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Abstract—This paper presents a study of possible extensions
of Pathway Logic to represent and reason about semiquantitative
and probabilistic aspects of biological processes. The underlying
theme is the annotation of reaction rules with affinity information
that can be used in different simulation strategies. Several such
strategies were implemented, and experiments carried out to
test feasibility, and to compare results of different approaches.
Dimerization in the ErbB signalling network, important in cancer
biology, was used as a test case.

I. INTRODUCTION

Biological networks have complex interconnections, non-
linear responses to stimuli and self-regulation. This presents
clear challenges for modeling and studying their behavior, and
it is important to efficiently organize and represent knowledge
about biological networks at the modeling stage. Pathway
Logic [1], [2] is an approach to modeling cellular processes
based on symbolic logic. It allows one to model aspects of the
structure and state of interacting components, to represent in-
dividual process steps (reactions) and to study possible ways a
system can evolve using techniques based on logical inference.
Reactions can be modeled at many levels of detail ranging
from micro steps representing events such as phosphorlyation
at specific sites or binding of protein domains, to macro steps
such as the results of signaling or metabolic modules. The
choice of the level of detail depends both on available data
and the questions to be asked. This flexible approach allows
one to study reaction networks of hundreds or even thousands
of nodes.
Although detailed data concerning reaction rates is often still
limited, there is much more data concerning time series and
overall effects of changes in cellular signals and expres-
sion levels of different cellular components. Thus there is
increasing interest in developing simulation and verification
tools to handle quantitative, or at least semi-quantitative data.
Moreover the uncertainty that affects the study of the entities
into play suggests that it is important to address probabilistic
aspects of biochemical processes. Thus one would like to ask
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a model semi-quantitative questions about different possible
outcomes under different initial conditions or due to pertur-
bations of ongoing processes, without sacrificing the ability
to scale to moderately complex processes. For example, one
might ask about the relative amounts of different phenotypes
related to an overexpressed gene; or how the outcomes change
when the network is perturbed, say by mutations or blocking
activity of particular components.
In this paper we report on a study of different approaches to
represent probabilistic information about approximate quanti-
ties and rates as a first step to extending the Pathway Logic
modeling framework. The underlying theme is the use of
probabilities and stochastic modeling as a flexible technique to
account for unknown features and to incorporate different lev-
els of quantitative information. Questions of interest include:
how do different mathematical models represent rates and
quantities? What are good choices for modeling randomness
in these networks? What simplifications and abstractions are
meaningful? Which techniques have efficient implementations
that can scale to moderately complex modules?
We considered different but related approaches from the lit-
erature to represent random events: stochastic simulations of
chemically reacting systems, stochastic Petri nets and proba-
bilistic boolean networks. We customized these different tech-
niques to the framework of Pathway Logic and several vari-
ations of these approaches were implemented and compared.
Experiments were carried out using the ErbB dimerization net-
work as a testbed. A first simple approach based on prioritizing
rules and using a greedy discrete algorithm for simulation was
developed and tested on a model of dimerization and activation
for four ErbBs. The greedy algorithm was compared to an
analysis using a model-checker for probabilistic systems. The
feasibility of predicting the final/equilibrium state for a smaller
model of dimerization of two ErbBs was first tested using
a probability-based-rule-sampling approach, programmed in
Matlab. Then, a probabilistic extension of the rewriting se-
mantics underlying Pathway Logic was implemented in the
Maude rewriting logic language and an extension of this small
ErbB dimerization network was studied and compared to a
previously published model.



II. SYMBOLIC MODELING AND PATHWAY LOGIC

Symbolic modeling of cellular processes:
Symbolic/logical models allow one to represent partial
information and to model and analyze systems at multiple
levels of detail, depending on information available and
questions to be studied. Such models are based on formalisms
that provide a language for representing the states of the
system, mechanisms to model their changes, such as reactions,
and tools for analysis based on computational or logical
inference. Symbolic models can be used for simulation
of system behavior. In addition properties of processes
can be stated in associated logical languages and checked
using tools for formal analysis. A variety of formalisms
have been used to develop symbolic models of biological
systems, including Petri nets [3], [4]; ambient/membrane
calculi [5], [6]; statecharts [7]; live sequence charts [8]; and
rule-based systems including P-systems [9]; and Pathway
Logic [1], [2]. Each of the underlying formalisms was
initially developed to model and analyze computer systems
with multiple processes executing concurrently. A pi-calculus
model for the receptor tyrosine kinase/mitogen-activated
protein kinase (RTK/-MAPK) signal transduction pathway is
presented in [10]. Tools such as BioSPI [11] and SPiM [12]
have been developed for Monte Carlo simulation to obtain
time-evolution of molecular concentrations. In addition to
simulation, probabilistic model checking techniques using
tools such as PRISM [13] have been used to analyze such
models [14], [15]. A simple formalism for representing
interaction networks using an algebraic rule-based approach
very similar to the Pathway Logic approach is presented in
[16]. The language has three interpretations: a qualitative
binary interpretation much like the Pathway Logic models;
a quantitative interpretation in which concentrations and
reaction rates are used; and a stochastic interpretation.
Queries are expressed in a formal logic called Computation
Tree Logic (CTL) and its extensions to model time and
quantities. CTL queries can express reachability (find
pathways having desired properties), stability, and periodicity.
Techniques for learning new rules to achieve a desired system
specification are described in [17].

