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Abstract: Building Automation Systems (BAS) are exemplars of Cyber-Physical Systems
(CPS), incorporating digital control architectures over underlying continuous physical processes.
We provide a modular model library for BAS drawn from expertise developed on a real BAS
setup. The library allows to build models comprising either physical quantities or digital control
modules. The structure, operation, and dynamics of the model can be complex, incorporating
(i) stochasticity, (ii) non-linearities, (iii) numerous continuous variables or discrete states, (iv)
various input and output signals, and (v) a large number of possible discrete configurations. The
modular composition of BAS components can generate useful CPS benchmarks. We display this
use by means of three realistic case studies, where corresponding models are built and engaged
with different analysis goals. The benchmarks, the model library and associated data collected
from the BAS setup at the University of Oxford, are kept on-line at

https://github.com/natchi92/BASBenchmarks
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1. INTRODUCTION

This paper describes a library of models for Building Au-
tomation Systems (BAS), which can be employed to create
benchmarks for verification, control synthesis, or simu-
lation purposes of Cyber-Physical Systems (CPS). The
models are inspired by and built around an experimental
setup within the Department of Computer Science at the
University of Oxford, which is part of on-going research in
collaboration with service engineers and industrial part-
ners in the sector. This library allows to create numerous
meaningful models for BAS, which are examples of CPS
integrating continuous dynamics and discrete modes.

Interest in BAS, also colloquially known as smart build-
ings, is gaining rapid momentum, in particular as a
means for ensuring thermal comfort (Belkhouane et al.
[2017]), minimising energy consumption (Soudjani and
Abate [2015], Yu et al. [2015]), and ascertaining relia-
bility (Zhang and Hong [2017]). Quantitative models are
needed to evaluate system performance, to verify correct
behaviour, and to develop specific control algorithms. An
overview of the different BAS modelling techniques used
in literature is presented in Privara et al. [2013]. Several
simulation tools (see Crawley et al. [2008]) have been
devised to aide in the development and analysis of models
for BAS. Attempting a multi-dimensional characterisation
of the broad spectrum of existing BAS models, we can
find either deterministic or stochastic ones, low- to high-
dimensional ones, with discrete or continuous inputs and
states. The choice of a model is an art and a craft (Ma
et al. [2012]): one must select simplifying assumptions

that accurately reflect the operational performance of the
BAS in specific real-world environments, and introduce un-
certainty to represent un-modelled components, unknown
parameters or random occupants. We therefore aim to
simplify the modelling process such that simulation, verifi-
cation or strategy synthesis can be carried out seamlessly.
Different verification and policy synthesis tools exist in
literature (Dragomir et al. [2017], Holub et al. [2016]).
They are typically specific to a particular type of model
structure and in the case of stochastic or hybrid models
are often limited to a small number of continuous vari-
ables (Fehnker and Ivančić [2004]). The use of such tools
also requires expert knowledge on the specific formalism
the tool makes use of.

In order to display the versatility of the library of BAS
models, we present three case studies that are built from its
components. We focus on modelling temperature dynam-
ics, a key element for ensuring thermal comfort. We employ
the three generated models for different analysis goals,
comprising simulation, reachability, and control synthesis.
The models and the case-studies are kept on-line at the
URL above, and at (Cauchi and Abate [2018]). This is to
allow their use or modification for different applications
and for comparison with other modelling approaches in
BAS. The repository also contains real data gathered from
the BAS lab at Oxford, which can be employed for further
modelling studies. This article has the following structure:
Section 2 introduces the BAS modelling framework for
CPS. We identify three modelling trade-offs that introduce
different complexities on the model dynamics. Based on
these trade-offs, we develop and analyse three case studies
in Section 3.



