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Abstract

This paper investigates the notion of stability for Stochastic Hybrid

Systems. The uncertainty is introduced in the discrete jumps between the

domains, as if we had an underlying Markov Chain. The jumps happen

every fixed time T ; moreover, a result is given for the case of probabilistic

dwelling times inside each domain. Unlike the more classical Hybrid Sys-

tems setting, the guards here are time-related, rather than space-related.

We shall focus on vector fields describing input-less dynamical systems.

Clearly, the uncertainty intrinsic to the model forces to introduce a fairly

new definition of stability, which can be related to the classical Lyapunov

one though. Proofs and simulations for our results are provided, as well

as a motivational example from finance.

1 Introduction

1.1 Motivations

Hybrid systems have been extensively studied in the past decade, both concern-
ing their theoretical framework, as well as relating to the increasing number of
applications they are employed for [2,3]. However, the subfield of Stochastic Hy-
brid Systems (SHS) is fairly young. There are intuitively two ways to introduce
uncertainty in the traditional Hybrid Systems’ framework. The first one does
so in the continuous-time dynamics through the use of Stochastic Differential
equations, rather than the classical ODE’s [4]. The second way is to embed the
randomness into the discrete jumps [5]: this can be done, for instance, through
the use of a transition probability matrix. If these probabilities are indepen-
dent of the points in the domains where the jumps may occur, then we might
think of an underlying Markov Chain. In this last case, which will also be the
one we shall be focusing on in the sequel, we can think of having a “Hybrid
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Markov Chain”. Having adopted this last framework, the paper investigates
some stability issues. Even if the concept of stability has already been tack-
led in a deterministic setting, the literature appears to be rather sparse for the
Stochastic case. Some results have been achieved for the simplified setting of
Markov-Jumps-Linear-Systems, which can be thought of as a simplified setting.
Under this framework, we shall extend and generalize these results. The moti-
vations for this work are manifold, but mainly the acknowledgment of the limit
of the classical deterministic approach for hybrid systems and the need to intro-
duce some uncertainty. Application-wise, along with suggesting a motivational
example that deals with Stocks Pricing evolution, we believe these models could
have wide application in other fields, the biological one being a notable instance.

The outline of the paper is as follows: after a formal description of the set-
ting, we first introduce a definition of stability in probability, motivate and justify
it. Then, we propose some theorems for stability, and prove them: to begin with,
we shall consider fixed-time jumps, say every T time; then, we will describe the
jumping times via probability distributions. An example shows the viability of
these criteria. Then, an applicative example is presented. Extensions, remarks
and future work conclude the paper.

1.2 Setting

We are given a hybrid system [11], i.e. a collection H = (Q,X, f, Init,D,E,G,R),
and the specifications are as follows:

• Q: {q1, q2, ..., qn} is a finite set of discrete states;

• X: Continuous State with a continuous variable x ∈ R
m;

• f : Q × X → R
m; ẋ = f(qi, x) is the vector field related to node qi

1;

• Init = Q × X is the set of initial states;

• D : Q → P (X): a compact subset in R
m, comprehensive of the origin (the

“domain”)2;

• E: a set of edges, which in this case are not “spacial”;

• G : E → P (X): the “guard”; here we shall consider 2 cases:

1. After time T the continuous state jumps;

2. The jumps are random in time, in the sense that the dwelling times
are described by i.i.d. random variables, which we assume to have
finite mean;

• R : E → P (X): The reset map is a general function with bounded Lip-
schitz constant for every node. In our setting, the discrete jumps occur
according to a Markov transition matrix [Pij ]; moreover, the embedded
Markov Chain is supposed to be irreducible3 and positive recurrent4 (a
sufficient condition would be Pij 6= 0 ∀i, j).

