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Abstract

In the past few years there has been a growing interest in the use of symbolic models for control systems. The main reason is the
possibility to leverage algorithmic techniques over symbolic models to synthesize controllers that are valid for the concrete control
systems. Such controllers can enforce complex logical specifications that are otherwise hard (if not impossible) to establish on the
concrete models with classical control techniques. Examples of such specifications include those expressible via linear temporal
logic or as automata on infinite strings. A relevant goal in this research line is in the identification of classes of systems that admit
symbolic models: in particular, continuous-time systems with stochastic or hybrid dynamics have been only recently considered,
due to their rather general and complex dynamics. In this work we make progress in this direction by enlarging the class of
stochastic hybrid systems admitting finite, symbolic models: specifically, we show that randomly switched stochastic systems,
satisfying some incremental stability assumption, admit such models.
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1. Introduction

Stochastic hybrid systems represent a general class of dy-
namical systems that combine continuous dynamics with dis-
crete components and that are affected by continuous proba-
bilistic terms as well as discrete random events. Numerous
real-life systems from fields such as biochemistry [1], air traffic
control [2], systems biology [3], and communication networks
[4], can be modeled as stochastic hybrid systems. Randomly
switched stochastic systems, also known as switching stochas-
tic systems [? ], are a relevant sub-class of general stochastic
hybrid systems. They consist of a finite family of subsystems
(modes, or locations), together with a random switching signal

that specifies the active subsystem at every time instant. Each
subsystem is further endowed with continuous probabilistic dy-
namics, described by a control-dependent stochastic differential
equation.

Quite some research has recently focused on characterizing
classes of systems, involving continuous and possibly discrete
components, that admit symbolic models. A symbolic model
is a finite discrete approximation of a concrete model, resulting
from replacing equivalent (sets of) continuous states by discrete
symbols. Symbolic models are interesting because they allow
the application of algorithmic machinery for controller synthe-
sis on discrete systems [5] towards the synthesis of hybrid con-
trollers for the corresponding concrete complex models. Such
controllers are synthesized to satisfy classes of specifications
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that traditionally have not been considered in the context of
control theory: these include specifications involving regular
languages and temporal logics [6].

The search for classes of continuous-time stochastic systems
admitting symbolic models include results on stochastic dy-
namical systems under contractivity assumptions [7], which are
valid only for autonomous models (i.e. with no control input);
on probabilistic rectangular automata [8] endowed with ran-
dom behaviors exclusively on their discrete components and
with simple continuous dynamics; on linear stochastic con-
trol systems [9], however without any quantitative relationship
between abstract and concrete models; on stochastic control
systems without any stability assumptions, but with no hybrid
dynamics [10]; on incrementally-stable stochastic control sys-
tems without discrete components [11] and without requiring
state-space discretization [12]; and finally on incrementally-
stable stochastic switched systems [13] where the discrete dy-
namics, in the form of mode changes, are governed by a non-
probabilistic control signal. The results in [10, 11, 12, 13] are
based on the notion of (alternating) approximate (bi)simulation
relation, introduced in [14, 15]. Notions of bisimulation for
continuous-time stochastic hybrid systems have also been stud-
ied in [16], although with a different goal than that of synthesiz-
ing symbolic models: while we are interested in the construc-
tion of bisimilar models that are finite, the work in [16] uses
bisimulation to relate continuous (and thus infinite) stochastic
hybrid systems. Finally, there exist discretization results based
on weak approximations of continuous-time stochastic control
systems [17] and of continuous-time stochastic hybrid systems
[18], however these do not provide any explicit approximation
bound.

To the best of our knowledge there is no work on the con-
struction of finite bisimilar abstractions for continuous-time
switching stochastic systems where the discrete dynamics, in
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the form of mode changes, are governed by a random switch-
ing signal. Models for these systems have become ubiquitous in
engineering applications, such as power electronics [19], manu-
facturing [20], economic and finance [21]: automated controller
synthesis techniques for this class of models can thus lead to
more reliable system development at lower costs and times.

The main contribution of this paper is to show that switch-

ing stochastic systems, under some incremental stability as-

sumption, admit symbolic models that are alternatingly approx-

imately bisimilar to the concrete ones, with a precision (say

ε) that can be chosen a-priori, as a design parameter. More
precisely, by guaranteeing the existence of an alternating ε-
approximate bisimulation relation between concrete and sym-
bolic models, one deduces that there exists a controller en-
forcing a desired complex specification on the symbolic model
if and only if there exists a hybrid controller enforcing an ε-
specification on the original switching stochastic system. We
show the description of the discussed incremental stability
property in terms of a so-called common Lyapunov function
(with requires no probabilistic structure on the switching sig-
nal), or alternatively in terms of multiple Lyapunov functions
with some fairly general probabilistic structure on the switch-
ing signal.

Building upon [11, 13], the result of this paper extends that in
[11] from a single stochastic control system to a number of ran-
domly switching stochastic systems, and the result in [13] from
multiple stochastic dynamical systems with mode changes that
are governed by a non-probabilistic controlled signal to multi-
ple stochastic control systems in which mode changes are gov-
erned by a random (uncontrolled) signal. The presence of a ran-
domly switching signal in this paper requires to provide novel
symbolic models: these allow transferring the synthesized con-
trol strategies directly to the original system, regardless of the
particular evolution of the switching signal.

2. Randomly Switched Stochastic Systems

2.1. Notation

The identity map on a set A is denoted by 1A. If A is a sub-
set of B, we denote by ıA : A →֒ B or simply by ı the natural
inclusion map taking any a ∈ A to ı(a) = a ∈ B. Given a set

A ⊆ R
n, the symbol A denotes the topological closure of A.

The symbols N, N0, Z, R, R+, and R
+
0

denote the set of natu-
ral, nonnegative integer, integer, real, positive, and nonnegative
real numbers, respectively. The symbols 0n and 0n×m denote the
zero vector and matrix in R

n and R
n×m, respectively. Given a

vector x ∈ Rn, we denote by xi the i–th element of x, and by
‖x‖ the infinity norm of x, namely, ‖x‖ = max{|x1|, |x2|, ..., |xn|},
where |xi| denotes the absolute value of xi. Given matrices
M = {mi j} ∈ R

n×m and P = {pi j} ∈ R
n×n, we denote by ‖M‖

the infinity norm of M, namely, ‖M‖ = max1≤i≤n

∑m
j=1 |mi j|; by

Tr(P) the trace of P, namely, Tr(P) =
∑n

i=1 pii; by ‖M‖F the

Frobenius norm of M, namely, ‖M‖F =
√

Tr
(
MMT

)
; and by

λmin(P) and λmax(P) the minimum and maximum eigenvalues
of a symmetric matrix P, respectively. We denote by ∆ the di-

agonal set, namely, ∆ = {(x, x) | x ∈ Rn}.

