
Probabilistic Invariance of
Mixed Deterministic-Stochastic Dynamical Systems ∗

Sadegh Esmaeil Zadeh Soudjani
Delft Center for Systems & Control

TU Delft - Delft University of Technology
Delft, The Netherlands

S.EsmaeilZadehSoudjani@tudelft.nl

Alessandro Abate
Delft Center for Systems & Control

TU Delft - Delft University of Technology
Delft, The Netherlands

A.Abate@tudelft.nl

ABSTRACT
This work is concerned with the computation of probabilis-
tic invariance (or safety) over a finite horizon for mixed
deterministic-stochastic, discrete-time processes over a con-
tinuous state space. The models of interest are made up of
two sets of (possibly coupled) variables: the first set of vari-
ables has associated dynamics that are described by deter-
ministic maps (vector fields), whereas the complement has
dynamics that are characterized by a stochastic kernel. The
contribution shows that the probabilistic invariance prob-
lem can be separated into two parts: a deterministic reach-
ability analysis, and a probabilistic invariance problem that
depends on the outcome of the first. This technique shows
advantages over a fully probabilistic approach, and allows
putting forward an approximation algorithm with explicit
error bounds. The technique is tested on a case study mod-
eling a chemical reaction network.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Markov processes, Sto-
chastic processes; G.4 [Mathematical Software]: Algo-
rithm design and analysis, Verification

General Terms
Algorithms, Verification
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1. INTRODUCTION
Given a stochastic process evolving over a state space and

a set of interest (known as invariance domain, or safe set)
that is a subset of the state space, the probabilistic invari-
ance problem is concerned with the computation of the prob-
ability that a realization of the process, started anywhere
on the state space, remains within the invariance set over a
given time horizon.

Probabilistic invariance (or its dual, reachability) has been
investigated for various models and with multiple techniques.
Classical results on models with discrete state spaces are re-
capitulated in [3], whereas recent work deals with hybrid
models in continuous- [5, 11] and discrete-time [2], respec-
tively.

In this contribution, we are interested in working with pro-
cesses that evolve in discrete time over a continuous state
space (we shall consider an Euclidean vector space for the
sake of simplicity, however the results are susceptible of be-
ing extended to hybrid spaces). Furthermore, we deal with
models with explicit mixed deterministic-stochastic dynam-
ics. With regards to the probabilistic invariance problem,
we shall focus on the finite horizon case.

Mixed deterministic-stochastic dynamics naturally arise
in a number of situations or application domains. For in-
stance, this feature is expected in models with variables
that take values within ranges that are dimensionally differ-
ent. Of interest to this study, one such case is represented
by a chemically reacting network in an environment with
both rare and abundant species [8]. Mixed deterministic-
stochastic models are composed of two complementary sets
of variables, possibly coupled between each other. The first
set of variables has associated dynamics that depend on de-
terministic maps, namely vector fields. The complement set
has dynamics characterized by a stochastic kernel.

A näıve approach to the probabilistic invariance prob-
lem for mixed deterministic-stochastic models would merely
tackle it as a safety verification instance over degenerate sys-
tems (by degenerate systems we refer to probabilistic laws
that are concentrated deterministically, i.e. whose support
consists of a single point). This would not only be a compu-
tationally expensive solution, but also lead to the inability
to leverage computational techniques that apply exclusively
to non-degenerate systems [1].

The contribution originally shows that the probabilistic
invariance problem can be separated into two parts: a deter-
ministic reachability analysis, and a probabilistic invariance
problem that depends on the outcome of the first. Determin-



istic reachability analysis is a rather mature field of research
with ample software tool support, whereas the second prob-
lem can harvest recent developments [2, 5, 11]. We argue
that this decomposition approach can lead to computational
improvements – for instance, whenever the first determin-
istic problem yields a “false” outcome (i.e., no states are
deterministically safe over the given time horizon), no fur-
ther probabilistic invariance calculation is necessary. This
advantage of the proposed approach also leads to an approx-
imation algorithm to compute the quantity of interest with
explicit error bounds.
The contribution is structured as follows. Section 2 in-

troduces the model class and the problem statement. Sec-
tion 3 focuses on the properties of the value functions that
characterize probabilistic invariance. Section 4 puts forward
an approximation scheme for the computation of the desired
quantities based on the discretization of the state space, and
explicitly characterizes its error. Section 6 presents a case
study from Systems Biology.

