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Abstract— A measurement-based statistical verification ap-
proach is developed for systems with partly unknown dynamics.
These grey-box systems are subject to identification experiments
which, new in this contribution, enable accepting or rejecting
system properties expressed in a linear-time logic. We employ
a Bayesian framework for the computation of a confidence level
on the properties and for the design of optimal experiments.
Applied to dynamical systems, this work enables data-driven
verification of partly-known system dynamics with controllable
non-determinism (inputs) and noisy output observations. A
numerical case study concerning the safety of a dynamical
system is used to elucidate this data-driven and model-based
verification technique.

I. INTRODUCTION

The design of complex, high-tech, safety-critical systems
such as autonomous vehicles, intelligent robots, and cyber-
physical infrastructures demands guarantees on their correct
and reliable behaviour. These guarantees can be attained by
the use of formal methods [1]. Formal methods lead to the
verification, over a model of the system, of specifications
formulated in mathematically sound terms, for example by
means of temporal logics. Temporal logic specifications
include time-dependent properties such as reachability, obsta-
cle avoidance, stability, and recurrence. Much recent research
has dealt with the extension of formal methods from finite-
state models, widely employed for software and hardware
verification, to models of complex dynamical systems. This
has led to applications in symbolic motion planning for
robotics [2] and in the analysis of biological systems [3].

The strength of formal techniques is limited by its required
access to a model built from the full knowledge of the
behaviour of the underlying system. The goal of this line
of research is data-driven and model-based verification for
partly unknown physical systems that are accessible via
noisy input-output measurements. With focus on properties
of interest over the system, we investigate the computation
of identification experiments that optimally excite the system
with respect to specifications expressing such properties. We
thus quite naturally assume that the system is available for
experiments in an environment where we can change its input
signals at will. Measurements are available as time series
of input and noisy output signals: carrying information on
the dynamics, they can be used to refine and decrease the
uncertainty over the model and the properties of interest.

The area of system identification [4], [5] investigates
measurement-based modelling of physical systems. Input
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signals excite the system behaviour observed via measure-
ments, and can be chosen to maximise the amount of
information gained. As the optimal input typically depends
on the knowledge of the true system, the literature distin-
guishes three application oriented input-design approaches:
an iterative approach, where an estimate of the nominal
system is used to design the experiment at each stage; a min-
max design that is robust to the worst-case scenario; and a
Bayesian design that uses the prior uncertainty distribution
over the model. The first approach predominates [4], [5],
whereas some work has been done on the robust experiment
design using the min-max approach [6]. On the other hand
the third approach, well known from Bayesian statistics [7],
is not yet widely employed.

Contribution: In this work we focus on the verification
of systems modelled within a linearly-parameterised class of
deterministic input-output models using Bayesian identifica-
tion and experiment design. The contribution shows that for a
subset of LTL specifications the confidence on the validity of
a formal property can be computed using Bayesian inference
over a finite sample set (cf. Section II). Since the perfor-
mance of this data-driven method depends on the design
of the experiment, we further define an optimality criterion
that allows selecting an input using Bayesian experiment
design. We display this approach on the safety verification
of linearly-parameterised models (cf. Section III).

Related work: Recent work within the formal methods
community also concerns the use of simulations and of
measurements for verification. Statistical Model Checking
(SMC) [8] employs finite executions generated by the model
to find statistical evidence for the verification of bounded-
time logical properties. SMC can be applied to black-box
systems [9], which have a probability distribution that is not
known. Beyond this, whilst SMC is well applicable to phys-
ical systems with unknown dynamics, it is in general limited
to state-observable and fully-stochastic systems. Further, the
presence of sets of inputs, disturbances, and unknown initial
states or other forms of non-determinisms, are not easily
incorporated into SMC [10], [11]. As an alternative, [12],
[13] efficiently use data drawn from an input-output, finite
state Markov system, to learn the corresponding model and
to verify it. These results are bound to finite-state models,
making them less applicable to more complex systems.
Similarly, [14] use advanced machine learning techniques to
infer finite-state Markov models from data over given logical
formulae.