The closed ball centered at x ∈ R
n with radius λ is de-

fined by Bλ(x) = {y ∈ Rn | ‖x − y‖ ≤ λ}. A set B ⊆ R
n is called

a box if B =
∏n

i=1[ci, di], where ci, di ∈ R with ci < di

for each i ∈ {1, . . . , n}. The span of a box B is defined as
span(B) = min {|di − ci| | i = 1, . . . , n}. By defining [Rn]η =
{a ∈ Rn | ai = kiη, ki ∈ Z, i = 1, . . . , n}, the set

⋃
p∈[Rn]η Bλ(p) is

a countable covering of R
n for any η ∈ R

+ and λ ≥ η/2.
For a box B and η ≤ span(B), define the η-approximation
[B]η = [Rn]η ∩ B. Note that [B]η , ∅ for any η ≤ span(B)
and that for any η ∈ R

+ with η ≤ span(B) and λ ≥ η, we
have B ⊆

⋃
p∈[B]η

Bλ(p). We extend the notions of span and
of approximation to finite unions of boxes as follows. Let
A =

⋃M
j=1 A j, where each A j is a box. Define span(A) =

min {span(A j) | j = 1, . . . , M}, and for any η ≤ span(A), define

[A]η =
⋃M

j=1[A j]η.

Given a set X and a metric d : X × X → R
+
0
, we

denote by dh the Hausdorff pseudometric induced
by d on 2X; we recall that for any X1, X2 ⊆ X,

dh (X1, X2) := max
{
~dh (X1, X2) , ~dh (X2, X1)

}
, where

~dh (X1, X2) = supx1∈X1
infx2∈X2

d(x1, x2) is the directed Haus-
dorff pseudometric. Given a measurable function f : R+

0
→ R

n,
the (essential) supremum (sup norm) of f is denoted by ‖ f ‖∞;
we recall that ‖ f ‖∞ = (ess) sup {‖ f (t)‖, t ≥ 0}. A continuous
function γ : R+

0
→ R

+
0
, is said to belong to class K if it is

strictly increasing and γ(0) = 0; γ is said to belong to class
K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. A continuous function
β : R+

0
× R+

0
→ R

+
0

is said to belong to class KL if, for each
fixed s, the map β(r, s) belongs to class K with respect to r

and, for each fixed nonzero r, the map β(r, s) is decreasing with
respect to s and β(r, s) → 0 as s→ ∞. We identify a relation
R ⊆ A × B with the map R : A→ 2B defined by b ∈ R(a) iff
(a, b) ∈ R. Given a relation R ⊆ A × B, R−1 denotes the inverse
relation defined by R−1 = {(b, a) ∈ B × A : (a, b) ∈ R}.

2.2. Randomly switched (a.k.a. switching) stochastic systems

Let (Ω,F ,P) be a probability space endowed with a filtration
F = (Ft)t≥0 satisfying the usual conditions of completeness and
right-continuity [22, p. 48]. Let {Wt}t≥0 be a q̂-dimensional F-
adapted Brownian motion [23].

Definition 2.1. A switching stochastic system is a tuple Σ =

(Rn,U,U,P,P, F,G), where

• R
n is the continuous state space;

• U ⊆ R
m is a compact input set;

• U is a subset of the set of all measurable functions of time,

from R
+
0

to U;

• P = {1, . . . ,m} is a finite set of modes;

• P is a subset of the set of all piecewise constant càdlàg

(i.e. right-continuous and with left limits) functions of time

from R
+
0

to P, and characterized by a finite number of dis-

continuities on every bounded interval in R
+
0

(no Zeno be-

havior);

• F = { f1, . . . , fm} is such that, for any p ∈ P, fp : Rn ×U→

R
n satisfies the following Lipschitz assumption: there exist

constants L
p
x , L

p
u ∈ R

+ such that ‖ fp(x, u) − fp(x′, u′)‖ ≤

L
p
x‖x− x′‖+ L

p
u‖u−u′‖, for all x, x′ ∈ Rn and all u, u′ ∈ U;
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• G = {g1, . . . , gm} is such that, for any p ∈ P, gp : Rn →

R
n×q̂ satisfies the following Lipschitz assumption: there

exists a constant Zp ∈ R
+ such that, for all x, x′ ∈ R

n:

‖gp(x) − gp(x′)‖ ≤ Zp‖x − x′‖.

A continuous-time stochastic process ξ : Ω × R+
0
→ R

n is
said to be a solution process of Σ if there exist π ∈ P and υ ∈ U
satisfying

d ξ = fπ(ξ, υ) d t + gπ(ξ) d Wt, (2.1)

P-almost surely1 (P-a.s.) at each time t ∈ R
+
0

where π is con-
tinuous. For any given p ∈ P, we denote by Σp the subsystem
of Σ defined by the stochastic differential equation (SDE)

d ξ = fp(ξ, υ) d t + gp(ξ) d Wt, (2.2)

for any υ ∈ U, where fp is known as the drift and gp as the
diffusion. A solution process of Σp exists and is uniquely deter-
mined owing to the assumptions on fp and on gp [23, Theorem
5.2.1, p. 68].

In this paper, we assume that π randomly dictates in which
mode the solution process ξ is found, at any time t ∈ R+

0
. Notice

that whenever a mode is changed (discontinuity in π), the value
of the process ξ is not reset on R

n, hence switching stochastic
systems are a strict subclass of general stochastic hybrid sys-
tems, where now the solution ξ is a continuous function of time.

We further write ξπaυ (t) to denote the value of the solution
process at time t ∈ R

+
0

under the control input υ ∈ U and the
switching signal π, starting from the initial condition ξπaυ (0) = a

P-a.s., in which a is a random variable that is measurable in F0.
In general the switching stochastic system Σ may start from a
random initial condition. Note that a solution process of Σp

is also a solution process of Σ corresponding to the constant
switching signal π(t) = p, for all t ∈ R

+
0
. We also use ξ

p
aυ (t)

to denote the value of the solution process of Σp at time t ∈

R
+
0

under the control input υ ∈ U from the initial condition

ξ
p
aυ (0) = a P-a.s..

3. A Notion of Incremental Stability

The main result presented in this paper requires a stability
property on Σ, inspired by the one introduced in [24], as defined
next.

Definition 3.1. A switching stochastic system Σ is incremen-

tally globally asymptotically stable in the qth moment (δ-GAS-

Mq), where q ≥ 1, if there exists a KL function β such that for

any t ∈ R+
0
, any R

n-valued random variables a and a′ that are

measurable in F0, any υ ∈ U, and any π ∈ P, the following

condition is satisfied:

E

[∥∥∥ξπaυ (t) − ξπa′υ (t)
∥∥∥q

]
≤ β

(
E

[∥∥∥a − a′
∥∥∥q

]
, t
)
. (3.1)

Note that if fp (0n, 0m) = 0n and gp(0n) = 0n×q̂ for any p ∈ P,
then δ-GAS-Mq implies global asymptotic stability in the qth
moment (GAS-Mq) [25].