Pathway Logic: In Pathway Logic (PL) models of bi-
ological processes are developed using the Maude system
[18], a formal language and tool set based on rewriting logic.
Rewriting logic [19] is a logical formalism that is based on two
simple ideas: states of a system are represented as elements
of an algebraic data type; and the behavior of a system is
given by local transitions between states described by rewrite
rules. The process of application of rewrite rules generates
computations (also thought of as deductions). In the case of
biological processes these correspond to pathways.

A PL model includes representation of cellular components
such as proteins and small molecules, their locations, protein
state, and post translational modifications. It also includes
representations, as rewrite rules, of basic process steps such
as metabolic reactions or intra- and inter- cellular signaling.

Execution of the rules allows one to represent and reason
about dynamic assembly of complexes, cascading transmission
of signals, feedback-loops, cross talk between subsystems,
and larger pathways. Pathways are not predefined. Instead
they are assembled by instantiating and connecting individual
steps, starting from an initial state, subject to user-defined
constraints. PL models are transformed into Petri nets for
visualization and analysis using the Pathway Logic Assistant
[20], a tool for interactive visualization and analysis of PL
models.

In the following we use the EGFR family of receptor tyro-
sine kinases (ErbBs), important in the study of cancer tumor
cells, as the basis of our case studies. These receptors form a
multiplicity of homo- and hetero-dimers [21]. As an example,
the following are rules (in simplified form, represented using
Maude syntax [18]) for the homo- and hetero-dimerization of
two receptors ErbB1 (also known as EGFR) and ErbB2 (also
known as HER2).

rl[r1]: ErbB1 ErbB1 => ErbB1:ErbB1
rl[r2]: ErbB1 ErbB2 => ErbB1:ErbB2
rl[r3]: ErbB2 ErbB2 => ErbB2:ErbB2

The first rule (labeled r1) says that if ErbB1 is present in
the system in multiple copies, then two can bind together
to form a homo-dimer ErbB1:ErbB1. When this rule fires
two occurrences of ErbB1 are removed from the state and
ErbB1:ErbB1 is added. The second rule describes the hetero-
dimerization of ErbB1 and ErbB2, and the third rule describes
homo-dimerization of ErbB2.

Sample PL models, tutorial material, papers and
presentations are available from the PL web site,
http://pl.csl.sri.com/, along with the Pathway
Logic Assistant [20].

III. PRIORITIZED RULE MODELING OF ERBBS

We started with a very simple idea for semi-quantitative
reasoning, namely to assign priorities to rules. The priorities
can be thought of as affinities or an abstraction of the thermo-
dynamics of the system. We used these priorities in two ways:
as parameters to a greedy algorithm for choosing which rule to
fire next; and as parameters of a probabilistic model. This idea
was tested on a simplified set of rules for the four members of
the ErbB family of receptors. These rules model the (homo-
and hetero-) dimerization and resulting cross phosphorylation
steps, assuming the receptors that need ligands are initially
ligand bound.
rl[1]: E2 E3B => E3Bp E2d rl[5]: E4B E4B => E4Bp E4Bp
rl[2]: E2 E1B => E2p E1Bp rl[6]: E1B E3B => E3Bp E1Bd
rl[3]: E2 E4B => E2p E4Bp rl[7]: E1B E4B => E1Bp E4Bp
rl[4]: E1B E1B => E1Bp E1Bp rl[8]: E3B E4B => E3Bp E4Bd

In these rules E1B represents ligand bound ErbB1, and simi-
larly for E3B and E4B. E2 represents ErbB2 which has no lig-
and. E1Bp is bound phosphorylated ErbB1, implicitly dimer-
ized with its phosphorylation partner, and E1Bd represents
ErbB1 that is dimerized but not phosphorylated. Similarly, for
the other ErbBs. The rules express the known biochemistry of
the ErbB dimers. In particular ErbB3 has no kinase activity



and thus can not cross phosphorylate its dimerization partner.
Also rules for homo-dimerization of ErbB2 and ErbB3 have
been omitted. For simulation purposes an execution state is a
set of pairs (n, e), where e is one of the ErbB symbols and n

is the number of molecules of e. In the following subsections
we explain the two uses of priorities, give results from some
test cases, and compare the two methods.