II. DATA-DRIVEN AND MODEL-BASED VERIFICATION

Let us recapitulate the overall goal of this work: starting
from available a-priori knowledge over system S, iteratively
and efficiently gather measurements until a specification ψ
defined over the system is verified or falsified with a given
confidence δ.

System and Models: The system, denoted by S as in
Figure 1, is measured in discrete time. An input signal
u(t) ∈ U, t ∈ N, captures how the environment acts on the
system. Similarly, the output y0(t) ∈ Y indicates how the
system interacts with the environment (namely, how it can
be measured). The measurements ỹ(t) at t ∈ N of y0(t) are
disturbed by the measurement noise e(t).

u(t)
S

e(t)

y0(t)

ỹ(t)

Fig. 1: System S has input u(t)
and output y0(t). In the measure-
ment setup, the measured output
ỹ(t) includes the system output
y0(t) and the measurement noise
e(t).

The behaviour of a deterministic system can be described
by mathematical models as a (causal) relation between the
system input and output. In most cases the knowledge of the
behaviour of a system is only partial, making it impossible
to represent the system by a “true” model. In such cases,
a-priori available knowledge allows to construct a model set
G, with elements M ∈ G representing possible mathematical
models of S. Let us denote a parameterisation of the model
set G as the mapping M(·) : Θ → G, from the parameters
θ ∈ Θ in the parameter set, which is a subset of a Euclidean
space Θ ⊂ Rd, to the models M in G. This allows for a
parametrised expression of the model set as G = {M(θ)|θ ∈
Θ}. The chosen parameterised model set is assumed to
contain the “true” model denoted as M(θ0), θ0 ∈ Θ, which
exactly represents the behaviour of the system S. Hence G
encompasses the part of the behaviour that is mechanistically
known. The remaining uncertainty about M(θ0) is structured
as a distribution over the parameter set Θ. It is then the
(unknown) model denoted by M(θ0) = S that we would
ideally like to formally model-check.

Whenever the lack of knowledge on the system behaviour
impedes a formal verification step, it is still possible to
collect data of the system by exciting it with an input
sequence u =

[
u(0) u(1) . . . u(Ns − 1)

]T
, with Ns

the length of the input sequence. Via the measurement
setup, as depicted in Figure 1, noisy observations ỹ(t) of
the output y0(t) are measured. Classical noise characteristics
deal with Gaussian white noise e(t) that is additive to
y0(t), i.e. ỹ(t) = y0(t) + e(t). Let us denote the output
samples obtained by exciting the system with the input u

as ỹ =
[
ỹ(1) ỹ(2) . . . ỹ(Ns)

]T
. Since the collected

data contains statistical information on the behaviour of the
system, it is possible to refine the uncertainty distribution
over the parameter space, as discussed in the second part of
this section.

Properties: Starting from a finite set of atomic propo-
sitions pi ∈ AP , i = 1, . . . , |AP |, Linear-time Temporal

Logic (LTL) [15] formulae are built recursively via the
syntax ψ ::= true | p | ¬ψ | ψ ∧ ψ | ©ψ | ψ U ψ. Let
π = π(0), π(1), π(2), . . . ∈ ΣN+

be a word composed of
letters from the alphabet Σ = 2AP , let πt = π(t), π(t +
1), π(t+ 2), . . . be a subsequence of π, then the satisfaction
relation between π and ψ, namely π � ψ (or equivalently
π0 � ψ) is defined recursively over πt and the LTL syntax as
πt � true⇔ true, πt � p⇔ p ∈ π(t), πt � ¬ψ ⇔ πt 6� ψ,
πt � ψ1 ∧ψ2 ⇔ πt � ψ1 and πt � ψ2, πt �©ψ ⇔ πt+1 �
ψ, πt � ψ1 U ψ2 ⇔ ∃ i ∈ N : πt+i � ψ2, and ∀j ∈ N : 0 ≤
j < i, πt+j � ψ1.

