued cost γσk = Jk(σ) for the schedule σ. These pairs
can be computed iteratively using the Riccati mapping.

For example, the pair (Σ
(1)
1 , γ

(1)
1 ) in Figure 1 can be ob-

tained as Σ
(1)
1 = ρ1 (Σ0), and γ

(1)
1 = tr

(
Σ

(1)
1

)
, which

can in turn be used to compute the pair correspond-

ing to the schedule (1, 2) as Σ
(1,2)
2 = ρ2

(
Σ

(1)
1

)
and

γ
(1,2)
2 = γ

(1)
1 +tr

(
Σ

(1,2)
2

)
. Clearly, if two nodes have the

same characteristic pair, then they will have the same
sets of descendants. The set of all the characteristic pairs
at time-step k is called the (k-horizon) characteristic set.

Definition 1 (Characteristic Set) The sequence of

sets {Hk}Nk=0 generated recursively by Hk+1 = hM (Hk)
with initial condition H0 = {(Σ0, 0)} is called the char-
acteristic set associated with Problem (5). Here the
mapping hM(·) is called the characteristic set mapping,
which is defined by:

hM(H)={(ρi(Σ), γ + tr(ρi(Σ))) : i ∈M, (Σ, γ) ∈ H} .

The characteristic sets grow exponentially in size from
the singleton {(Σ0, 0)} to the set HN consisting of up

to MN pairs, each comprising a positive semidefinite
matrix and an accrued cost. Let Hk(i) = (Σk(i), γk(i))

be the ith element of the setHk. For any subset Ĥk ⊂ Hk,
the set of schedules corresponding to Ĥk is defined by,

M(Ĥk) = {σ ∈Mk : (Σ̂σk , γ
σ
k ) ∈ Ĥk}. (8)

The main idea of the proposed solution method is moti-
vated by the following properties of the Riccati mapping.

Theorem 1 For any i ∈M and any Σ1,Σ2 ∈ A,
(i) [Monotonicity] If Σ1 � Σ2, then ρi (Σ1) � ρi (Σ2);
(ii) [Concavity] ρi (cΣ1 + (1− c)Σ2) � cρi (Σ1) + (1−
c)ρi (Σ2), ∀c ∈ [0, 1].

Remark 1 The monotonicity property is a well-known
result and its proof is provided in [16]. The concavity
property is an immediate consequence of Lemma 1-(e)
in [27].

Thus, systems starting with a larger initial covariance,
in the positive semidefinite sense, will yield larger covari-
ances at all future time-steps. This result is important
because it provides insight on how to reduce the com-
plexity of the scheduling problem.

Theorem 1 can be repeatedly applied to obtain the fol-
lowing corollary.

Corollary 1 Let σ ∈ MN and Σ1,Σ2 ∈ A, then ∀k ∈
[0, N ] and ∀c ∈ [0, 1],
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(i) If Σ1 � Σ2, then φσk (Σ1) � φσk (Σ2);
(ii) φσk (cΣ1 + (1− c)Σ2) � cφσk (Σ1) + (1− c)φσk (Σ2).

4 Computation of the Optimal Sensor Schedule

To enable the study on larger systems with longer
scheduling horizons, it is necessary to prune branches
that are redundant and thus will not lead to the optimal
solution. The algorithm to be developed in this section
uses the properties of the Riccati mapping to obtain an
easy-to-check condition to prune branches of the search
tree without discarding the optimal schedule. For ex-

ample from Corollary 1, if two nodes (Σ̂
(1,2)
2 , γ

(1,2)
2 ) and

(Σ̂
(2,1)
2 , γ

(2,1)
2 ) in Figure 1 satisfy the condition

Σ̂
(2,1)
2 � Σ̂

(1,2)
2 and γ

(2,1)
2 ≤ γ(1,2)

2 ,

then by the monotonicity of the Riccati mapping, all the

descendants of the node (Σ̂
(1,2)
2 , γ

(1,2)
2 ) in the search tree

will have a larger cost than the corresponding descen-

dants of the node (Σ̂
(2,1)
2 , γ

(2,1)
2 ). Hence, the exploration

of the branches under (Σ̂
(1,2)
2 , γ

(1,2)
2 ) can be avoided, or

equivalently the pair (Σ̂
(1,2)
2 , γ

(1,2)
2 ) can be pruned from

the characteristic setH2. Such a pair will be called redun-
dant. By further considering the concavity of the Riccati
mapping, other redundant pairs can be identified and
pruned from the search tree. The following definition
provides a condition to characterize redundant pairs.

Definition 2 (Algebraic Redundancy) A pair
(Σ, γ) ∈ H, where H is a characteristic set (Def. 1), is
called algebraically redundant with respect toH\{(Σ, γ)},
if there exist nonnegative constants {αi}l−1

i=1 such that

l−1∑
i=1

αi = 1, and

[
Σ 0

0 γ

]
�

l−1∑
i=1

αi

[
Σ(i) 0

0 γ(i)

]

where l = |H| and {(Σ(i), γ(i))}l−1
i=1 is an enumeration of

H \ {(Σ, γ)}.

Using Corollary 1, one can show that the branches corre-
sponding to the redundant pairs can be pruned without
discarding the optimal solution of the sensor scheduling
problem.

Theorem 2 If the pair (Σ, γ) ∈ Ht is algebraically re-
dundant, then the pair and all of its descendants can be
pruned without eliminating the optimal solution from the
search tree.

