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Abstract. This paper concerns labelled Markov processes (LMPs),
probabilistic models over uncountable state spaces originally introduced
by Prakash Panangaden and colleagues. Motivated by the practical ap-
plication of the LMP framework, we study its formal semantics and the
relationship to similar models formulated in control theory. We consider
notions of (exact and approximate) probabilistic bisimulation over LMPs
and, drawing on methods from both formal verification and control the-
ory, propose a simple technique to compute an approximate probabilistic
bisimulation of a given LMP, where the resulting abstraction is charac-
terised as a finite-state labelled Markov chain (LMC). This construction
enables the application of automated quantitative verification and pol-
icy synthesis techniques over the obtained abstract model, which can be
used to perform approximate analysis of the concrete LMP. We illustrate
this process through a case study of a multi-room heating system that
employs the probabilistic model checker PRISM.

1 Introduction

Labelled Markov processes (LMPs) are a celebrated class of models encompass-
ing concurrency, interaction and probability over uncountable state spaces, orig-
inally introduced and studied by Prakash Panangaden and colleagues [14,37].
LMPs evolve sequentially (i.e., in discrete time) over an uncountably infinite
state space, according to choices from a finite set of available actions (called la-
bels). They also allow for the possible rejection of a selected action, resulting in
termination. LMPs can be viewed as a generalisation of labelled transition sys-
tems, allowing state spaces that might be uncountable and that include discrete
state spaces as a special case. LMPs also extend related discrete-state proba-
bilistic models from the literature, e.g. [34], and are related to uncountable-state
Markov decision processes [38].

The formal semantics of LMPs has been actively studied in the past (see the
Related Work section below). One of the earliest contributions is the notion
of exact probabilistic bisimulation in [14], obtained as a generalisation of its
discrete-state counterpart [34] and used to characterise the LMP model seman-
tics. Exact bisimulation is in general considered a very conservative requirement,
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and approximate notions have been consequently developed [15,19], which are
based on relaxing the notion of process equivalence or on distance (pseudo-
)metrics. These metrics encode exact probabilistic bisimulation, in that the dis-
tance between a pair of states is zero if and only if the states are bisimilar.
While the exact notion of probabilistic bisimulation can be characterised via a
Boolean logic, these approximate notions of probabilistic bisimilarity can be en-
compassed by real-valued logics, e.g. [30]. In view of their underlying uncountable
state spaces, the analysis of LMPs is not tractable, and approximate bisimula-
tion notions can serve as a means to derive abstractions of the original LMPs.
Such abstractions, if efficiently computable and finite, can provide a formal basis
for approximate verification of LMPs.

Separately from the above work rooted in semantics and logic, models that are
closely related to LMPs have also been defined and studied in decision and con-
trol [7,28,36]. Of particular interest is the result that quantitative finite abstrac-
tions of uncountable-space stochastic processes [2,3] are related to the original,
uncountable-state models by notions of approximate probabilistic bisimulations
[41]. These notions are characterised via distances between probability measures.
Alternatively these formal relations between abstract and concrete models can
be established via metrics over trajectories, which are obtained using Lyapunov-
like functionals as proposed in [1,31,39], or by randomisation techniques as done
in [4]. There is an evident connection between approximation notions and met-
rics proposed for LMPs and for related models in decision and control, and it is
at this intersection that the present contribution unfolds.

In this paper, we build upon existing work on LMPs, with the aim of de-
veloping automated verification, as well as optimal policy synthesis, for these
models against specifications given in quantitative temporal logic. Drawing on
results from the decision and control literature, we give an explicit interpretation
of the formal semantics of LMPs. We consider notions of (exact and approxi-
mate) probabilistic bisimulation over LMPs, and propose a simple technique
to compute an approximate probabilistic bisimulation of a given LMP, where
the resulting abstraction is characterised as a finite-state labelled Markov chain
(LMC). This enables the direct application of automated quantitative verifica-
tion techniques over the obtained abstract model by means of the probabilistic
model checker PRISM [32], which supports a number of (finite-state) probabilis-
tic models [32,26], including LMCs. We implement an algorithm for computing
abstractions of LMPs represented as LMCs and, thanks to the established no-
tion of approximate probabilistic bisimulation, the analysis of the abstraction
corresponds to an approximate analysis of the concrete LMP. We illustrate the
techniques on a case study of a multi-room heating system, performing both
quantitative verification and policy synthesis against a step-bounded variant of
the probabilistic temporal logic PCTL [27]. We thus extend the capability of
PRISM to also provide analysis methods for (uncountable-state) LMPs, which
was not possible previously.
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Related Work. Approximation techniques for LMPs can be based on metrics
[15,19,42] and coalgebras [43,44]. Approximate notions of probabilistic bisimi-
larity are formally characterised and computed for finite-state labelled Markov
processes in [17]. Metrics are also discussed and employed in [16] and applied to
weak notions of bisimilarity for finite-state processes, and in [23,24,25] for (finite
and infinite) Markov decision processes – in particular, [25] looks at models with
uncountable state spaces. The work in [23] is extended by on-the-fly techniques
in [12] over finite-state Markov decision processes. LMP approximations are also
investigated in [13] and, building on the basis of [17,23], looked at from a differ-
ent perspective (that of Markov processes as transformers of functions) in [11].
Along the same lines, [33] considers a novel logical characterisation of notions
of bisimulations for Markov decision processes. The relationship between exact
bisimulation and (CSL) logic is explored in [18] over a continuous-time version of
LMPs. Abstractions that are related to Panangaden’s finite-state approximants
are studied over PCTL properties in [29]. In control theory, the goal of [2,3] is
to enable the verification of step-bounded PCTL-like properties [21], as well as
time-bounded [41] or unbounded [40] linear-temporal specifications. It is then
shown that these approximations are related to the original, uncountable-state
models by notions of approximate probabilistic bisimulations [41]. Regarding
algorithms for computing abstractions, [9] employs Monte-Carlo techniques for
the (approximate) computation of the concepts in [15,19] which relates to the
randomised techniques in [4].