Greedy algorithm: The greedy algorithm for using the
priorities is the following: all rules of highest priority are
applied until none can be applied. Then rules of the next
highest priority are considered, until all of the priority levels
are exhausted. Note that because there are no cycles (no rule
produces something another rule can use) if a rule is applied
as much as possible, application of other rules will not result
in a state where the rule is again applicable.

The table below summarizes the results of 4 test cases:
two starting states and two assignments of rule priorities.
The two starting states are ((10000, E1B) (100000, E2)

(100000, E3B) (n, E4B)), where n is 0 or 10000. The
first assignment gives all rules have same priority and second
assignment is the following

rl[1] -> 1, rl[2] -> 2, rl[3] -> 2, rl[4] -> 3,
rl[5] -> 3, rl[6] -> 4, rl[7] -> 4, rl[8] -> 4.

where lower numbers correspond to higher probability, reflect-
ing the experimental observation that ErbB2 is the preferred
dimerization partner of the ErbBs.

The row labels code the test case, eq is the same priority
case and neq is the varied priority case. The +/- corresponds
to presence or absence of ErbB4 in the initial state.

| E1Bd E1Bp E2d E2p E3Bp E4Bd E4Bp
-----------------------------------------------------
eq- | 3334 6668 96666 3334 100000 0 0
eq+ | 2500 7500 95000 5000 100000 2500 7500

neq- | 0 10000 100000 0 100000 0 0
neq+ | 0 10000 100000 0 100000 0 10000

With equal priority rules the presence of ErbB4 effects the
outcome for others by competing with ErbB3 for dimerization
resulting in more phosphorylation of other ErbBs. With highest
probability assigned to dimerization of ErB2 with ErbB3 this
reaction uses all the ErbB2 and ErbB3 and ErbB1 and ErbB4
will dimerize with partners that can cross phosphorylate.

Probabilistic Model: A simple algorithm was used to
convert rule priorities into probabilities. Namely, for each
group of priorities, we give half of the probability to the
rule with the highest priority, and divide the remaining half
equally among the other rules in the group. Thus, for the
priority assignment above, we get the following probability
assignment:

rl[1] -> 1: .5
rl[2] -> 2, rl[3] -> 2: .25/2 = .125
rl[4] -> 3, rl[5] -> 3: .125/2 = .0625
rl[6] -> 4, rl[7] -> 4, rl[8] -> 4: .125/3 = .0416

The problem now is, for a given starting state, to determine
the probabilities for each of the different ErbBs in the final
state. In particular we want the mean of random variables
representing the number of different forms of ErbBs. That is

we want E(e) = Σpp · P (|e| = p in a final state), where |e|
is the quantity of the named ErbB state.

To determine the distribution in a final state we formulated
a series of formulas in Probabilistic Computational Tree Logic
(PCTL) about the probability that the value of each random
variable is in a given range and used the PRISM model checker
[22], [23] to determine the corresponding probabilities. As
this is a much more complex process than the discrete case,
we used a scaled down version of the initial state for the
discrete case study with no ErbB4 as a test case: ((10,E1B)
(100,E2) (100,E3B)). The table below compares the re-
sults using PRISM (row labeled probl) with those using the
greedy discrete algorithm (row labeled greedy) to find the
distribution in the final state.

E1Bd E1Bp E2d E2p E3B E3Bp
probl 0.22 9.78 93.48 6.52 6.31 93.69
greedy 0 10 100 0 0 100

The results turn out to be quite close. We find that the proba-
bilistic computation produces small non-zero values whenever
the discrete computation produces zeros. This is consistent
with the hypothesis that the probabilistic approach models
the stochastic nature of the system. In the case that small
non-zero values can safely be ignored, the discrete greedy
algorithm is a better choice as it is substantially more efficient.
However, if there is a chance that the small amounts could be
amplified in a larger context (networks with positive feedbacks
or non-symmetric structure) then a probabilistic model is more
reliable.

In the following section, we explore more sophisticated
choices in extending Pathway Logic to model stochastic be-
havior. We will analyze the resulting models using stochastic
simulation techniques, which fall in between the two extremes
of the simplistic “greedy method” and the exhaustive “proba-
bilistic model-checking method” used in this section.