PROOF. Let (Σ, γ) be an algebraic redundant pair
satisfying the condition in Definition 2 with some con-

stants {αi}l−1
i=1. It suffices to show that there exists a pair

(
Σ̃, γ̃

)
∈ Ht \ (Σ, γ) such that ∀σN−t ∈MN−t,

γ +

N−t∑
k=1

tr(φσ
N−t

k (Σ)) ≥ γ̃ +

N−t∑
k=1

tr(φσ
N−t

k (Σ̃)).

From the monotonicity and concavity of φσ
r

k ,

γ +

N∑
k=s

tr(φσ
r

k−t(Σ)) ≥
l−1∑
i=1

αi

[
γ(i) +

N∑
k=s

tr(φσ
r

k−t(Σ(i)))

]

where r = N − t, s = t + 1 and l = |Ht|. Finally, the
convex combination of the scalar variables indexed by i
is lower bounded by the smallest one, i.e.,

γ +

N∑
k=s

tr(φσ
r

k−t(Σ)) ≥ γ(i∗) +

N∑
k=s

tr(φσ
r

k−t(Σ(i∗)))

where i∗ = arg min
i∈[0,l−1]

γ(i) +

N∑
k=s

tr(φσ
r

k−t(Σ(i))). Therefore

the branch defined by (Σ, γ) and its descendants can
be eliminated because it will not contain the optimal
solution. 2

Definition 3 (Equivalent Subset) Let the set H̄ ={(
Σ̄(i), γ̄(i)

)}|H̄|
i=1

be called an equivalent subset of H =

{(Σ(i), γ(i))}|H|i=1, if the set H̄ ⊂ H contains a schedule
that leads to the global optimal solution, i.e.,

min
i≤|H̄|

γ̄(i) = min
i≤|H|

γ(i).

According to Theorem 2 and Definition 3, an equivalent
subset of a characteristic set H can be obtained by re-
moving all the redundant pairs in H as illustrated in Al-
gorithm 1. The first step is to sort the set in ascending
order based upon the current cost of the branches, which
is a reasonable heuristic for obtaining the minimum size
of the equivalent subset. The equivalent subset is then
initialized to the current best branch. Next, each entry
inH is tested with the current equivalent subset,H(i−1),
to determine if it can be eliminated. If not, then it is
appended to the current subset. The equivalent subset
returned by this algorithm is denoted by ES (H).

An efficient method for computing the optimal sensor
schedule which uses the proposed pruning technique is
stated in Algorithm 2. The procedure first initializes the
characteristic set to the pair composed of the a priori
covariance of the initial state and initial cost. Then, for
each time-step it computes the characteristic set map-
ping and calculates the equivalent subset with Algo-
rithm 1. Once the tree is fully built, the optimal sensor
schedule is determined.
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Algorithm 1 [ES (H)]

1: Sort H in ascending order such that γ(i) ≤ γ(i+ 1),
∀i ∈ {1, . . . , |H| − 1}

2: H(1) = {H(1)}
3: for i = 2,. . .,|H| do
4: if H(i) satisfies Definition 2 with respect toH(i−1)

then
5: H(i) = H(i−1)

6: else
7: H(i) = H(i−1) ∪H(i)
8: end if
9: end for

Algorithm 2 Sensor Scheduling for a Finite Horizon

1: H0 = {(Σ0, 0)}
2: for k = 1,. . .,N do
3: Hk = hM (Hk−1)
4: Perform ES (Hk)
5: end for
6: σ∗ = arg min

σ∈M(HN )

γσN

By using the proposed pruning technique, the com-
plexity of the problem could be drastically reduced as
displayed in the following example. Consider a sensor
scheduling problem with a horizon N = 50 and the
following system matrices

A =

[
0.9 −0.15

0.1 1.8

]
, Σw =

[
1 0

0 1

]
,

C1 =
[

1.0 0.0
]
, Σv1 = 0.1,

C2 =
[

0.0 1.0
]
, Σv2 = 0.3,

C3 =
[

0.25 −0.75
]
, Σv3 = 0.2,

Figure 2 compares the number of branches required for
the brute force enumeration versus Algorithm 2 which
also provides the optimal solution but prunes redundant
branches. At the final time-step, there are 1026 branches
in the whole search tree, but only 114 branches are re-
quired for Algorithm 2.

Even though the optimal solution prunes a large num-
ber of branches, the growth of the search tree may still
become prohibitive for some problems. Therefore, an ap-
proximate solution may be desired.

5 Suboptimal Scheduling

5.1 Suboptimal Scheduling Algorithm

To further reduce the complexity, the algebraic redun-
dancy concept can be generalized to allow for numeri-
cal error. Similar to Definition 2, the following definition
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Fig. 2. Comparison of the number of branches at each
time-step for the brute force enumeration, the exact redun-
dant elimination and the numerical redundant algorithm
(See Section 5) with ε = 0.1.

provides a condition for testing the ε-redundancy of a
matrix.

Definition 4 (ε-Redundancy) A pair (Σ, γ) ∈ H is
called ε-redundant with respect to H \ {(Σ, γ)}, if there

exist nonnegative constants {αi}l−1
i=1 such that

l−1∑
i=1

αi = 1,

[
Σ + εI 0

0 γ + ε

]
�

l−1∑
i=1

αi

[
Σ(i) 0

0 γ(i)

]

where l = |H| and {(Σ(i), γ(i))}l−1
i=1 is an enumeration of

H \ {(Σ, γ)}.

