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Abstract

Residential thermostatically controlled loads (TCLs) have po-
tential for participation in electricity markets. This is because
we can control a large group of these loads to achieve ag-
gregate system behavior such as providing frequency reserves
while ensuring the control actions are non-disruptive to the end
users. A main challenge in controlling aggregations of TCLs is
developing dynamical system models that are simple enough
for optimization and control, but rich enough to capture the
behavior of the loads. In this work, we propose three classes
of models that approximate aggregate TCL dynamics. We
analyze these models in terms of their accuracy and com-
putational tractability. The models demonstrate a progression
from models that help us analyze and predict TCL population
behavior to those that help us develop large-scale automatic
control strategies. Specifically, we demonstrate how formal
methods from computer science and optimal control can be
used to derive bounds on model error, guarantees for trajectory
tracking, and algorithms for price arbitrage. We find that the
accuracy of the analytic results decreases as TCL param-
eter heterogeneity is introduced. Thus, we motivate further
development of analytical tools and modeling approaches to
investigate realistic TCL behavior in power systems.

I. Introduction

Household appliances such as water boilers/heaters, electric
heaters, and air-conditioners, referred to as thermostatically
controlled loads (TCLs) generally operate within a dead-band
around a temperature set point. These appliances can store
energy due to their thermal mass. Thus, we can control them
by turning them on/off prematurely or slightly adjusting their
temperature set point, and still ensure that they can provide
the service expected by the user. In this way, one can hope
to control a large population of TCLs so that their aggregate
power consumption tracks a signal or minimizes a cost. For
example, the aggregate power can follow a desired trajectory
determined based on the power fluctuations of renewable
energy sources or the demand on the grid [1].

Control of the aggregate power output of a TCL population
can provide a variety of benefits to the electricity grid. A
key change to the grid is the increase in renewable energy
sources, such as wind and solar, which are hard to accurately
predict. This leads to the need for additional ancillary services
[2], [3] such as control reserves which are today mainly
provided by conventional generators. With Smart grid sensing
and communication infrastructure, population of TCLs can
provide additional means for providing control reserves [4].
There are several advantages to using TCLs for this task
[5]. First, ancillary service needs can be partially addressed
locally, which reduces the need for additional transmission
line capacity. Second, using a large population of TCLs may
improve robustness, since if a few TCLs fail to provide the
required service, the consequence in the large population
would be small. Third, the resource potential is large [6].

To integrate TCL aggregations into the power systems, several
challenges in terms of modeling, control, and communication
need to be addressed. First, although accurate models for
individual TCLs exist, developing a computationally tractable
and accurate aggregate model for a population of TCLs is
challenging. Next, control schemes must be developed so
that the population tracks a given power trajectory with a
required accuracy or can minimize a cost function. The control
must be robust with respect to uncertainties in the model and
exogenous inputs such as weather, uncertainty in renewable
energy forecasts, and uncertainty in price forecasts. Since an
aggregator will perform the estimation and control of the TCL
population, there must be a communication link between each
TCL and the aggregator. The design of such communication
infrastructure and trade-offs between its cost and accuracy in
estimation and control is the subject of investigation [7].

The purpose of this paper is to propose and examine several
classes of models for analysis and control of TCL populations.
Each proposed model makes certain assumptions about the
TCL parameters and the information available to a central
aggregator and has certain computational and deductive ca-
pabilities about the population performance. In particular,
the objective of the first part of the paper is to derive an
abstraction of the TCL population dynamics which analytically
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characterizes the process noise in the abstraction and derives
bounds on the error between the power output of the TCL
population and that predicted by the model. Partial results of
this approach appeared in our recent work [8]. The additional
contributions here include the consideration of a heterogeneous
TCL population. The second section explores formulation of a
new method for modeling the uncertainties in TCL population.
The objective of this section is to determine whether it is
feasible to track a power signal within a required accuracy,
given observations of the power consumption of the TCL
population. The third section examines the potential of a TCL
population to participate in energy markets through energy
arbitrage. This section extends our recent results in [9] by
finding upper bounds on energy savings, computed assuming
each TCL optimizes its own energy costs. Each section works
with a different model and all three models are simulated based
on realistic parameter data for the TCLs. The tradeoffs in
the accuracy, complexity, and application of the models are
analyzed.

The paper is organized as follows. In Section II, we provide
some background on TCL population modeling. We also
include the individual TCL model and parameters that are used
as the ground truth in all sections. In Section III, we develop a
Markov chain abstraction of population of TCLs with accurate
analysis of stochasticity in the population dynamics and error
bounds of the model. In Section IV, we develop a framework
in which, with only historic measurements, deductive quantita-
tive conclusions about the performance of the TCL population
can be determined. In Section V, motivated by optimization
of long-run TCL operation, we develop an aggregate model
suitable for optimization and apply the model from Section
III for optimal control around the optimized power trajectory.
In Section VI, we make comparisons of the models and
recommendations of feasibility of each model in different
scenarios. Finally, we conclude in Section VII.

II. Background on TCL Modeling

II.A. Individual TCL Model

The starting point of all three models is the following discrete
time Stochastic Hybrid System (SHS) [10], which describes
the evolution of the temperature of a single cooling TCL [1],
[11], [12], [13], [14]:

θ(t+ 1) = a θ(t) + (1− a)(θa −m(t)RPrate) + w(t), (1)

where θ is the temperature of the load, θa is the ambient
temperature, C and R indicate the thermal capacitance and
resistance respectively, Prate is the rate of energy transfer,
and a = e−h/RC , with a discretization step h. The process
noise w(t) ∈ R is independent identically distributed (i.i.d.)
and characterized by a probability density function pw. The
temperature dynamics are regulated by the discrete switching
variable m(t) ∈ {0, 1}.

The switching dynamics for a cooling TCL are

m(t+ 1) = f(m(t), θ(t)) =

 0, θ < θs − δ/2
1, θ > θs + δ/2
m, else,

(2)

where θs denotes the temperature set-point and δ the dead-
band width. We define θ− = θs−δ/2 and θ+ = θs+δ/2 as the
lower and upper boundary of the temperature range. The power
consumption of a TCL at time t is equal to 1

ηm(t)Prate, where
the parameter η is the Coefficient Of Performance (COP). For
notation simplicity, we define

P̄rate =
1

η
Prate.

In the discrete time model, the changes in the thermostat state
occur only at discrete time steps.

II.B. Probability Distribution Modeling

One of the early works on TCL population models was [14].
Here, the authors focused on characterizing the probability
distribution of homogenous populations of TCLs in tempera-
ture space. They derived partial differential equations (PDEs)
for the evolution of the probability density function (PDF) of
the TCLs in the On and Off mode. The PDF characterization
suffers from a few drawbacks including computation of the
solutions, extensions to non-homogeneous populations, and its
use for control synthesis. An exact solution of the PDE was
developed in [1]; however, it was shown that the aggregate
power output predicted by the PDE does not approximate
the entire temperature distribution accurately in the case of
heterogenous loads.