One can describe δ-GAS-Mq in terms of the existence of in-

cremental Lyapunov functions, as defined next.

1An event E in the probability space (Ω,F ,P) happens P-almost surely if
P[E] = 1.

Definition 3.2. Consider a stochastic subsystem Σp and a con-

tinuous function Vp : Rn × Rn → R
+
0

that is twice continuously

differentiable on {Rn × Rn}\∆. Function Vp is called a δ-GAS-

Mq Lyapunov function for Σp, where q ≥ 1, if there exist K∞
functions α

p
, αp, and a constant κp ∈ R

+, such that

(i) α
p

(resp. αp) is a convex (resp. concave) function;

(ii) for any x, x′ ∈ Rn, α
p

(‖x − x′‖q) ≤ Vp(x, x′) ≤ αp (‖x − x′‖q);

(iii) for any x, x′ ∈ Rn, such that x , x′, and any u ∈ U,

LuVp(x, x′) :=
[
∂xVp ∂x′Vp

] [ fp(x, u)

fp(x′, u)

]
+

1

2
Tr

([
gp(x)

gp(x′)

] [
gT

p (x) gT
p (x′)

] [∂x,xVp ∂x,x′Vp

∂x′ ,xVp ∂x′ ,x′Vp

])
≤ −κpVp(x, x′).

The operator Lu is the infinitesimal generator associated to the
SDE (2.2) [23, Section 7.3]. The symbols ∂x and ∂x,x′ denote
first- and second-order partial derivatives with respect to x and
x′, respectively.

It is known that a switching system whose subsystems are
all stable, may exhibit unstable behaviors under some switch-
ing signals [26]: that is, the overall system may not be stable
in general. The same may happen for a switching stochastic
system [25]. As a result, the δ-GAS-Mq property of switching
stochastic systems can be established either by using a common
δ-GAS-Mq Lyapunov function, or alternatively via multiple δ-
GAS-Mq Lyapunov functions that are mode dependent and un-
der additional conditions on the sojourn time (also known as the
staying or holding time) at a given mode.

Let us introduce the K∞ functions α, α, and the con-
stant κ, which are used in the rest of the paper, as fol-

lows: α = min
{
α

1
, . . . , α

m

}
, α = max {α1, . . . , αm}, and κ =

min {κ1, . . . , κm}. Note that in the case of a common Lyapunov
function, we have that α = α

1
= · · · = α

m
and α = α1 = · · · =

αm. The following result provides a sufficient condition for a
switching stochastic system Σ to be δ-GAS-Mq based on the
existence of a common δ-GAS-Mq Lyapunov function.

Theorem 3.3. Consider a switching stochastic system Σ. If

there exists a common δ-GAS-Mq Lyapunov function V for all

the subsystems {Σ1, . . . ,Σm}, then Σ is δ-GAS-Mq.

Proof. The proof is similar to the proof of Theorem 3.3 in [11]

and is thus omitted. ✷

The existence of a common Lyapunov function in Theorem
3.3 is a very conservative assumption and it may fail to hold in
general. One can alternatively describe the δ-GAS-Mq property
by resorting to multiple δ-GAS-Mq Lyapunov functions under a
class of switching signals that is fairly general and quite natural
to examine [25].

Assumption 3.4. Consider the stochastic process π̂ : Ω ×
R
+
0
→ P on the probability space (Ω,F ,P) such that, for every

fixed ω ∈ Ω, π(·) = π̂(ω, ·) : R
+
0
→ P belongs to P, and as-

sume that π̂ is completely known at time t = 0. We assume that
there exists some λ ∈ R

+
0

such that for any π̂, the probability
of sojourning (staying in a mode) within an infinitesimal time
interval h is lower-bounded as follows, for any p ∈ P:

P
[̂
π(t + h) = p | π̂(t) = p

]
≥ 1 − λh. (3.2)
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Remark 3.5. If the switching process π̂ is the state of a

continuous-time Markov chain with a given generator matrix

Q =
{
qi j

}
∈ RP×P, one can obtain the lower bound on the prob-

ability in (3.2) with λ = maxi∈P

∑
i, j qi j.

For a stochastic switching process π̂, we denote the number
of switches (the discontinuity points of π̂) on the interval ]0, t]
by Nπ̂(t), which is measurable inFt. We assume Nπ̂(0) = 0. Due
to Assumption 3.4 on π̂, the probability distribution of Nπ̂(t)
satisfies [25]:

P [Nπ̂(t) = k] ≤
e−λt (λt)k

k!
. (3.3)

From (3.3), one can readily verify that the probability mass
function of Nπ̂(t) corresponds to that of a Poisson process
and that Nπ̂(t) takes with probability one finite values for any
bounded time t. We assume that {Wt}t≥0, {Nπ̂}t≥0, and the ini-
tial condition of Σ, which is measurable in F0, are mutually
independent. The next result provides sufficient conditions for
a switching stochastic system Σ to be δ-GAS-Mq based on the
existence of multiple δ-GAS-Mq Lyapunov functions and on
Assumption 3.4.

Theorem 3.6. Consider a switching stochastic system Σ. Sup-

pose that Assumption 3.4 holds and that for any p ∈ P, there

exists a δ-GAS-Mq Lyapunov function Vp for Σp, and in addition

that there exits a constant µ ≥ 1 such that

(i) for any x, x′ ∈ R
n, and any p, p′ ∈ P,Vp(x, x′) ≤

µVp′ (x, x′);

(ii) (µ − 1)λ − κ < 0.

Then Σ is δ-GAS-Mq.

The proof of Theorem 3.6 is provided in the Appendix.
For stochastic subsystems Σp, with fp and gp in the form of

polynomials for any p ∈ P, one can resort to available software
tools, such as SOSTOOLS [27, Subsection 4.2], to search for
appropriate δ-GAS-Mq functions Vp. Although the satisfaction
of conditions (i) and (ii) of Definition 3.2 globally on R

n may
require α

p
and αp to be piecewise polynomial functions, as a

concave function is supposed to dominate a convex one, those
conditions can be still satisfied by α

p
and αp of the form of

polynomials as long as one is interested in dynamics of Σp on
a compact subset of Rn, which is always the case in practice.
We refer the interested reader to the results in [11], providing
special instances where these functions can be easily computed.
As an example, for linear stochastic subsystems (i.e. for subsys-
tems with linear drift and diffusion terms), one can search for
appropriate δ-GAS-Mq Lyapunov functions by easily solving a
linear matrix inequality (LMI).