Of interest are formal properties encoded over the input-
output behaviour of the system over the time horizon t ≥
0. Starting at an arbitrary time (say t = 0), the set of
initial states of the system is given: we assume that this set
encompasses the knowledge of past inputs and/or outputs of
the system. The input signal is bounded and represents the
possible external nondeterminism of the environment acting
on the system. The output y0(t) ∈ Y is labeled by a map
L : Y → Σ, which assigns letters in the alphabet Σ to half
spaces on the output, as Apiy0(t) ≤ bpi . In other words,
sets of atomic propositions are associated to intervals over
Y ⊂ R. A system, or equivalently the model that represents
it, satisfies a property if all the words generated by the model
verify that property. Since properties are encoded over the
external (input-output) behaviour of the system, which is the
behaviour of M(θ0), θ0 ∈ Θ, we can equivalently assert
that any property ψ is verified by the system, S � ψ, if and
only if it is verified by the unknown model representing the
system, namely M(θ0) � ψ. Let us underline that properties
are defined over the behaviour of the system, and not over
the noisy measurements ỹ(t) of the system. Let us define
Θψ to be the maximal feasible set of parameters, such that
for every parameter in that set the property ψ holds, i.e.
∀θ ∈ Θψ : M(θ) � ψ. This set has been alternatively
described [16] as the level set of a satisfaction function,
however since we are working with deterministic models the
satisfaction function only takes binary values.

System Verification in a Bayesian Framework: We now
argue that the characterisation of a distribution over the
parameter set Θ can be used to compute a confidence in the
satisfaction relation over the system S � ψ. This distribution
encompasses the current uncertainty over M(θ0) = S, and
can be characterised and refined using measurements of the
system. Therefore, it is possible to accept or reject S � ψ
by drawing data from the measurement set-up until a certain
confidence level is achieved. The necessary size of the data
set to attain this confidence level depends on the chosen input
data u. This leads to an experiment design task: in order to
optimise data efficiency, we structure the process of drawing
and processing data as an iteration over 3 main stages, as
represented schematically in Figure 2:

I) design (and perform) an experiment,
II) compute the corresponding parametric inference,

III) check if confidence in S � ψ or in S 6� ψ is > 1− δ,
else go to step I.
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Fig. 2: The process of sequentially drawing data with the objective of
verifying whether S � ψ or not with a given confidence 1−δ. Starting from
a prior parameters distribution p

(
θ
)
, the diagram depict the key elements

of the iteration with the white blocks, whereas the gray blocks represent the
starting/ending parts.

With reference to Figure 2, the iteration is initiated with the
construction of a distribution (‘Prior’), which structures the
initial limited knowledge by assigning a probability measure
over the set of parameters. The first part in the iteration is
to compute the confidence (‘Compute confidence’), which
allows leaving the iteration when the desired confidence level
is achieved. On the contrary if the confidence level is not
achieved, an identification experiment is designed to obtain
more data from the system (‘Design experiment’). The results
of the experiment (‘Do experiment’) are then used to update
the parameter distribution in ‘Parametric inference’.

We employ conjugate priors [17] since they are closed
under parametric inference and are in general quite expres-
sive. Whenever the available knowledge is insufficient, that is
whenever the confidence in accepting or rejecting a property
is below the confidence threshold 1 − δ, the procedure will
design and perform additional experiments.

Only in the pathologic instance where an infinitesimal
deviation of the true parameter affects the satisfaction or
rejection of the property, termination of the procedure cannot
be attained. In practice, as long as the uncertainty distribu-
tion p

(
θ
)

has a level set δ that converges to a single point
termination of the procedure follows almost surely.

In the following, we first explain how the confidence
in a property is computed, then we discuss the parametric
inference step via Bayesian identification for a given set of
data u, ỹ. Building on these two stages it becomes possible to
compute optimal experiments, as in the corresponding stage.