Table 1. Indices

Index Reference Index Reference

a AHU adj adjacent zone
adj, out adjacent exterior zones b boiler
d mixer hall hallway
i ∈ {1, 2} individual zones jn ∈ {2, 3, 7} zone walls with

no windows
jw ∈ {5, 6} zone walls with

windows j ∈ {jn ∪ jw} all zone walls
l ∈ {1, 2} adjacent interior zone occ occupants
out outside r radiator
ref reference rw return water
sa supply air solar solar energy
sw supply water v collector
w wall z zone
h water ar air

2. BUILDING AUTOMATION SYSTEMS

2.1 BAS: structure and components

BAS models clearly depend on the size and topology of the
building (Kim and Katipamula [2017]), and on its climate
control setup. In this work, we consider the BAS setup in
the Department of Computer Science, at the University of
Oxford. A graphical depiction is shown in Figure 1a. The
BAS consists of two teaching rooms that are connected
to a boiler-heated system. The boiler supplies heat to the
heating coil within the AHU and to two radiators. Valves
control the rate of water flow in the heating coil and in
radiators. The AHU supplies air to the two zones, which
are connected back to back, and are adjacent both to the
outside and to an interior hall (cf. Figure 1a). The zone air
of both rooms can mix with the outside air and exchanges
circulating air with the AHU. Return water from the AHU
heating coils and radiators is collected and pumped back
to the boiler.

Figure 1b presents the Resistor Capacitance (RC) net-
work circuit of the two zones (Haesaert et al. [2017]),
which underpins the dynamics for temperature in the zone
component - corresponding equations are in Table 3. The
heat level in each room is modified by (i) radiative solar
energy absorbed through the walls, (ii) occupants, (iii)
AHU input supply air, (iv) radiators, and (v) AHU return
water. The effect of heat stored in the walls and in rooms
is depicted with capacitors, whereas thermal resistance to
heat transfer by the walls is depicted by resistor elements.

2.2 BAS: dynamics and configurations

Single components are intended as separate physical struc-
tures within the BAS. Their models are built from the un-
derlying physics and are improved via industrial feedback
and from existing literature (Ferrari et al. [2017], Haesaert
et al. [2017]). We obtain models with a number of unknown
parameters: these are estimated and validated using data
collected from the BAS setup (Kristensen et al. [2004]). We
list indices in Table 1, while all the quantities (variables,
parameters, inputs) are listed in Table 2. Table 3 presents
all the relations among variables in the model components:
algebraic relations define static couplings, whereas differ-
ential relations define the dynamics for the corresponding
variables. The structure in Figure 1a, the quantities in
Table 2, and the variables (with associated dynamics) in
Table 3, together allow to construct global models for
the BAS setup. We refer to the set of models describing
the individual components (cf. Table 3) as a “library of

models”: one can select the individual components from
the library, and build different BAS configurations and
models.

Models of the BAS setup can be complex, consisting of
both algebraic and differential relations, process noise,
and possibly numerous continuous variables and discrete
modes. Some of the dynamics can be non-linear, especially
in view of continuous variables or inputs that are bi-
linearly coupled (cf. AHU air duct model in Table 3). The
number of continuous variables also increase substantially
when considering a BAS setup with multiple zones.

We look at the dynamics of the library of BAS components
from three different perspectives: (i) presence of stochastic-
ity; (ii) number of continuous variables; and (ii) number of
discrete modes. Using the identified sources of complexity,
models of different types can be constructed. In order
to add a level of flexibility to the modelling framework,
we consider each BAS component as a separate module,
characterised by input and output elements, and internal
variables. We make use of individual modules describing
component type, and then connect different modules based
on possible physical couplings. Coupling between different
modules is also achieved via input-output relationships:
e.g., in the zone module we have coupling between two
zones through the continuous variable Tadj,l corresponding
to the adjacent zones, which for the wall separating the
two zones (cf. W7 in Figure 1b) corresponds to the indi-
vidual zone temperatures of the two zone modules (cf. zone
equations in Table 3 ). Having such a modular structure
for the individual components provides an added level
of versatility, since we can connect different components
to create new models. Modularisation also allows (i) to
perform analysis of the whole setup by executing analysis
of individual modules and (ii) to extend the library of
models by defining new modules that connect to existing
modules via their input-output relations (for example, in
order to model buildings with larger number of rooms).