In order to show the main result of the paper, we need the
following technical lemma, which provides an upper bound
on the distance (in the qth moment metric) between the solu-
tion processes of subsystems Σp and the corresponding non-

probabilistic subsystems Σp obtained by disregarding the diffu-
sion term (gp). From now on, we use the notation ζ

p
xυ to de-

note the solution of the ordinary differential equation (ODE)

ζ̇
p
xυ = fp

(
ζ

p
xυ, υ

)
starting from the initial condition x and under

the input curve υ.

Lemma 3.7. Consider a stochastic subsystem Σp such that
gp (0n) = 0n×q̂. Suppose there exists a δ-GAS-Mq Lyapunov
function Vp for Σp such that its Hessian is a positive semidef-

inite matrix in R
2n×2n. Considering the dynamics of Σp exclu-

sively on a compact set D ⊂ R
n and given any υ ∈ U, we have

E

[∥∥∥ξp
xυ(t) − ζ

p
xυ(t)

∥∥∥q
]
≤ hp(gp, t), (3.4)

where hp(gp, t) =

α−1
p

(
1

2
sup

x,x′∈D

{∥∥∥∥∥
√
∂x,xVp(x, x′)

∥∥∥∥∥
2
}

n min{n, q̂}Z2
pe−κpt · sup

x∈D

‖x‖2 t

)
,

and Zp is the Lipschitz constant introduced in Definition 2.1.

One can readily verify that the nonnegative function hp tends
to zero as t → 0, t→ +∞, or as Zp → 0.

Proof. The proof is similar to the proof of Lemma 3.7 in [11]

and is thus omitted. ✷

The interested readers are referred to [11] providing results in

line with that of Lemma 3.7 for (linear) stochastic subsystems

Σp admitting a specific type of δ-GAS-Mq Lyapunov functions.

For later use, we introduce function h(G, t) =

max {h1(g1, t), . . . , hm(gm, t)} for all t ∈ R+
0
.

4. Systems and Approximate Equivalence Relations

We employ the notion of systems, introduced in [28], to pro-
vide (in Sec. 5) an alternative description of switching stochas-
tic models that can be directly related to their corresponding
symbolic models.

Definition 4.1. A system S is a tuple S =

(X, X0,U, ✲ , Y,H), where

• X is a set of states (possibly infinite);

• X0 ⊆ X is a set of initial states (possibly infinite);

• U = A × B is a set of inputs, where

– A is the set of control inputs (possibly infinite);

– B is the set of adversarial inputs (possibly infinite);

• ✲ ⊆ X × U × X is a transition relation;

• Y is a set of outputs;

• H : X → Y is an output map.

We write x
a,b
✲ x′ if (x, (a, b), x′) ∈ ✲ . If x

a,b
✲ x′,

we call state x′ a successor of state x. From now on, we assume
that for any x ∈ X, there is some successor of x for some (a, b) ∈
U – let us remark that this is always the case for the systems
considered later in this paper. A system S is said to be

• metric, if the output set Y is equipped with a metric d :
Y × Y → R

+
0
;

• countable, if X and U are countable sets;

• finite (or symbolic), if X and U are finite sets.
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For a system S = (X, X0,U, ✲ , Y,H) and given any ini-
tial state x0 ∈ X0, a finite state run started from x0 is a finite
sequence of transitions:

x0
a0,b0
✲ x1

a1,b1
✲ · · · xn−1

an−1,bn−1
✲ xn, (4.1)

such that xi
ai ,bi
✲ xi+1 for all i ∈ {0, . . . , n−1}. A finite state run

can be trivially extended to an infinite state run [28]. A finite
output run is a sequence {y0, y1, . . . , yn} such that there exists a
finite state run of the form (4.1) with yi = H(xi), for i = 0, . . . , n.
A finite output run can also be directly extended to an infinite
output run [28].

We recall the notion of alternating approximate
(bi)simulation relation, introduced in [15], which is use-
ful to relate properties of switching stochastic systems to
those of their symbolic models. Such a relation captures the
different role of control and adversarial inputs in the system,
by treating the former as cooperative and the latter as non-
cooperative. We refer the interested reader to [15, Example
3.4], discussing the usefulness of the notion of alternating
approximate (bi)simulation relation over that of approximate
(bi)simulation relation [14], which instead treats adversarial
inputs as cooperative (rather than non-cooperative).

Definition 4.2. Let S 1 = (X1, X10, A1 × B1, 1
✲ , Y1,H1) and

S 2 = (X2, X20, A2 × B2, 2
✲ , Y2,H2) be metric systems with

the same output sets Y1 = Y2 and metric d. For ε ∈ R
+
0
, a re-

lation R ⊆ X1 × X2 is said to be an alternating ε-approximate

simulation relation from S 1 to S 2 if the following three condi-

tions are satisfied:

(i) for every x10 ∈ X10, there exists x20 ∈ X20: (x10, x20) ∈ R;

(ii) for every (x1, x2) ∈ R, d(H1(x1),H2(x2)) ≤ ε;

(iii) for every (x1, x2) ∈ R, ∀a1 ∈ A1 ∃a2 ∈ A2 ∀b2 ∈ B2

∃b1 ∈ B1 such that x1
a1,b1

1
✲ x′

1
and x2

a2,b2

2
✲ x′

2
with

(x′
1
, x′

2
) ∈ R.

A relation R ⊆ X1 × X2 is said to be an alternating ε-

approximate bisimulation relation between S 1 and S 2 if R is

an alternating ε-approximate simulation relation from S 1 to

S 2 and R−1 is an alternating ε-approximate simulation relation

from S 2 to S 1.

System S 1 is alternatingly ε-approximately simulated by S 2,

or S 2 alternatingly ε-approximately simulates S 1, denoted by

S 1 �
ε
AS

S 2, if there exists an alternating ε-approximate sim-

ulation relation from S 1 to S 2. System S 1 is alternatingly ε-

approximatly bisimilar to S 2, denoted by S 1 �
ε
AS

S 2, if there

exists an alternating ε-approximate bisimulation relation be-

tween S 1 and S 2.

5. Symbolic Models for Switching Stochastic Systems

This section contains the main contribution of the article. We
show that for any δ-GAS-Mq switching stochastic system Σ and
for any precision level ε ∈ R

+, there exists a finite abstrac-
tion that is alternatingly ε-approximately bisimilar to Σ as long
as we are interested in its dynamics within a bounded set. In

order to do so, we use systems as abstract representations of
switching stochastic systems. More precisely, given a switch-
ing stochastic system Σ, we define an associated metric system
S (Σ) = (X, X0,U, ✲ , Y,H), where:

• X is the set of all Rn-valued random variables defined on
the probability space (Ω,F ,P);

• X0 is the set of all Rn-valued random variables that are
measurable over the trivial sigma-algebra F0, i.e. the sys-
tem starts from a non-probabilistic initial condition;

• U = A × B, where A = U and B = P;

• x
υ,π
✲ x′ if x and x′ are measurable in Ft and Ft+τ, re-

spectively, for some t ∈ R+
0

and τ ∈ R+, and there exists a
solution process ξ : Ω × R+

0
→ R

n of Σ satisfying ξ(t) = x

and ξπxυ(τ) = x′ P-a.s.;

• Y is the set of all Rn-valued random variables defined on
the probability space (Ω,F ,P);

• H = 1X .