1Often, we will use the simpler notation f i(x), rather than f(qi, x)
2Here P (X) is the power set (the set of all the subsets) of X.
3All the pairs of states communicate.
4The return time to each node is finite. Actually, given that the chain is a recurrent class,

the positiveness is due to its finiteness.
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We furthermore underline the following remarks:

• We focus on the evolution of the system for a long time, such that the
Markov Chain can get to the steady state: this idea will drive all the
proofs;

• The transition probability matrix is independent of the point where the
jump occurrs, i.e. we have just one of such matrices for every domain;

• The Hybrid MC is assumed to be non blocking, and we exclude the pres-
ence of the Zeno behavior ;

• As already described, the domains have no geometrical guards, in other
words they can be considered unbounded;

• All the domains share the same equilibrium point, say the origin, and can
be linearized around it.

As an example, please refer to Figure 1.

Figure 1: A simple pictorial example for a Stochastic Hybrid Sysyem.

2 Criteria for SHS Stability

2.1 Definition of Stability

The mathematical underpinnings of the criteria we will introduce in this paper
come both from the classical theory of (deterministic) Hybrid Systems and from
Probability Theory. Clearly, in this new setting, the intrinsic notion of stability
has to be revised, as we have to deal with purely non-deterministic systems.

Literature already presents the notion of stochastic stability [6], usually re-
ferred to a stochastic process described by a stochastic differential equation:
here stability is intended in an asymptotical sense, as it is meant to be enforced
probabilistically. This naturally leads to equate the concept of stability to that
of convergence, at the limit, to an equilibrium point, with probability one.

Having said this, it should be clear how we can give equivalent definitions for
stability of an equilibrium point either resorting to a Lyapunov-like argument,
or utilizing a more probabilistic flair.
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Assume we have a finite number n of domains, with the origin as a common
unique equilibrium and with general nonlinear vector fields f i, i = 1, ..., n.
Let us furthermore assume that the underlying Markov Chain is irreducible,
positive recurrent and with a stable distribution5.

Definition 2.1. Given an equilibrium point q in a vector field, we say that
the point is (asymptotically) stable in probability if, calling X(t) a realized
trajectory of the field,

lim
t→∞

P (|X(t) − q| > ε) = 0, ∀ε > 06.

This definition is actually equivalent to the following:

Definition 2.2. Given an equilibrium point q in a vector field, we say that the
point is (asymptotically) stable in probability if, for every region D containing
q, there exist a time τ and a neighborhood U (U ⊂ D) such that every (random)
trajectory starting inside U will be contained in D, for t > τ , with probability 1.

Remarks: The only distinguishable difference with the classical notion of
stability in the Lyapunov sense is the presence of time τ , which is intuitively
referred to the concept of steady-state, and is due to the probabilistic flair of
this setting. Unlike the deterministic case, here we have the possibility that
an expanding domain is visited repeatedly; thus, it may steer momentarily the
dynamics far away from the equilibrium; in the long run, though, the overall
behavior of the hybrid system may bring a contraction. This ”overall behavior”
is more properly described by the steady state of the embedded Markov Chain.
The introduction of the first definition is justified by its easiness to be handled
in the coming demonstrations, while the second definition helps in relating the
concept to a classical control argument.

2.2 Fixed Dwelling Times

In this section, we shall introduce the first criterion for stability. The peculiar
assumption here is about the temporal guards of the SHS:

• G : E → P (X): After time T the continuous state jumps.

Theorem 2.3. Let q be an isolated equilibrium of a hybrid Markov Chain with
n domains, corresponding vector fields f i, associated flows ϕi and reset maps
Rij, i = 1, . . . , n; j ≤ n, and let the hybrid MC verify the hypotheses listed in the
beginning of the section and π be the steady state distribution of the embedded
chain. Let us define:

• ν =
∏n

i=1 Lip(ϕi
T )πi ;

• µ =
∏n

i,j=1 Lip(Rij)
πiPij ,

that is products within the Lipschitz constants of the flows of the vector fields
and of the reset maps associated to each domain.

If the product νµ < 1, then the equilibrium q is stable in probability.

5There exists one unique steady-state distribution.
6The probability space here is the one related to a trajectory X(t), which is a random

variable in our setting.
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Remarks: The Lipschitz constants of respectively the flows ϕi of the vector
fields f i and of the reset maps Rij account for the contractive or expansive
qualities that these functions generate. The steady state probability π, i.e.
the vector π = πP , tallies how long the dynamics will evolve in each domain;
moreover, given the steady state probability in a certain domain i (πi) and the
probability to jump in another domain j (Pij), the likelihood to pass through
the reset map Rij has to be averaged out through the factor πiPij .