IV. BEYOND PL: QUANTITATIVE AND PROBABILISTIC
MODELING

We extend the PL modeling formalism in two directions,
which we eventually bring together: incorporating quantita-
tive information and the notion of time; and incorporating
stochastic information into the models. We note here that
most stochastic modeling approaches integrate the notion of
probability and time and exploit quantitative information to
define and handle these concepts. For instance, the classic
chemical master equation (CME) [24] describes the time
evolution of a probability density function using partial differ-
ential equations. Other stochastic modeling formalisms, such
as stochastic Petri nets [3], are also given semantics using the
CME. As a result, simulation engines for stochastic models
produce time series data of species concentrations.

The notion of time elapse and probabilistic transition are
inherently coupled. However, as Gillespie points out in his
seminal paper [24], while performing a stochastic simulation
of CME, there is a certain decoupling between the choice
of the next reaction to fire and the time that elapses before
the effects of the reaction are observed. This is reflected



in Gillespie’s Direct Method stochastic simulation algorithm
(SSA), where the algorithm samples two distinct random
variables for these two purposes.

In our extension of PL, we keep the two aspects separate
and make the model modular with respect to the choices for
these two parts. As a result, we get a natural and flexible
modeling language that is more useful as a modeling and
prototyping formalism. We also have the possibility of using
different options for defining probabilistic rule firing as well
as different choices for specifying the timing behavior.

The syntax of PL changes only very slightly when it is
extended with probabilities. With each rule, we now associate
a scalar value ai, called weight or affinity.

rl[r1]: ErbB1 ErbB1 => ErbB1:ErbB1 a1 = 1
rl[r2]: ErbB1 ErbB2 => ErbB1:ErbB2 a2 = 10
rl[r3]: ErbB2 ErbB2 => ErbB2:ErbB2 a3 = 10

There are different ways of interpreting these scalar affini-
ties. In any state, the likelihood of a reaction will be pro-
portional to the product of its affinity and the number of
each reactant1: given a state s (represented as a function from
species to its number) and a rule r with reactants r1, r2, . . .,
let fr(s) denote the product arΠis(ri).

Let Enabled(s) denote the set of all rules that are enabled
in the state s, i.e. all the reactions that can possibly occur and
change the state of the system. The semantics of PL specifica-
tions extended with affinities can be given as a Markov chain.
There are different choices for defining such a Markov chain,
although in all cases reactions to fire are ultimately chosen
by sampling from a uniform distribution. We describe three
choices that we have explored here, exactly one rule, at most
one rule, and multiple rules.

Exactly one rule at a time: One natural way is to assume
that in any state, the events set in the probability space consists
of all the enabled rules. If we assume that these rules are
exclusive–that is no more than one reaction can happen at the
same time–and independent, then the probability that a rule r
fires in state s is exactly equal to

Probability of firing r in state s =̇ fr(s)
Σr′∈Enabled(s)fr′ (s)

.

Note that if exactly one rule is enabled in a given state, then
that rule is fired with probability 1.

At most one rule at a time: If we assume the existence
of a maximum constant M such that Σr∈Enabled(s)fr(s) < M
for all states s, then the probability that a rule r fires in state
s can be given to be fr(s)/M . In contrast with the previous
case, in this case we may have a nonzero probability of no
rule firing.

Possible multiple rules: In this case, we allow the rules
to fire simultaneously. This is done to account for possible
co-occurrence of the rule firing events, as is the case in
Probabilistic Boolean Networks [26]. In this case, the event
space in state s consists of 2|Enabled(s)| elements: each rule

1For completeness, we mention here that the “product of reactants” can
be replaced by the more accurate “number of different possible combinations
between the reactants,” as suggested in [25].

r ∈ Enabled(s) may or may not fire. The probability of each
event is the product of the probabilities that each reaction
happens or does not happen in the next time step. Note here the
higher computational burden of this method compared to the
first two. The semantic of choice may depend on the particular
network under study, and on the available information (i.e.,
whether we are given general firing likelihoods, or affinities,
or reaction rates).

We have specified above a time-abstract semantics for
extended PL specifications. We can incorporate time in the
semantics. To do this, we need to give a time-dependent
interpretation to the affinities. Again, there are a few options
here, and we describe two of them below: exponential random
and deterministic amortized variables.

Exponential random variables: Inspired by [24], [25],
while in state s, we assume that the time that elapses before
a reaction fires is given by an exponential random variable
with decay constant K=̇Σr∈Enabled(s)fr(s). In other words,
the probability that t time units elapse while in state s is given
by p1(t|s) = e−Kt.