We assume that the output set Y is equipped with the metric

d(y, y′) =
(
E

[
‖y − y′‖q

]) 1
q , for any y, y′ ∈ Y and some q ≥

1. Let us remark that the set of states and inputs of S (Σ) are
uncountable, hence S (Σ) is an uncountable system. Note that
S (Σ) captures all the information contained in Σ. Notice that
A and B are the sets of cooperative and non-cooperative input
signals, respectively.

In subsequent developments, we will work with a sub-system
of S (Σ) obtained by selecting those transitions of S (Σ) describ-
ing trajectories of duration τ, where τ is a given fixed sam-
pling time. This can be seen as a time discretization or a
sampled-data version of S (Σ). This restriction is practically
motivated by the fact that the original model Σ has to be con-
trolled by a digital platform with a given clock period τ. More
precisely, given a switching stochastic system Σ and a sam-
pling time τ ∈ R

+, we define the associated system S τ(Σ) =
(Xτ, Xτ0,Uτ, τ

✲ , Yτ,Hτ), where Xτ = X, Xτ0 = X0, Yτ = Y,

Hτ = H, and

• Uτ = Aτ × Bτ, where

– Aτ = {υ ∈ U | the domain of υ is [0, τ[};

– Bτ = {π ∈ P | the domain of π is [0, τ[};

• xτ
υτ,πτ

τ
✲ x′τ if xτ and x′τ are measurable, respectively, in

Fkτ and F(k+1)τ for some k ∈ N0, and there exists a solution
process ξ : Ω × R

+
0
→ R

n of Σ satisfying ξ(kτ) = xτ and
ξπτxτυτ(τ) = x′τ P-a.s..

Note that a finite state run x0
υ0,π0

τ
✲ x1

υ1,π1

τ
✲ · · ·

υN−1,πN−1

τ
✲ xN

of S τ(Σ), where υi−1 ∈ Aτ, πi−1 ∈ Bτ, and xi = ξπi−1
xi−1υi−1

(τ)
P-a.s. for i = 1, . . . ,N, captures the trajectory of the switch-
ing stochastic system Σ at times t = 0, τ, . . . ,Nτ. This trajec-
tory starts from the non-probabilistic initial condition x0 and
results from the control input υ and the adversarial input (or
switching signal) π, obtained by the concatenation of the con-
trol and adversarial inputs υi−1 and πi−1, respectively,

(
that is,
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υ ((i − 1)τ + s) = υi−1(s) and π ((i − 1)τ + s) = πi−1(s) for any
s ∈ [0, τ[

)
, for i = 1, . . . ,N.

Given a switching stochastic system Σ =

(Rn,U,U,P,P, F,G), we define for subsequent analysis

the corresponding switching system Σ = (Rn,U,U,P,P, F)
obtained by discarding the diffusion terms G, defined by the
ODE: ζ̇ = fπ(ζ, υ), for any υ ∈ U and any π ∈ P. Note that due

to the assumptions on fp, for any p ∈ P, each subsystem Σp

of Σ is forward complete [29], i.e. every trajectory is defined
on the interval [0,∞[. Moreover, due to the assumptions on
the switching signals π ∈ P, one can conclude that the overall

non-probabilistic switching system Σ is forward complete2

[30]. For Σ, we write ζπxυ (t) to denote the point reached at time
t ∈ R+

0
under the control input υ ∈ U and the switching signal

π from the initial condition ζπxυ (0) = x.
In order to construct a symbolic model for any δ-GAS-Mq

switching stochastic system Σ, we will extract a finite set of
states Xq and inputs Uq from Xτ and Uτ, respectively, in such
a way that the resulting symbolic model is finite if we are in-
terested in the dynamics of Σ in a bounded set. Note that the
approximation of the set of inputs Uτ of S τ(Σ) requires the no-
tion of reachable set, as defined next. Given a switching non-

probabilistic system Σ, any τ ∈ R
+, and x ∈ R

n, the reachable

set of Σ with initial condition x ∈ R
n after τ seconds is the

set R(τ, x) of endpoints ζπxυ(τ) for any υ ∈ Aτ and π ∈ Bτ or,
equivalently,

R(τ, x) :=
{
y ∈ Rn | y = ζπxυ(τ), υ ∈ Aτ, π ∈ Bτ

}
. (5.1)

Moreover, the reachable set of Σwith initial condition x ∈ Rn

and control input υ ∈ Aτ after τ seconds is the set R(τ, x, υ) of
endpoints ζπxυ(τ) for any π ∈ Bτ, i.e.,

R(τ, x, υ) :=
{
y ∈ Rn | y = ζπxυ(τ), π ∈ Bτ

}
. (5.2)

The reachable sets in (5.1) and (5.2) are well defined because

Σ is forward complete. Given any desired precision µ ∈ R+ and
any τ ∈ R+, define the following sets:

Aµ(τ, xq) :=

{
P ∈ 2[Rn]µ | ∃υ ∈ Aτ s.t. dh

(
P,R(τ, xq, υ)

)
≤ µ

}
, (5.3)

Bµ(τ, xq, υ) :=

{
x′q ∈ [Rn]µ | ∃π ∈ Bτ s.t.

∥∥∥∥x′q − ζ
π
xqυ

(τ)
∥∥∥∥ ≤ µ

}
, (5.4)

where dh is the Hausdorff pseudometric induced by the infin-
ity norm on R

n. Note that for any P ∈ Aµ(τ, xq) and any
x′q ∈ Bµ(τ, xq, υ), there may exist a (possibly uncountable) set

of control inputs υ ∈ Aτ and a (possibly uncountable) set of

switching signals π ∈ Bτ such that dh

(
P,R(τ, xq, υ)

)
≤ µ and∥∥∥∥x′q − ζ

π
xqυ

(τ)
∥∥∥∥ ≤ µ, respectively. One can construct countable

(possibly finite) sets of control inputs and switching signals by
collecting representative signals, as explained in the following.
Let us define the functions

ψ
τ,xq

µ : Aµ(τ, xq)→ Aτ, ϕ
τ,xq ,υ
µ : Bµ(τ, xq, υ)→ Bτ, (5.5)

where

2Note that if one allows for Zeno behavior in Σ, it may cause a finite escape
time even if all the subsystems are forward complete.

