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Abstract. FAUST2 is a software tool that generates formal abstractions
of (possibly non-deterministic) discrete-time Markov processes (dtMP)
defined over uncountable (continuous) state spaces. A dtMP model is
specified in MATLAB and abstracted as a finite-state Markov chain or
a Markov decision process. The abstraction procedure runs in MATLAB
and employs parallel computations and fast manipulations based on vec-
tor calculus, which allows scaling beyond state-of-the-art alternatives.
The abstract model is formally put in relationship with the concrete
dtMP via a user-defined maximum threshold on the approximation er-
ror introduced by the abstraction procedure. FAUST2 allows exporting
the abstract model to well-known probabilistic model checkers, such as
PRISM or MRMC. Alternatively, it can handle internally the computa-
tion of PCTL properties (e.g. safety or reach-avoid) over the abstract
model. FAUST2 allows refining the outcomes of the verification proce-
dures over the concrete dtMP in view of the quantified and tunable
error, which depends on the dtMP dynamics and on the given formula.
The toolbox is available at

http://sourceforge.net/projects/faust2/

1 Models: discrete-time Markov processes

We consider a discrete-time Markov process (dtMP) s(k), k ∈ N ∪ {0} defined
over a general state space, such as a finite-dimensional Euclidean domain [1]
or a hybrid state space [2]. The model is denoted by the pair S = (S, Ts). S
is a continuous (uncountable) but bounded state space, e.g. S ⊂ R

n, n < ∞.
We denote by B(S) the associated sigma algebra and refer the reader to [2,
3] for details on measurability and topological considerations. The conditional
stochastic kernel Ts : B(S)×S → [0, 1] assigns to each point s ∈ S a probability
measure Ts(·|s), so that for any set A ∈ B(S), k ∈ N ∪ {0},

P(s(k + 1) ∈ A|s(k) = s) =

∫
A

Ts(ds̄|s).

⋆ This work has been supported by the European Commission STREP project MoVeS
257005 and IAPP project AMBI 324432, and by the John Fell OUP Research Fund.



We refer to the code or to the case study for a modeling example. The software
allows handling the relevant instance of Stochastic Hybrid Systems (SHS). SHS
are discrete-time Markov processes evolving over hybrid state spaces. The hybrid
state s = (q, x) of SHS has two components: q ∈ Q is the discrete part, and
x ∈ R

nq is the continuous part. The state space of the SHS is the (disjoint) union
of continuous spaces associated to the discrete locations S ⊂ ∪q∈Q{q} × R

nq .
The formal definition and characterization of the conditional stochastic kernel
of a SHS, along its theoretical analysis and formal verification, are discussed in
detail in [2, 4–9].

Implementation: FAUST2 in implemented in MATLAB and its user in-
teraction is enhanced by a Graphical User Interface as in Figure 1. A dtMP
model is fed into FAUST2 as follows. Select the Formula free option in the box
Problem selection 1 in Figure 1, and enter the bounds on the state space S as a
n× 2 matrix in the prompt Domain in box 8 . Alternatively if the user presses
the button Select 8 , a pop-up window prompts the user to enter the lower and
upper values of the box-shaped bounds of the state space. The transition kernel
Ts can be specified by the user (select User-defined 2 ) in an m-file, entered in
the text-box Name of kernel function, or loaded by pressing the button Search
for file 7 . Please open the files ./Templates/SymbolicKernel.m for a template
and ExampleKernel.m for an instance of kernel Ts. As a special case, the class
of affine dynamical systems with additive Gaussian noise is described by the dif-
ference equation s(k+1) = As(k)+B+η(k), where η(·) ∼ N (0, Sigma). (Refer to
the Case Study on how to express the difference equation as a stochastic kernel.)
For this common instance, the user can select the option Linear Gaussian model
in the box Kernel distribution 2 , and input properly-sized matrices A,B,Sigma
in the MATLAB workspace. FAUST2 also handles Gaussian dynamical models
s(k + 1) = f(s(k)) + g(s(k))η(k) with nonlinear drift and variance: select the
bottom option in box 2 and enter the symbolic function [f g] via box 7 . ⊓⊔

The software also handles models with non-determinism [9], here regarded
as external and as such accessible: a controlled dtMP is a tuple S = (S,U , Ts),
where S is as before, U is a continuous control space (e.g. a bounded set in R

m),
and Ts is a Borel-measurable stochastic kernel Ts : B(S)×S ×U → [0, 1], which
assigns to any state s ∈ S and input u ∈ U a probability measure Ts(·|s, u).