Deterministic amortized variables: We can consider a
deterministic approach for computing the time elapse by
assuming that the rate of change of a species’ concentration
is given by the difference between its propensity to be created
(by rules that create that species) and its propensity to be
destroyed (by rules that use up that species). Given a state s,
let p denote a species that is produced in the rules Prod(p) and
consumed in the rules Cons(p), where {Prod(p),Cons(p)} ∈
Enabled(s). Mathematically, we can say that

dp/dt =̇ Σr∈Prod(p)fr(s) − Σr∈Cons(p)fr(s)

Now the time interval ∆t between two adjacent states, s and
s′, from the point of view of species p can be computed by
approximating the above expression via a first-order Taylor
expansion, and solving for the time step ∆t.

∆t =
(s′(p) − s(p))

Σr∈Prod(p)fr(s) − Σr∈Cons(p)fr(s)
We do not have a notion of global time in this case. Each
species has its own clock.

As we mentioned earlier, the explicit decoupling of the state
change aspect of a transition (or, equivalently, of the rule
selection) from its timing aspects leads to greater flexibility
in modeling and simulating PL models with affinities. It
allows simulations to be first performed in a time abstract
way and then, if required, to embed timing information in the
simulation a posteriori, that is after the simulation has been
performed.

Other approaches in the literature.
We review here three related approaches for stochastic

modeling that have also partly inspired our choices above. The
main difference between PL schemes extended with affinities
and the following models is that the extended PL models
and their simulation engine explicitly decouple time elapse
and probabilistic state transition features and allow for more
choices in each feature.



The Stochastic Simulation Algorithm: Gillespie’s
Stochastic Simulation Algorithm (SSA) [24] aims at
simulating the evolution of a set of N chemical species
interacting through M possible different reactions within a
fixed volume V . Unlike the classical reaction-rate approach,
which sets up a deterministic system of differential equations
based on the “law of mass action”, Gillespie’s algorithm
simulates the Chemical Master Equation (CME), which
describes both the time and the probabilistic transition
behavior of the system. Specifically, if P (s, t|s0, t0) denotes
the probability that the state is s at time t, given it was s0 at
time t0, the CME is given as:

∂

∂t
P (s, t|s0, t0) =

Σr[fr(s− νr)P (s− νr, t|s0, t0) − fr(s)P (s, t|s0, t0)]

where νr is the vector of the change in the number of
molecules of each species caused by a firing of reaction r.

Gillespie shows that his stochastic simulation algorithm
(SSA) exactly simulates the above chemical master equation,
[25]. At each step, the algorithm chooses two quantities:
(i) the time delay τ for the next reaction to occur;
(ii) the reaction r, among the enabled reactions, that will occur
next.
The time step τ is a sample of the exponential random
variable with decay constant Σr∈Enabled(s)fr(s). Note that this
is the first option in the two choices for incorporating time in
extended PL models described above. The reaction r to fire is
chosen by sampling an integer random variable on [1,M ] with
point probabilities fr(s)/Σr′∈Enabled(s)fr′(s). Note again that
this is the first option, among the three options, for defining the
next time abstract transition in extended PL models described
above. As noted by Gillespie, this particular combination
of choices for simulation (and the CME dynamics) is a
consequence of the assumption that the propensity function,
fr(s) for reaction r in state s is such that fr(s)dt defines the
probability that the reaction r will fire once within the next
infinitesimal time interval [t, t + dt) given that the state is s
at time t.

Stochastic Petri Networks: In Section II, we mentioned
that a PL model essentially encodes a Petri net. Stochastic
Petri nets are an extension of Petri nets that incorporate
random events. There are many variants of stochastic Petri
nets in the literature. The standard stochastic Petri nets can
also be given semantics using a chemical master equation,
and hence the stochastic simulation algorithm can be used
to perform simulations on such models [3]. The literature on
stochastic Petri nets also considers other semantics for time
elapse given by non-exponential random variables. Moreover,
there are variants, called general stochastic Petri nets, that
allow immediate and time delayed transitions.

Probabilistic Boolean Networks: Probabilistic Boolean
Networks (PBN) have been introduced to model and simulate
regulatory networks through a rule-based approach [26]. They
are described by a set of boolean-valued nodes and functions
(rules) that update these nodes. The rules to be fired are chosen

probabilistically, allowing for possible multiple rule firings.
Unlike the Gillespie’s SSA, they do not embed any notion of
time, but just sequentially execute a particular set of rules.