• ψ
τ,xq

µ associates to any P ∈ Aµ(τ, xq) one control input υ =

ψ
τ,xq

µ (P) ∈ Aτ so that dh

(
P,R(τ, xq, υ)

)
≤ µ;

• ϕ
τ,xq,υ
µ associates to any x′q ∈ Bµ(τ, xq, υ) one switching

signal π = ϕ
τ,xq,υ
µ (x′q) ∈ Bτ so that

∥∥∥∥x′q − ζ
π
xqυ

(τ)
∥∥∥∥ ≤ µ.

Note that functions ψ
τ,xq

µ and ϕ
τ,xq,υ
µ are not uniquely defined.

Let us now introduce sets Aµ(xq) and Bµ(xq, υ) as follows:

Aµ(xq) := ψ
τ,xq

µ

(
Aµ(τ, xq)

)
, (5.6)

Bµ(xq, υ) := ϕ
τ,xq ,υ
µ

(
Bµ(τ, xq, υ)

)
. (5.7)

We remark again that, since Σ is forward complete, the sets
Aµ(τ, xq) and Bµ(τ, xq, υ) in (5.3) and (5.4) are not empty, hence
Aµ(xq) and Bµ(xq, υ) in (5.6) and (5.7) are not empty.

We now have all the ingredients to introduce a symbolic
model for S τ(Σ). Consider a switching stochastic system Σ,
and a triple q = (τ, η, µ) of quantization parameters, where τ
is the sampling time, η is the state space quantization, and µ
is an additional design parameter. Given Σ and q, consider the
following system: S q(Σ) = (Xq, Xq0,Uq, q

✲ , Yq,Hq), where

Xq = [Rn]η, Xq0 = [Rn]η, and

• Uq = Aq × Bq, where

Aq = ∪xq∈Xq Aµ(xq), Bq = ∪xq∈Xq ∪υ∈Aµ(xq) Bµ(xq, υ),

and the sets Aµ(xq) and Bµ(xq, υ) are defined in (5.6) and
(5.7), respectively;

• xq

υq,πq

q
✲ x′q if υq ∈ Aµ(xq), πq ∈ Bµ(xq, υq), and there

exists x′q ∈ Xq such that
∥∥∥ζπq

xqυq
(τ) − x′q

∥∥∥ ≤ η;

• Yq = Yτ (i.e. the set of all Rn-valued random variables
defined on the probability space (Ω,F ,P));

• Hq = ı : Xq →֒ Yq.

Note that in the definition of Hq, the inclusion map ı is meant,
with slight abuse of notation, as a mapping from a grid point to
a random variable with a Dirac probability distribution centered
at that grid point.

The transition relation of S q(Σ) is well defined in the sense
that for every xq ∈ [Rn]η, every υq ∈ Aµ(xq), and every
πq ∈ Bµ(xq, υq), there always exists x′q ∈ [Rn]η such that

xq

υq,πq

q
✲ x′q. This can be seen since by definition of [Rn]η,

for any x̂ ∈ R
n there always exists a state x̂′ ∈ [Rn]η such that

‖x̂ − x̂′‖ ≤ η. Hence, for ζ
πq

xqυq
(τ) there always exists a state

x′q ∈ [Rn]η satisfying
∥∥∥ζπq

xqυq
(τ) − x′q

∥∥∥ ≤ η.
Before showing the main result of the paper, we need the

following technical result.

Proposition 5.1. Consider a switching non-probabilistic sys-

tem Σ = (Rn,U,U,P,P, F). For any x ∈ Rn, the reachable set

R(τ, x), defined in (5.1), is bounded.

Proof. One can characterize a switching non-probabilistic sys-

tem Σ = (Rn,U,U,P,P, F) with a non-probabilistic control

system Σ̃ = (Rn,U × P,U ×P, f ), where
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• R
n is the state space;

• U × P is the input set;

• U × P is the set of input curves;

• f : R
n × U × P → R

n is a continuous map, defined as

f (x, u, p) :=
∑m

i=1 fi(x, u)δip, where δip :=

{
1 i = p;

0 i , p.

Note that the function f satisfies the Lipschitz assumption:

‖ f (x, u, p) − f (x′, u, p)‖ ≤ Lx‖x − x′‖, for all x, x′ ∈ Rn, u ∈ U,

and p ∈ P, where Lx = max
{
L1

x, . . . , L
m
x

}
. It can be readily

verified that any trajectory ζπxυ of Σ is also a trajectory of Σ̃, sat-

isfying ζ̇πxυ = f
(
ζπxυ, υ, π

)
, and vice versa. Since Σ is forward

complete, Σ̃ is a forward complete control system. The rest of

the proof follows from the proof of Proposition 5.1 in [31]. ✷

Note that Xq is a countable set. Since R(τ, x), defined in
(5.1), is bounded (cf. Proposition 5.1) and using Proposition
4.4 in [15], one can readily verify that Uq is also a countable
set. Therefore, S q(Σ) is countable. Moreover, if we are inter-
ested in the dynamics of Σ in a bounded set, which is often the
case in many practical situations, S q(Σ) is finite.

We can now present the main result of the paper, which
shows that any δ-GAS-Mq switching stochastic system Σ ad-
mits an alternatingly approximatly bisimilar symbolic model.

Theorem 5.2. Consider a δ-GAS-Mq switching stochastic sys-
tem Σ, satisfying the result of Lemma 3.7. For any ε ∈ R+, and
any triple q = (τ, η, µ) of quantization parameters satisfying

(β (εq, τ))
1
q + (h(G, τ))

1
q + 2µ + η < ε, (5.8)

we have S q(Σ) �ε
AS

S τ(Σ).

It can be readily seen that when we are interested in the dy-
namics of Σ in a compact D ⊂ R

n of the form of finite union
of boxes and for a given precision ε, there always exists a suf-
ficiently large value of τ and small values of η and µ such that
η ≤ span(D) and the condition in (5.8) are satisfied.

Proof. The proof is inspired by that in [15, Theorem 4.6]. We
start by proving S τ(Σ) �ε

AS
S q(Σ). Consider the relation R ⊆

Xτ × Xq defined by
(
xτ, xq

)
∈ R if and only if

(
E

[∥∥∥Hτ(xτ) − Hq(xq)
∥∥∥q

]) 1
q
=

(
E

[∥∥∥xτ − xq

∥∥∥q
]) 1

q
≤ ε.

