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Abstract— In this work probabilistic reachability for con-
trolled discrete time stochastic hybrid systems is investigated.
By a suitable formulation of the reachability problem within a
stochastic optimal control framework, two complementary in-
terpretations and their corresponding computational techniques
are suggested. The results can be of interest for solving safety
analysis and control design problems for stochastic hybrid
systems, by the computation of maximal probabilistic safe sets
and maximally safe policies. They can also be employed to solve
regulation problems through the interpretation of the desired
operating region for the system as a “safe set”. The described
methodology is applied to a simple temperature regulation
problem.

I. INTRODUCTION

An important topic in classical control system theory is
reachability, which can be also interpreted as the problem of
maintaining the state of the system within some prespecified
set by selecting a suitable control law [1]. Recently, this
problem has attracted even more the interest of the control
community due to its application to real-time automation
systems such as, for example, air traffic control [2]. Such
applications introduce additional complexity to the problem,
in that they typically involve the interaction between discrete
and continuous dynamic components, often in the presence
of uncertainty affecting their evolution. This motivates the
study of reachability for controlled stochastic hybrid systems
(SHS), which is the topic discussed in this paper.

We consider a discrete time SHS (DTSHS), and address
the issue of determining if the state of the DTSHS can be
maintained within a given “safe” set with sufficiently high
probability by applying a suitable control input. As shown
in [3] with reference to the finite time horizon case, by
adopting an optimal control viewpoint, the problem can be
formulated as that of determining the feedback control law
that maximizes the probability of the state of the controlled
system to evolve within the safe set. Based on the expression
of this probability as a multiplicative cost function, and
restricting the controller class to static state feedback control
laws (Markov policies), dynamic programming (DP) can be
effectively used to compute probabilistic maximal safe sets
corresponding to different safety levels. These are the initial
states for the system, such that there exists a control law
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capable of maintaining the state of the system within the
safe set with a probability not smaller than a prescribed
safety level (see [4], [5] for the corresponding definition in
the deterministic case).

In this paper, we investigate the complementary problem
of keeping the state of a DTSHS outside some prespecified
“unsafe” set by selecting a suitable feedback control law. We
again formulate the problem as an optimal control problem
wherein the objective is now to minimize some max cost
function. We show that the DP approach is still effective
for determining probabilistic maximal safe sets for Markov
policies. In fact, the value functions for the max cost case
can be expressed in terms of the value functions for the mul-
tiplicative cost case, thus formalizing the intuition that the
two viewpoints for reachability analysis are complementary
to each other.

We characterize the maximally safe control law within
the class of Markov policies. We also extend reachability
analysis for DTSHS to the infinite time-horizon setting and
address the question of convergence of the optimal control
law to a stationary policy.

Reachability can also be studied within the framework
of regulation theory where the aim is to steer the state
of the system close to some desired operating condition.
This can be achieved by considering a small neighborhood
around the desired operating condition, and by solving a
reachability problem with a time-varying region that shrinks
to that neighborhood as the “safe” set for the system. If
the state of the system has then to be maintained within
this neighborhood indefinitely, [6], one can split the problem
into a finite horizon time-varying reachability problem and
a subsequent infinite horizon one. This approach has close
connections with control design for practical stabilization,
[7]. The application of reachability analysis to regulation
problems for DTSHS is discussed here with reference to a
simple application example, where the problem is to drive
the temperature of a room close to some desired value by
controlling a heater.

The rest of the paper is organized as follows. In Section
II we recall the definition of DTSHS given in [3]. We then
describe in Section III the stochastic reachability analysis
problem for Markov policies. We address it according to the
two complementary viewpoints that lead to a DP solution
using a multiplicative and a max cost function. In Section
IV, we consider the problem of probabilistic maximal safe set
computation, and discuss conditions such that a maximally
safe Markov policy exists. A numerical example is given
with reference to the problem of temperature regulation. The
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extension to the infinite horizon case is treated in Section V.
Finally, some concluding remarks are drawn in Section VI.