Proof : Without loss of generality, we shall say that q = 07.Let’s assume we
start at x(0) and let |x(0)| 6= 0 (the case |x(0)| = 0 is trivial, being the origin an
equilibrium point). According to the definition of Lipschitz constant, we have

|ϕi
t(x(0)) − ϕi

t(0)| ≤ Lip(ϕi
t)|x(0) − 0|

so
|ϕi

t(x(0))|

|x(0)|
≤ Lip(ϕi

t)

Then, after N jumps, considering only the final point in the hybrid flow, which
is a random quantity, we have

∣

∣

∣

∣

x(NT )

x(0)

∣

∣

∣

∣

≤

n
∏

i=1

(Lip(ϕi
T ))ni

n
∏

j=1

(Lip(Rij))
mj (2.1)

where
∑n

i=1 ni = N ,
∑n

j=1 mj = N . The problem here is that the quantities
ni and mj are unknown, being the MC intrinsically non deterministic. The only
thing we can state is a relation between ni and mi at the limit, i.e. when the
chain is in steady state; more precisely,

lim
N→∞

Prob{ni = Nπi} = 1

Moreover,

lim
N→∞

Prob{mj =

n
∑

i=1

Pijni} = 1

hence we get

lim
N→∞

Prob{mj = N

n
∑

i=1

Pijπi} = 1

Therefore, given those last relations and (2.1), it is easy to set up an in-
equality for probabilities and consider the following limit:

lim
N→∞

Prob
{

|x(NT )| > ε′
}

= lim
N→∞

Prob
{

∣

∣

∣

∣

x(NT )

x(0)

∣

∣

∣

∣

> ε
}

≤ lim
N→∞

Prob
{

n
∏

i=1

(Lip(ϕi
T ))ni

n
∏

j=1

(Lip(Rij))
mj > ε

}

,

where we considered ε = ε′

|x(0)| . Substituting through the relations before,

we obtain,

7In the more general case of equilibrium q different from the origin, it is possible to operate
a smooth transformation of coordinates; this does not affect the thread of the argument.
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lim
N→∞

Prob
{

n
∏

i=1

(Lip(ϕi
T ))Nπi

n
∏

j=1

(Lip(Rij))
N

∑n
i=1

Pijπi > ε
}

=

= lim
N→∞

Prob
{

n
∏

i=1

(Lip(ϕi
T ))Nπi

n
∏

i,j=1

(Lip(Rij))
NPijπi > ε

}

We can bring the limit inside the expression and, after some arrangement,
we get:

Prob
{

lim
N→∞

[

n
∏

i=1

(Lip(ϕi
T ))πi

n
∏

i,j=1

(Lip(Rij))
Pijπi ]N > ε

}

= Prob
{

lim
N→∞

[νµ]N > ε
}

Therefore, if νµ < 1, we have

lim
N→∞

(νµ)N = 0

hence,

lim
N→∞

Prob{

∣

∣

∣

∣

x(NT )

x(0)

∣

∣

∣

∣

> ε} = 0, ∀ε > 0

i.e. , we have the asymptotical convergence with probability one:

lim
N→∞

Prob{|x(NT ) − x(0)| > ε′} = 0, ∀ε′ > 0

QED

Remarks: The condition in this theorem is clearly just a sufficient one. It
turns out that for linear and scalar systems, it is necessary as well. In general,
there may be pathological cases where νµ ≥ 1, but the equilibrium q is still
stable in probability ; nevertheless, it looks like the hypotheses are rather tight,
at least in the linear case.

2.3 Probabilistic Dwelling Times

After introducing the previous sufficient condition, under the hypothesis of fixed-
time jumps, let us make a different assumption on the guards:

• G : E → P (X): The jumps are random, in the sense that the dwelling
times are described by i.i.d. random variables.