2. PRELIMINARIES

2.1 Model
We consider a stochastic process over a continuous state-

space S. We assume that S is endowed with a metric and is
Borel measurable. We denote by B(S) the associated sigma
algebra. The process is Markovian and driven in discrete
time by the following mixed deterministic-stochastic dynam-
ics:

{

x1(k + 1) = f1(x1(k), x2(k), h(k))
x2(k + 1) = f2(x1(k), x2(k)).

(1)

In model (1),

• h(·) is an i.i.d. random sequence with known distribu-
tion;

• x1(k) ∈ R
n1 is a vector-valued random sequence with

dynamics that are directly affected by the random vari-
able h(·) at a given time;

• x2(k) ∈ R
n2 is a vector-valued random sequence with

dynamics characterized by a given deterministic vector
field f2.

Denote by

x(k) =

[

x1(k)
x2(k)

]

∈ R
n = S, n = n1 + n2,

the state variable of the whole model in (1). The knowl-
edge of the distribution of random variable h(·) at a given
time allows to characterize a conditional stochastic kernel
Tx(·|x) that assigns to each point x ∈ S a probability mea-
sure Tx(·|x), so that for any set A ∈ B(S), Px(x(k + 1) ∈
A) =

∫

A
Tx(dx̄|x(k) = x), where Px denotes the conditional

probability P (·|x) and P is a probability measure defined
over the canonical sample space (with associated σ-algebra)
for the above stochastic process [4].
The special structure of model (1) allows expressing the

density function of the stochastic kernel Tx as follows:

tx(x̄|x) = tx(x̄1|x1, x2)δ(x̄2 − f2(x1, x2)), (2)

for x = (x1, x2)
T and where δ(x−a) is the continuous Dirac

delta function shifted at point a. The first term tx(x̄1|x1, x2)

depends on the stochastic part of the dynamical model,
whereas the second term δ(x̄2 − f2(x1, x2)) hinges on the
deterministic vector field.

2.2 Problem statement
Consider a compact Borel set A ⊂ B(S). We are inter-

ested to solve the following probabilistic invariance problem
over a finite time horizon [0, N ]: to characterize and compute
the probability that an execution with an initial condition
x0 ∈ S remains within set A during the whole time horizon,
namely

px0
(A)

.
= P{x(k) ∈ A, ∀k ∈ [0, N ]|x(0) = x0}. (3)

A characterization of the problem in (3) is addressed in the
following result [2].

Proposition 1 (Bellman recursion). Introduce fu-
nctions Vk : S → [0, 1], k ∈ [0, N ], and define them backward-
recursively as follows:

Vk(x) = IA(x)

∫

S

Vk+1(xk+1)Tx(dxk+1|x), (4)

where VN (x) is initialized as the indicator function of set
A: VN (x) = IA(x). Then the solution of problem (3) is
px0

(A) = V0(x0), for any x0 ∈ S.
A solution of px0

(A) is seldom analytic, which warrants the
development of techniques and algorithms to compute an ap-
proximation of it. The work in [1] puts forward a discretiza-
tion approach with proven error bounds, under continuity
conditions of the stochastic kernel Tx. Such bounds are re-
fined in [7], by leveraging an adaptive partitioning approach
with improved (local) error computations.

The goal of this contribution is first to tailor problem (3)
to the structure of model (1), then to provide a technique
to compute the solution of (3) by a numerical scheme with
associated errors.

3. PROPERTIES OF THE VALUE FUNCTIONS

3.1 On the support of the value functions
With focus on the recursion step in Equation (4), let us

define the support of function Vk as:

supp(Vk) = {x ∈ S|Vk(x) 6= 0}, k ∈ [0, N − 1],

and supp(VN ) = A. The support of the value functions Vk

plays an important role in the problem definition, as elabo-
rated in the following observations:

• since ∀x /∈ A, Vk(x) = 0, then

∀k ∈ [0, N ], supp(Vk) ⊆ A;

• by direct inductive argument, it can be shown that

∀k ∈ [0, N − 1], ∀x ∈ A, 0 ≤ Vk(x) ≤ Vk+1(x),

which leads to conclude that

supp(Vk) ⊆ supp(Vk+1).