Organisation of the Paper. The paper is structured as follows. Section 2 intro-
duces LMPs and discusses two distinct perspectives to their semantic definition.
Section 3 discusses notions of exact and approximate probabilistic bisimulations
from the literature, with an emphasis on their computability aspects. Section 4
proposes an abstraction procedure that approximates an LMP with an LMC and
formally relates the two models. Section 5 describes PRISM model checking of
the LMC as a way to study properties of the original LMP. Finally, Section 6
illustrates the technique over a case study.

2 Labelled Markov Processes: Model and Semantics

We consider probabilistic processes defined over uncountable spaces [36], which
we assume to be homeomorphic to a Borel subset of a Polish space, namely a
metrizable space that is complete (i.e., where every Cauchy sequence converges)
and separable (i.e., which contains a countable dense subset). Such a space is
endowed with a Borel σ-algebra, which consists of sets that are Borel measurable.
The reference metric can be reduced to the Euclidean one.

The uncountable state space is denoted by S, and the associated σ-algebra
by B(S). We also introduce a space of labels (or actions) U , which is assumed
to be finite (that is, elements taken from a finite alphabet). For later reference,
we extend state and action/label spaces with the additional elements e and ū,
respectively, letting Se = S ∪ {e} and Ue = U ∪ {ū}. We assume a finite set of
atomic propositions AP, a function L : S → 2AP which labels states with the
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propositions that hold in that state, and a reward structure r : S×U → R!0,
which assigns rewards to state-label pairs over the process.

Processes will evolve in discrete time over the finite interval [0, N ] over a
sample space ΩN+1 = SN+1, equipped with the canonical product σ-algebra
B(ΩN+1). The selection of labels at each time step depends on a policy (or
strategy), which can base its choice on the previous evolution of the process.
Formally a policy is a function σ : {Si | 1!i!N} → dist(U), where dist(U) is the
set of probability distributions over U and σ(s0, . . . , sk) = µ represents the fact
that the policy selects the label uk in state sk at time instant k with probability
µ(uk), given that the states at the previous time instances were s0, . . . , sk−1.

Under a fixed policy the process is fully probabilistic and we can then reason
about the likelihood of events. However, due to the uncountable state space this
is not possible for all policies. Following [10], we restrict our attention to so called
measurable policies, for which we can define a probability measure, denoted Pσ

s ,
over the sample space ΩN+1 when the initial state of the process equals s.

The following definition is taken from [14,15,19] (these contributions mostly
deal with analytic spaces that represent a generalisation of the Borel measurable
space we focus on).

Definition 1 (Labelled Markov Process). A labelled Markov process (LMP)
S is a structure:

(S, s0,B(S), {τu |u ∈ U})

where S is the state space, s0 ∈ S is the initial state, B(S) is the Borel σ-field
on S, U is the set of labels, and for each u ∈ U :

τu : S × B(S) −→ [0, 1]

is a sub-probability transition function, namely, a set-valued function τu(s, ·) that
is a sub-probability measure on B(S) for all s ∈ S, and such that the function
τu(·, S) is measurable for all S ∈ B(S). ⊓'

In this work, we will often assume that the initial state s0 can be any element of
S and thus omit it from the definition. Furthermore, we will implicitly assume
that the state space is a standard Borel space, so the LMP S will often be
referred to simply as the pair (S, {τu |u ∈ U}).

It is of interest to explicitly elucidate the underlying semantics of the model
that is syntactically characterised in Definition 1. The semantics hinges on how
the sub-probability measures are dealt with in the model: we consider two dif-
ferent options, the first drawn from the literature on testing [34], and the second
originating from models of decision processes [38]. Recall that we consider fi-
nite traces over the discrete domain [0, N ] (this is because of the derivation of
abstractions that we consider below – an extension of the semantics to infinite
traces follows directly). The model is initialised at time k=0 at state s0, which is
deterministically given or obtained by sampling a given probability distribution
π0, namely s0 ∼ π0. At any (discrete) time 0 ! k ! N−1, given a state sk ∈ S
and selecting a discrete action uk ∈ U , this action is accepted with a probability
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∫
S τuk(sk, dx), whereas it is rejected with probability 1 −

∫
S τuk(sk, dx). If the

action uk is rejected, then the model can exhibit two possible behaviours:

1. (Testing process) the dynamics stops, that is, the value sk+1 is undefined
and the process returns the finite trace

((s0, u0), (s1, u1), . . . , (sk, uk));

2. (Decision process) a default action u ∈ Ue is selected and the process contin-
ues its evolution, returning the sample sk+1 ∼ τu(sk, ·). The default action
can, for instance, coincide with the label selected (and accepted) at time
k−1, i.e. u = uk−1 ∈ U , or with the additional label, i.e. u = ū. At time
instant N−1, the process completes its course and further returns the trace

((s0, u0), (s1, u1), . . . , (sk, uk), (sk+1, u) . . . , (sN−1, u), sN ).