In an effort to better understand TCL aggregate behavior,
input-output models [1], state queuing models [15], [16] and
Markov chain models have been proposed. Instead of using
PDFs, the Markov chain models approximate the evolution
of TCL populations over discretized temperature intervals and
on/off modes, and at discrete time points [17], [18], [19], [20],
[7]. The Markov chain models are in the class of linear time
varying system

X(t+ 1) = PTX(t) + W(t), (3)

where X denotes a vector containing the probability mass of
TCLs within each discretized temperature state and On/Off
mode, P is the transition probability matrix, (.)T denotes
the transpose of the matrix, and W denotes a noise term.
This modeling approach was used for tracking control over
short horizons and estimation of state. More detailed individual
TCL models based on three state hybrid systems were used
in [21] and a Markov chain abstraction of the population’s
corresponding probability density function was also addressed.

In relation to past work, Section III of this paper provides
insight into the Markov chain abstraction method (referred to
as Model 1) by characterizing the process noise term W(t) of
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Parameter Interpretation Model 1 & 2 Model 3
θs set-point 20◦C 18–27◦C
δ dead-band width 0.5◦C 0.25–1◦C
θa ambient temperature 32◦C varying
R thermal resistance 2◦C/kW 1.5–2.5◦C/kW
C thermal capacitance 10kWh/◦C 1.5–2.5 kWh/◦C
Prate power 14 kW 10–18 kW
η COP 2.5 2.5
h time step 10 sec 10 sec

Table I: Parameters for simulation of air conditioner popula-
tions from [1] and [20].

the aggregate model analytically and deriving bounds on the
model error. Sections IV and V present novel approaches for
TCLs population modeling and are referred to as Model 2 and
3, respectively.

II.C. Model Parameters

In this paper, we consider populations of air conditioners.
Equations (1) and (2) are used as the plant. The parameters in
Sections III and IV are set according to Table I, column 3 [1].
In the third modeling approach, in Section V, a heterogenous
population is considered and the parameters are uniformly
distributed within the bounds given in Table I, column 4 [20].

III. Model 1 - A Markov Chain Abstraction
with Analytic Error Bounds

We develop a novel two-step abstraction procedure to derive
a linear stochastic dynamical model for the TCL popula-
tion. In the first step, a population of discrete time Markov
chains is generated based on the probabilistic evolution of
the continuous state model of each TCL temperature; in the
second step, a Markov chain of reduced order is derived
which is an exact representation of the population model,
that is, it is probabilistically bisimilar to the original model.
The approach is analytically developed for the case of a
homogeneous population of TCLs, and extended to a hetero-
geneous population. While the resulting model is similar to
those proposed in the literature [17], [18], [19], [20], [7], the
analytic derivation allows us to quantify the abstraction error
and thus the difference between the original and the modeled
population. This section extends our work in [8].

Throughout this section we use the notation N for natural
numbers, Z = N ∪ {0}, Nn = {1, 2, 3, · · · , n}, and Zn =
Nn ∪ {0}. We denote vectors with bold typeset and with a
letter corresponding to that of its elements.

III.A. Abstraction of a Single TCL

The interpretation of (1)-(2) as a SHS enables the use of
an abstraction technique first proposed in [22], aimed at

L
δ

θ− θ+θs

· · · θ−1 θ0 θ1 θ2 · · · θl · · ·· · · θ−l θmθ−m

Figure 1: Partition of the temperature axis for abstraction of a
TCL.

reducing a discrete time, uncountable state space Markov
process into a discrete time finite state Markov chain. This
abstraction is based on state space partitioning as follows.
Consider an arbitrary finite partition of the continuous domain
R = ∪ni=1Θi, and arbitrary representative points within the
partitioning regions denoted by {θ̄i ∈ Θi, i ∈ Nn}. The hybrid
state space is characterized by a variable s = (m, θ) ∈ Z1×R.
Introduce a finite state Markov chain M, characterized by
2n states sim = (m, θ̄i),m ∈ Z1, i ∈ Nn. The transition
probability matrix related to M consists of the elements

P(sim, si′m′) = δd[m
′ − f(m, θ̄i)]·∫

Θi′

pw(θ̄ − a θ̄i − (1− a)(θa −mRPrate))dθ̄,

where m′ ∈ Z1, i
′ ∈ Nn and δd[m′ − f(m, θ̄i)] is the Dirac-

delta function. For ease of notation, we rename the states of
M by the bijective map `(sim) = mn + i,m ∈ Z1, i ∈ Nn,
and accordingly introduce the new notation

Pij = P(`−1(i), `−1(j)), ∀i, j ∈ N2n.

Due to the presence of switching dynamics, the conditional
density function of the stochastic system describing the dy-
namics of a single TCL is discontinuous. The selection of the
partitioning sets then requires special attention. It is convenient
to select a partition for the dead-band [θ−, θ+], thereafter
extending it to a partition over the whole line R as shown in
Figure 1. Let us select two constants l,m ∈ N, l < m, compute
the partition size τ = δ/2l and quantity L = 2mτ . Now
construct the boundary points of the partition sets {θi}i=m

i=−m
for the temperature axis as

θ±l = θs ± δ/2, θ±m = θs ± L/2, θi+1 = θi + τ,

R = ∪ni=1Θi, Θ1 = (−∞, θ−m), Θn = [θm,∞), (4)
Θi+1 = [θ−m+i−1, θ−m+i), i ∈ Nn−2, n = 2m + 2.

We render the Markov states of the infinite length intervals
Θ1,Θn absorbing, that is, once the temperature reaches one
of these intervals, it remains there forever.

III.B. Abstraction of a Homogeneous Population
of TCLs

Consider now a population of np homogeneous TCLs, that is
a population of TCLs which, after possible rescaling of (1)-
(2), share the same set of parameters θs, δ, θa, R, C, Prate, η, h,
and the distribution pw of w(t). Each TCL can be abstracted
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as a Markov chain with the transition probability matrix P =
[Pij ], where i, j ∈ N2n. This abstraction leads to np identical
Markov chains M.

The homogeneous TCL population can be represented by a
single Markov chain Ξ , built as the cross product of the np
Markov chains. The state of the Markov chain Ξ is

z = [z1, z2, · · · , znp ]T ∈ Z = Nnp

2n,

where zj ∈ N2n represents the state of the jth Markov chain.
We denote by PΞ the transition probability matrix of Ξ .

The Markov chain Ξ has (2n)np states, which in general
can be very large. As the second step of the abstraction
procedure, we are interested in further aggregating this model.
The motivation for this approach stems from the fact that
for studying aggregate power consumption, it is sufficient to
know the number of TCLs in each discrete state. Formally,
the aggregation is achieved through the notion of (exact)
probabilistic bisimulation [23].

Let us introduce AP as a constrained vector with a dimension
corresponding to the number of states of Markov chain M:

AP =

{
x = [x1, x2 · · · , x2n]T ∈ Z2n

np

∣∣∣∣ 2n∑
i=1

xi = np

}
.

A function L : Z → AP , referred to as a labeling function,
associates to a configuration z of Ξ a vector x = L(z), the
elements xi ∈ Znp of which count the number of TCLs in bin
i, i ∈ N2n. Notice that the set AP is finite with cardinality
|AP | = (np + 2n − 1)!/(np!(2n − 1)!), which for np ≥ 2
is much less than the cardinality (2n)np of Ξ . Define an
equivalence relation R on the state space of Z , such that

∀(z, z′) ∈ R ⇔ L(z) = L(z′).