Figure 3 illustrates the premise behind the ε-redundancy
concept introduced in Definition 4. Let Σ̃ represent one
possible convex combination of Σ1 and Σ2. In this ex-
ample, Σ1 and Σ2 cannot strictly eliminate Σ̄ because Σ̄
does not contain Σ̃. However, if the condition is relaxed
for some ε > 0, then Σ̄ + εI contains Σ̃. Consequently,
for that ε if γ̄+ ε is greater than the same convex combi-
nation of γ1 and γ2 then Σ̄ can be eliminated. Therefore,
the ε-redundancy concept can further reduce the num-
ber of branches in the search tree and the complexity
of the problem. This may enable the solution of some
scheduling problems that are intractable using the opti-
mal algorithm discussed in the last section.

Similar to Algorithm 1, the convex condition in Defini-
tion 4 can be used to identify and prune ε-redundant ma-
trices of a characteristic set. Denote by ES ε (H) the set
of the remaining pairs after removing all the ε-redundant
pairs in H that satisfy the conditions given in Defini-
tion 4. To determine the ε-approximate solution of the
sensor scheduling problem, Algorithm 2 can be modi-
fied by substituting ES ε(·) for ES (·). The modified al-
gorithm will be referred to as the suboptimal scheduling
algorithm (or ALGOε) in the rest of this paper. The es-
sential part of this algorithm is to compute the so-called
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Fig. 3. Example covariances that demonstrate the concept of
ε-redundancy. One possible convex combination of Σ1 and Σ2

is represented by Σ̃ and let γ̃ be the same convex combination
of their costs. Σ1 and Σ2 cannot strictly eliminate Σ̄ because
it does not contain Σ̃. However, if the condition is relaxed
by ε, then Σ̄ + εI does contain Σ̃; consequently, if γ̄ + ε ≥ γ̃
then the branch can be eliminated.

ε-relaxed characteristic sets {Hεk}
N
k=0

Hεk = ES ε(hM
(
Hεk−1

)
),with Hε0 = {(Σ0, 0)} . (9)

The set HεN typically contains fewer pairs than HN and
is easier to compute. To simplify the computation, the
schedule that minimizes JN (σ) among all the schedules
in M (HεN ) can be used as an alternative to the optimal
schedule. Denote by σε,N the suboptimal schedule com-
puted by ALGOε, namely,

σε,N = arg min
σ∈M(HεN)

JN (σ).

An example of the complexity for the suboptimal algo-
rithm is shown in Figure 2 for an ε = 0.1. By eliminat-
ing ε-redundant pairs, the complexity is reduced from
114 for the optimal algorithm to 11. While the subop-
timal algorithm drastically reduces the computational
complexity, it might sacrifice the quality of the solution.
Consequently, an upper bound on the distance from the
optimal solution is needed.

5.2 Performance Analysis

For each k ≤ N , define the (k-horizon) relaxed value
function V εk as

V εk = min
σ∈M(Hε

k
)
Jk (σ) = min

(Σ,γ)∈Hε
k

γ. (10)

Under this notation, the cost associated with the sched-
ule returned by the suboptimal algorithm is V εN . The
goal of this section is to derive an upper bound for the
average-per-stage error, namely 1

N (V εN − VN ), incurred
by the relaxation procedure of Eqn. (9).

5.2.1 Perturbation Analysis of the Riccati Mapping

For each i ∈M and Σ ∈ A, define

Āi(Σ) , A−AKi(Σ)Ci, (11)

where Ki(Σ) is the Kalman gain associated with sensor
i and matrix Σ defined as

Ki(Σ) = ΣCT
i (CiΣC

T
i + Σvi)

−1. (12)

To develop an analytical expression for the bound of the
average-per-stage error, the effect of a perturbation of
the initial covariance on all future covariances must be
determined. To this end, the directional derivative of the
Riccati mapping is first characterized.

Lemma 1 For each i ∈M and any Σ, Q ∈ A,

dρi(Σ + εQ)

dε

∣∣∣∣
ε=0

= Āi(Σ)QĀi(Σ)T,

where Āi(Σ) is defined in Eqn. (11).

PROOF. Let i ∈ M, Σ ∈ A and Q ∈ A be arbitrary
but fixed. Define f(ε) = Ci(Σ + εQ)CT

i + Σvi . It can be
easily shown that,

df−1(ε)

dε
= −f−1(ε)CiQC

T
i f
−1(ε).

Taking the derivative of ρi(Σ+εQ) with respect to ε and
letting ε = 0 yields

dρi(Σ + εQ)

dε

∣∣∣∣
ε=0

= AΣCT
i f
−1(0)CiQC

T
i f
−1(0)CiΣA

T

+AQAT −AQCT
i f
−1(0)CiΣA

T −AΣCT
i f
−1(0)CiQA

T

= A
[
(I − ΣCT

i f
−1(0)Ci)Q(I − CT

i f
−1(0)CiΣ)

]
AT.