II. DISCRETE TIME STOCHASTIC HYBRID SYSTEM MODEL

In this section, we consider the discrete time stochastic
hybrid system (DTSHS) model introduced in [3]. The state
of the DTSHS is characterized by a discrete and a continuous
component. The continuous state evolves according to a
probabilistic law that depends on the value taken by the dis-
crete state. In turn, the discrete state can transition between
different values in a set according to some probabilistic law
that depends on the value taken by the continuous state. Both
the continuous and the discrete probabilistic evolutions can
be affected by some control input (transition input). After a
transition in the discrete state has occurred, the continuous
state is subject to a probabilistic reset that depends on some
control input (reset input).

Definition 1: A discrete time stochastic hybrid system
(DTSHS) is a tuple H = (Q, n,U ,Σ, Tx, Tq, R), where

- Q := {q1, q2, . . . , qm}, for some m ∈ N, represents the
discrete state space.

- n : Q → N assigns to each discrete state value q ∈ Q
the dimension of the continuous state space R

n(q).
- U is a compact Borel space representing the transition

control space.
- Σ is a compact Borel space representing the reset

control space.
- Tx : B(Rn(·)) × S × U → [0, 1] is a Borel-measurable

stochastic kernel on R
n(·) given S×U , which assigns to

each s = (q, x) ∈ S and u ∈ U a probability measure
Tx(dx|s, u) on the Borel space (Rn(q),B(Rn(q))).

- Tq : Q× S × U → [0, 1] is a discrete stochastic kernel
on Q given S × U , which assigns to each s ∈ S and
u ∈ U , a probability distribution Tq(q|s, u) over Q.

- R : B(Rn(·))×S×Σ×Q → [0, 1] is a Borel-measurable
stochastic kernel on R

n(·) given S×Σ×Q, that assigns
to each s ∈ S, σ ∈ Σ, and q′ ∈ Q, a probability measure
R(dx|s, σ, q′) on the Borel space (Rn(q′),B(Rn(q′))). �

The hybrid state space is S := ∪q∈Q{q}×R
n(q). B(S) is the

σ-field generated by the subsets of S of the form ∪q{q}×Aq,
with Aq denoting a Borel set in R

n(q).
In order to define an execution for a DTSHS we have to

specify how the system is initialized and how the control
inputs to the system are selected.

The system initialization at time k = 0 is specified through
some probability measure π : B(S) → [0, 1] on the Borel
space (S,B(S)). As for the control input, we next define
the notion of feedback policy with reference to a finite time
horizon [0, N ].

Definition 2 (Feedback policy): A feedback policy for a
DTSHS H = (Q, n,U ,Σ, Tx, Tq, R) is a sequence µ =
(µ0, µ1, . . . , µN−1) of universally measurable maps µk :
S × (S × U × Σ)k → U × Σ, k = 0, 1, . . . , N − 1. We
denote the set of feedback policies as M. �

Let τx : B(Rn(·))×S×U×Σ×Q → [0, 1] be a stochastic
kernel on R

n(·) given S ×U ×Σ×Q, which assigns to each

s = (q, x) ∈ S, u ∈ U , σ ∈ Σ and q′ ∈ Q a probability
measure on the Borel space (Rn(q′),B(Rn(q′))) as follows:

τx(dx′ |(q, x), u, σ, q′) =

{
Tx(dx′|(q, x), u), if q′ = q

R(dx′|(q, x), σ, q′), if q′ �= q.

Based on τx we can introduce the Borel-measurable
stochastic kernel Ts : B(S) × S × U × Σ → [0, 1] on S
given S × U × Σ, which assigns to each s = (q, x), s′ =
(q′, x′) ∈ S, (u, σ) ∈ U × Σ a probability measure on the
Borel space (S,B(S)) as follows:

Ts(ds′ |s, (u, σ)) = τx(dx′ |s, u, σ, q′)Tq(q′|s, u). (1)