This equivalence relation provides a partition of the state space
of Z into equivalence classes belonging to the quotient set
Z/R, where each class is uniquely specified by the label of its
elements. The equivalence relation R is an exact probabilistic
bisimulation relation on Ξ [23], which means for any set T ∈
Z/R

PΞ(z, T ) = PΞ(z′, T ),

where PΞ(z, T ) =
∑

z1∈T PΞ(z, z1). Given an observation
x(t) ∈ AP at time t over the Markov chain Ξ , it is of interest
to compute the probability mass function of the conditional
random variable (xi(t+1)|x(t)) as P(xi(t+1) = k|x(t)), for
any k ∈ Znp

, i ∈ N2n. Using the law of total probability we
get the following result.

Theorem 1: The conditional random variables (xi(t+1)|x(t))
have Poisson-binomial distributions, whereas the conditional
random vector (x(t+ 1)|x(t)) has a generalized multinomial
distribution [24]. Their mean, variance, and covariance are

characterized by

E[xi(t+ 1)|x(t)] =
∑2n
r=1 xr(t)Pri,

var(xi(t+ 1)|x(t)) =
∑2n
r=1 xr(t)Pri(1− Pri),

cov(xi(t+ 1), xj(t+ 1)|x(t)) = −∑2n
r=1 xr(t)PriPrj ,

for all i, j ∈ N2n, i 6= j,

Theorem 1 indicates that the distribution of the conditional
random variable (x(t+ 1)|x(t)) is independent of the under-
lying state z of Ξ in which L(z) = x.

Without loss of generality, let us normalize the values of
the labels x by the total population size np, thus obtaining
a new variable X. Based on the expression of the first two
moments of (X(t+1)|X(t)), we apply a translation (shift) on
this conditional random vector which allows expressing the
following dynamical model for the variable X:

X(t+ 1) = PTX(t) + W(t), (5)

where the distribution of W(t) depends only on the state X(t).
We use the Lyapunov central limit theorem [24] to show that
this distribution converges to a Gaussian one.

Theorem 2: The random variable (Xi(t + 1)|X(t)) can be
explicitly expressed as

Xi(t+ 1) =

2n∑
r=1

Xr(t)Pri + ωi(t),

where the random variables ωi(t) converge (in distribution)
as np → ∞ to the Gaussian random variables ωi(t) ∼
N (0, σ2

i (X(t))), σ2
i (X) = 1

np

∑2n
r=1XrPri(1− Pri).

We have modeled the evolution of the TCL population with an
abstract model based on linear stochastic difference equations
(5). The approach in derivation of the stochastic model above
is different than that of [7] in that the noise covariance is
derived analytically in the current approach, in contrast to
estimated via simulation in the latter approach.

III.C. Quantification of the Abstraction Error

The total power consumption obtained from the aggregation of
the individual models in (1)-(2), with variables (mi, θi)(t), i ∈
Nnp , denoting TCL i is given as

ytotal(t) =

np∑
i=1

mi(t)P̄rate.

Focusing on the abstract model, described in terms of the
normalized variable X, the power consumption is equal to

ya(t) = HX(t), H = P̄rate[0n,1n],

where 0n,1n are n-dimensional row vectors with entries equal
to zero and one, respectively. The following theorem quantifies
the abstraction error over the total power consumption.
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Theorem 3: Consider a homogeneous population of TCLs
with a Gaussian process noise w(·) ∼ N (0, σ2), and the
abstracted model constructed based on the partitions defined
in (4). The difference in the expected value of the total
power consumption of the population ytotal(t), and that of the
abstracted model ya(t), both conditional on the corresponding
initial conditions, is upper bounded by∣∣E[ytotal(t)|s0]− E[ya(t)|X0]

∣∣
≤ np(t− 1)P̄rate

[
(t− 2)

2
ε+

2a

σ
√

2π
τ

]
, (6)

where the constants above are given as

ε =
e−γ

2/2

γ
√

2π
,

γ =
1− a

2σ

[Lat + δ

1− at −RPrate − |2(θs − θa) +RPrate|
]
,

for all s0 ∈ (Z1 × [θ−m, θm])np . The initial state X0 is a
function of the initial states in the population of TCLs s0,
according to the definition of the state vector X.

The importance of this theorem is that it allows us to tune
the error in estimating the total power consumption of the
population from the abstraction. Notice that the constant γ
is an affine function of L. The constant ε, and consequently
the first term of the error bound (6), is reduced by selecting
a larger interval around the dead-band to be partitioned. The
second term of the error bound (6) is decreased by a smaller
partition diameter τ . The error bound depends linearly on the
population size since the total power consumption is the sum
of power consumption of np single TCL. The error bound
depends quadratically on time. Currently, we are exploring
improvements to this bound.

III.D. Extension to a Heterogeneous Population
of TCLs

Consider a heterogeneous population of np TCLs, where
heterogeneity is characterized by a parameter α that takes np
values. Each instance of α specifies a set of model parameters
(θs, δ, θa, R, C, σ) for a single TCL. The dynamical model
can be abstracted as a Markov chain Mα with a transition
matrix Pα = [Pij(α)]i,j . This transition probability matrix
obtained for a TCL depends on its own set of parameters
specified by α. The apparent difficulty is that the heterogeneity
in the transition probability matrices renders the quantity
P(xi(t + 1) = j|z(t)) dependent not only on the label
x(t) = L(z(t)), but also on the current state z(t).

In contrast to the homogeneous case, which allows us to
compute probabilities P(xi(t + 1) = j|x(t)) by constructing
an exact probabilistic bisimulation of Ξ , in the heterogeneous
case we have to leverage approximate probabilistic bisimula-
tion of the Markov chain Ξ . In this case, the approximation
error can only be quantified empirically using the matrix

P(z(t + 1)|z(t)), which in practice can be unfeasible. We
encompass the population heterogeneity by constructing an
empirical probability distribution fα(·) from the finite set of
values for parameter α.

Theorem 4: If the TCL population heterogeneity is character-
ized by a parameter α with empirical distribution fα(·), using
the approximate probabilistic bisimulation of the Markov chain
Ξ , the random vector (X(t+ 1)|X(t)) has the expected value
M(X(t)) = P̄TX(t) and covariance matrix Σ(X(t)), where
for all i, j ∈ N2n, i 6= j,

Σii(X) =
1

np

2n∑
r=1

XrPri(1− Pri)

+
1

np − 1

(
2n∑
r=1

XrPri

)2

− 1

np − 1

2n∑
r=1

XrPri
2
,

Σij(X) =
1

np − 1

(
2n∑
r=1

XrPri

)(
2n∑
s=1

XsPsj

)

− 1

np − 1

2n∑
r=1

XrPriPrj −
1

np

2n∑
r=1

XrPriPrj .

The bar notation indicates the expected value with respect to
the parameters set α, for instance,

PriPrj = Eα[Pri(α)Prj(α)] =

∫
Pri(v)Prj(v)fα(v)dv.