Implementation: In order to specify a non-deterministic model in FAUST2,
tick the relevant check Controlled/non-deterministic model 3 , and enter the bounds
on the space U as a m× 2 matrix in the window Input set 8 . ⊓⊔

2 Formal finite-state abstractions of dtMP models

This section discusses the basic procedure to approximate a dtMP S = (S, Ts)
as a finite-state Markov chain (MC) P = (P , Tp), as implemented in FAUST2.
P = {z1, z2, . . . , zp} is a finite set of abstract states of cardinality p, and Tp :
P×P → [0, 1] is a transition probability matrix over the finite space P : Tp(z, z

′)
characterizes the probability of transitioning from state z to state z′. The finite
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Fig. 1. Graphical User Interface of FAUST2. Overlaid numbered boxes refer to specific
description in the text.



state space of P is constructed by (arbitrarily) partitioning the state space of S
and selecting a representative point in each partition set to make up the states in
P . The probability of transitioning from (abstract) state z to state z′, Tp(z, z

′), is
computed by marginalizing the stochastic kernel Ts of S, namely computing the
probability of jumping from state z to any point in the (concrete) partition set
corresponding to the (abstract) state z′. Algorithm 1 describes the abstraction
of model S as a finite-state MC P [6]. In Algorithm 1, Ξ : P → 2S represents a
set-valued map that associates to any point zi ∈ P the corresponding partition
set Ai ⊆ S, whereas the map ξ : 2S → P relates any point s or set in S to the
corresponding discrete state in P .

Algorithm 1 Abstraction of dtMP S by MC P

Require: input dtMP S = (S , Ts)
1: Select a finite partition of the state space S as S = ∪p

i=1
Ai (Ai are non-overlapping)

2: For each Ai, select an arbitrary representative point zi ∈ Ai, {zi} = ξ(Ai)
3: Define P = {zi, i = 1, ..., p} as the finite state space of the MC P

4: Compute the transition probability matrix Tp(z, z
′) = Ts(Ξ(z′)|z) for all z, z′ ∈ P

Ensure: output MC P = (P , Tp)

Consider the representation of the kernel Ts by its density function ts : S ×
S → R

≥0, namely Ts(ds
′|s) = ts(s

′|s)ds′ for any s, s′ ∈ S. The abstraction error
over the next-step probability distribution introduced by Algorithm 1 depends
on the regularity of function ts: assuming that ts is Lipschitz continuous, namely
that there is a finite positive constant hs such that

|ts(s̄|s)− ts(s̄|s
′)| ≤ hs ‖s− s′‖ , ∀s, s′, s̄ ∈ S, (1)

then the next-step error is E = hsδsL (S), where δs is the max diameter of
the state-space partition sets and L (S) is the volume of the state space [6].
When interested in working over a finite, N -step time horizon, the error results
in the quantity EN . Notice that the error can be reduced via δs by considering
a finer partition, which on the other hand results in a MC P with a larger state
space. It is evidently key to obtain error bounds that are as tight as possible: the
error bounds on the abstraction can be improved in three different ways [8, 10].
First, by computing a local version of the error; second, by leveraging continuity
requirements that go beyond the Lipschitz condition raised in (1); and, finally,
by normalizing possibly ill-conditioned dynamics operating on heterogeneous
spatial scales.