Definition 3 (Execution): An execution for a DTSHS
H = (Q, n,U ,Σ, Tx, Tq, R) associated with a policy µ =
(µ0, µ1, . . . , µN−1) ∈ M and an initial distribution π is
a stochastic process {s(k), k ∈ [0, N ]} with values in S
whose sample paths are obtained according to the following
algorithm:
extract from S a value s0 for s(0) according to π;

for k = 0 to N − 1

set (uk, σk) = µk(sk, sk−1, uk−1, σk−1, . . . );

extract from S a value sk+1 for s(k + 1) according

to Ts(· |sk, (uk, σk));

end �

A DTSHS H is a controlled Markov process (see, e.g., [8],
[9]) with state space S, control space U ×Σ, and controlled
transition probability function Ts : B(S) × S × U × Σ →
[0, 1] defined in (1). Thus, the execution {s(k), k ∈ [0, N ]}
associated with µ ∈ M and π is a stochastic process
defined on the canonical sample space Ω = SN+1, endowed
with its product topology B(Ω), with probability measure
Pµ

π uniquely defined by the transition kernel Ts, the policy
µ ∈ M, and the initial probability measure π (see [9,
Proposition 7.45]).

If µ = (µ0, µ1, . . . , µN−1) ∈ M is such that for any
k ∈ [0, N − 1] the values for the control inputs (uk, σk) are
determined only based on the value taken by the state at the
time step k, then the policy is said to be Markov.

Definition 4 (Markov Policy): A Markov policy for a DT-
SHS H = (Q, n,U ,Σ, Tx, Tq, R) is a sequence µ =
(µ0, µ1, . . . , µN−1) of universally measurable maps µk :
S → U × Σ, k = 0, 1, . . . , N − 1. We denote the set of
Markov policies as Mm. �
If µ = (µ0, µ1, . . . , µN−1) is a Markov policy, then, the
execution of H associated with µ and a distribution π on
(S,B(S)) is a time inhomogeneous Markov process with
initial state distribution π, and one-step transition kernels
Tµk

s (ds′|s) := Ts(ds′|s, µk(s)), k = 0, 1, . . . , N − 1.
In the rest of the paper we shall consider only feedback

policies that are Markov.

III. STOCHASTIC REACHABILITY

We consider the following reachability problem: Given a
stochastic hybrid system H, determine the probability that
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the execution associated with some policy µ ∈ Mm and
initialization π will enter a Borel set A ∈ B(S) during the
time horizon [0, N ]:

Pµ
π (A) := Pµ

π (s(k) ∈ A for some k ∈ [0, N ]). (2)

If π is concentrated at s ∈ S, i.e. π(ds) = δs(ds), then
Pµ

π (A) represents the probability of entering A starting from
s. Hence, we denote it by Pµ

s (A). When A is an unsafe set
for H, by computing Pµ

s (A), we evaluate the safety level for
system H when it starts from s and is subject to policy µ.

In this section we show that for a Markov policy µ the
problem of computing Pµ

s (A) can be solved by using an
iterative procedure.

A. Max cost

Let 1C : S → {0, 1} denote the indicator function of a set
C ⊆ S: 1C(s) = 1, if s ∈ C, and 0, if s �∈ C. Observe that

max
k∈[0,N ]

1A(sk) =

{
1, if sk ∈ A for some k ∈ [0, N ]
0, otherwise,

where sk ∈ S, ∀k ∈ [0, N ].
The probability Pµ

π (A) in (2) can then be expressed as

Pµ
π (A) = Eµ

π

[
max

k∈[0,N ]
1A(s(k))

]
. (3)

From this expression it follows that

Pµ
π (A) =

∫
S

Eµ
π

[
max

k∈[0,N ]
1A(s(k))| s(0) = s

]
π(ds), (4)

where Eµ
π [maxk∈[0,N ] 1A(s(k))| s(0) = s] is well defined

over the support of the distribution π of s(0).
Consider now a Markov policy µ = (µ0, µ1, . . . , µN−1) ∈

Mm, with µk : S → U × Σ, ∀k ∈ {0, 1, . . . , N − 1}, and
an initial distribution π. For each k ∈ [0, N ], introduce the
function Wµ

k : S → [0, 1] as follows

Wµ
k (s):= 1Ā(s)

∫
Sk+1

max{0, 1A(sh), N − k + 1 ≤ h ≤ N}
N−1∏

h=N−k

Tµh
s (dsh+1|sh)δs(dsN−k) + 1A(s), s ∈ S, (5)

where, for k = 0,Wµ
0 (s) = 1A(s), and Ā denotes the

complement of A in S, Ā = S \ A. It is easily seen that
the right-hand-side of (5) can be rewritten as

∫
Sk+1

max
h∈[N−k,N ]

1A(sh)
N−1∏

h=N−k

Tµh
s (dsh+1|sh)δs(dsN−k)

so that, for those s ∈ S belonging to the support of the
distribution of s(N − k),

Wµ
k (s) = Eµ

π

[
max

l∈[N−k,N ]
1Ā(s(l))| s(N − k) = s

]
. (6)

From this expression, one can see that Wµ
k (s) is the proba-

bility of entering A from s during the (residual) time horizon
[N − k,N ] of length k, under policy µ applied from π.