Theorem 4 enables us to use model (5) as an approximation of
the dynamics of the heterogeneous population. The transition
matrix P and the covariance of W(t) must be computed with
respect to the set of parameters, according to the Theorem 4.

III.E. Numerical Benchmark

In this section, we compare the performance of our formal
abstraction with a deterministic abstraction. A TCL population
size of np = 500 is considered for all the simulations. Each
TCL is characterized by parameters that take values in Table
I. All TCLs are initialized in the Off mode (m(0) = 0) and
with a temperature at the set-point (θ(0) = θs). We assume
the process noise has a Gaussian distribution with a standard
deviation σ = 0.01

√
h = 0.032.

For the formal abstraction proposed in this work, we construct
a partition as per (4) with l = 7,m = 35, which leads to 2n =
144 abstract states. We then generate the abstracted system
trajectory using Equation (5), where the covariance matrix of
the noise term W (t) is that given by the limiting covariance
in Theorem (2). We run 50 Monte Carlo simulations for the
TCL population based on the explicitly aggregated dynamics
in (1)-(2) and compute the average total power consumption.

For comparison, we also perform a deterministic abstraction
which does not consider the analytically derived covariance
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Figure 2: Comparison of a deterministic abstraction with the
formal stochastic abstraction in this work for a homogeneous
(top) and a heterogeneous population (bottom).

matrix for the process noise W (t). We select a nd = 5 for the
number of bins for this abstraction, which leads to 10 states.
This selection is based on empirical tuning targeted toward
optimal performance – however, there seems to be no clear
correspondence between the choice of nd and the overall preci-
sion [19]. Figure 2 (top) presents the results of the experiment.
As can be observed, generating the stochastic model based on
(5) results in more accuracy than a deterministic abstraction.

To observe the performance of the proposed model for the
heterogeneous population, let us assume that heterogeneity
enters the TCL population in only the thermal capacitance C
of each single TCL, which is taken to be C ∼ U([2, 18]), that
is a uniform distribution over a compact interval. We perform
50 Monte Carlo simulations with a noise level σ = 0.032, and
select discretization parameters nd = 7, l = 10, and m = 50.
The outcome is presented in Figure 2 (bottom).

III.F. Control of TCL Population

Among the different strategies for controlling the total power
consumption of a population of TCLs, we consider the case
in which the control input is the set-point θs of the TCL [1].
We intend to apply the same control input to all TCLs since
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Figure 3: Tracking a piecewise constant reference signal (top)
by set-point control (bottom) in a homogeneous population of
TCLs.

this requires no prior knowledge of the state of the single
TCL. Given the model parameters, we use online measurement
of the total power consumption of the TCL population, to
estimate the states in X(t) and we use the set-point θs to track
any reference signal based on a one-step output prediction.

Suppose we have a homogeneous population of TCLs with
known parameters. Based on Equation (5), we set up the model

X(t+ 1) = PT (θs(t))X(t) + W(t),

where θs(t), the set-point value at time t, is the control input
for the model. We assume that the control input is discrete
and take values from a set:

θs(t) ∈ {θ−l, θ−l+1, · · · , θl−1, θl}, ∀t ∈ Z.

This assumption makes it possible to use the partitions defined
in Equation set (4) at all time steps. The process noise W(t) is
normal with zero mean and its state-dependent covariance ma-
trix is obtained from Theorem 1. The total power consumption
of the TCL population is measured as ym(t) = HX(t)+v(t),
where v(t) ∼ N (0, Rv) is a measurement noise and

√
Rv

represents a standard deviation which depends on the real-
time measurements from power meters. Since the process
noise W(t) is state-dependent, the state of the system can
be estimated by modifying the classical Kalman filter.
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Once the state estimates are available, the following one-step
Model Predictive Control scheme is employed to synthesize
the control input in the next step:

min
θs(t)
|ŷ(t+ 1)− yd(t+ 1)|

s.t. X̂(t+ 1) = F (θs(t))X̂(t)

ŷ(t+ 1) = HX̂(t+ 1)

θs(t) ∈ {θ−l, θ−1+1, · · · , θl−1, θl},

where yd(·) is the reference signal and X̂(t) is the state
estimate provided by Kalman filter. The obtained optimal value
for θs(t) is applied to the TCL population at the following
iteration.

This scheme is implemented on a homogeneous population of
np = 500 TCLs, for tracking a randomly generated piecewise
constant reference signal. We set the discretization parameters
to l = 8, m = 40, where the standard deviation of the
measurement noise is

√
Rv = 0.005. Figure 3 displays the

tracking outcome (top), as well as the required set-point signal
(bottom) synthesized from the above optimization problem.

IV. Model 2 - Constraint Satisfaction
Formulated via Satisfiability Modulo Theory

Here, we explore a different method for capturing the uncer-
tainty in an individual TCL’s temperature evolution and in
bounding the aggregate power consumption of the TCL over
a future time horizon given an input sequence. We quantify
this bound by solving a feasibility problem whose constraints
are determined from the uncertain dynamics of the TCLs and
the historical data on population power consumption. Our
results are preliminary. We show that the approach works well
for deterministic systems but more work is needed to handle
stochastic systems and heterogenous parameters.

The problem of interest here is to construct a controller
that comes with guaranteed performance. In particular, given
a sequence of observed power consumption and a known
sequence of control inputs, we seek to choose an input to apply
in the next time frame, such that the resulting overall power
will be guaranteed to lie in an interval [P ∗−ε, P ∗+ε] around a
desired power P ∗. Instead of developing an abstraction model
and then quantifying its resulting error, we use observations
of the population to formulate meaningful constraints on the
future trajectory of the population given a control input.

We derive a model that is a continuous time abstraction,
with the temperature interval of the TCL discretized into
bins. We then track the movement of the upper and lower
boundaries of each bin. The continuous (temperature) and
discrete (On/Off mode) states of the bin boundary provide
constraints on the continuous and discrete state of a TCL
whose initial temperature is within the bin. To cope with
the continuous dynamics and the uncertainty in the states of

individual TCLs in a given bin, we use the formalism of the
satisfiability modulo theory (SMT). An SMT instance is a
formula in first-order logic, and the problem is determining
whether such a formula is satisfiable. SMT is a widely used
method in computer science verification, and solvers such as
iSAT [25] have been developed to automatically verify and
analyze model properties given a set of initial conditions or
control strategies. Using an SMT solver, we provide upper and
lower bounds on the performances of a set of control strategies.

IV.A. Model Description

We use the following continuous time dynamics of the TCL,
which can be derived by letting h → 0 from (1) and by
removing the noise term w:

dθ(t) =
1

R(t)C
(θa −m(t)R(t)Prate − θ(t))dt

dm(t) =


−1, θ(t) < θ− + u(t)

1, θ(t) > θ+ + u(t)

0 otherwise

R(t) =

{
R0, N(t) ≡ 0 mod 2

R1, N(t) ≡ 1 mod 2

(7)

In the above, u(t) is the control input, R(t) ∈ {R0, R1}
capture two different thermal resistance values (reflecting, for
example, closed vs. open windows); and the switching times
between the resistance values are distributed according to the
homogeneous Poisson process Nt with a specified rate λ. The
corresponding dynamics are illustrated for a single household
by a sample path in the left panel of Figure 4. Although
we develop the approach for thermal resistances taking two
potential values, the approach could be generalized to multiple
values of thermal resistances, to account for various discrete
changes in the room such as occupancy or opening/closing of
entrances.