Notice that, because of the constant value of the cost func-
tion on the complement of the set A, the integral in (4) is
effectively computed only over A (rather than on S). Fur-
thermore, the observations above suggest that it is possible



to adapt the integration domain in (4) to the actual support
of the value functions, as follows:

Vk(x) = Vk(x1, x2) = (5)
∫

supp(Vk+1)

Vk+1(x̄1, x̄2)tx(x̄1|x1, x2)δ(x̄2 − f2(x1, x2))dx̄2dx̄1,

where we have used the expression in (2). Characterizing the
sets supp(Vk), k ∈ [0, N−1), becomes thus critical for the op-
timization of the original recursion in (4). However, in gen-
eral it is complicated to exactly determine the sets supp(Vk),
in particular due to the need to characterize supp(tx(·|x)) as
a function of x.
To mitigate this complication, let us introduce two pro-

jection maps as follows:

Π1 : Rn → R
n1 Π2 : Rn → R

n2

Π1

([

x1

x2

])

= x1, Π2

([

x1

x2

])

= x2.

We can determine an over-approximation of the sets supp(Vk)
as follows:

supp(Vk) ⊆
{(x1, x2) ∈ supp(Vk+1)|f2(x1, x2) ∈ Π2(supp(Vk+1))}.

Notice that in general the above inclusion is strict. This
suggests to over-approximate the sets supp(Vk) by Γk, as
defined by the following recursive procedure:

{

ΓN = A,
Γk = {(x1, x2) ∈ Γk+1|f2(x1, x2) ∈ Π2(Γk+1)}. (6)

The sequence {Γk}Nk=0 is endowed with the following facts:

• supp(Vk) ⊆ Γk, then ∀x0 /∈ Γ0, px0
(A) = 0;

• A = ΓN ⊇ ΓN−1 ⊇ ΓN−2 ⊇ ... ⊇ Γ0;

• if there exists a positive integer k0 ≤ N such that
Γk0

= Γk0+1, then for all 0 ≤ k ≤ k0,Γk = Γk0+1;

• if there exists a positive integer k0 ≤ N such that
Π2 (Γk0

) = Π2 (Γk0+1), then for all 0 ≤ k ≤ k0,Γk =
Γk0

.

These properties highlight the dependence of the sets Γk (we
will denote them simply as support sets) on the deterministic
vector field f2, particularly over the points that are mapped
by f2 outside of the support sets.

3.2 Simplifying the Bellman recursion
With focus on the support sets introduced in (6), define

additionally the following quantities: for any x2 ∈ Π2(Γk),

Γ1
k(x2) = {x1 ∈ Π1(Γk)|(x1, x2) ∈ Γk}.

Recall the recursive formula in (5) for Vk. By definition of
Γk, we know that Vk is equal to zero outside of the set Γk.
We can then simplify the recursive formula to the following:

Vk(x1, x2) =

∫

Γ1
k+1

(f2(x1,x2))

Vk+1(x̄1, f2(x1, x2))tx(x̄1|x1, x2)dx̄1, (7)

for any (x1, x2) ∈ Γk. This formulation characterizes the
value functions Vk in terms of the sets Γk.

3.3 Continuity of the value functions
We are interested in establishing the continuity of the

value functions over their support. To achieve this, the fol-
lowing set of assumptions is needed.

Assumption 1. Suppose that the kernel Tx admits a den-
sity function tx as in (2). Furthermore, suppose that the
density function tx, the vector field f2, and the parametrized
sets Γ1

k(x2) satisfy the following conditions:

1. |tx(x̄1|x1, x2)− tx(x̄1|x′
1, x

′
2)| ≤ h1‖(x1, x2)−(x′

1, x
′
2)‖,

for any x̄1 ∈ Π1(A) and (x1, x2), (x
′
1, x

′
2) ∈ A;

2. ‖f2(x1, x2)− f2(x
′
1, x

′
2)‖ ≤ h2‖(x1, x2)− (x′

1, x
′
2)‖, for

any (x1, x2), (x
′
1, x

′
2) ∈ A;

3. L(Γ1
k(x2) 4 Γ1

k(x
′
2)) ≤ θk‖x2 − x′

2‖, for any x2, x
′
2 ∈

Π2(Γk), k ∈ [0, N ],

where h1, h2, θk are finite constants. Here L is the Lebesgue
measure over R

n1 , whereas 4 denotes the symmetric differ-
ence of two sets.

The first two are continuity assumptions on the density and
on the vector field. The third assumption is a regularity
requirement on the variation of the (projection along the
x1 variables of the) support sets, as a function of the x2

coordinates. Intuitively, this last assumption depends on
the actual shape of the support sets Γk and on f2 – as such,
it has to hold over the entire time horizon [0, N ].