By (4) and (6), Pµ
π (A) can be expressed as

Pµ
π (A) =

∫
S

Wµ
N (s)π(ds), (7)

which, for π(ds) = δs(ds), reduces to Pµ
s (A) = Wµ

N (s).
Let F denote the set of functions from S to R. Define the

map H : S × U × Σ ×F → R as follows:

H(s, (u, σ), Z) :=
[
Tq(q|s, u)

∫
Rn(q)

Z((q, x′))Tx(dx′|s, u)

+
∑
q′ �=q

Tq(q′|s, u)
∫

Rn(q′)
Z((q′, x′))R(dx′|s, σ, q′)

]
, (8)

s ∈ S, (u, σ) ∈ U × Σ, and Z ∈ F .
From definition (5) of Wµ

k , recalling that of Ts in (1),
Lemma 1 readily follows.

Lemma 1: Fix a Markov policy µ = (µ0, µ1, . . . , µN−1),
µk : S → U × Σ, k = 0, 1, . . . , N − 1. Then, functions
Wµ

k : S → [0, 1], k = 0, 1 . . . , N , can be computed by the
recursion:

Wµ
k+1(s) = 1A(s) + 1Ā(s)H(s, µN−(k+1)(s),W

µ
k ), s ∈ S,

initialized with Wµ
0 (s) = 1A(s), s ∈ S. �

B. Multiplicative cost

The probability Pµ
π (A) defined in (2) can be expressed as

Pµ
π (A) = 1 − pµ

π(Ā), (9)

where pµ
π(Ā) := Pµ

π (s(k) ∈ Ā for all k ∈ [0, N ]) is the
probability of remaining within Ā during the time interval
[0, N ]. Observe that

N∏
k=0

1Ā(sk) =

{
1, if sk ∈ Ā for all k ∈ [0, N ]
0, otherwise,

where sk ∈ S, k ∈ [0, N ]. Then,

pµ
π(Ā) = Eµ

π [
N∏

k=0

1Ā(s(k))]. (10)

From this expression it follows that

pµ
π(Ā) =

∫
S

Eµ
π

[ N∏
k=0

1Ā(s(k))| s(0) = s
]
π(ds), (11)

where the conditional mean under the sign of integral is well
defined over the support of the distribution π of s(0).

Consider a Markov policy µ = (µ0, . . . , µN−1) ∈ Mm.
For each k ∈ [0, N ], s ∈ S, define V µ

k : S → [0, 1] as

V µ
k (s) := 1Ā(s)

∫
Āk+1

N−1∏
h=N−k

Tµh
s (dsh+1|sh)δs(dsN−k),

where, for k = 0,
∏N−1

h=N−k Tµh
s (·|sh) = 1, sh ∈ S. Note

that V µ
k can be rewritten as∫

Sk+1

N∏
l=N−k

1Ā(sl)
N−1∏

h=N−k

Tµh
s (dsh+1|sh)δs(dsN−k). (12)
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If s ∈ S belongs to the support of the distribution of
s(N − k), then, Eµ

π

[ ∏N
l=N−k 1Ā(s(l))| s(N − k) = s

]
is

well-defined and equal to (12), so that

V µ
k (s) = Eµ

π

[ N∏
l=N−k

1Ā(s(l))| s(N − k) = s
]

(13)

denotes the probability of remaining inside Ā, starting from
s, during the (residual) time horizon [N −k,N ] of length k,
under policy µ applied from π.