The reasoning for modeling stochasticity in this way is
twofold. First, changes in thermal resistance due to changes in
room occupancy, opening and closing of doors/windows may
be more accurate than fluctuations in the temperature captured
by the noise term used in Equation (1). Second, modeling
the random influences as jumps in the thermal resistances
allows for an event based simulation. Although the underlying
model is formulated in continuous time, only discrete events
have to be considered. Also, between two random events,
the dynamics are deterministic. Therefore, we can draw exact
samples from the continuous time model.

IV.B. Abstraction Approach

Given that some of the parameters and the control strategy
are not known beforehand, obtaining guaranteed bounds on
the power consumption of the TCL population in future time
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steps requires solving a hard optimization problem. To reduce
the computational complexity we aim at a safe abstraction of
the model in (7) as follows:

1) We divide the temperature interval into bins and count
the number of TCLs within a bin. The bins are allowed
to move along the temperature axis over time, in contrast
to the previous approaches.

2) By introducing non-determinism to capture the unknown
temperature of individual TCLs within a bin and uncer-
tainty in switching dynamics of the thermal resistance
R(t) we safely over-approximate the effects of these
variables.

Here, we are only interested in properties of the power
consumption of the population. Thus, we adopt an event based
time resolution within the abstraction approach by considering
points in time at which the power can potentially change.

a) Abstraction dynamics: Mathematically, the dynamics of
the model can be formulated as follows: Each bin i is charac-
terized by a tuple (θui , θ

l
i,m

u
i ,m

l
i, Ri) denoting the tempera-

ture of its upper boundary θui , its lower boundary θli (indicated
in Fig. 4, right panel, with blue lines). Each has an associated
On/Off state mu

i , ml
i and a resistance Ri ∈ {R0, R1}. A bin is

defined for every combination of temperature range, discrete
state ml = mu ∈ {0, 1} and R ∈ {R0, R1}. The total number
of bins is therefore given by 4 · nd, where nd denotes the
number of bins along the temperature axis. Initially, all TCLs
within bin i have a temperature between θui and θli, start with
a thermal resistance Ri and are all in the same On/Off state,
ml
i = mu

i .

The temporal evolution of the bounds of all bins can be
calculated using the noiseless version of (7) and hence we
can compute the first time any of the temperature bins hits one
of the dead-band boundaries. These switching thresholds, θ−
and θ+ are denoted in Fig. 4 by black horizontal lines. Once
one of the bin boundaries hits the threshold, the discrete state
associated with the upper temperature bound mu

i , and the one
for the lower temperature bound ml

i, start to differ indicating
that not all TCLs within this bin need to have the same On/Off
state. To indicate the temporal dependence of the m-values,
we write mu

i (tj),m
l
i(tj) and θui (tj), θ

l
i(tj) respectively.

The bin description above gives an over-approximation of
the dynamical model in (7). That is, one can construct
a sequence of On/Off states m̃(tj) which always fulfill
min(mu(tj),m

l(tj)) ≤ m̃(tj) ≤ max(mu(tj),m
l(tj)) but

for which one cannot find a temperature sequence coun-
terpart θ̃(tj), m̃(tj) which fulfills the dynamical constraints
at the same time. On the other hand, each trajectory
θ̃(tj), m̃(tj) fulfilling the dynamical constraints, will also
fulfill min(mu(tj),m

l(tj)) ≤ m̃(tj) ≤ max(mu(tj),m
l(tj))

for some i. Therefore, the abstraction gives a safe over-
approximation of the system in (7).

If there are more than one bins for which ml(tj) 6= mu(tj),
we cannot determine exactly how many TCLs fall into these
bins based on observations of the overall power consumption.
Nevertheless, these variables define upper and lower bound
constraints on the number of TCLs within each bin. Within a
SAT-based approach this non-determinism has to be resolved
by a solver which can decide how many TCLs to put in a bin
to fulfill all constraints.

The noise process can also be tackled by introducing non-
determinism. To this end, we can calculate the temporal
evolution of each bin given its initial condition (represented
by the tuple) assuming no noise. Given two bins with different
initial R values but potentially the same On/Off state, one can
now check if the evolutions cross or overlap each other in the
temperature axis. If so, it is possible for a TCL within one bin
to jump to the other bin by changing its R parameter. This
procedure leads to a set of bins Mi to which a TCL within
bin i can jump to due a change in its dynamics, in this case
the resistance R. Computing this for all time tj leads to a
sequence of sets Mi(tj) which indicate the possibility of a
jump within the time-frame [tj , tj+1].

The computational load is increased by introducing non-
determinism, that is, the solver has to decide how many TCLs
to put in each bin based on the available constraints. However,
the effort for handling multiple TCLs is drastically decreased
since only the number of TCLs within a bin are determined.

IV.C. Controller Verification Using the SMT
framework

We consider a discrete time controller that acts on all TCLs
by setting the same temperature set point θs. For every given
sequence of such a control signal, the quantities describing
the bins can be calculated beforehand, which characterizes the
behavior of a population of TCLs. The observed sequence of
population power P (tk), can then be used to write down a set
of constraints on the number of TCLs ni(tk) within a bin i at
a given point in time tk. More precisely, as we have upper and
lower bounds mu

i (tk),ml
i(tk), on the state of the TCLs within

a given bin i, we have the following constraints on ni(tk):

∑
i

ml
i(tk)ni(tk) ≤ P (tk) ≤

∑
i

mu
i (tk)ni(tk) (8)

The number of TCLs within a bin changes over time as
the individual TCLs may change their dynamics due to the
probabilistic switches in the R parameters. To capture this
behavior in the constraints, we introduce Q(i, j, tk) to keep
track of the number of TCLs jumping from bin i to bin j within
the time-interval [tk−1, tk]. Thus, in addition to Constraint (8)
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Figure 4: Left: In blue, a single sample path of the dynamics (7) is plotted. Dashed vertical lines indicate time points, at
which the parameter R changes. Right: The blue lines indicate the dynamics of a bin with R = R0. Black dotted illustrate the
dynamics with R set to R1. Overlapping red and blue regions indicate the time-intervals in which TCLs within this bin can be
in either the On or the Off state.

we have the following two constraints:

nj(tk) =
∑
i

Q(i, j, tk) (9a)

Q(i, j, tk) ≤
∑
i′

Q(i′, i, tk−1)M(i, j, tk), (9b)

where M(i, j, tk) ∈ {0, 1} is a pre-computed deterministic
quantity, which indicates whether it is possible for a TCL
in bin i to jump to bin j within [tk−1, tk] according to the
noisy dynamics. Additionally, as there are np number of TCLs
distributed across the bins, we have the trivial constraint:∑

i,j

Q(i, j, tk) = np. (10)

All together, we can construct a set of constraints that give
a safe over-approximation of the behavior of a population
of TCLs, given an observed sequence of aggregate power
consumption and a sequence of applied control inputs. To
verify a controller, we check the feasibility of the constraints
(8)-(10), with the following additional constraints capturing
the performance requirements in the time step tk:

Pu(tk) :=
∑
j

mu
j (tk)nj(tk) ≤ P ∗ + ε, (11a)

P l(tk) :=
∑
j

ml
j(tk)nj(tk) ≥ P ∗ − ε. (11b)

If all constraints are feasible, then the given control input is
guaranteed to produce an aggregate power which is within ε
bound of P ∗(tk), the desired power at the next time step.