In other words, we are introducing a new type of uncertainty on the time
the trajectory is spending inside a domain, along with the randomness related
to the discrete jumps between the domains.

We shall propose an extension to the previous theorem for linear, time-
invariant (LTI) systems.

Theorem 2.4. Let q be an isolated equilibrium of a hybrid Markov Chain with n

domains, corresponding LTI vector fields Ai, associated flows ϕi and reset maps
Rij, i = 1, . . . , n; j ≤ n. Assume each Ai commutes with its transpose. Let π

be the steady state distribution of the embedded chain and the hybrid MC verify
the hypotheses listed in the beginning of the section, except for the following:
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• Gi: the guard of domain i is a random arrival-time variable ti with finite
expectation λi (E[ti] = λi).

Let us define:

• ν =
∏n

i=1 Lip(ϕi
λi

)πi ;

• µ =
∏n

i,j=1 Lip(Rij)
πiPij ,

that is products within the Lipschitz constants of the flows of the vector fields
and of the reset maps associated to each domain.

If the product νµ < 1, then the equilibrium q is stable in probability.

Proof : As before, we shall just prove the statement with the origin as the
equilibrium point, without any loss of generality; moreover, we will again con-
sider a sequence of N jumps for the hybrid trajectory. Unlike before, though,
the final time will be unknown, a random variable itself. The following two
relations on the quantities ni and mj , defined in the body of the previous proof,
are still valid:

lim
N→∞

Prob{ni = Nπi} = 1

lim
N→∞

Prob{mj = N

n
∑

i=1

Pijπi} = 1

So, we have knowledge, at the limit, of the fraction of jumps spent into
a node, but not the cumulative amount of time the trajectory stayed in that
node. In node i, given that the flow passed ni times through it, we have a
cumulative time of

∑ni

l=1 tl, where tl are i.i.d. random variables. Therefore,
the total amount of time for the hybrid flow is

∑n

i=1

∑ni

li=1 tli , where, as usual,
∑n

i=1 ni = N .
Proceeding as before, we get to have:

∣

∣

∣

∣

∣

x(
∑n

i=1

∑ni

li=1 tli)

x(0)

∣

∣

∣

∣

∣

≤

n
∏

i=1

ni
∏

li=1

Lipϕi
tli

n
∏

j=1

(Lip(Rij))
mj (2.2)

The contribute of the reset functions is the same as before, as they contain
no continuous-time dynamics within themselves. Due to the properties of the
state transition matrix of LTI systems8 , we observe that:

Lip(ϕi
tj−tk

)Lip(ϕi
tk

) = Lip(ϕi
tj

),∀i,∀tj > tk.

As a consequence, we have that

Lip(ϕi
Mtk

) = (Lip(ϕi
tk

))M ,∀i,∀tk,M ∈ N
+.

Then, we can write

8Here we exploit the following facts: we conceive the induced norm of a matrix as the spec-
tral one, ||eAt1 || = max{|λ| : λ ∈ σ((eAt1)T (eAt1 ))} = max{|λ| : λ = eµt1 , µ ∈ σ(AT + A)}
if A commutes with AT , and where σ(B) = Spectrum(B), for any matrix B. Then, through
direct manipulation, we get that in this special case ||eAt1 ||||eAt2 || = ||eA(t1+t2)||.
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∣

∣

∣

∣

∣

x(
∑n

i=1

∑ni

li=1 tli)

x(0)

∣

∣

∣

∣

∣

≤

n
∏

i=1

Lipϕi
∑ni

li=1
tli

n
∏

j=1

(Lip(Rij))
mj

Now, let’s notice that within each node, we have the sum of independent ran-
dom variables ti, identically distributed within a node; If we call sn =

∑n

i=1 ti,
then, by the weak law of large numbers,

lim
n→∞

P
(∣

∣

∣

sn

n
− E[t]

∣

∣

∣ > ε
)

= 0, ∀ε ≥ 0.