Note that the above models can also be endowed with a set of output or observ-
able variables, which are defined over an “observation space” O via an observa-
tion map h : S×U → O. In the case of “full observation,” the map h can simply
correspond to the identity and the observation space coincides with the domain
of the map. The testing literature often employs a map h : U → O, whereas in
the decision literature it is customary to consider a map h : S → O. That is,
the emphasis in the testing literature is on observing actions/labels, whereas in
the decision and control field the focus is on observing variables (and thus on
the corresponding underlying dynamics of the model).

We elucidate the discussion above by two examples.

Example 1 (Testing process). Consider a fictitious reactive system that takes the
shape of a slot or a vending machine, outputting a chosen label and endowed with
an internal state with one n-bit memory register retaining a random number. For
simplicity, we select a time horizon N < 2n−1, so that the internal state never
under- or overflows. The state of the machine is sk ∈ {−2n−1, . . . , 0, . . . , 2n−1},
where the index k is a discrete counter initialised at zero. At its k-th use, an
operator pushes one of U = {0, 1, 2, . . . ,M} buttons uk, to which the machine
responds with probability 1

1+e−sk
and, in such a case, resets its state to sk+1 =

sk + ukξk, where ξk is a fair Bernoulli random variable taking values in {−1, 1}.
On the other hand, if the label/action is not accepted, then the machine gets
stuck at state sk.

Clearly, the dynamics of the process hinges on the external inputs provided
by the user (the times of which are not a concern; what matters is the discrete
counter k for the input actions). The process generates traces as long as the
input actions are accepted. We may be interested in assessing if a given periodic
input policy applied within the finite time horizon (for instance, the periodic
sequence (M−1,M,M−1,M, . . .)) is accepted with probability greater than a
given threshold over the model initialised at a given state, where this probability
depends on the underlying model. Alternatively, we may be interested in gener-
ating a policy that is optimal with respect to a specification over the space of
possible labels (for example, we might want the one that minimises the occur-
rence of choices within the set {0, 1, 2} ⊆ U). ⊓'
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Example 2 (Decision process). Let us consider a variant of the temperature con-
trol model presented in [3,5] and which will be further elaborated upon in Sec-
tion 6. The temperature of a room is controlled at the discrete time instants
tk = 0, δ, 2δ, . . . , Nδ, where δ ∈ R+ represents a given fixed sampling time. The
temperature is affected by the heat inflow generated by a heater that is con-
trolled by a thermostat, which at each time instant tk can either be switched
off or set to a level between 1 and M . This choice between heater settings is
represented by the labels U = {u0, u1, . . . , uM} of the LMP, where u0 = 0 and
0 < u1 < · · · < uM . The (real-valued) temperature sk+1 at time tk+1 depends
on that at time tk as follows:

sk+1 = sk + h(sk−sa) + hukζ(sk, uk) + ξk,

where

ζ(sk, uk) =

{
uk w.p. 1− sk· uk

uM
·α

ū else

ξk ∼ N [0, 1], sa represents the constant ambient temperature outside the room,
the coefficient h denotes the heat loss, huk is the heat inflow when the heater
setting corresponds to the label uk, and α is a normalisation constant.

The quantity ζ(sk, uk) characterises an accepted action (uk) with a proba-
bility that decreases both as the temperature increases (we suppose increasing
the temperature has a negative affect through heat-related noise on the correct
operation of the thermostat) and as the heater level increases (increasing the
heater level puts more stress on the heater, which is then more likely to fail),
and conversely provides a default value if the action is not accepted. The default
action could feature the heater in the OFF mode (u0), or the heater stuck to the
last viable control value (uk−1). In other words, once an action/label is rejected,
the dynamics progresses by adhering to the default action.

We stress that, unlike in the previous example, here the dynamics proceeds
regardless of whether the action is accepted or not, since the model variable
(sk) describes a physical quantity with its own dynamics that simply cannot be
physically stopped by whatever input choice. Given this model, we may be in-
terested in assessing whether the selected policy satisfies a desired property with
a specified probability (similar to the testing case), or in synthesising a policy
that maximises the probability of a given specification – say, to maintain the
room temperature within a certain comfort interval. Policy synthesis problems
appear to be richer for models of decision processes, since the dynamics play a
role in a more explicit manner. ⊓'

The second semantics (related to a decision process) leads to a reinterpretation
of the LMP as a special case of an (infinite-space) MDP [38]. Next, we aim
at leveraging this interpretation for both semantics: in other words, the two
semantics of the LMP can be interpreted in a consistent manner by extending
the dynamics and by properly “completing” the sub-stochastic kernels, by means
of new absorbing states and additional labels, as described next. This connection
has been qualitatively discussed in [37] and is now expounded in detail and
newly applied at a semantical level over the different models. Let us start with
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the testing process. Given a state sk ∈ S and an action uk ∈ U , we introduce
the binary random variable taking values in the set {uk, ū} with probability
{
∫
S τuk(sk, dx), 1 −

∫
S τuk(sk, dx)}, respectively. Consider the extended spaces

Se and Ue. Here e is an absorbing state, namely e is such that
∫
S τu(e, dx) =

0 for all u ∈ Ue (any action selected at state e is rejected), and such that
τū(s, dx) = δe(dx) for all s ∈ Se, where δe(·) denotes the Dirac delta function
over Se. We obtain:

sk+1 ∼
{∫

S τuk(sk, dx)τuk(sk, ·) if the action is accepted
(1 −

∫
S τuk(sk, dx))τū(sk, ·) if the action is rejected.