Under all control inputs which satisfy the performance guar-
antees, we can then either choose randomly or optimize with
respect to further objectives. Note that the constraints do not
consider the probability of the set of trajectories fulfilling
the constraints but only characterize an over-approximation
(superset) of the set of trajectories. Therefore, rare extreme
situations are covered at the cost of potentially pessimistic
guarantees.

IV.D. Simulation of the Abstraction Procedure

To illustrate the approach, we simulated 200 TCLs. All pa-
rameters used for the simulation are summarized in Table I.
The number of bins was set to 22. In Figure 5 upper panel
the individual temperature trajectories as well as the control
inputs in terms of the desired temperature set-point is shown.
We observe the population power, shown in the lower panel
of Figure 5, for over18 time steps and use this information
to construct a set of constraints for the next 3 minutes, as
described above.

Figure 5 shows the result for the deterministic setting, that is
R = 2.0 and is not changing. Given a set of control inputs, we
determine which of them satisfy aggregate power bounds and
if they satisfy a given bound ε, what is the smallest bound
ε′ they can satisfy. We then implemented a controller that
guarantees the least bound, that is least tracking error. The
resulting guaranteed range for the chosen control inputs over
the time horizon is shown as a gray region in the lower panel.

In principle, the approach can capture heterogeneity in param-
eters and stochasticity, e.g. switching R values. In this case, the
worst and best case evolution of the bin temperature bound-
aries lead to temperature ranges and discrete states of each
bin upper and lower boundaries which drift apart from each
other over time. As a result, the guaranteed predictions are
pessimistic. Because of too much conservatism, this approach
does not work well for the heterogenous or stochastic models.
To address this conservatism, one can use more bins, resulting
in increased computational load. In particular, the approach
scales linearly in terms of the observed history length and
scales quadratically in terms of the number of bins.

V. Model 3 - TCL Population Model for
Analyzing Arbitrage Potential

The objective of this section is to understand if non-disruptive
direct load control of TCL aggregations could be used to
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Figure 5: A set of 200 TCLs is simulated and controlled by an
input with a guaranteed performance. Individual temperature
dynamics are shown in the top panel, whereas the bottom panel
shows the aggregate power. The interval around the desired
load which can be guaranteed for the determined control inputs
are plotted in the lower panel as the gray shaded region.

arbitrage intra-hour electricity market prices. Given that price
variability is on the orders of minutes, to address this problem
we need models that allow us to optimize the power con-
sumption of TCL aggregations over a horizon of minutes to
hours. Most models, for example, the Markov chain model,
were developed for short prediction horizons during which the
ambient temperature remains approximately constant. Here,
we need to account for time-varying temperature and longer
prediction horizons. The results in this section are an extension
of the work presented in [9].

The energy arbitrage problem has been investigated by a
number of researchers [26], [27], [28], [29], [30], [31]. How-
ever, past research has not taken into account the specific
capabilities and constraints of TCL aggregations. Recently, we
developed an aggregate model of a heterogenous TCL popu-
lation and used this model to derive practically-feasible upper
bounds on the amount of money that TCL aggregations could
save through energy arbitrage in 5-minute energy markets [9].
We assumed that an aggregator rather than individual TCLs,
arbitrages prices, and that the aggregator sends control signals
to individual TCLs based on aggregate models and aggregate
measurements only; he does not have access to individual
TCL parameters or states. Here, we extend our analysis by
comparing our previous results to those generated for the case
when each individual TCLs arbitrages prices. This gives us
actual upper bounds for the TCL energy arbitrage problem and
helps us understand the value of information. In both cases,
we assume control is via on/off switching, not temperature set
point adjustment. Moreover, we assume that TCLs can only
be controlled when they are within their dead-band, which
ensures that our control is non-disruptive to the end users.

V.A. Arbitrage for an Individual TCL

We consider the case in which each TCL optimizes its power
consumption given a forecasted price signal. Consider the
individual TCL model (1). We define the control for each TCL
to be u ∈ {0, 1}, where 0 turns a TCL off and 1 turns a TCL
on. The discrete variable m is now updated as follows:

m(t+ 1) =



0, θ(t+ 1) < θ− or
u(t) = 0 ∧ θ(t+ 1) ∈ [θ−, θ+]

1, θ(t+ 1) > θ+ or
u(t) = 1 ∧ θ(t+ 1) ∈ [θ−, θ+]

m(t), otherwise

(12)

Let l(t) be the cost of energy at time step t and N be the
prediction horizon. The arbitrage problem for one TCL can
be written as:

min
u∈U

h

t0+N∑
t=t0

l(t)m(t)P̄rate (13)

s.t. (1) and (12),

where U = {0, 1}N and as a reminder P̄rate = Prate/η.

The above optimization problem can be solved using Dynamic
Programming (DP). We tackle the DP problem by discretizing
the state space. Each state represents both a specific temper-
ature interval within or just outside the dead-band and the
On/Off state. We then precompute all possible state transitions
for each input and a range of outdoor air temperatures. With
this information we can compute the optimal policy given
forecasts for outdoor air temperatures and electricity prices.

In general, the cost of each state at time t is m(t − 1)P̄rate
since a TCL switches only at the end of each time step. To
formulate the DP, we need to assign a cost to each state that
is not a function of time. The cost of states within the dead-
band is simply mP̄rate; however, the cost of states just outside
of the dead-band is a function of whether the TCL has just
switched or not. Here, we assume that if a TCL is outside
of the dead-band, it has just switched and its cost is (1 −
m)P̄rate. We can choose the discretization step so that this is
true nearly all of the time. However, sometimes this may not
be the case. To solve this problem, one could introduce virtual
states that capture not only temperature and on/Off state but
recent switching history, but we leave this to future work.

An important consideration when picking the discretization
step is that TCLs move at different speeds at different out-
door air temperatures. Therefore, a good discretization step
for a high temperature may not be good at relatively low
temperatures. For example, if the discretization step is too
large and the outdoor air temperature is just above the dead-
band then TCLs in the Off state may move so slowly that
they do not switch bins in each time step. Decreasing the
discretization steps alleviates this problem but can lead to
others including numerical issues and divergence from the DP
cost approximation described above. In sum, the DP works
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Figure 6: Example of individual TCL arbitrage results.

much better if the outdoor temperature is well above the dead-
band temperatures.