In other words, the variable sn

n
tends to the expectation of the variables,

which in node i we denoted as λi.
Consequently, passing at the limit, we conclude that

lim
N→∞

P
(

∣

∣

∣

∣

∣

x(
∑n

i=1

∑ni

li=1 tli)

x(0)

∣

∣

∣

∣

∣

> ε
)

≤ lim
N→∞

P
(

n
∏

i=1

(Lip(ϕi
λi

))ni

n
∏

j=1

(Lip(Rij))
mj > ε

)

= lim
N→∞

P
([

n
∏

i=1

(Lip(ϕi
λi

))πi

n
∏

i,j=1

(Lip(Rij))
Pijπi

]N

> ε
)

Therefore, if the quantity

νµ =

n
∏

i=1

(Lip(ϕi
λi

))πi

n
∏

i,j=1

(Lip(Rij))
Pijπi < 1,

then

lim
N→∞

P
(

∣

∣

∣

∣

∣

x(
∑n

i=1

∑ni

li=1 tli)

x(0)

∣

∣

∣

∣

∣

> ε
)

= 0.

QED

Special Case As a special case, we can consider the ti to be exponential
random variables with rate λi. Then, the renewal process associated with the
jumps between the nodes is actually a Poisson process.

2.3.1 A more compact generalization

Thus far, we have introduced uncertainty within our setting at two levels: first,
in the transition probabilities between nodes; second, in the dwelling times in
each node. It is possible to blend these two factors into a unique item con-
sidering a continuous Markov Chain setting. Let us refer to a finite space
S = {1, 2, . . . , n}; a Markov process B(t), t > 0 is a continuous time Markov
Chain if

Pij(t) = P{B(t + s) = j|B(s) = i},∀s ≥ 0.

From the Markov hypothesis we have that the following must hold:

• Pij ≥ 0;
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•
∑n

j=0 Pij(t) = 1, i, j = 0, 1, . . . , n;

• Pik(s + t) =
∑n

j=0 Pij(s)Pjk(t), for s, t ≥ 0;

• limt→0+ Pij(t) =

{

1, i = j

0, i 6= j.

The third property tells that P is continuous; moreover, it turns out that
it is differentiable as well; this enables to calculate the intensities that describe
the sojourn times within each domain.

lim
h→0+

1 − Pii(h)

h
= qi,

lim
h→0+

Pij(h)

h
= qij , i 6= j,

where 0 ≤ qij < ∞, i 6= j and 0 ≤ qi < ∞. Then, from the second property,
we derive that

qi = −

n
∑

j=1,j 6=i

qij .

The rates can be interpreted as the generator of the MC, as in the following:

P{B(t + h) = j|B(t) = i} = qijh + o(h), i 6= j, h ↓ 0;

P{B(t + h) = i|B(t) = i} = 1 − qih + o(h), h ↓ 0.

The probability to jump from node i within (t, t + h] is then proportional to
∑

j 6=i qij . The dwelling time for node i then has a duration that is exponentially
distributed with parameter qi.

Conversely, it could be possible to start the definition from the intensities,
and then derive the jump probabilities; these will be only constrained to assume
precise values near time 0.

This way, it is possible to reframe our setting more synthetically within the
continuous-time Markov Chain theory; clearly, all the former result can be easily
tailored to this framework.

2.4 Simulations and Results

We have tested the sufficient condition in a simplistic case, a stochastic hybrid
system with 5 nodes, and fixed-time jumps. We assumed as transition proba-
bility matrix :

P =













0.3 0.2 0.5 0 0
0 0.4 0 0 0.6
0 0 0.4 0.6 0

0.5 0 0.2 0 0.3
0 0 0.7 0 0.3













;

the steady state probability vector was computed to be

π = [0.168, 0.056, 0.392, 0.235, 0.148]
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We considered simple linear vector fields in R
2. The initial point was taken to

be x0 = [3, 2]. For simplicity we have also considered identity reset maps.
The simulations have confirmed the theoretical results; calculating successive

powers of the matrix P gave us an empirical assessment of when the steady state
occurred. With values of the product νµ very close to 1, we experienced how
different realizations could carry different results, but as soon as we increased the
number of steps there was a sort of stabilization around a region of points with
the same magnitude as the starting one. We plotted three different realizations
in these three cases, matching the expected results.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
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Hybrid trajectory
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Figure 2: Hybrid trajectories corresponding to ν < 1 and ν > 1