Noting that f−1(0) =
(
CiΣC

T
i + Σvi

)−1
and by the def-

inition of Āi(Σ), the desired result is obtained. 2

Theorem 3 For any Σ, Q ∈ A, i ∈ M and ε ∈ R+, the
following holds:

ρi(Σ + εQ) � ρi(Σ) +
(
Āi(Σ)QĀi(Σ)T

)
ε. (13)

PROOF. By the concavity of the Riccati mapping
(Theorem 1), it can be easily verified that the mapping
µi,Σ,Q : R+ → A defined by µi,Σ,Q(ε) = ρi(Σ + εQ),
∀ε ∈ R+, is also concave in ε for any i ∈ M. Thus
µi,Σ,Q(ε) can be upper bounded by an affine function
of ε, namely, µi,Σ,Q(0) +µ′i,Σ,Q(0)ε, which together with
Lemma 1 yields the desired inequality. 2
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For any k = 0, . . . , N , Σ ∈ A and σ ∈ MN , denote by
gσk (Σ;Q) the directional derivative of the k-step Riccati
mapping φσk at Σ along an arbitrary direction Q ∈ A,
i.e.,

gσk (Σ;Q) ,
dφσk(Σ + εQ)

dε

∣∣∣∣
ε=0

. (14)

The following lemma describes how to analytically com-
pute gσk , which will be useful in determining a bound for
the error incurred using the suboptimal algorithm.

Lemma 2 For any Σ, Q ∈ A and σ ∈MN , it holds that
gσ0 (Σ;Q) = Q and

gσk (Σ;Q) =
0∏

t=k−1

(
Āσ(t)(φ

σ
t (Σ))

)
Q
k−1∏
t=0

(
Āσ(t)(φ

σ
t (Σ))

)T
,

for k = 1, . . . , N .

PROOF. For simplicity, let Ât = Āσ(t)(φ
σ
t (Σ)). The

case k = 0 follows directly from the fact that

φσ0 (Σ + εQ) = Σ + εQ.

Suppose that the result holds for a general k ≤ N − 1,

φσk(Σ + εI) = φσk(Σ) +

[
0∏

t=k−1

ÂtQ

k−1∏
t=0

ÂT
t

]
ε+ o(ε),

where o(ε) satisfies o(ε)/ε→ 0 as ε→ 0. Now, it suffices
to show that this is also true for k + 1. Notice that,

φσk+1(Σ + εI) = ρσ(k)(φ
σ
k(Σ + εI))

= ρσ(k)

(
φσk(Σ) +

[
0∏

t=k−1

ÂtQ

k−1∏
t=0

ÂT
t

]
ε+o(ε)

)
.

Applying Lemma 1 to the right-hand side will yield the
desired result. 2

Since the function gσk (Σ;Q) is a directional derivative, it
must be linear in the perturbation direction Q.

Lemma 3 For any Σ, Q1, Q2 ∈ A, a, b ∈ R, k ≤ N and
σ ∈MN , the following holds:

gσk (Σ; aQ1 + bQ2) = agσk (Σ;Q1) + bgσk (Σ;Q2).

Similar to Eqn. (13), an affine upper bound for φσk(Σ+εI)
can be obtained using Lemma 2.

Theorem 4 For any Σ ∈ A, ε ∈ R+, Q ∈ A and k =
0, . . . , N , the k-step effect of a perturbation, Σ + εQ, can
be upper bounded by φσk(Σ + εQ) � φσk(Σ) + gσk (Σ;Q)ε.

The function gσk (Σ;Q) quantifies how a perturbation er-
ror incurred at some generic time t along direction Q
will affect the error covariance matrix k iterations later,
provided that no further perturbation is applied after
step t. The following theorem establishes conditions un-
der which the error term gσk (Σ;Q) decays exponentially
as k increases.

Theorem 5 Fix arbitrary Σ ∈ A, N ∈ Z+, and σ ∈
MN . If there exists a constant β <∞ such that Σσk(Σ) �
βIn for all k ≤ N , then

tr(gσk (Σ; In)) ≤ nβ

λ−w
ηk, k = 0, . . . , N,

where

η =
1

1 + αλ−w
< 1 and α =

λ−w
β2 + λ−wβ

. (15)

PROOF. See Appendix.

The above theorem reveals an important property of the
k-horizon Riccati mapping φσk : A → A, namely, bound-
edness of the trajectory implies an exponential distur-
bance attenuation. This property plays a crucial role in
deriving the error bound for the proposed suboptimal
algorithm.

5.2.2 Error Bound

Denote by σ∗ = {σ∗(0), . . . , σ∗(N − 1)} the optimal N -
horizon sensor schedule, i.e.,

σ∗ = arg min
σ∈MN

JN (σ).

For each j = 0, . . . , N − 1, let σ∗j be the sensor schedule
obtained by removing the first j steps from σ∗, i.e.,

σ∗j = {σ∗(j), . . . , σ∗(N − 1)}.

Let {Σ̂∗k}Nk=0 be the optimal covariance trajectory,

namely, Σ̂∗k = Σ̂σ
∗

k , for k = 0, . . . , N , and let γ∗k be the
accrued cost of the first k steps of the optimal covariance

trajectory, i.e., γ∗k =
∑k
t=1 tr(Σ̂∗t ), k = 1, . . . , N . De-

note by β∗ the peak estimation error along the optimal
covariance trajectory, namely,

β∗ , max
k=1,...,N

‖Σ̂∗k‖. (16)
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The following lemma is used to derive the desired error
bound.

Lemma 4 For any k = 1, . . . , N and ε ∈ R+, there
always exists a pair (Σk, γk) ∈ Hεk satisfying the following
inequalities:Σk � Σ̂∗k +

[
In +

∑k−1
j=1 g

σ∗
j

k−j(Σ̂
∗
j ; In)

]
ε

γk ≤ γ∗k +
[
k +

∑k−1
j=1

∑k−j
l=1 tr(g

σ∗
j

l (Σ̂∗j ; In))
]
ε.