By (11) and (13), pµ
π(Ā) can be expressed as

pµ
π(Ā) =

∫
S

V µ
N (s)π(ds), (14)

hence Pµ
π (A) = 1 − ∫

S V µ
N (s)π(ds). The following lemma

was proven in [3].
Lemma 2: Fix a Markov policy µ = (µ0, µ1, . . . , µN−1),

µk : S → U × Σ, k = 0, 1, . . . , N − 1. Then, functions
V µ

k : S → [0, 1], k = 0, 1 . . . , N , can be computed by the
recursion:

V µ
k+1(s) = 1Ā(s)H(s, µN−(k+1)(s), V

µ
k ), s ∈ S,

initialized with V µ
0 (s) = 1Ā(s), s ∈ S. �

C. Max cost versus multiplicative cost

By
∏N

h=N−k 1Ā(sh) = 1 − maxh∈[N−k,N ] 1A(sh), k ∈
[0, N ], the following can be established.

Lemma 3: Fix a Markov policy µ = (µ0, µ1, . . . , µN−1).
For any k ∈ [0, N ], V µ

k (s) = 1 − Wµ
k (s), s ∈ S. �

IV. PROBABILISTIC SAFE SET COMPUTATION

For a given policy µ ∈ M, different initial conditions s
are characterized by a different probability of entering the
unsafe set A. If the system starts from an initial condition
that corresponds to a probability ε ∈ [0, 1] of entering A,
then the system is said to be “safe with probability 1 − ε”.
We define the probabilistic safe set with safety level 1 − ε
associated with policy µ as

Sµ(ε) = {s ∈ S : Pµ
s (A) ≤ ε}. (15)

If the policy µ is Markov, then, by (7) and (14) the prob-
abilistic safe set with safety level 1 − ε, ε ∈ [0, 1], defined
in (15), can be expressed as the level set of Wµ

N and V µ
N :

Sµ(ε) = {s ∈ S : Wµ
N (s) ≤ ε} = {s ∈ S : V µ

N (s) ≥ 1 − ε}.
Suppose that the control policy can be selected so as to

minimize the probability of entering A. We can then define
the maximal probabilistic safe set with safety level 1 − ε:

S�(ε) = {s ∈ S : inf
µ∈Mm

Pµ
s (A) ≤ ε}. (16)

S�(ε) is called “maximal” since the safe set Sµ(ε) in (15)
associated to a policy µ ∈ Mm satisfies Sµ(ε) ⊆ S�(ε),
for each µ ∈ Mm, ε ∈ [0, 1]. In this section we show that,
for the class of Markov policies, the problem of computing
S�(ε) can be turned into an optimal control problem and
solved by dynamic programming.

The calculation of the maximal probabilistic safe set S�(ε)
defined in (16) amounts to finding the infimum over the

policies of the probability Pµ
s (A) of entering the unsafe set

A starting from s, for all s outside A (the probability of
entering A starting from s ∈ A is 1 for any policy). A policy
that achieves this infimum is said to be maximally safe.

Definition 5 (Maximally safe Markov policy): Let A ∈
B(S) be an unsafe set for the DTSHS with state space S.
A Markov policy µ∗ ∈ Mm is maximally safe if Pµ∗

s (A) =
infµ∈Mm

Pµ
s (A), ∀s ∈ Ā. �

In general, a maximally safe policy is not guaranteed to
exist. We next provide sufficient conditions for the existence
of a maximally safe Markov policy, in terms of both the max
cost and the multiplicative cost. The proofs are omitted due
to space limitations.

A. Max cost

In the following theorem, we describe an algorithm to
compute a maximally safe Markov policy µ∗ ∈ Mm based
on representation (3) of Pµ

s (A).
Theorem 1: Define W ∗

k : S → [0, 1], k = 0, 1, . . . , N , by
the recursion:

W ∗
k+1(s) = inf

(u,σ)∈U×Σ

(
1A(s) + 1Ā(s)H(s, (u, σ),W ∗

k )
)
,

s ∈ S, initialized with W ∗
0 (s) = 1A(s), s ∈ S.

Then, W ∗
N (s) = infµ∈Mm

Pµ
s (A), s ∈ S.