Confidence Computation (step III): Denote the maximal
feasible set Θψ ⊂ Θ such that ∀θ ∈ Θψ : M(θ) �
ψ. The confidence in a specification ψ defined over the
system S is computed based on the uncertainty distribution
over Θψ: given a prior uncertainty distribution p

(
θ
)
, the

confidence is computed as P
(
Θψ

)
=
∫

Θψ
p
(
θ
)
dθ, whereas

after an additional experiment and parametric inference (next
paragraph), the a-posteriori uncertainty distribution p

(
θ|ỹ,u

)
can be used to compute the confidence as

P
(
Θψ|ỹ,u

)
=

∫
Θψ

p
(
θ|ỹ,u

)
dθ . (1)

Observe that according to Bayesian probability calculus for
uncertainties [7], the confidence in a property becomes the
measure of the uncertainty distribution.

Parametric Inference (step II): Given a prior distribution
p
(
θ
)

and a data set ỹ obtained by taking Ns measurements
of ỹ(t), the a-posteriori uncertainty distribution p

(
θ|ỹ,u

)
is

based on parametric inference [7], [17] structured over the
parameter set Θ as

p
(
θ | ỹ,u

)
=

p
(
ỹ|θ,u

)
p
(
θ
)∫

Θ

p
(
ỹ|θ,u

)
p
(
θ
)
dθ
. (2)

Remark 1: Considerations of computational complexity
limit the use of (1) and (2), since their solution is seldom
analytical. In Section III we choose a model set that is
linearly-parameterised, and has Gaussian distributions for
both the measurement noise and the prior, which allows
for closed-form solutions of (2). In this case, polyhedral
expressions of the maximal feasible set Θψ can be found for
a subset of BLTL properties, which leads to easily obtainable
computations of (1).

The computation of (1) for more general problems would
demand the use of either Monte-Carlo methods to solve the
relevant integrals directly without computing the feasible set
first, or of numerical approximation techniques to obtain an
(upper/lower-)approximation of the feasible set. The use of
Monte-Carlo methods allows for an empirical computation
of the confidence if, for each sample of the uncertainty
distribution (a model in the model set), the property is decid-
able. Note that this transfers the bottleneck of computational
complexity to the verification properties over the models, that
is to M(θ) � ψ. Numerical approximations can offer insight
especially when enabled by the exploration of the parameter
space in order to exploit the structure and properties of the
models [18], [19].

Experiment Design (step I): Every experiment contains
statistical information on the behaviour of the system, which
can be used to decide whether to accept or reject a spec-
ification over the system. The objective is to design an
experiment u that optimally exploits the dynamic behaviour
of the system and thus optimises the expected value of a
criterion. In this subsection, the criterion for the Bayesian
experiment design problem is the expected utility related
to the acceptance or the rejection of a given specification
of interest, based on the identification experiment. Let us
define this criterion J(ỹ,u) as a function of the measured
output ỹ and input u data, as J : UNs × YNs . The data
realisation ỹ ∼ p

(
ỹ|u
)

has a probability density function
which is conditioned on the input signal u. Given a prior
p
(
θ
)

the probability density distribution of the data can be
expressed as

p
(
ỹ|u
)

=

∫
Θ

p
(
ỹ|θ,u

)
p
(
θ
)
dθ , (3)

where p
(
ỹ|θ,u

)
is the data distribution conditioned on the

input u and on the parameter θ. The Bayesian experiment
design problem optimises the expected value of the criterion



J over the input signal u for a given prior p
(
θ
)
, and is

formulated as:

max
u∈E

E
[
J(ỹ,u) | ỹ ∼ p

(
ỹ|u
)]
, (4)

where the set of allowed experiments E is defined as E :=
{u : u(t) ∈ U, ∀t = 0, . . . Ns − 1}, with U a bounded set,
such as for instance [−umax, umax], umax ∈ R.