2.3 BAS: software description of model library

The library of BAS components comes in the form of
MATLAB scripts. Each script represents an individual
BAS component. The models are in state-space form and
are of two types linear or non-linear depending on the
component they represent. They are defined using the
symbolic toolbox, and can be described both in discrete
and continuous time. We provide the parameters which
we estimated from real data gathered from the BAS setup
at the University of Oxford, to construct the individual
models. Different components can be connected based
on their input-output relations by cascading the different
symbolic models for each component. Once this is done,
the provided scripts allow one to simulate the models and
to generate plots for the defined output variables.

3. CASE STUDIES

We set up three case studies and present the trade off
between the discussed kinds of complexity. For each of
the case studies, we also introduce instances of problems
that we solve using these models, and describe the results
obtained.



Fig. 1. Building automation system setup

(a) 2-zone boiler-based heating system with air handling
unit and radiators

(b) Resistance-capacitance circuit for the internal ther-
mal dynamics within the two zones

Table 2. List of variables, inputs, and parameters

Symbol Quantity Type Symbol Quantity Type

Ai area of windows of each zone constant Ben boiler switch discrete
C capacitance constant Cpa, Cpw specific heat capacity of air and water constant
CO2i carbon-dioxide measurements in each zone input kb steady-state of the boiler constant
m mass air flow rate input n number of zones constant
Pout radiator rated power output constant\input Q heat gain input
R thermal resistance to heat from walls constant T temperature state\input
u mixing ratio input (UA) overall transmittance factor of constant
V volume of constant w water flow rate input
wmax maximum water-flow permitted by the valve constant X valve position input
{α, β, µ} de-rating and offset factors constants σ process noise constant
ρ density constant τ time constant constant

Table 3. Dynamics and functional relations among variables of components

Component Continuous variables Relation

Boiler dTsw,b(t) =

{
0 Ben(t) = 0

(τsw)
−1

[(−Tsw,b(t) + kb)dt] + σswdW Ben(t) = 1
differential

Valve w(t) = (τ)
−1

[exp(ln(τ)X(t))wmax] algebraic

Mixer Td(t) = udTout(t) + (1− ud)(
∑
i

Tzi(t))(n)−1 algebraic

AHU heating coil dTrw,a(t) = (CpwρhVa)
−1

[(Cpwwa(t)(Tsw,b(t)− Trw,a(t)) + (UA)a(Td(t)− Trw,a(t)))dt] + σrw,adW differential

AHU air duct dTsai(t) = (CaρaVa)
−1

[ma(t)Cpa(Td(t)− Tsai(t)) + (UA)a(Tzi(t)− Tsai(t))]dt+ σsaidW differential

Radiator dTrw,ri(t) = (CpwρhVri)
−1

[(Cpwwri(t)(Tsw,b(t)− Trw,ri(t)) + (UA)ri(Tzi(t)− Trw,ri(t)))dt] + σrw,ridW differential

Zone dTzi(t) = (Czi)
−1
[
Twjn

(t)− Tzi(t)
Rij

+Qrw,ri(t) +Qocci(t) +Qsai(t)

]
dt+ σzidW

dTwjn
(t) =

(
Cwjn

)−1 [Tadj,out(t)− Tzi(t)
Rout

+
∑
l

Tadjl(t)− Twjn(t)

Rlj
+Qrw,ajn(t)

]
dt+ σwjn

dW

dTwjw(t) =
(
Cwjw

)−1 [Tadj,out(t)− Tzi(t)
Rout

+
∑
l

Tadjl(t)− Twjw
(t)

Rljw
+Qsolarjw(t) +Qrw,ajw(t)