(1)

The labelling map h : U → O is inherited and extended to Ue, so that h(ū) = ∅.
Let us now focus on the decision process. Similarly to the testing case, at time

k and state sk, label/action uk is chosen and this value accepted with a certain
probability, else a default value u is given. In the negative instance, the actual
value of u depends on the context (see the discussion in the example above) and
can correspond to an action within U (say, the last accepted action) or to the
additional action ū outside this finite set but in Ue. Then, as in the testing case,
sk+1 is selected according to the probability laws in (1). However, we impose
the following condition: once an action is rejected and label u is selected, the
very same action is retained deterministically for the remaining part of the time
horizon, namely uj = u for all k ! j ! N−1. Essentially, it is as if, for any
time instant k ! j ! N−1, the action space collapsed into the singleton set
{u}. Notice that, in the decision case, the state space Se does not need to be
extended; however, the kernel τū, ū ∈ Ue \ U , should be defined and indeed have
a non-trivial dynamical meaning if the action ū is used. Finally, the labelling
map h : S → O is inherited from above.

Let us emphasise that, according to the completion procedure described above,
LMPs (in general endowed with sub-probability measures) can be considered as
special cases of MDPs, which allows connecting with the rich literature on the
subject [7,28].

3 Exact and Approximate Probabilistic Bisimulations

We now recall the notions of exact and approximate probabilistic bisimulation
for LMPs [14,17]. We also extend these definitions to incorporate the labelling
and reward functions introduced in Section 2. We emphasise that both concepts
are to be regarded as strong notions – we do not consider hidden actions or
internal nondeterminism in this work, and thus refrain from dealing with weak
notions of bisimulation.

Definition 2 ((Exact) Probabilistic Bisimulation).Consider an LMPS =
(S, {τu |u ∈ U}). An equivalence relation R on S is a probabilistic bisimulation if,
whenever s1Rs2 for s1, s2 ∈ S, then L(s1) = L(s2), r(s1, u) = r(s2, u) for all
u ∈ U and, for any u ∈ U and set S̃ ∈ S/R (which is Borel measurable), it holds
that

τu(s1, S̃) = τu(s2, S̃) .
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A pair of states s1, s2 ∈ S are said to be probabilistically bisimilar if there exists a
probabilistic bisimulation R such that s1Rs2. ⊓'

Observe that the autonomous case of generalMarkov chainswith sub-probability
measures, which is characterised by a trivial labels set with a single element, can
be obtained as a special case of the above definition.

Let R be a relation on a set A. A set Ã ⊆ A is said to be R-closed if R(Ã) =
{t | sR t ∧ s ∈ Ã} ⊆ Ã. This notion will be employed shortly – for the moment,
note that Definition 2 can be equivalently given by considering the condition on
the transition kernel to hold over R-closed measurable sets S̃ ⊆ S.

The exact bisimulation relation given above directly extends the correspond-
ing notions for finite Markov chains and Markov decision processes (that is, mod-
els characterised by discrete state spaces). However, although intuitive, it can be
quite conservative when applied over uncountable state spaces, and procedures
to compute such relations over these models are in general deemed to be undecid-
able. Furthermore, the concept does not appear to accommodate computational
robustness [20,45], arguably limiting its applicability to real-world models in
engineering and science. These considerations lead to a notion of approximate
probabilistic bisimulation with level ε, or simply ε-probabilistic bisimulation [17],
as described next.

Definition 3 (Approximate Probabilistic Bisimulation). Consider an
LMP S = (S, {τu |u ∈ U}). A relation Rε on S is an ε-probabilistic bisimu-
lation relation if, whenever s1Rs2 for s1, s2 ∈ S, then L(s1) = L(s2), r(s1, u) =
r(s2, u) for all u ∈ U and, for any u ∈ U and Rε-closed set S̃ ⊆ S, it holds that

∣∣ τu(s1, S̃)− τu(s2, S̃)
∣∣ ! ε . (2)

In this case we say that the two states are ε-probabilistically bisimilar. ⊓'

Unlike the equivalence relation R in the exact case, in general, the relation Rε

does not satisfy the transitive property (the triangle inequality does not hold:
each element of a pair of states may be close to a common third element, but
map to very different transition measures among each other), and as such is not
an equivalence relation [17]. Hence, it induces a cover of the state space S, but
not necessarily a partition.

The above notions can be used to relate or compare two separate LMPs,
say S1 and S2, with the same action space U by considering an LMP S +

characterised as follows [37]. The state space S+ is given by the direct sum of
the state spaces of the two processes (i.e. the disjoint union of S1 and of S2),
where the associated σ-algebra is given by B(S1) ∪ B(S2). The labelling and
reward structure combine those for the separate processes, using the fact that
the state space is the directed sum of these processes. The transition kernel
τ+u : S+×B(S+) → [0, 1] is such that, for any u ∈ U , 1 ! i ! 2, si ∈ Si,
S+ ⊆ B(S1) ∪ B(S2) we have τ+u (si, S+) = τ iu(si, S

+ ∩ Si). The initial states of
the composed model are characterised by considering those of the two generating
processes with equal likelihood. In the instance of the exact notion, we have the
following definition.
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Definition 4. Consider two LMPs Si =
(
Si, {τ iu |u ∈ U}

)
where i = 1, 2, en-

dowed with the same action space U , and their direct sum S +. An equivalence
relation R on S+ is a probabilistic bisimulation relation between S1 and S2 if,
whenever s1Rs2 for s1 ∈ S1, s2 ∈ S2, then L(s1) = L(s2), r(s1, u) = r(s2, u) for
all u ∈ U and, for any given u ∈ U and R-closed set S̃+ ∈ B(S1) ∪ B(S2), it
holds that

τ+u (s1, S̃
+) = τ1u(s1, S̃

+ ∩ S1) = τ2u(s2, S̃
+ ∩ S2) = τ+u (s2, S̃

+) .