(17)

PROOF. For k = 1, Eqn. (9) leads to

Hε1 = ES ε(hM(H0)) = ES ε(H1).

Thus, the desired inequalities follow directly from Defi-
nition 4.

Suppose that the results hold for a general k ≤ N−1 and
let (Σk, γk) ∈ Hεk be the pair satisfying Eqn. (17). It suf-
fices to show that there also exists a pair (Σk+1, γk+1) ∈
Hεk+1 satisfying Eqn. (17) for k + 1. Define

Σ̃k+1 = ρσ∗(k) (Σk) , and γ̃k+1 = γk + tr
(

Σ̃k+1

)
.

Clearly, the pair (Σ̃k+1, γ̃k+1) ∈ hM (Hεk), but may not
be in Hεk+1 after applying ES ε. Nevertheless, according
to Definition 4, there must exist a pair (Σk+1, γk+1) ∈
Hεk+1 such that{

Σk+1 � Σ̃k+1 + εIn;

γk+1 ≤ γ̃k+1 + ε.
(18)

According to the induction hypothesis, Eqn. (17), The-
orem 4, and Lemma 3,

Σ̃k+1 � ρσ∗(k)

(
Σ̂∗k

)
+

εg
σ∗(k)
1

(
Σ̂∗k; In +

∑k−1
j=1 g

σ∗
j

k−j(Σ̂
∗
j ; In)

)
= Σ̂∗k+1 + εg

σ∗(k)
1

(
Σ̂∗k; In

)
+ε
∑k−1
j=1 g

σ∗(k)
1

(
Σ̂∗k; g

σ∗
j

k−j(Σ̂
∗
j ; In)

)
Using Lemma 2, it can be easily verified that for each
j = 1, . . . , k − 1,

g
σ∗(k)
1

(
Σ̂∗k; g

σ∗
j

k−j(Σ̂
∗
j ; In)

)
= g

σ∗
j

k+1−j

(
Σ̂∗j ; In

)
.

Therefore,

Σ̃k+1 � Σ̂∗k+1 +

 k∑
j=1

g
σ∗
j

k+1−j(Σ̂
∗
j ; In)

 ε. (19)

By the induction hypothesis and Eqn (17),

γ̃k+1 = γk + tr
(

Σ̃k+1

)
≤ γk + tr(Σ̂∗k+1) + ε

∑k
j=1 tr

(
g
σ∗
j

k+1−j(Σ̂
∗
j ; In)

)
≤ γ∗k + tr(Σ̂∗k+1) + kε

+ε
∑k−1
j=1

∑k−j
l=1 tr(g

σ∗
j

l (Σ̂∗j ; In))

+ε
∑k
j=1 tr

(
g
σ∗
j

k+1−j(Σ̂
∗
j ; In)

)
≤ γ∗k+1 + kε+ ε

∑k
j=1

∑k+1−j
l=1 tr(g

σ∗
j

l (Σ̂∗j ; In)).

Combining equations (18), (19) and (20) yields the de-
sired inequality in equation (17). 2

Theorem 6 Let η∗ be the constant defined in Eqn. (15)
with β∗ in place of β. Then

1

N
(V εN − VN ) ≤

(
nβ∗η∗

λ−w(1− η∗)
+ 1

)
ε.

PROOF. It follows immediately from Lemma 4 that

V εN ≤ VN +

N +

N−1∑
j=1

N−j∑
l=1

tr
(
g
σ∗
j

l (Σ̂∗j ; In)
) · ε.

This together with Theorem 5 and the definition of β∗

yields the desired inequality. 2

The error bound derived above depends on the peak
estimation error β∗ of the optimal schedule. Although
the exact value of β∗ is not available, there are many
ways to upper bound β∗. For example, β∗ ≤ JN (σε,N )
due to the following simple inequality

β∗ <

N∑
t=1

tr
(

Σ̂σ
∗

t

)
≤

N∑
t=1

tr
(

Σ̂σt

)
,∀σ ∈MN .

Notice that regardless of the way of estimating β∗, the
upper bound given in Theorem 6 could be conservative.
The particular value of the bound may not be of crucial
importance, however its analytical form reveals several
important properties of the proposed suboptimal algo-
rithm. First of all, the bound clearly indicates that as
the relaxation parameter ε→ 0, the performance of the
suboptimal algorithm ALGOε approaches the optimal
one asymptotically with no performance gap. In addi-
tion, the error in general grows only linearly as ε in-
creases. These appealing properties provide theoretical
justifications for the suboptimal algorithm developed in
this section.
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6 Numerical Examples

6.1 3D Process with Four Sensors

Consider a sensor scheduling problem with horizon
length N = 50 and the following system matrices.

A =


−0.6 0.8 0.5

−0.1 1.5 −1.1

1.1 0.4 −0.2

 , Σw =


1 0 0

0 1 0

0 0 1

 ,
C1 =

[
0.75 −0.2 −0.65

]
, Σv1 = 0.53,

C2 =
[

0.35 0.85 0.35
]
, Σv2 = 0.8,

C3 =
[

0.2 −0.65 1.25
]
, Σv3 = 0.2,

C4 =
[

0.7 0.5 0.5
]
, Σv4 = 0.5.