V. IMPLEMENTATION AND SIMULATIONS

Simple ErbB dimerization network (sErbB): We consider
the simple biological system containing three second-order
forward reactions first described in Sec. II and enhanced
with the introduction of affinities, as in Sec. IV. No re-
verse reaction is modeled in this simple network. Con-
sidering the corresponding reaction equations, the quanti-
tative parameters are the concentrations of each reactant
(E1 =̇ ErbB1 and E2 =̇ ErbB2) and dimerized prod-
ucts (E1E1 =̇ ErbB1:ErbB1, E1E2 =̇ ErbB1:ErbB2,
E2E2 =̇ ErbB2:ErbB2). Associated to each reaction are
the three “association affinities” ai.

If we conceive the aforementioned affinities as reaction
rates, we can come up with a system of ordinary differential
equations (ODEs) for solving the above network kinetics:

dE1E1
dt

= a1 · E1 · E1; dE1E2
dt

= a2 · E1 · E2;
dE2E2

dt
= a3 · E2 · E2; dE1

dt
= −2a1 · E1E1 − a2 · E1E2;

dE2
dt

= −2a3 · E2E2 − a2 · E1E2.

Extended ErbB interaction network (eErbB): A more com-
plete ErbB interaction network was constructed based on an
earlier work (see [27],[28]) and reported in [29, Appendix
2]. The dissociations (reactions 4, 5, 6) and internalizations
(which products are denoted by subscripts in) of the dimerized
products are additional reactions in this network, compared to
sErbB. Rate constants are named according to [27] and are
assumed to be known.

Quantitative and Probabilistic Rule Selection: We imple-
mented a Probabilistic Rewriting Module (PRR) in Maude
[18]. The following direct scheme describes the set of Maude
procedures that is executed, where meta-level Maude program-
ming is used.
1. A multiset of reactants and products with their associated
quantities is defined as a “state”.
2. A chemical reaction is represented by a “rule” where a
multiset of reactants turn into a multiset of products. Applying
a rule yields a decrease of the quantity of reactants and and
increase of the quantity of products according to the reaction
stoichiometry.
3. The firing likelihood of a rule is computed with a probability
that depends on one of the approaches in Sec. IV.
4. At each step of the PRR simulation a rule is selected
according to its probability; the selected rule is applied; the
state is updated and specific new probabilities are computed.
The rule rewriting and the state update are performed at the
meta level.
5. Simulation terminates when there is no rule that can be
selected according to the current state. For a network where
no reverse reaction is considered (e.g., sErbB), PRR stops at
the end of reactants usage. For network with feedback loops
(e.g., eErbB) PRR stops when the steady state is reached,
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Fig. 1. PRR simulation of sErbB interaction network (ErbB1:
blue, ErbB2: green, ErbB1:ErbB1: red, ErbB1:ErbB2: cyan,
ErbB2:ErbB2: magenta) using the single rule (top) and multi-rule
(bottom) probability models, given initial state ErbB1 = ErbB2 =
1000,ErbB1:ErbB1 = ErbB1:ErbB2 = ErbB2:ErbB2 = 0,
and a1 = 1, a2 = a3 = 10. The change of quantities of the reactants
and products (left plots) and the probabilities of the reactions are
plotted along the simulation evolution (right plot).

which can be inferred from the stabilization of the quantities
for each of the species.
6. As a post processing step, time information is optionally
embedded into the simulation data by using one of the
approaches in Sec. IV. Further details can be found in [29,
Appendix 1].

Discussion of Results: We first analyzed the simple network
of growth factor receptor dimerization sErbB to test the
methodology and the performance of the PRR module in
predicting the steady state of the biological pathway. We then
enabled the time embedding feature (see Sec. IV) to add
some dynamics to the simulations. Furthermore, considering
the extended eErbB interaction network, both sequential
and time-dynamic simulations were performed. As we shall
see, the results are in good agreement with experiments and
previous computational studies.

1) Simulating sErbB dimerization by PRR module: The
deterministic simulation of the sErbB network was obtained
by solving the corresponding kinetic rate equations (see be-
ginning of Sec. V) in MATLAB and is reported in Fig. 2. The
PRR procedure was executed via routines written in Maude.
The initial concentrations of reactants (ErbB1, ErbB2) and
products (the homo-dimers ErbB1:ErbB1, ErbB2:ErbB2
and the hetero-dimer ErbB1:ErbB2), as well as the affinities
(a1, a2, a3) were varied systematically to examine the
response of the network.