If µ∗
k : S → U × Σ, k ∈ [0, N − 1], is such that

µ∗
k(s) = arg inf

(u,σ)∈U×Σ
H(s, (u, σ),W ∗

N−(k+1)),∀s ∈ Ā, (17)

then, µ∗ = (µ∗
0, . . . , µ

∗
N−1) is a maximally safe Markov

policy. A sufficient condition for the existence of such a µ∗

is that Uk(s, λ) = {(u, σ) ∈ U ×Σ : H(s, (u, σ),W ∗
k ) ≤ λ}

is compact for all s ∈ Ā, λ ∈ R, k ∈ [0, N − 1]. �

B. Multiplicative cost

We now show how to compute a maximally safe Markov
policy µ∗ ∈ Mm, based on equation (9) and on the
representation (10) of pµ

s (Ā) as a multiplicative cost.
Theorem 2: Define V ∗

k : S → [0, 1], k = 0, 1, . . . , N , by
the recursion:

V ∗
k+1(s) = sup

(u,σ)∈U×Σ

1Ā(s)H(s, (u, σ), V ∗
k ),

s ∈ S, initialized with V ∗
0 (s) = 1Ā(s), s ∈ S.

Then, V ∗
N (s) = supµ∈Mm

pµ
s (Ā), s ∈ S.

If µ∗
k : S → U × Σ, k ∈ [0, N − 1], is such that

µ∗
k(s) = arg sup

(u,σ)∈U×Σ

H(s, (u, σ), V ∗
N−(k+1)), ∀s ∈ Ā, (18)

then, µ∗ = (µ∗
0, . . . , µ

∗
N−1) is a maximally safe Markov

policy. A sufficient condition for the existence of such a µ∗

is that Uk(s, λ) = {(u, σ) ∈ U × Σ : H(s, (u, σ), V ∗
k ) ≥ λ}

is compact for all s ∈ Ā, λ ∈ R, k ∈ [0, N − 1]. �
Remark 1: If U and Σ are finite sets, then the compactness

assumption in Theorems 1 and 2 is not required. �
In view of Theorems 1 and 2, the maximal probabilistic safe
set S�(ε) with safety level 1 − ε defined in (16) can be
determined as either S�(ε) = {s ∈ S : W ∗

N (s) ≤ ε} or
S�(ε) = {s ∈ S : V ∗

N (s) ≥ 1 − ε}.
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Maximal probabilistic safe set 
and Maximally safe policy

DP - Multiplicative Function

Sec. III

Thm. 2 Thm. 1

Maximal probabilistic safe set 
and Maximally safe policy

DP - Max Function

Fig. 1. Problem Interpretation.

Remark 2: The results in this section can be easily ex-
tended to the case when the unsafe set A is time varying:
A(k) ∈ B(S), k ∈ [0, N ]. The corresponding recursive
expressions should be simply changed by considering at each
iteration k the corresponding sets A(N − k) and Ā(N − k),
and initializing the recursion with the indicator function of
A(N) and Ā(N). �
C. Example

We consider the problem of regulating the temperature of
a room during some time horizon [0, N ] by a thermostat that
can switch a heater on and off.
The DTSHS model H = (Q, n,U ,Σ, Tx, Tq, R) is taken
from [3]. The discrete component Q = {ON,OFF} represents
the heater operating mode. The continuous state component
represents the average room temperature, hence n(q) = 1,
∀q ∈ Q. The transition control space is U = {0, 1}: “1”
means that a switching command is issued to the heater, “0”
that no switching command is issued. The reset control space
is Σ = ∅.
Let N (·;m,σ2) denote the probability measure over
(R,B(R)) associated with a Gaussian density function with
mean m and variance σ2. The transition kernel Tx is
defined as (see [3] for more details) Tx(· |(q, x), u) =
N (·;mq(x), ν2), where mOFF(x) = x − a

C (x − xa)∆t,
mON(x) = mOFF(x)+ r

C ∆t and ν2 := 1
C2 ∆t; a is the average

heat loss rate, C is the average thermal capacity of the room,
xa is the constant ambient temperature, r is the rate of heat
gain supplied by the heater, and ∆t is the time discretization
interval. Temperature is measured in Fahrenheit degrees (◦F )
and time in minutes (min). The time horizon has length N =
600 min. The parameters are assigned the following values:
xa = 10.5◦F , a/C = 0.1 min−1, r/C = 10◦F/min,
ν = 0.33◦F , and ∆t = 1 min.
We assume that it takes some (random) time for the heater
to actually switch between its two operating conditions, after
a switching command has been issued. This is modeled by
defining the discrete transition kernel Tq as follows