The brute force search for this problem would require
to explore about 1030 branches, which is not numeri-
cally tractable. However, the problem can be efficiently
solved using the proposed suboptimal scheduling algo-
rithm ALGOε. The algorithm is tested with initial co-
variance Σ0 = I3 under 4 different relaxation parameters
ε = {0.01, 0.1, 0.2, 0.5}. For all these relaxation parame-
ters, the resulting suboptimal sensor schedule is the same
with the same cost function value 850.57. The obtained
suboptimal schedule is shown in Figure 4(a). It is inter-
esting to note that the sensor schedule is periodic for the
non-transient portion of the schedule, with a repeating
sequence of {4, 1, 4, 2, 1, 2, 3}. Counter-intuitively, even
though sensor 2 has a significantly larger sensor noise, it
is used more than sensor 3 which has the smallest noise.
One reason for this is because sensor 2 provides the most
direct information about the 2nd dimension of the state.
In addition, Figure 4(b) shows the number of branches in
the search tree per time-step for ε = {0.01, 0.1, 0.2, 0.5},
which saturates around 166, 43, 25 and 18, respectively.
It can also be seen that the number of branches in the
search tree typically saturates around a smaller number
for a larger ε.

6.2 Examples With Randomly Generated Matrices

To further demonstrate its performance, the suboptimal
algorithm ALGOε is tested using 100 random instances
of the sensor scheduling problem with M = 3 sensors
and state dimension n = 4. A relatively small horizon
length N = 14 is chosen for which the brute force search
approach can be carried out to compute the ground truth
to examine the cost performance of ALGOε. In generat-
ing the random systems, the pair (A,Ci), ∀i ∈ M, was
restricted to be unobservable, with the exception that if
all the sensors were used at once then the system would
be fully observable. The rationale for this restriction was
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1

2

3

4
Sensor schedule

Time−step

S
en

so
r

(a)

0 10 20 30 40 50
0

50

100

150

200
Number of branches per time−step

Time−step

ε = 0.01
ε = 0.1
ε = 0.2
ε = 0.5

(b)

Fig. 4. Results for ε = {0.01, 0.1, 0.2, 0.5}. (a) Suboptimal
sensor schedule. (b) Number of matrices per time-step.

to coerce the optimal solution to switch between sen-
sors instead of only using one sensor for the entire time
horizon. The noise for each sensor, Σvi , was randomly
chosen from a uniform distribution between (0, 1), the
initial covariance was Σ0 = 0.1I4 and the process noise
was Σw = I4.

For each problem, both the optimal solution and the
suboptimal solutions under 10 different relaxation val-
ues ε = {0.1, 0.2, . . . , 1.0} are calculated. Figure 5(a) dis-
plays the percentage of the solutions that is optimal for
each ε. As ε is increased there is a slow decrease in the
number that is optimal. Figure 5(b) displays the mean
and maximum percentage of the final cost over the op-
timal solution for each ε. For all ε, the solution is well
within 0.5% of the optimal objective function value for
most of the instances and is closer to optimal as ε is de-
creased. Figure 5(c) shows the number of branches in the
search tree at the final time-step. As ε increases, fewer
branches are needed to represent the search tree, and
even an ε = 0.1 requires on average four orders of magni-
tude fewer branches than brute force enumeration. The
figure suggests that the general trend for both the mean
and maximum values is an exponential decay as ε in-
creases.
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Fig. 5. Performance of the suboptimal algorithm for different ε. (a) The percentage of solutions for the suboptimal algorithm
that is the optimal solution. (b) Mean and maximum relative error, in percentage, between the suboptimal and optimal solution
for each ε. (c) The mean and maximum number of branches in the search tree at the final time-step for each ε.

7 Application in Active Mapping

One motivating application of this sensor scheduling
framework is in simultaneous localization and mapping
(SLAM) which is a fundamental task in robotics [28].
SLAM is concerned with constructing a globally con-
sistent model of the environment and consists of a ve-
hicle navigating through and sensing an unknown envi-
ronment. Examples of typical sensor readings used are
monocular or stereo camera images and 2D/3D point
clouds. By combining the robot’s odometry measure-
ments and the environment measurements a globally
consistent map of the environment can be generated by
solving a nonlinear estimation problem. Typically, most
approaches are only concerned with the estimation pro-
cess and the robot is manually guided through the un-
known environment. These approaches, however, neglect
how the control inputs and/or trajectory for the robot
affects the quality of the map, even though it can have a
dramatic effect. In this example, the design of the con-
trol inputs to minimize the total estimation error is in-
vestigated. Previously, Ny et al. [23] proposed a simple
suboptimal greedy solution technique which employed
forward value iteration and a myopic heuristic pruning
algorithm. The method proposed in [23] can be consid-
ered an instance of the proposed algorithm in this work
with an ε =∞.

This example illustrates the active mapping problem
in Figure 6, which is concerned with planning trajecto-
ries for the robot through the environment to acquire
the best map. To investigate how the navigation of the
robot affects the quality of the map, the environment
is assumed to be composed of M distinct features with
known locations. These features have an unknown quan-
tity associated with them, for example air quality, and
the robot can acquire a noisy measurement of it when
in sensing range. The measurements of the features are
corrupted by additive Gaussian noise and the noise char-
acteristics depend upon the state of the vehicle, i.e. the
further the vehicle is away from the feature the nois-
ier the measurement is. Therefore, different trajectories

Feature

Sensing range

Fig. 6. An illustration of the active mapping problem. There
are features scattered throughout the environment with
known locations and the robot can receive noisy measure-
ments of them when it is within sensing range.

through the environment will result in different mea-
surement sequences resulting in varying map qualities.
Finding the best trajectory through the environment can
be transformed to a sensor scheduling problem because
each location in the environment has different sensing
characteristics. The active mapping problem can be for-
mulated as the following optimization program [23],

minimize
uk,∀k∈[0,N−1]

tr
(

Σ̂N

)
s.t. sk+1 = f (sk, uk)