]
dt+ σwjwdW

Qrw,ri(t) = Pradi(α2(Trw,ri(t)− Tzi(t)) + α1), Qocci(t) = µi(CO2i(t)) + β1i , Qsai(t) = ma(t)Cpa(Tsai(t)− Tzi(t)))
Qrw,aj (t) = α3(Trw,a(t)− Twj (t)), Qsolarjw(t) = (α0AiTout(t) + β2)

differential

Collector Trw,b(t) = uvTrw,a(t) + (1− uv)(
∑
i

Trw,ri(t))(n)−1 algebraic

Fig. 2. BAS setup for the first case study
3.1 Two-zone heating setup with deterministic or stochastic
dynamics

We consider two zones, each heated by one radiator and
with a common supply air, as portrayed in Figure 2. From
Table 3, we select two components and corresponding
models: the radiator and the zone. We simplify these
models with the following assumptions: (i) the wall tem-
perature is constant across the zones and is a fixed value
(Tw,ss); (ii) the boiler is switched ON providing a supply
temperature Tsw,bss ; (iii) we fix both the mass air flow
rate ma and the radiator water flow rate wr; and (iv) we
do not include the heat gain from the windows and the
AHU heating coils (Twss) in each zone. We obtain a model



with the four state variables xT = [Tz1 Tz2 Trw,r1 Trw,r2 ]
T

and with a common supply temperature u = Tsa as an
input. For this setup we further consider three different
dynamics: (i) purely deterministic ones; (ii) a deterministic
model with additive disturbance; and (iii) a stochastic
model. For (i) and (ii), we thus remove the process noise
in the template model, while for models (i) and (iii) we
do not include the occupancy heat gain. We also discre-
tise the dynamics by a Forward-Euler scheme (for the
deterministic models) and a Euler-Maruyama scheme (for
the stochastic model Abate et al. [2008]), using a uniform
sampling time ∆ = 15 minutes, and obtain a set of linear
discrete-time models. One should note that the models
being considered are not directly fully observable since for
all the individual zone temperatures (variables of interest)
are the only variables provided as outputs. The dynamics
of the deterministic model (i) are described by

Md :


x[k + 1] = Ax[k] +Bu[k] +Qd

yd[k] =

[
1 0 0 0

0 1 0 0

]
x[k],

(1)

where again the matrices are taken from the models
in Table 3 and Qd is vector of constant gains. The
deterministic model with additive disturbance is

Mda :


x[k + 1] =

Ax[k] +Bu[k] + Fdadda[k]

+Qda

yda[k] =

[
1 0 0 0

0 1 0 0

]
x[k].

(2)

We have extended (1) with additive noise vector dTda (cf.
Qocci in Table 3) representing the different CO2 levels in
each zone. Qda and Fda are a properly sized matrices. The
stochastic model is expressed by extending (1) to include
process noise, as

Ms :


x[k + 1] = Ax[k] +Bu[k] +Qd + ΣW [k]

ys[k] =

[
1 0 0 0

0 1 0 0

]
x[k],

(3)

where Σ encompasses the variances of the process noise

for each state. W = [w1 w2 w3 w4]
T

is a vector of
independent Gaussian random variables, which are also
independent of the initial condition of the process. Details
on the individual matrices for all the models are presented
in (Cauchi and Abate [2018]).

Reachability analysis For this case study we perform the
following verification task: to decide whether traces gener-
ated by the models remain within a specified safe set for
a given time period. This is achieved by reachability anal-
ysis, which takes a probabilistic flavour for the stochastic
model. The safe set is described as an interval around the
temperature set-point TSP = 20oC ±0.5oC. We constrain
the input u to lie within the set {Tsa ∈ R|15 ≤ Tsa ≤ 22}
for all models and employ a fixed time horizon N = 6 ×
∆ = 1.5 hours. We perform reachability analysis of the
models Md and Ms with Axelerator (Cattaruzza et al.
[2015]), while we use FAUST2 (Soudjani et al. [2015])
to perform probabilistic reachability analysis of Ms. In
order to perform reachability analysis using Axelerator,
for each of the models we set the initial condition as
[Tz1 Tz2 Trw,r1 Trw,r2 ]

T
= [18 18 35 35]