V.B. Results of Individual Optimization

We consider a 10 hour period with highly volatile prices
(from California ISO node MERCED 1 N001 [32]) and high
outdoor air temperature (from NOAA weather station Merced
23 WSW [33]). We use a population of np = 1, 000 central air
conditioners parameterized with the heterogeneous parameters
in Table I, and we assume w(t) = 0∀t in order to get an upper
bound on the savings. For each TCL, we divide its dead-band
into 100 temperature intervals and so we end up with 200
within-dead-band states, and we use the same discretization
step for states just outside the dead-band. We precompute all
bin transitions for only integer values of temperatures and
use this as a look-up table. We compute the optimal control
policy based on the discretized system and perfect price and
temperature forecasts, and apply that to the TCL model of
(1) and (12). Figure 6 shows an example uncontrolled and
controlled trajectory for one TCL. We find that the population
saves about 28% of its total energy costs, while individual
TCLs save -15% to over 55% of their individual energy
costs (Figure 7). Differences in savings results from different
thermal parameters, initial conditions, and DP model accuracy.

Since we have assumed a deterministic system and perfect
forecasts, the analysis here provides upper bounds on energy
cost savings through arbitrage for individual TCLs. In reality,
the individual TCLs may not have direct access to time-
varying price signals or may not have the local computational
capabilities to do the optimization. Therefore, we consider
a more realistic scenario in which a load aggregator uses
aggregate models, aggregate measurements, and forecasts to
compute optimal control trajectories and then coordinate con-
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Figure 7: Histogram of energy cost savings for individual TCL
arbitrage.

trol responses by sending broadcast control signals to TCLs.

V.C. Aggregate Thermal Battery Model

For a population of TCLs, the previous optimization
problem can be solved by formulating the cost func-
tion as the aggregate of costs of the individual TCLs:
h
∑t0+N
t=t0

∑np

i=1 l(t)m
i(t)P̄ irate. This approach is impractical

for two reasons. First, the aggregator would need to know
all of the individual TCL parameters and states. Second,
the aggregator would need communication links with each
individual TCL to send individual on/off control signals. Here
we assume that the aggregator only has access to aggregate
system parameters and measurements and that he can only
broadcast control vectors to TCL populations, as in [7].

To address the aggregate optimization, we initially investigated
use of a modified version of the Markov chain model described
in the first section; however, we found that it is unsuitable for
describing the behavior of the aggregate system when it is
repeatedly pushed to its constraints, as is done in arbitrage
[9]. Therefore, we propose modeling the TCL population as a
time-varying thermal battery, described more fully in [9]. This
model keeps track of a TCL population’s energy state, S(k),
as a function of its mean aggregate power usage, P̄agg, in each
price interval, [tk, tk+1], of width ∆T . The energy state of the
population is defined similar to a battery’s state of charge; it
describes how full an energy storage unit is. We can obtain
a difference equation for the evolution of the energy state as
well as upper and lower envelopes of achievable power and
energy for a population of TCLs.

Without external control, a TCL population’s time-varying
power trajectory is referred to as its “baseline.” Figure 8 shows
an air conditioner population’s mean aggregate power baseline,
P̄agg, baseline, over a day. A TCL population increases it energy
state when P̄agg(k) > P̄agg, baseline(k), and decreases it when
P̄agg(k) < P̄agg, baseline(k):

S(k + 1) = S(k) + (P̄agg(k)− P̄agg, baseline(k))∆T. (14)
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As shown in Fig. 8, the choice of P̄agg(k) is constrained:

P̄agg, min(k) ≤ P̄agg(k) ≤ P̄agg, max(k). (15)

The energy state is also constrained at each time step:

0 ≤ S(k) ≤ Smax(k). (16)

These bounds define the power and energy capacity of a
TCL population. When S = 0 the thermal battery is depleted
meaning all TCLs operate at one edge of the dead-band (e.g.,
for cooling TCLs all operate near θset +δ/2). When S = Smax,
the thermal battery is full meaning all TCLs operate at the
other edge of the dead-band.

To use this model, we need to derive or identify the time-
varying parameters: P̄agg, baseline, P̄agg, min, P̄agg, max, and Smax.
These parameters are a function of ambient temperature dy-
namics, but for simplicity we assume that each is simply a
function of the current ambient temperature, θa. Additionally,
we assume that each belongs to a finite set of values and
develop a look-up table that specifies an estimate of each
value as a function of θa. In recent work, we described the
procedure for computation and estimation of P̄agg, baseline, Smax,
P̄agg, min and P̄agg, max through system identification [9]. The
identified parameters, as a function of the current outdoor air
temperature, are shown in Fig. 9.

Given the thermal battery model and the price and outdoor air
temperature forecasts over a horizon, we aim to determine the

optimal mean aggregate power consumption in each interval,
P̄ ∗agg, and so we solve:

min ∆T

t0+N∑
k=t0

l(k)P̄agg(k) (17)

s.t. (14), (15), and (16).

The above can be solved as a receding-horizon Linear Program
(LP). We then transform P̄ ∗agg into a control trajectory p∗agg:
p∗agg(t) = P̄ ∗agg(k) for t = k, k+h, ..., k+∆T−h, to be tracked
by the TCL population. Thus, we use the less accurate time-
varying thermal battery model for the purpose of optimization
over a long time horizon, while we use the Markov chain
model for controlling TCLs to track the power output.

In order to track the trajectory p∗agg(t), we calculate ugoal, the
total fraction of TCLs to switch on or off in the next time
step. To achieve this, we use an extension of the Markov
chain model of the heterogeneous population with a predictive
proportional controller (PPC) [7]. The Markov chain model
is extended in order to address large ambient temperature
variations over long horizons. The extensions include addi-
tion of extra bins outside the temperature dead-band and
identification of the P matrix in (3) for every discretized
ambient temperature. Here, the stochastic noise term W is
not explicitly considered in control synthesis.

To design the control, first, we compute:

u′goal(t) =
pagg∗(t+1)−y(t+1)

NpP̄rate
, (18)

where y(t + 1) is the predicted power output of the TCL
population given the Markov chain abstraction as defined in
Equation (3). Then, ugoal(t) is calculated by putting u′goal(t)
through a saturation filter with minimum equal to the fraction
of TCLs on, and maximum equal to the fraction of TCLs
off. We then distribute ugoal to the bins and, for each bin,
divide the absolute fraction of TCLs to switch by the measured
or estimated fraction of TCLs in the bin to determine the
switch probability. Switch probabilities are broadcast to the
TCLs and then TCLs switch or not based on the switch
probability associated with the bin they are in. Note that ugoal
can be distributed to the bins in different ways, for example,
equally or by preferentially switching TCLs that are about
to switch. Here we do the latter, so that the controller would
preferentially switch TCLs in bins closer to the dead-band and
thus to natural switching. This helps minimize the chance of
compressor short-cycling.

V.D. Results of Aggregate TCL Optimization

We use the same population of central air conditioners as in
the individual TCL arbitrage population, and consider the same
10 hour period. However, here we use a stochastic individual
TCL model (1) and assume the noise standard deviation is
5 × 10−4. For implementation of control, we use 42 bins in
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Figure 10: Comparison of optimization by individual TCLs and with the thermal battery model.

the Markov chain: 40 bins within the dead-band and 2 bins
to capture temperatures just outside the dead-band into which
TCLs switch. Again, we assume perfect price and temperature
forecasts. We identified P̄agg, baseline, P̄agg, min, P̄agg, max, Smax,
and P for integer values of temperature using the system
identification methods described in [9].