Fig. 1 shows PRR simulations for two of the probabil-
ity models2(exactly one rule at a time and possible multi-

2Concentration of reactants and products has a unit of number-per-volume
and a volume 1 is assumed for all reactions studied in this work. The rate
constants are the inverse of the concentration, times seconds, for the second-
order dimerization reaction, and the inverse of seconds for the first order
dissociation or internalization reactions.

ple rules). The predictions from the two probability mod-
els are similar: the final state contains approximately 500
hetero-dimers ErbB1:ErbB2 (Fig. 1, left panels, cyan line)
and approximately 200 homo-dimers ErbB1:ErbB1 and
ErbB2:ErbB2 (Fig. 1, left panels, red and magenta lines).
The statistical significance of this similarity was confirmed
from 500 independent runs of the simulations. The similar
values for the outputs ErbB1:ErbB1 ≈ ErbB2:ErbB2 are
due to the equality of the inputs ErbB1 = ErbB2 and the
symmetric topology of the network. The probability values of
the reactions in the network are plotted along the steps of PRR
simulation for both probability models (Fig. 1, right plot, top
for the single-rule model and bottom for multiple-rules model).
The last rule selection model illustrates that the concurrency
of a set of reactions, as a product of multiple probabilities, is
insignificant in general compared to the individual reaction for
this particular example, where symmetry and high quantities
play an important role. Yet a non-negligible probability of
concurrent reactions could occur if the concurrent reactions
have considerably higher likelihood than the single reactions,
as shown in Fig. 1.

Response of the network to changes in input variables:
The response of the sErbB network to changes on the initial
reactants concentration or the affinity of the reactions have
been investigated and reported in [29, Appendix 1, Figure
3]. To summarize the outcomes, the observed non-sensitive
response of the network to affinities under the “over expres-
sion” condition suggests a possibility to predict a system
behavior with incomplete knowledge. In other words, accurate
measurements of affinities are not strictly discriminating in
this case. The less strict requirement of the input parameter
would be extremely beneficial in analyzing biological data as
experimental accuracy is very limited in in-vivo studies.

Incorporating time into the PRR module: It is possible
to enhance the outcomes of the PRR procedure by time-
scaling the sequential data: as discussed in Sec. IV, this
can be achieved either by post-simulation Taylor expansion
(amortized approach), or by the application of the Gillespie
algorithmic idea (exponential assumption). As shown in Fig.
2, plotting PRR prediction against the time by the amortized
method (left) or by the exponential embedding (right) yields
behaviors that agree with those from the ODE approach, as
expected. As the network contains large numbers of reacting
molecules (as expected for experimental conditions of the
ErbBs dimerization), the time interval between two succes-
sive reaction events is small enough to validate the the first
order Talyor expansion. Similarly, with these large numbers
of reactants, the stochastic simulation (Gillespie algorithm)
converges to the ODEs trajectories. Note that the apparent
inconsistent termination in the time-resolved kinetics of re-
actants or products in the traces of ErbB2, ErbB1:ErbB2
and ErbB2:ErbB2 in Fig. 2(left) is explained by our a-
posteriori method for embedding time, whereby local clocks
for consumed reactants stop. As ErbB2 is consumed faster
and is the first to be used up due to the higher dimerization
rate, the products (ErbB1:ErbB2, ErbB2:ErbB2) run out



accordingly from the reactions that require ErbB2 as reactant.
The procedure thus treats this behavior as the termination of
the kinetics for ErbB2, ErbB1:ErbB2 and ErbB2:ErbB2.
To conclude, a note on the computational burden. While
the running time of the PRR with a single-rule approach is
comparable to that of the rate-equations, the implementation
of the multi-rule probability mode requires handling a wider
range of possible outcomes and, hence, is affected by a longer
running time.

Fig. 2. sErbB network kinetics (ErbB1: blue, ErbB2: green,
ErbB1:ErbB1: red, ErbB1:ErbB2: cyan, ErbB2:ErbB2: ma-
genta) predicted by time-resolved PRR (dots) via Taylor approxi-
mation (left) and exponential firing (right), in comparison to ODEs
traces (dashed lines). Initial state are ErbB1 = ErbB2 =
1000,ErbB1:ErbB1 = ErbB1:ErbB2 = ErbB2:ErbB2 = 0,
and a1 = 1, a2 = a3 = 10.

2) Applying PRR to the more complex eErbB dimerization
network: We applied the stochastic simulations to the more
complex eErbB biological network which, based on the work
in [27], additionally models dissociation of the dimers and
internalization of monomers and dimers; both steady state and
kinetic studies were performed and compared to the results
obtained there; the study of the equilibrium (Fig. 3, left)
has showed, under the substrate saturating conditions, that
the relative amount of hetero-(ErbB1:ErbB2) and homo-
(ErbB1:ErbB1, ErbB2:ErbB2) dimers varies according to
the initial expression levels of ErbB1 and ErbB2 (named,
respectively, EGFR and HER2 in [27]).