T
. The reach tube

for model Md over the whole time horizon is shown in

Figure 3: it encompasses the union of all reachable states
over that horizon. The results obtained using Axelerator
(cf. Figure 3) are conservative, but can confirm that the
model indeed stays in the required safe set for some initial
states, but can also exit it. One can note the coupling
between the two zones and that zone 1 tends to stay at
higher zone temperatures then zone 2. A similar reach
tube is obtained for model Mda. We perform probabilistic
reachability analysis on model Ms by defining the same
safe set and assuming as input set the interval [15, 22]. The
resulting adaptive partition of the safe set along with the
optimal safety probability for each partition, is depicted
in Figure 4. When performing probabilistic reachability
analysis using model Ms, we deduce that the model has
a high probability of being within the required safe set,
specifically to have Tz1 ∈ [19.5 20.5] and Tz2 ∈ [19.5 20.5].

Fig. 3. First case study: reach tube of Md over whole time
horizon
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Fig. 4. First case study: partition of the safe set for model
Ms, along with optimal safety probability for each
partition set
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3.2 Two-zone heating setup with a large number of
continuous variables

In this second case study we focus on the dynamics of
zone components from Table 3 and consider the two
zones shown in Figure 1b. We assume that (i) a central
fan pumps air into both rooms with a common supply
temperature 15oC ≤ Tsa ≤ 30oC, (ii) the input mass
airflowma is fixed to 10 m3/hour and (iii) the return water
temperature of the AHU heating coils is fixed (Trw,ass =
35oC). As in the previous case study, the selected model
is discretised using Forward-Euler, with a sampling time
∆ = 15 minutes, to obtain the discrete-time model

Mc :

{
xc[k + 1] = Acxc[k] +Bcuc[k] + Fcdc[k] +Qc
yc[k] =

[
1 0 0 0 0 0 0

]
xc[k].

(4)



Fig. 5. BAS setup for third case study

Here the variables are xc = [Tz1 Tz2 Tw5
Tw6

Tw2
Tw3

Tw7 ]
T
,

and a common fan provides the two zones with a supply
rate uc = Tsa. Matrices Ac, Bc, Fc are properly sized.
Vector dc corresponds to the disturbance signals, while
Qc represents constant additive terms. We model the
disturbances as random external effects.

Optimal policy synthesis and refinement For Mc we
would like to synthesise a policy ensuring that the tem-
perature within zone 1 does not deviate from the set point
by more then 0.5oC over a time horizon equal to four
hours (i.e N = 16). This requirement can be translated
into the following PCTL property Φ := P=p[�≤N=16|Tz1−
TSP | ≤ 0.5] (Soudjani et al. [2015]). We then aim at
synthesising a policy maximising the safety probability p.
This synthesis goal can be computationally hard due to the
number of continuous variables making up Mc. To miti-
gate this limitation, we perform policy synthesis via formal
abstractions (Haesaert et al. [2017]). We can quantify the
error in the output variable, which has been introduced
by the different levels of abstractions, through the use
of (ε, δ)-approximate simulation relations (Haesaert et al.
[2017]). The pair (ε, δ) represents the deviation in the
output trajectories between complex and abstract mod-
els and the differences in probability distribution of the
processes, respectively. Such metrics allows the designer
to select which of the considered abstract models provides
the best trade off in precision: it is desirable to achieve
little deviation in both the output trajectories (small ε)
and in the probability distributions (small δ).

We simplify (4) into four abstract models using the tech-
nique in (Haesaert et al. [2017]). The abstract models are
labelled as Mca , where a = {4, . . . , 1} represents the num-
ber of continuous variables of the corresponding abstract
model. The (ε, δ) pair providing the optimal trade off is
obtained with the abstract model Mc1 and corresponds
to (0.2854, 10−2). Next, we use FAUST2 to perform a
grid-based computation of the safety probability for Mc1

and obtain a finite Markov decision process M̃c1 of size
14893 with an overall accuracy of 0.005. Over this ap-
proximation M̃c1 we synthesise the optimal policy µ(M̃c1)
for the abstract model Mc1 which results in an optimised
safety probability of p′ = 0.9257. We refine the obtained
policy µ(M̃c1) (Haesaert et al. [2017]), which results in

µ(ε,δ)(M̃c1) - one that can be used with Mc. The overall
process results in Φ being satisfied with a safety probabil-
ity of p = p′−η−Nδ = 0.7657, where η is the abstraction
error introduced by FAUST2. The results obtained further
highlight that by trading off the complexity in the number
of continuous variables and computing (ε, δ)-simulation

relations, we can synthesise policies using simpler models,
yet achieve high performance still when the refined policy
µ(ε,δ)(M̃c1) is applied to the original model Mc1 .