−8 −6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

x
1

x 2

Hybrid trajectory

Figure 3: Hybrid trajectories corresponding to ν ≈ 1

We have tuned the third node, the most sensible one due to the highest value
of the steady state probability, obtaining the following values of ν:

case ν

1 0.9605
2 1.0635
3 0.9999

Table 2: Values of the decision quantities for system’s stability.
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3 An Applicative, Motivational Example

3.1 Stocks Pricing

Assume we are analyzing a Competitive Market environment: in this setting,
under usual trading conditions, the fair value of the stocks of a company, call it
p∗, is automatically attained through the interactions between the stockholders
(i.e. the sell and purchase of them); on the contrary, a particular situation may
overprice their value, or conversely depreciate them.

Let’s then imagine we deal with a fixed number of stocks n introduced in
a market; moreover, let’s say that during a certain time horizon [t, t + α], X

stockholders want to make a purchase and Y operators wish to sell their stocks.
For simplicity, say that each entity is able to make only one transaction at a time
and that n � (X,Y ), i.e. there is plenty of stocks on the market to satisfy any
possible demand. Moreover, at each time slot, at most one new entity can be
admitted into the market; we can describe the probability of this new entrance
so that the inter-arrival time α is then an exponential random variable.

Now, the market may experience three possible different “status quo” (see
Figure 4):

• Equilibrium: this situation happens when the number of purchasers is
equal to that of the operators willing to sell their titles, i.e. X = Y . In
this scenery there is a natural convergence to the fair price p∗, with rate
proportional to the actual number of entities currently involved in the
deal.

• Overpricing : in this framework there are more stock owners willing to buy
the equities than holders willing to cease their property, i.e. X > Y . As
intuitive, the price will increase with rate proportional to X − Y .

• Depreciation: in this case, the number of holders willing to give out their
stocks is higher than that of the people agreeing to buy them; in other
words, Y > X. Therefore, the price will tend to decrease, with rate
proportional to Y − X.

Figure 4: The three possible Market conditions: Equilibrium, Overpricing and
Depreciation.

The current market situation can be modelled as described in Figure 4; start-
ing from a certain situation, at each time slot we can increase/decrease/leave
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Figure 5: The underlying Birth-Death 2-dimensional Markov Chain. In every
node the couple represents the number of respectively buyers(X) and sellers(Y).

unchanged either the number of buyers, or that of vendors; this is described
according to some probabilities. In other words, we globally have an underlying
2 dimensional Birth-Death Markov Chain characterizing the nodes transitions.
As already stated, at each jumping time the system switches according to the
fixed probability distribution.

When someone wanted to get into the Market, he could use the model to
predict the fluctuations of the stocks value, given the current initial condition
for the price and the “situation” of the Market itself, that is the likelihood of a
modification in the number of buyers and sellers.

Fact 3.1. The conclusions of Theorems (2.3), (2.4) are not affected in the case
of an infinite number n of domains.

Proof : This scalability property follows from the proof of the Theorem, as
long as not all the steady-state probabilities of the nodes are equal to zero.
Also, it can be intuitively accepted once we understand that all our stability
definitions work in the long run, and with asymptotic behavior.

Therefore, given that we shall be able to compute a steady state distribu-
tion for the infinite-dimensional birth-death chain, the criterium will still hold
true. The computability of the distribution hinges on possible symmetries in
the transition probability matrix. In case we shall not be able to compute it,
we could still limit the depth of the Markov Chain and apply more orthodox
methods, like the cutsets one.

4 Conclusions and Future Work

In this paper, the issue of stability in a special framework for stochastic hybrid
systems has been studied. A proper definition of stability in the stochastic sense
is given and justified. Stability criteria are proposed in two different settings.
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Matlab simulations confirm the validity of the criteria. Moreover, an applicative
and viable example contextualizes the theory in the domain of finance.

Future directions of research will be the extension of the validity of the
criterion, as well as the assessment of other kinds of possible conditions for
stability.
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