Four extreme conditions were studied, corresponding to the
four corners of the horizontal plane in Fig. 3 (left): 1. Both
ErbB1 and ErbB2 are normally expressed, 3 ·104 per cell; 2.
ErbB1 is over-expressed, 6 · 105 per cell; 3. ErbB2 is over-
expressed, 6·105 per cell; 4. Both ErbB1 and ErbB2 are over
expressed. We then performed the sequential PRR simulations
with similar initializations: 1. ErbB1 = ErbB2 = 103;
2. ErbB1 = 2 · 104, ErbB2 = 103; 3. ErbB1 = 103,
ErbB2 = 2 · 104; 4. ErbB1 = ErbB2 = 2 · 104. Note
that we scaled down the absolute quantities of ErbBs in this
simulation for coherence with previous sections, but we kept
the same ratio of over-expression and normal expression, i.e.
20-fold; in addition, we simplified the network by assuming
an EGF saturation condition such that any monomer or dimer
species without EGF bound is eliminated. According to these
modifications, reproducing exactly the outcome in [27]) with
a scaling factor of 20 is not to be precisely expected. Never-
theless, our results shown in the Table below are consistent

Fig. 3. Kinetic study of eErbB presented in [27].

Fig. 4. Quantities of signaling homodimer (ErbB1:ErbB1, blue)
and heterodimer (ErbB1:ErbB2, red) under normal expression
(initial values ErbB1 = ErbB2 = 1000, solid lines) or over-
expression (initial values ErbB1 = 1000,ErbB2 = 20, 000, dotted
lines) condition, predicted by time-resolved PRR.

with the outputs in Fig. 3, left.
We also performed kinetic simulations with both ErbBs

normally expressed (initial state 1.) and ErbB2 over-expressed
(initial condition 2.). Signaling homo-dimer (ErbB1:ErbB1)
and hetero-dimer (ErbB1:ErbB2) were calculated by time-
stretched PRR simulations (Fig.4). The outcomes in Fig. 4
under these two circumstances are analogous to those in Fig.
3, right: when ErbB1 and ErbB2 are both 3 · 104 (normal
expression), a low output of homo-dimer (ErbB1:ErbB1)
and hetero-dimer (ErbB1:ErbB2) is observed; when ErbB2
is 20-fold overexpressed over ErbB1, the hetero-dimers are
greatly enhanced and dominate the signaling species, while the
homo-dimers are suppressed down to ground level. The good
agreement with [27](Fig. 3, right) indicates the adequacy of
the PRR module in handling these network kinetics.

ErbB1 ErbB2
ErbB1:ErbB2−
ErbB1:ErbB1

ErbB1:ErbB2−
ErbB1:ErbB1

Fig.3, left; from[27]
103 103 6 7.6 · 103

103 2 · 104 260 1.5 · 104

2 · 104 103 −5019 −2.3 · 105

2 · 104 2 · 104 2971 1.6 · 105

VI. CONCLUSION

We have discussed the underlying principles and several
approaches for extending Pathway Logic with the ability to
represent and reason about semi-quantitative and probabilis-
tic aspects of biological processes. There is a wide range
of options to consider when analyzing a model containing



some quantitative data. Depending on the number of reac-
tants present in the environment, the accuracy of available
quantitative information (the values for the reaction affinities,
for instance, which are often only imprecisely known), the
question of interest, and the abstraction level, one could
use fast greedy approaches, or use more accurate stochastic
simulation based approaches.
The presented probability-based rule-selection strategies rep-
resent a reasonable approach to incorporate semi-quantitative
information into Pathway Logic. A flexible approach to mod-
eling temporal aspects was developed, allowing simulations to
be either time sensitive, or to account for time a posteriori.
Traditionally only the evolution of the quantities of reactants
are observed when carrying out simulations. We observed that
it is also interesting to observe the evolution of reactions
probabilities.

There are a number of interesting questions left for future
work. Experiments showed that simulations in which multiple
reactions occur simultaneously yield results very close to
the simulations based on a single occurring reaction. This
apparently is due to the product of probabilities of the single
reactions being too small to have a substantial effect. Using a
product to compute the probabilities of multi-reaction steps
may not be appropriate as it corresponds to synchronous
interaction, while in fact multiple independent reactions occur
concurrently and asynchronously. A challenging problem is to
develop a theory of truly concurrent probabilistic systems that
accounts for asynchronicity. A future step is to develop hybrid
approaches capable of switching between different simulation
methods according to suitable conditions. A possibility would
be to use generalized stochastic Petri nets as a formal repre-
sentation.
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