3.3 Single-zone heating with multiple switching controls

In this last case study, we focus on mixer, AHU air duct,
and zone components from Table 3. We select the AHU
as the only source of heat within the zone (the boiler is
disconnected). A pictorial description of this setup is in
Figure 5. The mixer operates in either of two modes: open
(Op) or closed (Cl). The AHU air duct recirculates air
from either the internal zone (when ud = 0 and the mixer
is in mode Op) or from the outside (when ud = 1 and
the mixer is in mode Cl) via the continuous variable Td
(output of the mixer component). The rate of air being
pumped into the zone (ma) is controlled by the fan, which
has three operating speeds (off O, medium M , and high
H). The mixer position and the fan settings can be used
to maintain a comfortable temperature within the zone.
This setup can be described by a hybrid model. The
discrete modes q are in the set {(O,−), (M,Op), (M,Cl),
(H,Op), (H,Cl)}, and describe the possible configurations
of fan operating speeds {O,M,H} and mixer position
{Op,Cl}. (When the fan is switched off, the mixer can
be in any position as no air is pumped into the zone.)
Continuous variables model the zone temperature (Tz1)
together with the supply air temperature (Tsa) being
pumped into the zone. Transitions between discrete modes
are triggered by continuous dynamics crossing spatial
guards: guards denote deviations from temperature set-
point as δ, δk, k = {2, . . . , 5}, δ < δ2 < δ3 < δ4 < δ5. A
graphical description of the overall hybrid model, together
with the different guard conditions, is shown in Figure 6.
The continuous dynamics are built from Table 3. The

Fig. 6. Hybrid model for the third case study, showing dis-
crete states and guard conditions; the initial discrete
state is (O,−)

variables ma and Td take values according to the discrete
mode as

ma(t) =


0 q(t) = (O,−),

ma,med q(t) = (M,Op) ∨ q(t) = (M,Cl),

ma,high q(t) = (H,Op) ∨ q(t) = (H,Cl),

and

Td(t) =

{
Tout q(t) = (M,Op) ∨ q(t) = (H,Op),

Tz1(t) else.



Here, ma,med,ma,high correspond to the air flow rates
when the fan is operating at medium and high speeds.

Reachability analysis We perform reachability analysis
of the hybrid model, which we run using SpaceEx (Frehse
et al. [2011]). Notice that we do not discretise time and
consider a continuous time horizon of 2 hours. We select
two different initial conditions: in the first experiment
we pick an initial condition equal to Tz1 = 15oC and
Tsa = 15oC, while in the second we set Tz1 = 20oC
and Tsa = 20oC. The resulting reach tube for the both
experiments is shown in Figure 7a.

Fig. 7. Third case study: reach tubes obtained from two
different initial conditions

(a) Initial condition: Tz1 =
15oC, Tsa = 15oC
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(b) Initial condition: Tz1 =
20oC, Tsa = 20oC

In Figure 7a we can see that the model initially is in
state (O,−) and jumps to a new state (H,Op) such that
warm outside air is pumped into the zone (due to the
low temperature of the initial conditions). From (H,Op) it
switches to (M,Op) (notice the reduction in the gradient
between the variables Tsa ∈ [15 18], Tz1 ∈ [17 19]) and
eventually switches back to (O,−) in order to maintain
the temperature within the comfort region. For Figure 7b,
the reach tube shows that the system remains within the
initial state (O,−) over the whole time horizon.
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