Implementation: FAUST2 enables the user to enter the time horizon N

of interest (box Number of time steps 5 ), and a threshold on the maximum
allowed error (box Desired abstraction error 5 ). The software generates a Markov
chain with the desired accuracy by pressing the button Generate the abstraction
6 . Among other messages, the user is prompted with an estimated running
time, which is based on an over-approximation of the Lipschitz constant of the



kernel, on a uniform partitioning of the space S 3, and on the availability of
parallelization procedures in MATLAB, and is asked whether to proceed. ⊓⊔

In the case of a non-deterministic dtMP, the input space is also partitioned
as U = ∪q

i=1
Ui, and arbitrary points ui ∈ Ui are selected. The dtMP S is

abstracted as a Markov decision process (MDP) P = (P ,Up, Tp), where now
the finite input space is Up = {u1, u2, . . . , uq}, and Tp(u, z, z

′) = Ts(Ξ(z′)|z, u)
for all z, z′ ∈ P , u ∈ Up. The abstraction error can be formally quantified as
E = 2(hsδs + huδu)L (S), where δu is the max diameter of the input-space
partitions and hu is the Lipschitz constant of the density function with respect
to the inputs, that is |ts(s̄|s, u)− ts(s̄|s, u′)| ≤ hu ‖u− u′‖, ∀u, u′ ∈ U , s, s̄ ∈ S.

Implementation: The user may tick the check in 3 to indicate that the
dtMP is controlled (non-deterministic), specify a box-shaped domain for the
input in box Input set 8 , enter a time horizon in box Number of time steps
5 , and require an error threshold in box Desired abstraction error 5 . FAUST2

automatically generates an MDP according to the relevant formula on the error.
Notice that the quantification of the abstraction error requires state and

input spaces to be bounded. In the case of an unbounded state space, the user
should truncate it to a bounded, box-shaped domain: selecting the Formula free
option in the box Problem selection 1 , the domain is prompted in box Domain
8 . Algorithm 1 is automatically adjusted by assigning an absorbing abstract
state to the truncated part of the state space. For details please see [10, 11].

The user may select one of two options in the box Gridding procedure 4 ,
dealing with adaptive gridding. FAUST2 generates partition sets based on local
computation of the error, as follows: a rather course partition of the state space is
initially selected and the corresponding local errors are computed; the partition
is sequentially refined by splitting the sets if the maximum local error is greater
than the threshold entered by the user in box 5 . In the step, the partition
can be refined by splitting the partition set with the largest local error, which
results in an abstraction with the least number of states but requires a larger
computational time (cf. [10, Algorithm 3]); alternatively, FAUST2 obtains faster
generation time by splitting all the sets with local errors greater than threshold
(cf. [10, Algorithm 4]). Both procedures are guaranteed to result, after a finite
number of steps, in the desired selected error. We plan to implement an anytime

algorithm option, as possible for the discussed adaptive gridding procedures.
This option enables the user to externally interrupt the refinement procedure
at any time, and returns the last computed abstract model together with its
associated error bound. ⊓⊔

The states of the abstract model P may be labeled. The state labeling map
L : P → Σ, where Σ is a finite alphabet, is defined by a set of linear inequalities:
for any α ∈ Σ the user characterizes the set of states L−1(α) as the intersection
of half-planes (say, as a box or a simplex): the software automatically determines
all points z ∈ P belonging to set L−1(α). The obtained labeled finite-state model

3 At the moment we assume to have selected options Uniform gridding and Lipschitz

via integral among the lists in box 4 . Comments on further options are in Section 3.



can be automatically exported to well-known model checkers, such as PRISM
and MRMC [12, 13], for further analysis. In view of the discussed error bounds,
the outcomes of the model checking procedures over the abstract model P may
be refined over the concrete dtMP S – more details can be found in [6, 11].

Implementation: Labels are introduced in FAUST2 as follows: suppose
that the intersection of half-planes Aαz ≤ Bα (where Aα, Bα are properly-sized
matrices) tags states z by label α ∈ Σ. The user may add such a label by pressing

button Add 10 and subsequently entering symbol α and matrices Aα, Bα in the
pop-up window. The user can also edit or remove any previously defined label
using buttons Edit, Remove in 10 , respectively. The button States with selected

label 10 shows the sets associated to the active label over the plot in 13 .