A pair of states (s1, s2) ∈ S1×S2 is said to be probabilistically bisimilar if there
exists a relation R such that s1Rs2. Two LMPs Si are probabilistically bisimilar
if their initial states are. ⊓'

The inequality in (2) can be considered as a correspondence between states
in the pair (s1, s2) that could result from the existence of a (pseudo-)metric over
probability distributions on the state space. This approach has been taken up
by a number of articles in the literature, which have introduced metrics as a
means to relate two models. Such metrics have been defined based on logical
characterizations [15,19,33], categorical notions [43,44], games [17], normed dis-
tances over process trajectories [1,31], as well as distances between probability
measures [42].

3.1 Computability of Approximate Probabilistic Bisimulations

While for processes over discrete and finite state spaces there exist algorithmic
procedures to compute exact [6,34] and approximate [17] probabilistic bisimula-
tions, the computational aspects related to these notions for processes over un-
countable state spaces appear to be much harder to deal with. We are of course
interested in characterising computationally finite relations, which will be the
goal pursued in the next section. Presently, only a few approaches exist to ap-
proximate uncountable-space processes with finite-state ones: LMPs [9,11,13,19],
(infinite-state) MDPs [33], general Markov chains [29] and stochastic hybrid
systems (SHSs) [2,3].

Alternative approaches to check the existence of an approximate probabilistic
bisimulations between two models, which hinge on the computation of a function
relating the trajectories of the two processes [1,31,39], are limited to models that
are both defined over an uncountable space, and do not appear to allow for the
constructive synthesis of approximate models from concrete ones. Computation
of abstract models, quantitatively related to corresponding concrete ones, is
investigated in [4], which leverages randomised approaches and, as such, can
enforce similarity requirements only up to a confidence level. Recent work on
symbolic abstractions [46] refer to approximation notions over (higher-order)
moments on the distance between the trajectory of the abstract model and the
solution of the concrete one.

In conclusion, analysing the precision, quality, and scalability properties of con-
structive approximation techniques for uncountable-state stochastic processes is
a major goal with relevant applications that we deem worthwhile pursuing.
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4 From LMPs to Finite Labelled Markov Chains

In this section, we introduce an abstraction procedure to approximate a given
LMP as a finite-state labelled Markov chain (LMC). The abstraction procedure
is based on a discretisation of the state space of the LMP (recall that the space
of labels (actions) is finite and as such requires no discretisation) and is inspired
by the early work in [3] over (fully-probabilistic) SHS models. It is now extended
to account for the presence of actions and to accommodate the LMP framework
(with sub-probability measures). The relationship between abstract and concrete
models as an approximate probabilistic bisimulation is drawn from results in [41].

Let us start from an LMP S = (S, s0,B(S), {τu |u ∈ U}), represented via
its extended dynamics independently from its actual semantics1. We consider a
finite partition of the space S = ∪Q

i=1Si such that Si∩Sj = ∅ for all 1 ! i ̸=j ! Q.
In addition, we assume that states in the same element of the partition have the
same labelling and reward values, that is, for any 1 ! i ! Q we have L(s)=L(s′)
and r(s, u)=r(s′, u) for all s, s′ ∈ Si and u ∈ U . Let us associate to this partition a
finite σ-algebra corresponding to σ(S1, . . . , SQ). The finiteness of the introduced
σ-algebra, in particular, implies that, for any 1 ! i ! Q, states s1, s2 ∈ Si,
measurable set S ∈ σ(S1, . . . , SQ) and label u ∈ U , we have:

τu(s1, S) = τu(s2, S) .

This follows from the finite structure of the σ-algebra and and the definition of
measurability. Let us now select for each 1 ! i ! Q a single fixed state si ∈ Si.
Using these states, for any label u ∈ U we then approximate the kernel τu by
the matrix pu ∈ [0, 1]Q×[0, 1]Q, where for any 1 ! i, j ! Q:

pu(i, j) = τu(si, Sj) .

Observe that, for any u ∈ U and 1 ! i ! Q, we have
∑Q

j=1 pu(i, j) ! 1. The
structure resulting from this procedure is called a finite labelled Markov chain
(LMC). Note that, in general, LMCs do not correspond to (finite-state) MDPs:
this correspondence holds only if we have abstracted an LMP that has been
“completed” with the procedure described in Section 2, and which as such can
be reinterpreted as an uncountable-state MDP.

Let us comment on the procedure above. We have started from the LMP
S = (S, {τu |u ∈ U}), endowed with an uncountable state space S with the
corresponding (uncountable) Borel σ-algebra B(S). We have partitioned the
space S into a finite quotient made up of uncountable sets Si, and associ-
ated to this finite quotient a finite σ-algebra. We call this intermediate model
S f : the obtained model is still defined over an uncountable state space, but
its probabilistic structure is simpler, being characterised by a finite σ-algebra
σ(S1, . . . , SQ) and piecewise constant kernels – call them τfu (s, ·) – for complete-
ness S f =

(
S, s0,σ(S1, . . . , SQ), {τfu |u ∈ U}

)
. This latter feature has allowed

1 With slight abuse of notation but for simplicity sake, we avoid referring to extended
state and/or action spaces as more proper for “completed” LMP models.
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us, in particular, to select an arbitrary state si for each of the partition sets Si,
which has led to a finite state space Sd = {s1, . . . , sQ}. For each label u ∈ U
we have introduced the (sub-)probability transition matrix pu. The new model
S d =

(
Sd, sd0,σ(S1, . . . , SQ), {pu |u ∈ U}

)
is an LMC. Here sd0 is the discrete

state in Sd that corresponds to the quotient set, including the concrete initial
condition s0 of S .