First, in Fig. 10, we compare the individual TCL optimization
results to the aggregate population optimization results. In the
individual optimization, each TCL in the population optimizes
its power consumption using the DP approach described
above. In the aggregate population optimization, the optimal
aggregate power trajectory is found using the thermal battery
model and the LP optimization. Then, the TCL population
tracks this desired power output using the on/off broadcast
control described in the previous section. The aggregate results
indicate savings of 21% in contrast to the 28% savings
given by the individual optimization. In addition to apparent
inaccuracy in the aggregate model compared to individual
TCL model, a reason for the decreased savings is that the
battery storage model based on the 5-minute discretization
step results in a piecewise constant power trajectory, which
may not allow the TCL population sufficient flexibility. In
fact, tracking this trajectory is difficult for the TCL population,
requiring significant TCL switching. Future work will explore
other methods for transforming the output of the LP into more
suitable control trajectories.

To address the potential for TCL populations to arbitrage
energy prices using the aggregate population optimization
framework, we performed one optimization each day, i.e.
N = 24 hours for one full year (2010) of the same data

source. Our results were discussed in detail in our recent
publication [9], and here we summarize them. The results
of the optimization problem predict that a population of air
conditioners in Merced, CA, USA could save, at most, 17%
in yearly wholesale energy cost through arbitrage in CAISO’s
5-minute energy market. When we control the population to
track the optimal trajectory, we find that the maximum savings
are closer to 14%, specifically the uncontrolled population
would have spent about $91,500 for energy during the year
while the same population doing energy arbitrage would have
spent $78,400. This translates to about $13 in wholesale
energy cost savings per TCL per year. Since this analysis
assumes perfect price and weather forecasts and exogenous
electricity prices, this is an upper bound on the potential
practical energy costs savings in Merced, assuming future
prices and price volatility are similar to those in the past.

VI. Discussion of the Approaches

The formal Markov chain abstraction in the first section pro-
vides insight into the previously proposed models [17], [18],
[19], [20], [7]. Its basis is dividing the continuous state into
bins and associating a Markov chain state to each bin for each
discrete on/off mode. The problem is then characterizing the
evolution of the fraction of TCLs in each bin. The contribution
here is to provide exact characterization of the evolution of
the TCL fractions in each bin for the homogenous system.
The mean of the distribution is consistent with previously
derived results [7]. The method also exactly characterizes the
covariance of the distribution. In addition, it shows that as
the number of TCLs grow, the evolution of the distribution
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approaches a linear system with additive Gaussian noise and
the noise covariance is exactly characterized. This analysis
leads to derivation of error bounds on the power consumption
of the population and that predicted by the model. The error
bound is a function of the number and length of the bins.
Thus, it provides a method to tune the discretization in order
to achieve a desired error behavior as well providing worst-
case analysis of the error in the abstraction. The analysis is
extended to a heterogeneous population of TCLs in which
the model parameters for each TCL are drawn from a known
distribution. The Markov chain abstraction can be used in a
receding horizon approach to find the temperature set-point
variation required for tracking a desired power. In addition,
the linear Gaussian formulation of the dynamics leads itself
naturally to Kalman filter estimation approach to estimate the
state of the system given noisy measurements [7]. Given that
the prediction error grows as the time horizon grows, the
model although useful for optimal tracking and estimation over
short time steps, has limitations for longer time steps.

The approach in Model 2 provides a fresh look at the problem
of TCL population analysis. In particular, the approach is
not based on developing a dynamical model of the TCL
population. Rather, it uses observations of the TCL population
power consumption to define bounds on the number of the
TCLs within each bins, without solving for the exact values of
these numbers. Then, the analysis problem of whether a given
power trajectory can be tracked with a desired accuracy is cast
as a feasibility problem, with the additional constraints given
by the bounds on the number of TCLs in each bin defined
by the historic data of population power. This particular line
of analysis is important in applications in which the TCL
population need to provide guarantees on the power tracking
performance, such as ancillary services participation. Thus, the
approach proposed could determine if there exists any feasible
controller which satisfies ancillary service requirements. In
theory, the model can address any form of uncertainty in the
dynamics, such as uncertainty in the resistance values of the
TCLs, through introducing non-determinism. The additional
non-determinism maps to additional constraints in the feasibil-
ity problem under consideration. However, the limitation of the
model is that as uncertainty dimension grows, the constraints
lead to a very conservative approach which quickly leads to
infeasibility of the problem even though in practice a feasible
controller may exist. Thus, at this point, the model is not able
to handle parameter heterogeneity and stochasticity.

Model 3 was developed with the aim of capturing heteroge-
nous TCL behavior over long time horizons so that we could
study the potential for TCLs to arbitrage energy prices in a
realistic setting. The model needs to provide predictability of
power consumption over horizons of minutes to hours in order
to be able to take advantage of the temporal price differences
which are of the same order of time magnitude. In order to
deal with the above two issues, time-varying lower and upper
bounds on achievable power and energy by a TCL population
are derived. The power trajectory is designed to minimize
energy costs over a prediction horizon while satisfying these

bounds. The resulting optimal trajectory can be tracked by the
TCLs by broadcasting control signals to the population that
cause TCLs to switch on/off probabilistically. The Markov
chain abstraction is used to develop the controller. We find
that this approach leads to about 75% of the savings achievable
with the fully optimal approach of individual TCL arbitrage.
The main limitation of this model is the fact that it is difficult
to characterize the power and energy capacities. Here, we
approximate them through system identification. More in depth
analysis of these quantities are subject of current investigation.

VII. Conclusions

We proposed three different modeling approaches to analyze
and control populations of TCLs. The development of Model
1 provides insight into the dynamics of the TCL population
and model error. Model 2, on the other hand, explores the
potential of verifying TCL population performance without
resorting to any dynamical modeling of the population. Model
3 provides a practical approach to quantifying the potential of
TCLs to participate in energy markets over long time horizons
(minutes to hours). Based on this work, we propose several
directions for future work. In terms of Model 1, the derivation
of tight error bounds for heterogeneous populations with time-
varying ambient temperature are important next steps. In terms
of Model 2, formulation of constraints so that heterogeneity
and stochasticity in parameters lead to not overly conservative
constraints is a subject of current exploration. As for Model 3,
we are working on better methods to identify the parameters
of the model and characterize their uncertainty.

The potential of TCLs to serve in demand response programs
or ancillary service markets is highly dependent on the ability
to accurately predict and control their power consumption
while ensuring users’ comfort and the physical limitation
of the devices such as compressor short cycling. As seen
in this exploratory study, the modeling and analysis of the
population dynamics is an interesting and rich problem. In
addition to improvements to our proposed models, there is
a potential to explore various other modeling, analysis, and
control techniques for large scale stochastic hybrid systems.
Given optimal control and prediction of the TCL population,
ultimately, an aggregator or utility company would need to
decide if arbitrage or ancillary service revenues could be
sufficient to cover upfront costs including hardware, software,
and installation; reoccurring costs including operations, main-
tenance, and incentive payments to customers; and its desired
profit margin. Thus, it is desirable to provide as accurate
predication and control of the population as possible using
limited communication and measurement infrastructure.
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