The user may click the buttons in 11 to export the abstracted model to
PRISM or to MRMC. Alternatively, FAUST2 is designed to automatically check
or optimize over quantitative, non-nested PCTL properties, without relying on
external model checkers: Section 3 elaborates on this capability. ⊓⊔

3 Formula-dependent abstractions for verification

Algorithm 1, presented in Section 2, can be employed to abstract a dtMP as
a finite-state MC/MDP, and to directly check it against properties such as
probabilistic invariance or reach-avoid, that is over (quantitative, non-nested)
bounded-until specifications in PCTL [14]. Next, we detail this procedure for
the finite-horizon probabilistic invariance (a.k.a. safety) problem, which can be
formalized as follows. Consider a bounded continuous set A ∈ B(S) representing
the set of safe states. Compute the probability that an execution of S, associ-
ated with an initial condition s0 ∈ S remains within set A during the finite time
horizon [0, N ], that is ps0(A) := P{s(k) ∈ A for all k ∈ [0, N ]|s(0) = s0}.

The quantity ps0(A) can be employed to characterize the satisfiability set of
a corresponding bounded-until PCTL formula, namely

s0 |= P∼ǫ{true U≤N (S\A)} ⇔ ps0(A) ∽ 1− ǫ,

where S\A is the complement of A over S, true is a state formula valid everywhere
on S, the inequality operator∼∈ {>,≥, <,≤}, and∽ represents its complement.

FAUST2 formally approximates the computation of ps0(A), ∀s0 ∈ S, as fol-
lows. S is abstracted as an MC P via Algorithm 1: the bounded safe set A is
partitioned as A = ∪p−1

i=1
Ai; representative points zi ∈ Ai are selected and, along

with an extra absorbing variable φ for S\A, make up the state space P ; the tran-
sition probability matrix Tp is obtained by marginalizing the concrete kernel Ts.
Given the obtained discrete-time MC P = (P , Tp) and considering the finite safe
set Ap = {z1, . . . , zp−1} ⊂ P , FAUST2 internally computes the safety probability
overP via dynamic programming [6], along with the associated abstraction error
which is now tailored over the PCTL formula of interest.

Implementation: The user may select option PCTL Safety in the list within
box 1 , enter the boundaries of the Safe set within box 8 , and press button 6 to



proceed obtaining the abstraction and computing the probability of the selected
formula. The computed value of ps0(A) is displayed in box Probability given s0 14 ,

for any user-selected initial state s0 that is input in box Initial condition s0 14 .

The user can optionally press button Properties of s0 14 to get more information
about the concrete state s0, including the related discrete state z = ξ(Ξ(s)) of
the MC, as well as the associated labels. Furthermore, the quantity ps0(A) can
be plotted, as a function of the initial state s0, by pressing buttons Plot grid and
Color grid in 13 . Clearly these outputs are exclusively available for models of
dimensions n = 1, 2, 3. ⊓⊔

It is of interest to obtain tight bounds on the error associated to the ab-
straction procedure since, given a user-defined error threshold, tighter bounds
would generate abstract modelsP with fewer states. The abstraction error bound
in FAUST2, tailored around the discussed safety problem, can be efficiently de-
creased under different types of regularity assumptions on the conditional density
function of the dtMP S [10]. For instance, in contrast to the global continuity
assumption in (1), if ts is locally Lipschitz continuous as

|ts(s̄|s)− ts(s̄|s
′)| ≤ h(i, j) ‖s− s′‖ , ∀s̄ ∈ Aj , ∀s, s

′ ∈ Ai, (2)

(here sets Ai form a partition of A, as from Algorithm 1) then the error is

|ps0(A) − pp0
(Ap)| ≤ max{γiδi|i = 1, ..., p}, (3)

where pp0
(Ap) is initialized at the discrete state p0 = ξ(s0) ∈ Ap. Here δi

is the diameter of the set Ai ⊂ A, and the constants γi are given by γi =
N

∑m
j=1

h(i, j)L (Aj). Since h(i, j) ≤ hs, the obtained error in (3) is smaller
than the older quantity NhsδsL (S). Notice that the structure of the error in
(3) leads to gridding algorithms for abstraction that are adapted to the formula
and can be made sequential [10]: FAUST2 initializes the procedure with coarse
partition sets (resulting in a small MC abstraction but with a large approxi-
mation error), and sequentially refines the partitions adaptively where the local
errors are high (leading to an MC abstraction with increasing state space), until
the global error becomes less than a user-defined threshold.