Tq(q
′|(q, x), 0)=

(
1, q′ = q

0, q′ �= q
; Tq(q

′|(q, x), 1)=

(
α, q′ �= q

1 − α, q′ = q
,

where α ∈ [0, 1] represents the probability of switching from
one mode to the other in one time-step. Here, we set α = 0.8.
The reset map is taken to be equal to Tx: R(· |(q, x), q′) =
N (·;mq(x), ν2).

We consider the following regulation problem: determine
a control law that maximizes the probability that the average

room temperature x is driven close to 75◦F in t min starting
from any value in the set (70, 80)◦F , with an admissible
excursion of ±1◦F around 75◦F , and maintained within
75◦F ± 1◦F thereafter. t is the allowed time to steer the
temperature to the desired region and can be specified by
the user or chosen by the control designer. We consider the
case when t = 300. Similar results are obtained for t = 150
and t = 450. The implementation is done in MATLAB with
a discretization step for the temperature equal to 0.05◦F .

The regulation problem can be reformulated as that of
computing a maximally safe policy for a time varying “safe”
set Ā(k) = Q×X (k), where X (k) shrinks from the region
(70, 80)◦F towards the desired region (74, 76)◦F during
the time interval [0, 300) min, and then keeps equal to
(74, 76)◦F in the interval [300, 600] min.

The results discussed below refer to the following three
different evolutions in time of the safe set for the tem-
perature during the time interval [0, t), with t = 300:
X1(k) = (70, 80), k ∈ [0, t); X2(k) = (70, 80), k ∈
[0, t/2), and (66 + 8k

t , 84 − 8k
t ), k ∈ [t/2, t); X3(k) =(

70 + 4k
t , 80 − 4k

t

)
, k ∈ [0, t). Correspondingly, Āi(·) =

Q×Xi(·), i = 1, 2, 3.
We determined the maximally safe Markov policies µ∗

i ,
i = 1, 2, 3 and reported them in Figure 2. The plots in the
first row refer to Ā1(·), those in the second row to Ā2(·),
and those in the third row to Ā3(·). The plots on the left
correspond to the OFF mode, and those on the right to the
ON mode. Each plot represents the value taken by the binary
input u during the time horizon from 0 to 600 min (on
the horizontal axis) as a function of the temperature (on
the vertical axis). For any time instant k ∈ [0, 600] only
the corresponding safe temperature range is considered. The
value 0 (“do not switch”) for u is plotted in gray, whereas
the value 1 (“switch”) is plotted in black. The maximally
safe policies are expected to be time-varying during the time
interval [0, 300).
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Fig. 2. Maximally safe policy as a function of the temperature and time
for the safe sets Ā1 , Ā2, and Ā3 (from top to bottom) and t = 300. The
left (right) column corresponds to the OFF (ON) mode. The darker (lighter)
shade indicates that “switch” (“do not switch”) is the recommended action.

We computed the probabilities p
µ∗

i
π (Āi(·)), of remaining in

the safe sets Āi(·), i = 1, 2, 3, when the initial distribution
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Fig. 3. Maximal probabilistic safe sets for X1(·) when t = 150, 300, 450
(from left to right) and the heater is initially off. The safety level is reported
on the vertical axis, and the temperature value on the horizontal axis.

π is uniform over Q× (70, 80). p
µ∗

i
π (Āi(·)) remains almost

the same for Āi(·), i = 1, 2, 3, with the value for Ā1(·) only
marginally higher than the others. This is easily seen since
Ā3(k) ⊆ Ā2(k) ⊆ Ā1(k), k ∈ [0, 600], implies pµ

π(Ā3(·)) ≤
pµ

π(Ā2(·)) ≤ pµ
π(Ā1(·)), for any µ and π.