In order to use the expected utility J related to the accep-
tance or rejection of a specification based on the identifica-
tion experiment, consider that system S can be represented
as M(θ0), with a nominal parameter θ0. Although θ0 is in
general unknown, it can be perceived as a realisation of
the uncertainty distribution over the parameters space, i.e.
θ0 ∼ p

(
θ
)
, θ ∈ Θ. The acceptance or rejection of S � ψ can

be equivalently cast as the choice between hypothesis H0:
M(θ0) � ψ and hypothesis H1: M(θ0) 6� ψ. This entails
a decision which is valued with 1 when correct, and with
0 when incorrect. For a given choice of H0 or H1, and
a nominal parameter θ0, the utility is then a binary-valued
function

ut(Hi, θ
0) =

 1 if
{
H0 and M(θ0) � ψ
H1 and M(θ0) 6� ψ,

0 else.
(5)

Note that ut has a 0 value when the chosen hypothesis is
wrong, which is related in statistics to type I and type II
error, respectively [20, page 514].

Conditional on a data set ỹ, the nominal parameter is
distributed over the parameter space as θ0 ∼ p

(
θ|ỹ,u

)
. The

expected utility of a decision Hi conditional on the data set is
thus E

[
ut(Hi, θ

0) | θ0 ∼ p
(
θ|ỹ,u

)]
. Note that the expected

utility represents the confidence that M(θ0) � ψ or M(θ0) 6�
ψ, and is a function of both the decision and the experiment
(ỹ,u). Thus when deciding on H0 or H1, the expected
utility is either ut(H0; (ỹ,u)) =

∫
θ∈Θψ

p
(
θ|ỹ,u

)
dθ =

P
(
Θψ|ỹ,u

)
, or ut(H1; (ỹ,u)) =

∫
θ∈Θ\Θψ p

(
θ|ỹ,u

)
dθ =

P
(
Θ\Θψ|ỹ,u

)
= 1−P

(
Θψ|ỹ,u

)
. As a criterion, we then

choose the expected utility maximised over the decision H0

or H1, namely

J(ỹ,u) =̇ max
Hi

ut(Hi; (ỹ,u))

= max
{
P
(
Θψ|ỹ,u

)
,P
(
Θ\Θψ|ỹ,u

)}
.

(6)

III. VERIFICATION OF SYSTEMS REPRESENTABLE BY
LINEARLY-PARAMETERISED MODELS

In this section we provide a solution of the discussed new
data-driven and model-based verification problem, according
to the schematic process depicted in Figure 2, for single-
input single-output systems in linearly-parameterised model
sets, for a subset of properties expressed as bounded-horizon
LTL formulae, and for a known Gaussian a priori uncertainty
distribution and measurement noise. Under these restrictions,
we obtain closed form solutions of (2) and convex sets
for the feasible set Θψ , which are then employed towards
a relaxation of the criterion in (6) and a Monte Carlo
solution to the Bayesian experiment design problem in (4).
Linearly-parameterised model sets such as orthonormal basis
function parameterisations are able to represent a wide set of

systems [21, Chapter 4 and 7]. Models M within a linearly-
parameterised model class G have the following state-space
realisation:

M(θ) :

{
x(t+ 1) = Ax(t) +Bu(t),
ŷ(t, θ) = θTx(t),

(7)

and are (linearly) parameterised by θ =
[
θ1 ... θn

]T ∈ Θ ⊂
Rn. We assume that the system has a representation M(θ0)
in this model set, with unknown parameter θ0, and has an
output denoted as y0(t) = ŷ(t, θ0). It is assumed that the
initial state of the system and of the model representing
it is x(0) = 0, both in the identification experiment and
for the verification of the property. The noise disturbance,
e(t), on the measurement ỹ(t) = y0(t) + e(t) is assumed
to be an additive zero-mean, white, Gaussian-distributed
measurement noise with variance σ2

e that is uncorrelated
with the input. The following theorem can be derived for
properties defined on the model output y0(t).