Implementation: FAUST2 allows the user to select three different grid-
ding procedures in box Gridding procedure 4 : the reader is referred to [10] for
the details of these three options. The Uniform gridding option leads to a one-
shot (non sequential) procedure, as already discussed in Section 2, whereas the
two Adaptive gridding options result in sequential and adaptive procedures lead-
ing to better errors and to smaller abstractions, but in general requiring more
computation time. The error bound quantification hinges on the constant in the
right-hand side of (2), which can be computed differently as in box Assumptions
on kernel 4 : tighter errors lead to longer computations [10]. In order to provide
full control on the chosen inputs, for any possible selection of gridding procedure,
desired abstraction error, and error bound computation, the user is prompted in
a pop-up window with an estimated running time, and asked whether to proceed.



This range of algorithms and procedures are also implemented for probabilis-
tic reach-avoid (constrained reachability) problems, which are encompassed by
general bounded-until PCTL formulas P∼ǫ{Φ U≤NΨ}. The user can select this
option in box Problem selection 1 , and is asked to input sets Φ, Ψ as safe and
target sets in the texts in box 8 .

Let us remark that the described abstraction algorithms and procedures are
also available for the formula-free abstraction discussed in Section 2. ⊓⊔

The safety problem for a controlled dtMP [9] is defined as follows. Consider
the class of deterministic Markov policies π = (µ0, µ1, . . .), where the functions
µk : S → U are properly measurable deterministic functions. The safety proba-
bility for a controlled dtMP under a given policy π is given by

pπs0(A) := P{s(k) ∈ A for all k ∈ [0, N ]|s(0) = s0, u(k + 1) = µk(s(k))}.

The safety problem deals with the computation of the maximally safe deter-
ministic Markov policy π∗, such that pπ

∗

s0
(A) = supπ p

π
s0
(A), ∀s0 ∈ A. Similarly

we can compute the minimally safe policy, or an optimal policy related to the
reach-avoid problem (defined with the bounded-until operator).

Implementation: FAUST2 computes a suboptimal policy for a given prob-
lem over an MDP, with a given threshold on the distance to the optimal safety
probability, and quantifies the corresponding approximate quantity pπ

∗

s0
(A). The

approximate optimal policy can be stored by pushing button Save results 12 ,
which provides the user with two options: either storing it in the disk as a .mat
file, or loading it to the workspace. ⊓⊔

4 Accessing and testing FAUST2

The toolbox is available at

http://sourceforge.net/projects/faust2/

We have successfully tested the toolbox with MATLAB R2012a, R2012b, R2013a,
R2013b, on machines running Windows 7, Apple OSX 10.9, and Linux Open-
SUSE. FAUST2 exploits the command integral of MATLAB (introduced in ver-
sion R2012a) for numerical integrations. (The previous versions of MATLAB
contain instruction quad and its variations, which will be removed in the future
versions of MATLAB – we have thus opted for the most up-to-date version.)
Optimization and symbolic computation toolboxes of MATLAB are necessary.
FAUST2 automatically checks the presence of these packages and displays an
error to the user in their absence. The software also takes the advantage of the
MATLAB parallel computation toolbox if present. The use of parallel computa-
tion toolbox is currently disabled for Apple operating systems due to a conflict.

Please download FAUST2 from Sourceforge. The files are organized in the
main folder as follows: the sub-folder Autonomous Models contains the codes
for deterministic systems (without input); the sub-folder Controlled Models



includes the codes for non-deterministic systems (input dependent); the sub-
folder Templates contains templates and examples for the definition of symbolic
conditional density functions; the sub-folder Case Study contains the files used
in the next Section to test the software on a practical study. The file README can
be opened with your preferred text editor and contains instructions on how to
set up and run the software. Alternatively, FAUST2 can be tested on a case study
as elaborated in the next Section. Please set the current directory of MATLAB
to the folder where the software is stored and run FAUST2.m from the MATLAB
command line.