Let us emphasise that, whilst the structure of the state spaces of S f and of
S d are not directly comparable, their probabilistic structure is equivalent and
finite – that is, the probability associated to any set in Sf (the quotient of S)
for S f is matched by that defined over the finite set of states in Sd for S d.
The model S f allows us to formally relate the concrete, uncountable state-space
model S with the discrete and finite abstraction S d.

The formal relationship between the concrete and the abstract models can be
derived under the following assumption on the regularity of the kernels of S .

Assumption 1. Consider the LMP S = (S, {τu |u ∈ U}). For any label u ∈ U
and states s′, s′′, t ∈ S, there exists a positive and finite constant k(u), such that

|Tu(s
′, t)− Tu(s

′′, t)| ! k(u)∥s′ − s′′∥

where Tu is the density associated to the kernel τu, which is assumed to admit
an integral form so that

∫
Tu(s, t)dt =

∫
τu(s, dt) for all s ∈ S and u ∈ U . ⊓'

Consider the concrete LMP S , and recall the finite partition for its state space,
S = ∪Q

i=1Si. Let R be the relation over S such that s′ Rs′′ if and only if the
states are in the same element of the partition, i.e. there exists 1 ! i ! Q such
that s′, s′′ ∈ Si. The relation R is trivially symmetric and reflexive. Furthermore,
if s′ Rs′′, then for any S ∈ {S1, . . . , SQ}:

|τu(s′, S)− τu(s
′′, S)| =

∣∣∣∣
∫

S
τu(s

′, dx)−
∫

S
τu(s

′′, dx)

∣∣∣∣

=

∣∣∣∣
∫

S
Tu(s

′, x) dx −
∫

S
Tu(s

′′, x) dx

∣∣∣∣

!
∫

S
|Tu(s

′, x)− Tu(s
′′, x)| dx

!
∫

S
k(u)∥s′ − s′′∥ dx

! L(S)k(u)δ(S) (3)

where δ(S) = sups′,s′′∈S ∥s′ − s′′∥ denotes the diameter of the partition set S
and L(S) denotes the Lebesgue measure of the set S. By virtue of the inequality
established in (3) and Definition 3, we obtain the following result.

Theorem 1. Consider the LMP S = (S, s0,σ(S1, . . . , SQ), {τu |u ∈ U}). The
introduced relation R is an (approximate) ε-probabilistic bisimulation over S
where

ε = max
u∈U

max
1"i"Q

L(Si)k(u)δ(Si) . ⊓'
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From this point on, we assume that we are interested in the dynamics of the
LMP over a bounded set S, which allows us to conclude that ε is finite (since its
volume L(S) and its diameter δ(S) are). More specifically, the approximation
level ε can be tuned by reducing the quantity δ(·), the diameter of the partitions
of S. Likewise, better bounds based on local Lipschitz continuity (rather than
global, as per Assumption 1) can improve the error, as further elaborated in [21].

We now introduce the model S f , with its corresponding finite σ-algebra and
piecewise constant kernel functions τfu . Working with the same relation R as
above, using (3) we have that if sR sf and S ∈ {S1, . . . , SQ}, then

∣∣τu(s, S)− τfu (s
f , S)

∣∣ = |τu(s, S)− τu(si, S)| ! L(S)k(u)δ(S) .

This leads us to conclude, via Definition 4, that the LMPs S and S f are
ε-probabilistically bisimilar, where ε is taken from Theorem 1. Notice that Def-
inition 4 can be used to relate LMPs with different structures, since it does not
require the LMPs to have the same state or probability spaces – the only re-
quirement is that the processes share the same action space. Having argued that
the probabilistic structure of S f and of S d are the same, we proceed now by
comparing the LMP S with the LMC S d. Consider their direct sum S + and
relation R where, for s ∈ S and si ∈ Sd, we have sR si if and only if s ∈ Si.
Now, any R-closed set S+ is such that S+ ∩ Sd = sj and S+ ∩ S = Sj for any
1 ! j ! Q. It therefore follows that

∣∣τ+u (s, S+)− τ+u (si, S
+)

∣∣ = |τu(s, Sj)− pu(i, j)|
= |τu(s, Sj)− τu(si, Sj)|
! L(Sj)k(u)δ(Si)

which leads to the following result.

Theorem 2. Models S and S d are ε-probabilistically bisimilar. ⊓'

Remark 1. The above theorem establishes a formal relationship between S and
S d by way of comparing S with S f over the same state space. Unlike most
of the mentioned approaches in the LMPs approximations literature, the result
comes with a simple procedure to compute the finite abstraction S d, with a
quantitative relationship between the finite abstraction and the original LMP
model [3,21]. Thanks to the dependence of the error on the (max) diameter
among the partition sets, the approximation level ε can be tuned by selecting
a more refined partition of the state space S. Of course this entails obtaining a
partition set with larger cardinality by employing smaller partitions. ⊓'

5 Model Checking Labelled Markov Chains with PRISM

The previous section has described a procedure to approximate an infinite-state
LMP by a finite-state LMC. In this section, we show how probabilistic model
checking over this finite abstract model can be used to verify properties of the
original, concrete uncountable-space LMP.
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Probabilistic model checking is a powerful and efficient technique for formally
analysing a large variety of quantitative properties of probabilistic models. The
properties are specified as formulae in a (probabilistic) temporal logic. In this
paper, we use a time-bounded fragment of the logic PCTL [8,27] for discrete-
time models, augmented with an operator to reason about costs and rewards [26],
although the relationship established in the previous section between LMPs and
LMCs in fact preserves a more general class of linear-time properties over a
bounded horizon [41].