Theorem 1: Consider a linearly-parameterised model set,
a bounded polyhedron for the set of initial states x(0) ∈ X0,
and inputs u(t) ∈ U for t ≥ 0. For every specification
ψ expressed within the LTL fragment ψ := σ|©ψ|ψ1 ∧
ψ2, with σ ∈ Σ, the feasible set of parameters Θψ =
{θ ∈ Θ : M(θ) � ψ} is a polyhedron.
Several observations can be made. Firstly, the number of
half planes characterising the set Θψ may quickly increase
with the time bound of the LTL formula ψ (that is, with
the repeated application of the © operator), and with the
cardinality of the atomic propositions in the alphabet Σ.
Secondly, the extension beyond the LTL fragment discussed
above may lead to feasible sets that are in general not convex,
and is therefore left for future work.

Recursive Parametric Inference: Let us denote the (k+1)-
th iteration of the verification algorithm in Figure 2 as
a combination of input design, experiment, and Bayesian
identification starting from the prior knowledge gathered in
the previous iterations. At the first iteration, the available
knowledge is structured into a prior distribution N

(
µ0, R0

)
over the parameter space, a multi-variate Gaussian with
mean µ0 and variance R0. Employing Bayesian inference for
the iterations of the identification procedure, the probability
distributions in (2) and (3) can be computed recursively. At
the (k+ 1)-th iteration the available knowledge is expressed
as a prior p

(
θ
)

= N (µk, Rk) and in combination with data
sets u, ỹ the distributions of interest are computed as

p
(
ỹ | θ,u

)
= N

(
ΦT (u)θ, Iσ2

e

)
, (8a)

p
(
ỹ | u

)
= N

(
ΦT (u)µk, Rỹ

)
, (8b)

Rỹ =
[
σ2
e + ΦT (u)RkΦ(u)

]
,

p
(
θ | ỹ,u

)
= N

(
µk+1, Rk+1

)
, (8c)

Rk+1 =
[
R−1
k + σ−2

e Φ(u)ΦT (u)
]−1

,

µk+1 = Rk+1

[
R−1
k µk + σ−2

e Φ(u)ỹ
]
,

with Φ(u) =
[
x(1) . . . x(Ns)

]
∈ Rn×Ns . In (8a), the

distribution over the expected data ỹ =
[
y(1) . . . y(Ns)

]T
,

conditioned on the parameter θ and the input sequence u, can



be computed through the distribution of the measurement
noise. Its mean is a linear mapping of the input data to the
matrix Φ(u). Marginalised over the prior distribution, this is
the data distribution conditioned on the input alone, as per
(8b). The posterior distribution p

(
θ | ỹ,u

)
(8c) provides an

expression for (2), and corresponds to the prior distribution
for the (k + 2)-th iteration.

Bayesian Θψ-Optimal Experiment: We solve approxima-
tively the optimisation problem related to experiment design
via an empirical approximation of the objective function and
an input parameterisation.

Consider the experiment design problem
maxu∈E E[J(ỹ,u)|ỹ∼ p

(
ỹ|u
)
] with J(ỹ,u) the expected

utility as given in (6). Note that the posterior distribution
p
(
θ|ỹ,u

)
= N

(
µk+1, Rk+1

)
, hence J(ỹ,u) depends on

the measurements ỹ only through µk+1, as in (8c). It
follows that the optimisation problem can be written as
an expected value over µk+1 (instead of ỹ), reducing the
complexity of the problem from the horizon of the data to
the dimensionality of the parameterisation,

max
u∈E

∫
Θ

max
{
P
(
Θψ|µk+1,u

)
,P
(
Θ̄ψ|µk+1,u

)}
× p
(
µk+1|u

)
dµk+1, with Θ̄ψ = Θ \Θψ (9)

s.t. p
(
µk+1|u

)
= N

(
µk, Rk −Rk+1

)
.