5 Case study

In this section we apply FAUST2 to compute optimal control strategies for the
known room temperature regulation benchmark [15]. Probabilistic models for
the underlying dynamics are based on [16] and on [2]. We consider the temper-
ature regulation in multiple rooms via cooling water circulation. The amount
of extracted heat is changed via a flow-control valve. Then the input signal is
the percentage of the valve in the open position. The dynamics of the room
temperature evolve in discrete time according to the equations

s1(k + 1) = s1(k) +
∆

Cra

((s2(k)− s1(k))kcwu(k) + (Ta − s1(k))kout) + ηra(k),

s2(k + 1) = s2(k) +
∆

Ccw

((s1(k)− s2(k))kcwu(k) +Q) + ηcw(k), (4)

where s1 is the air temperature inside the room, s2 is the cooling water temper-
ature, Ta is the ambient temperature, ∆ is the discrete sampling time [min],
and ηra(·), ηcw(·) are stationary, independent random processes with normal
distributions N (0, σ2

ra∆) and N (0, σ2

cw∆), respectively. Equations (4) can be
encompassed in the condensed two-dimensional model

s(k + 1) = f(s(k), u(k)) + η(k), η(·) ∼ N (0, Ση),

which results in a stochastic kernel that is a Gaussian conditional distribution
N (f(s, u), Ση), where Ση = diag(∆[σ2

ra, σ
2

cw]). The file Chiller Kernel 2d.m

appearing with the release of the software, provides numerical values and phys-
ical interpretations of the parameters in equations (4), as well as the symbolic
structure of the conditional density function. The dynamical model in (4) can be
as well extended to a two-room temperature control (which results in a three-
dimensional model), and its conditional density function can be found in file
Chiller Kernel 3d.m. We will run FAUST2 on both 2D and 3D setups.

We are interested in keeping the temperature of the room(s) within a given
temperature interval over a fixed time horizon: this can be easily stated as a
(probabilistic) safety problem, where we maximize over the feasible inputs to
the model. We instantiate and compute this problem over the model above as
described in the main text, while providing a step-by-step guide to the user.



In order to select the problem and import the model in FAUST2, please
follow these steps: select PCTL Safety in box 1 , choose User-defined in box
2 , tick the check-box 3 to indicate a controlled model, and write the name
Chiller Kernel 2d.m in the text of box 7 to load the density function of the
two-dimensional model (4).

In the next stage we perform the abstraction and compute the quantity of
interest (maximal safety probability). Select the most straightforward (but coars-
est) abstraction algorithm, by choosing options Uniform gridding and Lipschitz
via integral in 4 . Proceed entering the problem parameters as follows: input the
number of time steps as 3 and select a desired abstraction error equal to 0.5 in
box 5 ; enter the safe temperature interval A as [19.7,20.3; 4.7,5.3], as well
as the input space U as [0,1] in the text within box 8 .

At this point the software can proceed with the main computations. Please
press the button in box 6 , in order to generate the abstract MDP, to compute
the optimal policy and the related maximal safety probability. When the compu-
tation is complete, let us proceed with some post-processing: press the buttons
Plot grid and Color grid in box 13 , to generate Figure 2 (left) representing the
maximal safety probability. The result of the computation can be stored for fur-
ther analysis by pressing button 12 : for instance Figure 2 (right) is generated
by retrieving the optimal state-dependent Markov policy at step N − 1. The ob-
tained abstract MDP has 144 states and 33 input actions. The experiment has
been run in MATLAB 8.4 (R2014b) equipped with parallel computation toolbox
on a 12-core Intel Xeon 3.47 GHz PC with 24 GB of memory and Windows 7
operating system. The initial estimate of the required time and the actual simu-
lation time were 5.2 and 3.5 minutes, respectively. The simulation time includes
both the generation of the abstract MDP and optimization over the input action.
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Fig. 2. Room temperature control problem. Left: obtained uniform partition of the
safe set, along with optimal safety probability for each partition set (color bar on the
right). The safety probability is equal to zero over the complement of the safe set.
Right: optimal Markov policy at step N − 1, as a function of the model states.