Since Xτ0 ⊆
⋃

p∈[Rn]η
Bη(p), for every xτ0 ∈ Xτ0 there always

exists xq0 ∈ Xq0 such that
∥∥∥xτ0 − xq0

∥∥∥ ≤ η. Then,

(
E

[∥∥∥xτ0 − xq0

∥∥∥q]) 1
q
=

(∥∥∥xτ0 − xq0

∥∥∥q) 1
q
≤ η ≤ ε,

because of (5.8). Hence,
(
xτ0, xq0

)
∈ R and condition (i) in Defi-

nition 4.2 is satisfied. Now consider any
(
xτ, xq

)
∈ R. Condition

(ii) in Definition 4.2 is satisfied by the definition of R. Let us

now show that condition (iii) in Definition 4.2 holds. Since Σ is
forward complete, the reachable sets defined in (5.1) and (5.2)
are well defined, for any τ ∈ R+, x ∈ Rn, and υ ∈ Aτ. Consider

any υτ ∈ Aτ. Given µ ∈ R+, by Lemma 4.2 in [15], there exists
P ⊆ [Rn]µ such that

dh

(
P,R(τ, xq, υτ)

)
≤ µ. (5.9)

By inequality (5.9), one concludes P ∈ Aµ

(
τ, xq

)
and then let

υq be given by υq = ψ
τ,xq

µ (P) ∈ Aµ(xq). By (5.9), the definition

of ψ
τ,xq

µ , and the triangle inequality property of dh, we have:

dh

(
R(τ, xq, υτ),R(τ, xq, υq)

)
(5.10)

≤ dh

(
P,R(τ, xq, υτ)

)
+ dh

(
P,R(τ, xq, υq)

)
≤ 2µ.

Consider now any switching signal πq ∈ Bµ(xq, υq) ⊂ Bτ and

set z = ζ
πq

xqυq
(τ) ∈ R(τ, xq, υq). By inequality (5.10) and the

definition of dh, there exists z1 ∈ R(τ, xq, υτ) such that

‖z1 − z‖ ≤ 2µ. (5.11)

The vector3 z1 can be either in R(τ, xq, υτ) or in

R(τ, xq, υτ)\R(τ, xq, υτ); in both cases, for any σ ∈ R
+, there

exists z2 ∈ R(τ, xq, υτ) such that

‖z1 − z2‖ ≤ σ. (5.12)

Particularly, if z1 ∈ R(τ, xq, υτ), one can choose z1 = z2.

Choose πτ ∈ Bτ such that z2 = ζπτxqυτ (τ). Notice that since

z2 ∈ R(τ, xq, υτ), such πτ ∈ Bτ does exist.

Consider the transition xτ
υτ,πτ

τ
✲ x′τ = ξ

πτ
xτυτ(τ) P-a.s. in

S τ(Σ). It follows from the δ-GAS-Mq assumption on Σ that:

E

[∥∥∥∥x′τ − ξ
πτ
xqυτ

(τ)
∥∥∥∥

q
]
≤ β

(
E

[∥∥∥xτ − xq

∥∥∥q]
, τ

)
≤ β (εq, τ) . (5.13)

Since Rn ⊆
⋃

p∈[Rn]η
Bη(p), there exists x′q ∈ Xq such that

∥∥∥z − x′q

∥∥∥ ≤ η, (5.14)

which, by the definition of S q(Σ), implies the existence of

xq

υq,πq

q
✲ x′q in S q(Σ). Using Lemma 3.7, (5.11), (5.12), (5.13),

(5.14), and triangle inequality, we obtain

(
E

[∥∥∥x′τ − x′q

∥∥∥q]) 1
q

=

(
E

[∥∥∥∥x′τ − ξ
πτ
xqυτ

(τ) + ξπτxqυτ
(τ) − z2 + z2 − z1 + z1 − z + z − x′q

∥∥∥∥
q
]) 1

q

≤

(
E

[∥∥∥∥x′τ − ξ
πτ
xqυτ

(τ)
∥∥∥∥

q
]) 1

q

+

(
E

[∥∥∥∥ξπτxqυτ
(τ) − z2

∥∥∥∥
q
]) 1

q

+ ‖z2 − z1‖ + ‖z1 − z‖ +
∥∥∥z − x′q

∥∥∥

≤ (β (εq, τ))
1
q + (h(G, τ))

1
q + σ + 2µ + η.

By inequality (5.8), there exists a sufficiently small value of

σ ∈ R
+ such that (β (εq, τ))

1
q + (h(G, τ))

1
q + σ + 2µ + η ≤ ε.

Therefore, we conclude that
(
x′τ, x′q

)
∈ R and that condition (iii)

in Definition 4.2 holds.

In a similar way, we can prove that S q(Σ) �ε
AS

S τ(Σ) by

showing that R−1 is an ε-approximate simulation relation from

S q(Σ) to S τ(Σ) which completes the proof. ✷

3Notice that the reachable setR(τ, xq, υτ) is not closed, in general, and hence

inequality (5.10) does not guarantee the existence of z1 ∈ R(τ, xq, υτ), satisfying

inequality (5.11). However, by the definition of dh, the vector z1 is guaranteed

to exist in the topological closure of R(τ, xq , υτ).
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Remark 5.3. Let us remark that in order to show the result

in Theorem 5.2, one does not require any probabilistic struc-

ture on the switching signals π ∈ P, as long as the switch-

ing stochastic system Σ admits a common δ-GAS-Mq Lyapunov

function, or as it satisfies property (3.1) with someKL function

β. Alternatively, Assumption 3.4 allows us to compute the KL

function β satisfying (3.1), by resorting to multiple δ-GAS-Mq

Lyapunov functions.

Remark 5.4. Further notice that, in order to construct the pro-

posed finite abstraction, one requires to compute the reachable

sets in (5.1) and (5.2), leveraging a well developed theory for

this goal. For instance, one may leverage flow-based techniques

[32] or alternatively Monte-Carlo simulations [33].

Let us finally remark that the proposed finite abstraction is

computed by discretizing the state-space, which suffers severely

from the curse of dimensionality related to the discretization

of the continuous space. One can leverage the results in [12]

to provide finite abstractions for switching stochastic systems

without state-space discretization.

6. Conclusions

In this paper we have shown the existence of symbolic mod-
els that are alternatingly approximately bisimilar to δ-GAS-Mq

switching stochastic systems, for any q ≥ 1, when their dy-
namics lie in a bounded set (this is always the case in practice).
Moreover, we have provided a description of the δ-GAS-Mq

property using a common δ-GAS-Mq Lyapunov function or, al-
ternatively, using multiple δ-GAS-Mq Lyapunov functions un-
der some fairly general assumption on the switching signals.

In future work we plan to focus on constructive approaches
to obtain the symbolic models of which we have discussed the
existence in this work. Note that the construction of the sym-
bolic models in this paper relies on the computation of sets of
reachable states in (5.1) and (5.2), which is a tolling task in
general. The authors are currently investigating several differ-
ent techniques to mitigate this limitation, allowing for the use of
the proposed technique on practical models for cyber-physical
systems operating in uncertain or noisy environments.
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7. Appendix

Proof (of Theorem 3.6). The proof is inspired by that of Theo-
rem 3.1 in [34] and is a consequence of the application of Gron-
wall’s inequality and of Ito’s lemma [23, p. 80 and 123]. Let a
and a′ be any R

n-valued random variables that are measurable
in F0, t0 = 0, and υ ∈ U be any control input. Let the sequence
{t1, t2, . . . , ts} denote the time instances when a switching be-
tween modes occurs before arbitrary time t ∈ R

+
0
. We denote

by ts ≤ t the time instance of the last mode switching and by
ps the active mode index for the time interval ts ≤ t < ts+1. Let
Ht ⊂ Ft be the sigma-subalgebra generated by Nπ̂ (s), s ≤ t.