As an affine transformation of the measurements ỹ, the
posterior mean µk+1 is a random variable with a Gaus-
sian distribution as µk+1 = Rk+1

[
R−1
k µk + σ−2

e Φ(u)ỹ
]
.

Using this mean, a practical lower approximation of the
maximisation inside the integral is found as P

(
Θψ|ỹ,u

)
=
∫

Θψ
p
(
θ|µk+1,u

)
dθ for µk+1 ∈ Θψ , and 1−P

(
Θψ|ỹ,u

)
else. This provides a relaxed version of (9), expressed as

max
u∈E

∫
Θψ

∫
Θψ

p
(
θ|µk+1,u

)
p
(
µk+1|u

)
dθdµk+1

+

∫
Θ̄ψ

∫
Θ̄ψ

p
(
θ|µk+1,u

)
p
(
µk+1|u

)
dθdµk+1. (10)

The combined distribution of θ and µk+1, denoted by
variable θ =

[
θT µTk+1

]T
, has a normal distribution

p
(
θ | u

)
= N

(
µθ, R

)
, with mean µTθ =

[
µk µk

]T
and

covariance matrix

R =

[
Rk (Rk −Rk+1)

(Rk −Rk+1) (Rk −Rk+1)

]
.

Since the integral in (10) cannot in general be computed
analytically, we can either compute it with an efficient
numerical method or we can empirically approximate it.

Remark 2 (Numerical methods): Efficient numerical
methods to compute the integral of multivariate densities
over polytopes [22] are not an option. This is because these
methods would approximate, depending on the mean of
the prior, either the first term in (10) (the integral over
Θψ × Θψ) and neglect the second term, or the opposite.
From a practical point of view this would make sense, since
when the prior µk is in Θψ we would expect the value
of

∫
Θ̄ψ

∫
Θ̄ψ

p
(
θ|µk+1,u

)
p
(
µk+1|u

)
dθdµk+1 to be very

small. But it can be observed that in the case of µk ∈ Θψ

the second term is strictly increasing for a decrease in the

variance of the posterior density p
(
θ | ỹ

)
, whereas the first

term is not. In conclusion, we opt for the alternative use of
a Monte-Carlo approximation of the objective.

Let ε be a dummy random variable with density distribu-
tion N

(
0, I
)
, which is independent of the decision variable

u. The value of the relaxed optimisation problem (10) can
be approximated as

ÊJ ≈ 1

M

M∑
i=1

1(Θψ×Θψ)∪(Θ̄ψ×Θ̄ψ)

(
µθ + Λεi

)
, (11)

with M realisations of εi ∼ N
(
0, I
)

and ΛΛT = R. The
realisations of µθ + Λεi have the same density distribution
as θ ∼ N

(
µθ, R

)
. Hence, for a given input u, (11) is

an unbiased estimate of (10) and it is also consistent, i.e.,
for M → ∞ the estimated objective converges to the
optimisation objective in (10) with probability 1. The Ns
decision variables of u can be reduced by a parameterisation
of the input signal u as u(t) =

∑np
k=1 βk sin(ωkt+αk), with

parameters αk ∈ [0, 2π] and βk ∈ [0,∞) for k = 1, . . . , np
at predefined frequencies ωk.

Case Study – Bounded-time Safety Verification : Consider
a system S with input signals with support u(t) ∈ U =
[−0.2, 0.2]. For simplicity let us select a fixed initial state
x0 =

[
0 0

]T
. Verify whether the output y0(t) remains

within the interval I =
[
−0.5, 0.5

]
, labeled as ι, for the next

4 time steps. Introduce accordingly the alphabet Σ = {ι, τ}
and the labelling map L : L(y) = ι, ∀y ∈ I, L(y) = τ,∀y ∈
Y \ I. Now check whether the following finite-horizon LTL
property holds: S �

∧4
i=1(©)iι. We assume that system S

can be represented as an element of a model set G with
transfer functions characterised by second-order Laguerre-
basis functions [21] (a special case of orthonormal basis
functions), which translates to the following parameterised
state-space representation:

x(t+ 1) =

[
a 0

1− a2 a

]
x(t) +

[ √
1− a2

(−a)
√

1− a2

]
u(t),

ŷ(t, θ) = θTx(t) .