A similar procedure can be followed to study the same probabilistic safety
problem over a two-room temperature control, instantiated via the density func-
tion Chiller Kernel 3d.m. Figure 3 presents the outcomes obtained using the
Adaptive gridding and Lipschitz via integral options, selected in box 4 . The ab-
straction parameters used in this problem is as follows: number of time steps
3, safe temperature interval [19.5,20.5; 19.5,20.5; 4.5,5.5], input space
[0,1; 0,1]. We have selected a large abstraction error equal to 12 in box 5 to
be able to visualize the adaptive grid generated by the software. The obtained
abstract MDP has 45 states and 64 input actions. The experiment has been run
on the same computer. The initial estimate of the required time and the actual
simulation time were 20.7 and 26.2 minutes, respectively. The user can select a
smaller error, at the likely cost of a larger computation time. For this case study,
the implemented approach allows for the applicability of the abstraction tech-
nique at least to models with dimension 6 (that is, with 6 continuous variables),
which is beyond the performance of currently available discretization-based ap-
proaches. The reader interested in detailed computational benchmarks for the
presented techniques is referred to [8, 10].
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Fig. 3. Two-room temperature control problem. Obtained partition of the safe set,
together (bar) with optimal safety probability.

6 Summary of the commands in the Graphical User

Interface

We provide a summary of the commands of the GUI in FAUST2, as they appear
in the boxes highlighted in Figure 1.



1 The box Problem selection provides a list with three options: select Formula
free to obtain an abstraction of the model which can be exported to PRISM
or to MRMC for further analysis; choose PCTL Safety in order to abstract
the model and compute a safety probability; or opt for PCTL Reach-Avoid
to get the abstraction tailored around the computation of the reach-avoid
probability.

2 The box Kernel distribution gives three options in a list: select Linear Gaus-
sian model if the model belongs to the class of Linear Gaussian difference
equations (cf. Section 1) and define matrices A,B,Sigma in the MATLAB
workspace; choose Non-linear Gaussian model if the process noise is Gaussian
and the drift and variance are non-linear (cf. Section 1), enter the drift and
variance as a single symbolic function with two outputs via box 7 ; otherwise
choose User-defined and enter your kernel as a symbolic function using 7 .

3 Check this box if the model is non-deterministic (controlled).
4 Box Gridding procedure provides three options: select Uniform gridding to gen-

erate a grid based on global Lipschitz constant h (cf. Section 2), where the
state space is partitioned uniformly along each dimension; choose Adaptive
gridding: local->local to generate the grid adaptively based on local Lipschitz
constants h(i, j) (cf. Section 3), where the size of partition sets is smaller
where the local error is higher; select Adaptive gridding: local->global to gen-
erate the grid adaptively based on local Lipschitz constants h(i) (cf. [10]).
The first option is likely to generate the largest number of partition sets and
to be the fastest in the generation of the grid. The second option is likely to
generate the smallest number of partition sets but to be the slowest in the
grid generation. For the detailed comparison of these gridding procedures,
please see [10].
The box Assumptions on kernel provides three choices: option Lipschitz via
integral requires the density function ts(s̄|s) to be Lipschitz continuous with
respect to the current state s, and the quantity Tp(z, z

′) = Ts(Ξ(z′)|z) is
used in the marginalization (integration) step; option Lipschitz via sample
requires the density function ts(s̄|s) to be Lipschitz continuous with re-
spect to both current and the next states s, s̄, and the quantity Tp(z, z

′) =
Ts(z

′|z)L (Ξ(z′)) is used in the marginalization step; option Max-Min does
not require any continuity assumption, but takes longer time in the compu-
tation of the error.

5 The time horizon of the desired PCTL formula or of the problem of interest,
and the required upper bound on the abstraction error should be input in
these two boxes. For the case of formula-free abstraction you may enter 1 as
the number of time steps.

6 Press this button after entering the necessary data to generate the abstrac-
tion: this runs the main code. First, various checks are done to ensure the
correctness of the inputed data. Then the partition sets are generated via
gridding, the transition matrix is calculated, and the probability and the
optimal policy are computed if applicable.