Σ̂k+1 = AΣ̂kA
T + Σw−

Q(sk+1)R(sk+1)−1QT(sk+1)

where sk is the state of the vehicle at time-step k, f(·)
is the dynamics of the vehicle, C(s) is defined as the
sensor measurement characteristics at the vehicle state
s, Q(·) is defined as Q(sk+1) = AΣ̂kC

T(sk+1), R(·) is

defined as R(sk+1) = C(sk+1)Σ̂kC
T(sk+1) + Σv(sk+1),
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and Σv(s) is the measurement noise of the sensor at
the vehicle state s. The optimization variables are the
control inputs, uk, at each time-step.

In previous sections it was assumed that the set of avail-
able sensors remains the same for each time step, which is
not the case in this active mapping example. Only nodes
corresponding to the same state of the vehicle have the
same sensors available. Even though the sensors are now
state dependent, the proposed pruning algorithm still
applies. Using similar notation as introduced in the pre-
vious sections, a node is re-defined to include the state of
the vehicle, i.e. (Σ, γ, s). Similarly, the Riccati mapping
is now defined as,

ρu(Σ̂k,sk)=AΣ̂kA
T + Σw−

Q(f(sk,u))R(f(sk,u))−1QT(f(sk,u)),

and the characteristic sets are now generated via,

Hk+1 = hU (Hk) from H0 = {(Σ0, 0, s0)} with

hU(H)={(ρu(Σ, s), tr(ρu(Σ, s)), f(s, u)) :

(Σ, γ, s) ∈ H,u ∈ U(s)} .
where U is the set of all inputs and U(s) is the set of
feasible inputs at state s. Let H(s) be all of the sets in
H with state s. Now the active mapping problem is for-
mulated as a sensor scheduling problem in Algorithm 3.
The solution procedure is the same as before except for

Algorithm 3 Active Mapping Algorithm

1: H0 = {Σ0, 0, s0}
2: for k = 1,. . .,N do
3: H̄ = hU(Hk−1)
4: Hk = ∅
5: for all s do
6: Hk = Hk ∪ ES ε

(
H̄(s)

)
7: end for
8: end for
9: u∗ = arg min

j∈{1,...,|HN |}
γN (j)

lines 5 − 7 which applies the pruning algorithm for all
sets at the same state. The pruning algorithm can no
longer be applied to all the sets in Hk because not ev-
ery path will have the same set of sensors available to it
over the remaining time-steps. Consequently, the prun-
ing algorithm can only be applied to the sets with the
same state.

The results from the proposed algorithm are illustrated
through numerical simulations. The environment is rep-
resented as a grid world and the vehicle can move to its
neighboring positions on the grid. At each time-step, the
vehicle can take a noisy measurement of the feature if
its location is within the sensing range of that feature.
The sensor noise model is assumed to be an affine func-
tion of the distance from the feature. In the examples

presented, the planning horizon is N = 50. The pruning
algorithm was implemented in C++ using the semidefi-
nite programming algorithm SDPA [9].

Figure 7 compares the greedy heuristic method and
the numerically redundant pruning algorithm with an
ε = 0.1. The objective function obtained for the greedy
method is 0.88 and the redundant pruning method is
0.69. The objective function for the simple greedy, my-
opic policy is over 27% larger than the solution with
ε = 0.1. Figures (a)-(b) show the output of the greedy
heuristic method and the numerically redundant prun-
ing algorithm, respectively. The feature locations are
indicated by the crosses and the maximum sensing range
is shown by the circles. The solid line is the trajectory
of the vehicle through the environment. Given the my-
opic nature of the greedy policy, it navigates the vehicle
along the area in which the sensing regions overlap; in
contrast, the solution for the numerically redundant
method deviates away from this area and navigates
closer to the features which reduces the overall uncer-
tainty. Figures (c)-(d) show the number of branches at
each time-step for each method. For ε = 0.1, the num-
ber of branches increases exponentially until time-step
35 and then decreases.
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Fig. 7. (a)-(b) The solution from the greedy heuristic method
and the numerically redundant pruning method with an
ε = 0.1, respectively. The feature locations are indicated by
the crosses and their sensing radii are shown by the circles.
The solid line is the solution of the vehicle’s path through the
environment. (c)-(d) Number of branches at each time-step
for greedy heuristic and the numerically redundant pruning
methods, respectively.
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8 Conclusions

This work has studied the sensor scheduling problem by
deriving a condition under which an initial schedule is
not part of the optimal solution. Using this condition,
two algorithms were devised, which provide the optimal
and suboptimal solutions, to prune the search tree to en-
able the solution of larger systems and longer time hori-
zons. The algorithms trade off the quality of the solu-
tion and the complexity of the problem. A bound on the
quality of the solution from the suboptimal algorithm
was also provided.

While the problem of choosing only one sensor at each
time-step is presented, the algorithms developed are also
applicable to the case of selecting multiple sensors at
each time-step. In this case, the problem’s complexity
may prevent solving for the optimal solution. However,
the suboptimal algorithm can address this by allowing
for more error in the solution of the problem which will
reduce the complexity of the problem.