We furthermore determined the maximal probabilistic safe
sets S∗

i (ε) = ∪q∈{OFF,ON}{x ∈ R : p
µ∗

i

(q,x)(Āi(·)) ≥ 1 − ε}
corresponding to different safety levels 1−ε, and for different
values of the transient length t. In Figure 3 we plotted the
subset of S∗

i (ε) corresponding to q = OFF for i = 1 and t =
150, 300, 450 (the plots when q = ON are similar). Note that,
not surprisingly, S∗

1 (ε) gets smaller as the required safety
level 1 − ε grows, and gets larger as t increases. Similar
results are obtained for i = 2 and i = 3.

V. EXTENSIONS TO THE INFINITE HORIZON CASE

We consider a system that is described by a controlled
DTSHS model H (see Definition 1). The sets M and Mm

of feedback and Markov policies are extension to the infinite
horizon case of those introduced in Section II. A Markov
policy µ ∈ Mm is said to be stationary if µ = (µ̄, µ̄, µ̄, . . . ),
with µ̄ : S → U × Σ universally measurable. The execution
of the DTSHS H associated with some policy µ and initial
distribution π is easily obtained by extending Definition 3
to the infinite horizon. Then, the execution {s(k), k ≥ 0}
associated with µ ∈ M and π is a stochastic process defined
on the canonical sample space Ω = S∞, endowed with
its product topology B(Ω), with probability measure Pµ

π,∞
uniquely defined by the transition kernel Ts, the policy µ,
and the initial distribution π (see [9, Proposition 7.45]).

For a given policy µ ∈ M and initial distribution π, let

Pµ
π,∞(A) := Pµ

π,∞(s(k) ∈ A for some k ≥ 0),

be the probability of entering the unsafe region specified by
A ∈ B(S). If π is concentrated in a single point s, we use
the notation Pµ

s,∞(A). The goal is again that of finding an
optimal Markov policy that singles out the maximal proba-
bilistic safe set S�

∞(ε) := {s ∈ S : infµ∈Mm
Pµ

π,∞(A) ≤ ε}
with safety level 1 − ε.

We aim at computing this maximally safe policy by means
of a dynamic programming scheme. In addition, as it is
reasonable in an infinite horizon setting for a time-invariant
system, we try to investigate if such a policy can be selected
among the stationary Markov policies.

In the following, we shall focus on the interpretation based
on the expression for the probability Pµ

π,∞(A) in terms of
the max cost: Pµ

π,∞(A) = Eµ
π,∞

[
maxk≥0 1A(s(k))

]
.

Unlike the additive-cost, the max cost framework is not of
wide usage. Extending the results developed for the infinite
horizon additive cost case to the infinite horizon max cost
case requires some attention regarding the following aspects:
it is first necessary to take care of the asymptotic properties
of the max cost function at the limit; and the measurability
properties of the limit function, its behavior when minimized,
the existence and properties of the optimal argument have to
be carefully assessed.

An iterative procedure to compute Pµ
π,∞(A) is again

possible. Conditions that yield a stationary optimal Markov
policy can also be provided. The proof of this result is
omitted due to space limitations.

Theorem 3: Define the maps W ∗
k : S → [0, 1], k ≥ 0, by

the recursion:

W ∗
k+1(s) = inf

(u,σ)∈U×Σ

(
1A(s) + 1Ā(s)H(s, (u, σ),W ∗

k )
)
,

s ∈ S, initialized with W ∗
0 (s) = 1A(s), s ∈ S.

Suppose that ∃k̄ ≥ 0 s.t. {(u, σ) ∈ U × Σ :
H(s, (u, σ),W ∗

k ) ≤ λ} is compact for all s ∈ Ā, λ ∈ R,
k ≥ k̄. Then, W ∗

∞(s) = infµ∈Mm
Pµ

s,∞(A), s ∈ S.
Furthermore, there exists a maximally safe stationary Markov
policy µ∗ = (µ̄∗, µ̄∗, . . .), with µ̄∗ : S → U × Σ, given by

µ̄∗(s) = arg inf
(u,σ)∈U×Σ

H(s, (u, σ),W ∗
∞), ∀s ∈ Ā. �

VI. FUTURE WORK

There appear to be very promising directions for this
research, from both a theoretical and an application-oriented
viewpoint. Regarding the latter aspect, the idea of embed-
ding further performance specifications in the control design
procedure, while guaranteeing a reachability specification,
appears an interesting possibility to investigate.
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