We introduce the conditional expectation of Vps

(
ξπ̂aυ(t), ξπ̂

a′υ(t)
)
,

givenHt at time t, as the following:

E

[
Vps

(
ξπ̂aυ(t), ξ

π̂
a′υ(t)

)
|Ht

]
≤ E

[ ∫ t

ts

(
Lυ(τ)Vps

(
ξπ̂aυ(τ), ξπ̂a′υ(τ)

))
dτ

+

∫ t

ts

[
∂xVps ∂x′Vps

] 
gps

(
ξπ̂aυ(τ)

)

gps

(
ξπ̂

a′υ
(τ)

)
 d Wτ + Vps

(
ξπ̂aυ(ts), ξ

π̂
a′υ(ts)

)
|Ht

]

≤E

[∫ t

ts

(
−κps Vps

(
ξπ̂aυ(τ), ξπ̂a′υ(τ)

))
dτ|Ht

]
+E

[
Vps

(
ξπ̂aυ(ts), ξ

π̂
a′υ(ts)

)
|Ht

]

≤ − κ

∫ t

ts

E

[
Vps

(
ξπ̂aυ(τ), ξπ̂a′υ(τ)

)
|Ht

]
dτ +E

[
Vps

(
ξπ̂aυ(ts), ξ

π̂
a′υ(ts)

)
|Ht

]
.

(7.1)

Note that

E


∫ t

ts

[
∂xVps ∂x′Vps

] 
gps

(
ξπ̂aυ(τ)

)

gps

(
ξπ̂

a′υ
(τ)

)
 d Wτ|Ht

 = 0,

because Wτ, τ ≤ t, is independent of Ht. Using (7.1) and by
virtue of Gronwall’s inequality, we obtain

E

[
Vps

(
ξπ̂aυ(t), ξ

π̂
a′υ(t)

)
|Ht

]
≤ E

[
Vps

(
ξπ̂aυ(ts), ξ

π̂
a′υ(ts)

)
|Ht

]
e−κ(t−ts).

(7.2)

In inequality (7.2), ts is an instance of a mode switching. Hence,
from assumption (i) of the theorem, one obtains:

E

[
Vps

(
ξπ̂aυ(t), ξ

π̂
a′υ(t)

)
|Ht

]
≤ E

[
µVps−1

(
ξπ̂aυ(ts), ξ

π̂
a′υ(ts)

)
|Ht

]
e−κ(t−ts)

≤ µE
[
Vps−1

(
ξπ̂aυ(ts), ξ

π̂
a′υ(ts)

)
|Ht

]
e−κ(t−ts). (7.3)

Similar to inequality (7.2) and using the continuity of Vps−1

and of the solution process ξ, one can derive the inequality

E

[
Vps−1

(
ξπ̂aυ(ts), ξ

π̂
a′υ(ts)

)
|Ht

]
(7.4)

≤ E

[
Vps−1

(
ξπ̂aυ(ts−1), ξπ̂a′υ(ts−1)

)
|Ht

]
e−κ(ts−ts−1).

Substituting (7.4) into (7.3), one gets

E

[
Vps

(
ξπ̂aυ(t), ξ

π̂
a′υ(t)

)
|Ht

]
(7.5)

≤ µE
[
Vps−1

(
ξπ̂aυ(ts−1), ξπ̂a′υ(ts−1)

)
|Ht

]
e−κ(t−ts−1).

Repeating the calculation and the substitution, similar to (7.5),
we arrive at

E

[
Vps

(
ξπ̂aυ(t), ξ

π̂
a′υ(t)

)
|Ht

]
≤ µs

E

[
Vp0

(a, a′) |Ht

]
e−κt.

Because s = Nπ̂(t), one gets

E

[
Vps

(
ξπ̂aυ(t), ξ

π̂
a′υ(t)

)
|Ht

]
≤ µNπ̂(t)

E

[
Vp0

(a, a′) |Ht

]
e−κt.

Since initial conditions a, a′ are independent of Nπ̂(t), we have

E

[
Vps

(
ξπ̂aυ(t), ξ

π̂
a′υ(t)

)]
≤ E

[
µNπ̂(t)

]
E

[
Vp0

(a, a′)
]
e−κt

≤


∞∑

k=0

µk
P [Nπ̂(t) = k]

E
[
Vp0

(a, a′)
]
e−κt

≤

e−λt

∞∑

k=0

µk (λt)k

k!

E
[
Vp0

(a, a′)
]
e−κt

= E

[
Vp0

(a, a′)
]
e((µ−1)λ−κ)t. (7.6)

Note that we used the Taylor series of the exponential function

to obtain the inequality (7.6), i.e. eµλt =
∑∞

k=0 µ
k (λt)k

k!
. Using

assumptions (i) and (ii) in Definition (3.2), functions α, α, and
Jensen’s inequality, we obtain

α
(
E

[∥∥∥ξπ̂aυ(t) − ξπ̂a′υ(t)
∥∥∥q])
≤ α

ps

(
E

[∥∥∥ξπ̂aυ(t) − ξπ̂a′υ(t)
∥∥∥q])

≤ E

[
α

ps

(∥∥∥ξπ̂aυ(t) − ξπ̂a′υ(t)
∥∥∥q)]
≤ E

[
Vps

(
ξπ̂aυ(t), ξ

π̂
a′υ(t)

)]

≤ E

[
Vp0

(a, a′)
]
e((µ−1)λ−κ)t ≤ E

[
αp0

(
‖a − a′‖

q)]
e((µ−1)λ−κ)t

≤ αp0

(
E

[
‖a − a′‖

q])
e((µ−1)λ−κ)t ≤ α

(
E

[
‖a − a′‖

q])
e((µ−1)λ−κ)t.

Since α is a K∞ function, we have

E

[∥∥∥ξπ̂aυ(t) − ξπ̂a′υ(t)
∥∥∥q]
≤ α−1

(
α
(
E

[
‖a − a′‖

q])
e((µ−1)λ−κ)t

)
.

Therefore, condition (3.1) holds with the function

β(r, s) := α−1
(
α(r)e((µ−1)λ−κ)s

)
,

which is a KL function because by assumption (ii) of the the-

orem (µ − 1) λ − κ < 0. Therefore, the switching stochastic

system Σ is δ-GAS-Mq. ✷
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