We will explain our use of probabilistic model checking in the context of
(finite-state) LMCs, and subsequently explain the relationship with LMPs. We
use logical properties defined according to Φ in the following syntax:

Φ ::= P∼p [φ U"K φ ]
∣∣ Rr∼x [ C

"K ]

φ ::= true
∣∣ a

∣∣ φ ∧ φ
∣∣ ¬φ

where∼∈ {<,!, >,"} is a binary comparison operator, p ∈ [0, 1] is a probability
bound, x ∈ R!0 is a reward bound, K ∈ N is a time bound, r is a reward
structure and a is an atomic proposition. A property P∼p [φ U"K ψ ] asserts that
the probability of ψ becoming true within K time steps, and φ remaining true
up until that point, satisfies ∼ p. In standard fashion, we can also reason about
(bounded) probabilistic reachability and invariance:

P∼p [♦"K φ ]
def
= P∼p [ true U"K φ ]

P!p [$"Kφ ]
def
= P"1−p [♦"K¬φ ]

A property Rr∼x [ C
"K ] asserts that the expected amount of reward (from reward

structure r) accumulated overK steps satisfies∼x. State formulae φ can identify
states according to the atomic propositions that label them, and can be combined
by Boolean operations on these propositions.

We define satisfaction of a logical formulae Φ with respect to a state sd and
policy σd of an LMC S d. We write S d, sd,σd |= Φ to denote that, starting
from state sd of S d, and under the control of σd, Φ is satisfied. We can then
treat the analysis of a formula Φ against a model S d in two distinct ways.
We can verify that a formula Φ is satisfied under all policies of S d, or we can
synthesise a single policy that satisfies Φ. In fact, in practice, whichever kind
of analysis is required, the most practical solution is to compute the minimum
or maximum value, over all policies, for the required property. For example,
for an until property φ U"K ψ, we might compute the maximum probability of
satisfaction when the initial state is sd:

Pmax=? [φ U"K ψ ]
def
= maxσd Pσd

sd

(
φ U"K ψ

)

where Pσd

sd

(
φ U"K ψ

)
is the probability under the policy σd when the initial state

is sd of ψ becoming true within K time steps, and φ remaining true up until
that point.

Computing minimum or maximum probabilities or rewards (and thus checking
a property Φ against an LMC) can be performed using existing probabilistic
model checking algorithms for Markov decision processes [8,26]. These methods
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are implemented in the PRISM model checker, which we use for the case study
in the next section. When computing optimal values, a corresponding policy
(strategy) that achieves them can also be synthesised.

Finally, we discuss how probabilistic model checking of an LMC obtained from
an LMP allows us to analyse the original, concrete LMP.

Theorem 3. Consider a concrete LMP S and an abstract LMC S d which are
ε-probabilistic bisimilar. For two ε-probabilistically bisimilar states s ∈ S, sd ∈
Sd and until property φ U"K ψ we have:

– for any (measurable) policy σ of S there exists a policy σd of S d such that

∣∣Pσ
s (φ U"K ψ)− Pσd

sd (φ U"K ψ)
∣∣ ! εK

– for any policy σd of S d there exists a (measurable) policy σ of S such that

∣∣Pσd

sd (φ U"K ψ)− Pσ
s (φ U"K ψ)

∣∣ ! εK .

Furthermore, the above bounds apply to the case of optimal policy synthesis, for
instance (in the case of maximisation) considering policies σ,σd within the same
class for S and S d, respectively, it holds that

∣∣ maxσd Pσd

sd (φ U"K ψ)−maxσ P
σ
s (φ U"K ψ)

∣∣ ! εK . ⊓'

The above theorem also generalises to expected reward properties and general
linear-time properties over a finite horizon, such as bounded linear-time temporal
logic (BLTL) or properties expressed as deterministic finite automata.

6 Case Study

This section presents a case study of the multi-room heating benchmark intro-
duced in [22], based on a model proposed by [35] and already discussed in Sec-
tion 2. The objective is to evaluate the usefulness of probabilistic model checking
for the (approximate) verification (and optimisation) of an LMP. The model is
an extension of that presented in [5], in that the control set is richer than the
binary one considered in the reference, and is also related to that in [3].

We study a model for the control of the temperature evolution of two adja-
cent rooms. Each room is equipped with a heater and there is a single control
which can switch the heaters between M=10 different levels of heat flow, with
0 corresponding to the heaters being OFF and 10 to the heaters being ON at full
power. The uncountable state space is R2, modelling the temperature evolution
in the two rooms.

As in Section 2, the average temperature of a room evolves according to a
stochastic difference equation during the finite time horizon [0, N ]. As there are
now two rooms, following [22] we also include the heat transfer between the
rooms in the equations. Letting sk ∈ R2 denote the temperatures in the rooms
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at time instant tk, we have that the equation for room i ∈ 1, 2 (assuming j is
the other room) is given by:

sk+1(i) = sk(i) + bi(sk(i)−xa) + a(sk(j)−sk(i)) + hukζ(sk(i), uk) + ξk(i) (4)

where xa represents the ambient temperature (assumed to be constant) and a
the heat transfer rate between the rooms. The quantity bi is a non-negative
constant representing the average heat transfer rate from room i to the ambient
and huk denotes the heat rate supplied to room i by the corresponding heater
at time k. The quantity ζ(sk(·), uk) characterises an accepted action (uk) with
a probability that, as in Section 2, decreases both as the temperature increases
and as the heater level increases. The disturbances ⟨ξk(i)⟩0"k"N−1 affecting the
temperature evolution in room i are assumed to be a sequence of independent
identically distributed Gaussian random variables with zero mean and variance
ν2. We also assume that the disturbances affecting the temperature in the two
rooms are independent.