There are several interesting areas of future work that
the authors wish to explore. First, it has been previously
noticed that the sensor schedules tend to be periodic for
the non-transient portion of the schedule. The authors
would like to analyze this behavior to determine condi-
tions for the periodicity and a bound for the objective
function if the periodic schedule were used. This might
allow for early termination of the algorithm if the best
schedule so far were periodic. Second, the authors want
to extend these methods to consider the case in which
the sensors depend on the state of the system. Lastly,
another extension of interest is to modify the objective
function to include a direct measure of the power con-
sumption of each sensor.
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A Proof of Theorem 5

Lemma 5 (Schur Complement Lemma) Suppose
that Z1, Z2 and Z3 are respectively, n1 × n1, n1 × n2

and n2 × n2 dimensional matrices and that both Z1 and
Z3 are nonsingular. Define

Z =

[
Z1 Z2

ZT2 Z3

]
, S1 , Z1 − Z2Z

−1
3 ZT2

and S2 , Z3 − ZT2 Z−1
1 Z2.

Then Z � 0⇔ S1 � 0 and Z � 0⇔ S2 � 0.

Fix arbitrary Σ ∈ A, N ∈ Z+ and σ ∈ MN . Let β be a
constant satisfying the condition stated in Theorem 5.
For simplicity, let Σ̂t := Σσt (Σ), K̂t = Kσ(t)(Σ̂t), and

Ât := A−AK̂tCσ(t). It can be shown [22] that the Riccati
recursion formula in Eqn (6) can be equivalently written
as:

Σ̂t+1 =Σw+ÂtΣ̂tÂ
T
t +AK̂tΣvσ(t)K̂

T
t A

T , (A.1)

for t = 0, . . . , N − 1. Notice that Σ̂t � Σw � 0 for all
t ≥ 1. Define

Q̂t = Σ̂−1
t , ∀t = 1, . . . , N. (A.2)

Lemma 6 For each t = 1, . . . , N − 1,

Q̂t − ÂTt Q̂t+1Ât � αIn,

where α is defined in (15).

PROOF. By the hypothesis in Theorem 5, λ−wIn �
Σ̂t � βIn, for all t = 1, . . . , N , which implies

1

β
In � Q̂t �

1

λ−w
In, ∀t = 1, . . . , N. (A.3)

Therefore, αIn � αβQ̂t and thus Q̂t−αIn � (1−αβ)Q̂t.
Since αβ < 1, it follows that

Ât

(
Q̂t − αIn

)−1

ÂTt � (1− αβ)−1ÂtQ̂
−1
t ÂTt

=ÂtQ̂
−1
t ÂTt +

(
1

1− αβ
− 1

)
ÂtQ̂

−1
t ÂTt

�ÂtQ̂−1
t ÂTt +

αβ2

1− αβ
In

=ÂtQ̂
−1
t ÂTt + λ−wIn, (A.4)

for t = 0, . . . , N − 1, where the second last step follows
from Eqn (A.1) and the fact that Σ̂t+1 � βIn. Further-
more, equation (A.1) leads to

Σ̂t+1 − ÂtΣ̂tÂTt � λ−wIn,

which in turn implies

Q̂−1
t+1 − ÂtQ̂

−1
t ÂTt � λ−wIn.

This together with (A.4) yields

Q̂−1
t+1−Ât(Q̂t−αIn)−1ÂTt � Q̂−1

t+1−ÂtQ̂
−1
t ÂTt −λ−wIn� 0.
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By Lemma 5, this indicates that[
Q̂−1
t+1 Ât

ÂTt Q̂t − αIn

]
� 0.

Using Lemma 5 again yields Q̂t−αIn− ÂTt Q̂t+1Ât �
0. 2

PROOF. [Proof of Theorem 5] Let Σ̂t, Ât, Q̂t be
the same as defined in the proof of Lemma 6. For each
l = 1, . . . , n, let ξ(l)(t) be the solution of the following
linear time-varying system:

ξ(l)(t+ 1) = Âtξ
(l)(t), t = 0, . . . , N − 1, with ξ(0) = u(l).

where u(l) denotes the standard unit vector in Rn with
value 1 at the lth position and zeros elsewhere. By
Lemma 2, it can be easily verified that

tr(gσt (Σ; In)) = tr

(
n∑
l=1

(
ξ(l)(t)

)(
ξ(l)(t)

)T)
=

n∑
l=1

‖ξ(l)(t)‖2.

For each l = 1, . . . , n, consider the Lyapunov function
defined by:

L
(l)
t , ξ(l)(t)T Q̂tξ

(l)(t), for t = 0, . . . , N.

By Lemma 6, for each t = 0, . . . , N − 1, it follows that

L
(l)
t − L

(l)
t+1 =

(
ξ(l)(t)

)T (
Q̂t − ÂTt Q̂t+1Ât

) (
ξ(l)(t)

)
≥α‖ξ(l)(t)‖2 ≥ αλ−wL

(l)
t .

This also implies that L
(l)
t is non-increasing. Thus, L

(l)
t −

L
(l)
t+1 ≥ αλ−wL

(l)
t+1. Hence,

L
(l)
t+1 ≤

1

1 + αλ−w
L

(l)
t ≤ ηt+1L

(l)
0 .

This together with (A.3) implies that for t = 0, . . . , N ,

‖ξ(l)(t)‖2 ≤ βL(l)
t ≤ βηtL

(l)
0 ≤

β

λ−w
ηt‖u(l)‖2 =

β

λ−w
ηt.

Therefore, tr(gσt (Σ; In)) =
∑n
l=1 ‖ξ(l)(t)‖2 ≤ nβ

λ−
w
ηt. 2
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