The coefficient a is chosen to be a = 0.4. We further

−2 −1 0 1 2

−1

0

1

θ1

θ 2

Fig. 3: The green region in the pa-
rameter space [θ1 θ2]T is the feasi-
ble set of the case study. The contour
lines give the density function of a
possible a-posteriori distribution over
the parameter space (for confidence
quantification).

consider, as prior available knowledge on the system, a
distribution p

(
θ
)

= N
(
µk, Rk

)
on the model class, and a

known variance σ2
e = 0.5 for the white additive measurement

noise. The output of the computation of the feasible set is
in Figure 3. We are interested in an experiment of length
Ns = 100 with the input parameterised as a multi-sine with
frequencies (ω0, 2ω0, . . . , 5ω0) and fundamental frequency
ω0 = 2π/10.
The results of the experiment design problem are given in



Figure 4 and compared to the results for a classical D-
optimal experiment design [23] on a single iteration of the
verification algorithm in Figure 2. For D-optimality we min-
imise the determinant of Rk+1. Both the Θψ- and D-optimal
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Fig. 4: Empirical evaluation of 1−E[J ] on the horizontal axis for the safety
verification case study for both the Θψ-optimal (red bar, top) and the D-
optimal experiment design (grey bar, below). The wider light grey bar gives
1 − max{P

(
Θψ

)
,P

(
Θ̄ψ

)
}. The means of the priors in the experiment

design are given on the vertical axis. On the bars for the empirical evaluation
of 1−E[J ], their standard deviation is also drawn on the bars by the symbol
à.
experiment designs have been performed for priors with
several different mean values µk, and with a fixed variance
of Rk = 0.2I2×2. Note that the D-optimal experiment is
independent of the prior mean.
After designing an experiment u, the optimisation objective
E
[
J(ỹ,u) | ỹ ∼ p

(
ỹ|u
)]

is evaluated empirically. For this
400 data samples ỹ are drawn from the distribution p

(
ỹ|u
)
,

first drawing a parameterisation from the prior distribution
θ ∼ p

(
θ
)
, and subsequently performing an identifica-

tion experiment. In Figure 4 the empirical evaluation of
E [J(ỹ,u)] for both the Θψ- and D- optimal experiment
designs are plotted together with the attainable result without
performing additional experiments max{P

(
Θψ

)
,P
(
Θ̄ψ

)
}.

Note that the figure displays in fact the values 1 − EJ and
1 − max{P

(
Θψ

)
,P
(
Θ̄ψ

)
} for convenience, and also give

the standard deviation of the empirical evaluations.
In Figure 4, the result shows that the empirical value of

E[J ] is higher for the Θψ-optimal experiment design than
for the D-optimal experiment design for all the given mean
values. It can be observed that this is especially significant
when max{P

(
Θψ

)
,P
(
Θ̄ψ

)
} is smaller. The authors have

observed that in this case the posterior variances of the Θψ-
optimal experiment design tend to align with the closest faces
of the feasible region. For mean values that lie farther from
the boundaries of the feasible region such as [1 0]T and
[−1 0]T , the max{P

(
Θψ

)
,P
(
Θ̄ψ

)
} is already quite big and

the difference between the Θψ- and D- optimal design is
less significant. It can be concluded that the Θψ-optimal
experiment gives a significant improvement with respect to
E[J ] in comparison to the D-optimal solution.

IV. FUTURE WORK

The present work relies on the underlying knowledge of

the exact model structure (limited to linearly parameterised
models) and of the noise dynamics. It is of interest to extend
it to more general model structures and to consider more
complex linear-time properties. Future work will employ
this theory as a practical tool for property optimisation via
controller synthesis.
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