7 This box is activated for options User-defined and Non-linear Gaussian model
in 2 . For the first option, the conditional density function must be an m-



file that generates ts(s̄|s, u) symbolically. Please refer to SymbolicKernel.m

for a template and ExampleKernel.m for an example. The name of kernel
function should be entered in the text-box or the function should be loaded
by pressing the button Search for file. For the option Non-linear Gaussian
model, the non-linear drift and variance must be specified as a single symbolic
function with two outputs. Please refer to NonLinKernel.m for a template
and NonLinKernelExample.m for an example.

8 If the Formula-free option is selected in 1 , the user can enter the bounds
of the state space in the first of the boxes, named Domain. In case any of
the additional two options in 1 are selected, the boundaries of the safe set
should be entered in the first text-box named Safe set. If the PCTL Reach-
Avoid option in 1 is selected, the second box is activated and the boundaries
of the target set should be entered in the text-box named Target set. If the
model is non-deterministic and the check in box 3 is ticked, the third box
is also activated and the boundaries of the Input space may be entered in
the box named Input set. In all cases the boundaries are to be given as
a matrix with two columns, where the first and second columns contain
lower and upper bounds, respectively. Alternatively, the user can press the
Select button and separately enter the lower and upper bounds in the pop-up
window.

9 The resulting error of the abstraction procedure, which is less than or equal
to the desired abstraction error introduced in 5 . This box shows the error
associated to the abstracted model.

10 The user can add, remove, or edit labels associated to the abstract states.
The set of states with any label α ∈ Σ can be represented by the intersection
of half-planes Aαz ≤ Bα. In order to tag these states with the associated
label, the user presses button Add and subsequently enters symbol α and
matrices Aα, Bα in a pop-up window. The user can also edit or remove any
previously defined label by activating its symbol in the static-box and using
buttons Edit, Remove. The button States with selected label will show the set
of states associated with the active label in 13 . Adding labels is essential in
particular for exporting the result to PRISM or to MRMC.

11 The abstracted Markov chain or MDP can be exported to PRISM or to
MRMC using these buttons. FAUST2 enables two ways of exporting the
result to PRISM: as a .prism format that is suitable for its GUI, or as the
combination of .tra and .sta files, which are appropriate for the command
line.

12 Use this button to store the results. A pop-up window appears after pushing
the button and the user can opt for storing the date over the workspace, or
in memory as an .mat file.

13 The user can plot the generated grid for the state space using the first
button. Pressing this button opens a new window showing the partitioned
input space for the controlled model. The solution of the safety and of the
reach-avoid probability can also be visualized by pressing the second button.
This option obviously works exclusively for dimensions n = 1, 2, 3.



14 The user can enter any initial state s0 in the first box and calculate the
safety or the reach-avoid probability of the model starting from that initial
state, by pressing the button Calculate. The button Properties of s0 gives the
abstracted state associated to s0, namely z = ξ(Ξ(s0)) (cf. Algorithm 1),
and all the labels assigned to this state.

7 Extensions and outlook

There are a number of enticing extensions we are planning to work on, with the
objective of rendering FAUST2 widely useful and easily deployable.

FAUST2 is presently implemented in MATLAB, which is the modeling soft-
ware of choice in a number of engineering areas. We plan to improve part of
its functionalities employing a faster, lower-level programming language, and to
enhance the seamless integration with model checking tools.

Furthermore, we plan to extend the functionality of FAUST2 by allowing
for general label-dependent partitioning, and we are exploring the implementa-
tion with differently shaped partitioning sets [10]. We moreover plan to extend
the applicability of FAUST2 to models with discontinuous and degenerate [17,
18] kernels, to implement higher-order approximations [19], to include abstrac-
tion techniques specialized for stochastic max-plus linear systems [20], to embed
formal truncations of the model dynamics [21], and to refine techniques and
algorithms for non-deterministic (control-dependent) models. Finally, we plan
to look into implementing in the tool bounds for infinite horizon properties, as
currently investigated theoretically.
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