The continuous transition kernel τu describing the evolution of the uncount-
able state s = (s(1), s(2)) can easily be derived from (4). Let N (·;µ, V ) denote
the Gaussian measure over (R2,B(R2)), with mean µ ∈ R2 and covariance matrix
V ∈ R2×2. Then, τu : B(R2)× S → [0, 1] can be expressed as:

τu(· |s) = N (·; s+Bs+ C, ν2I) (5)

where B ∈ R2×2 with [B]ii = bi−a and [B]ij = a, and C ∈ R2 with [C]i =
−bia + u. With reference to the semantic classification in Section 2, we are
dealing here with a decision process.

Let us select a time horizon of N=180 time steps. We are interested in the
optimal probability and the corresponding policy that the model dynamics stay
within a given “safe” temperature interval in both rooms, say I = [17.5, 22.5] ⊂
S degrees Celsius, and also the optimal expected time and associated policy that
the dynamics stay within the interval. We assume that the process is initialised
with the temperature in each room being at the mid-point of this interval (if it
is initialised outside it, then the associated probability is trivially equal to zero).

We proceed by abstracting the model as a labelled Markov chain [3] as follows.
The set I is partitioned uniformly into B=5 bins or sub-intervals. The labels
of the model correspond to choosing the heat-flow level of the heaters for the
next time instant. Regarding the atomic propositions and labelling function over
the abstract LMC (and concrete LMP), we assign the atomic proposition safe
to those states where the temperature is within the interval. In addition, to
allow the analysis of the time spent within the temperature interval, we use the
structure reward r which assigns the reward 1 to states-label pairs (both of the
LMC and LMP) for which the temperature in the state is within the interval
and 0 otherwise.

We use PRISM to obtain the minimum and maximum probability of remain-
ing within the safe temperature interval over the time horizon, and the mini-
mum and maximum expected time spent in the safe interval up to the horizon.
The properties used are Pmax=? [$"Ksafe ] and Rrmax=? [ C

"K ], as well as the
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(a) Probability of remaining in safe region (b) Expected time spent in safe region

Fig. 1. PCTL model checking for the case study

corresponding properties for minimum, rather than maximum, values (see the
previous section for details of the notation). The results are presented in Fig. 1(a)
and Fig. 1(b), respectively.

The graph plots demonstrate that the minimum probability quickly reaches
zero, and that the minimum expected time stabilises as the time horizon in-
creases. Examining with PRISM the policies that obtain these minimum values,
we see that the policies coincide and correspond to never switching the heaters
on (i.e. setting the heating level to be 0 at each step up until the time horizon).
Although at first this may seem the obvious policy for minimising these values,
an alternative policy could be to keep the heaters on full at each step (i.e. setting
the heating level to 10), as it may be quicker to heat the rooms to above the
temperature interval, as opposed to letting the rooms cool to below the interval.

Using PRISM, we find that this alternative approach is actually far less ef-
fective in the expected time case, and for small time horizons when considering
the probabilistic invariance property. This is due to the fact that it takes much
longer to heat a room to above the temperature interval than it does to reach
the lower bound by keeping the heaters off. For example for a time bound of
10 minutes, the probability of remaining within the interval equals 1.68e−15
when the heaters are kept off, while if the heaters are on full the probability of
remaining within the interval is 0.01562. The fact that there is a chance that the
heaters fail at each time step only increases the difference between these policies
with regards to remaining within the temperature interval, as it is clearly detri-
mental to keep the heaters on full, but has no influence when the heaters are
kept off. This can be seen in the expected time graph (see Fig. 1(b)), where the
expected time of remaining within the temperature interval for the “full” policy
keeps increasing while the minimum policy levels off.

In the case of the maximum values for the properties in Fig. 1, we see that
for small time horizons there is a very high chance that we can remain within
the temperature interval, but as the horizon increases the chance of remaining
within the interval drops off. Consider the maximum expected time spent within
the interval; this keeps increasing as the horizon increases, but at a lesser rate.
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The reason for this behaviour is due to the fact that the heaters can fail and,
once a heater fails, there is nothing we can do to stop the temperature in the
corresponding room decreasing. Regarding the corresponding policies, we see
that, while the heaters are working, the optimal approach is to initially set the
heaters to be on full and then lower the heater level as one approaches the upper
bound of the temperature interval. In addition, if the temperature in the rooms
starts to drop, then the policy repeats the process by setting the heaters to high
and then reducing as the temperature nears the upper bound of the interval.

7 Conclusions

This paper has put forward a computable technique to derive finite abstractions
of labelled Markov processes (LMPs) in the form of labelled Markov Chains
(LMCs), a probabilistic model related to Markov decision processes. The abstract
LMC models are shown to correspond to the concrete LMPs via the notion of
approximate probabilistic bisimulation. The technique enables the use of PRISM
for probabilistic model checking and optimal policy synthesis over the abstract
LMCs, extending its current capability to uncountable-state space models. The
usefulness of the approach is demonstrated by means of a case study.
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