Theorem 1. If Assumption 1 is valid, then the value func-
tions Vk are Lipschitz continuous on Γk, namely ∀(x1, x2),
(x′

1, x
′
2) ∈ Γk,
∣

∣Vk(x1, x2)− Vk(x
′
1, x

′
2)
∣

∣ ≤ λk‖(x1, x2)− (x′
1, x

′
2)‖,

where the finite Lipschitz constant λk satisfies the recursive
formula:

λk = (h1Lk+1 +Mh2θk+1) + h2M
?λk+1, 0 ≤ k < N,

initialized with λN = 0, and where:

Lk = L (Π1(Γk)) ,

M = sup {tx(x̄1|x1, x2)|x1, x2 ∈ A, x̄1 ∈ Π1(A)} ,

M? = sup
(x1,x2)∈A

∫

Π1(A)

tx(x̄1|x1, x2)dx̄1.

Proof. Since VN (x) = IA(x), it follows that λN = 0.
Now suppose that the statement holds at step k+1: ∀(x1, x2),
(x′

1, x
′
2) ∈ Γk+1,

∣

∣Vk+1(x1, x2)− Vk+1(x
′
1, x

′
2)
∣

∣ ≤ λk+1‖(x1, x2)− (x′
1, x

′
2)‖.

Select any two states (x1, x2), (x
′
1, x

′
2) ∈ Γk and express the

inequality via (7) as:

|Vk(x1, x2)− Vk(x
′
1, x

′
2)| =

∣

∣

∣

∣

∣

∫

Γ1
k+1

(f2(x1,x2))

Vk+1(x̄1, f2(x1, x2))tx(x̄1|x1, x2)dx̄1−

∫

Γ1
k+1

(f2(x
′

1
,x′

2
))

Vk+1(x̄1, f2(x
′
1, x

′
2))tx(x̄1|x′

1, x
′
2)dx̄1

∣

∣

∣

∣

∣

.



To ease the notational burden, let us introduce sets A? .
=

Γ1
k+1(f2(x1, x2)) and B? .

= Γ1
k+1(f2(x

′
1, x

′
2)). Then:

|Vk(x1, x2)− Vk(x
′
1, x

′
2)| =

=

∣

∣

∣

∣

∫

A?

Vk+1(x̄1, f2(x1, x2))tx(x̄1|x1, x2)dx̄1

−
∫

B?

Vk+1(x̄1, f2(x
′
1, x

′
2))tx(x̄1|x′

1, x
′
2)dx̄1

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

A?∩B?

Vk+1(x̄1, f2(x1, x2))tx(x̄1|x1, x2)dx̄1

−
∫

A?∩B?

Vk+1(x̄1, f2(x
′
1, x

′
2))tx(x̄1|x′

1, x
′
2)dx̄1

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

A?\B?

Vk+1(x̄1, f2(x1, x2))tx(x̄1|x1, x2)dx̄1

−
∫

B?\A?

Vk+1(x̄1, f2(x
′
1, x

′
2))tx(x̄1|x′

1, x
′
2)dx̄1

∣

∣

∣

∣

∣

.

The above inequality is made up of two main terms, of which
the first can be upper bounded as follows:
∣

∣

∣

∣

∫

A?∩B?

Vk+1(x̄1, f2(x1, x2))tx(x̄1|x1, x2)dx̄1

−
∫

A?∩B?

Vk+1(x̄1, f2(x
′
1, x

′
2))tx(x̄1|x′

1, x
′
2)dx̄1

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

A?∩B?

Vk+1(x̄1, f2(x1, x2))
[

tx(x̄1|x1, x2)− tx(x̄1|x′
1, x

′
2)
]

dx̄1

+

∫

A?∩B?

tx(x̄1|x′
1, x

′
2)·

[

Vk+1(x̄1, f2(x1, x2))− Vk+1(x̄1, f2(x
′
1, x

′
2))

]

dx̄1

∣

∣

∣

∣

≤
∫

A?∩B?

Vk+1(x̄1, f2(x1, x2))
∣

∣tx(x̄1|x1, x2)− tx(x̄1|x′
1, x

′
2)
∣

∣ dx̄1

+

∫

A?∩B?

tx(x̄1|x′
1, x

′
2)·

∣

∣Vk+1(x̄1, f2(x1, x2))− Vk+1(x̄1, f2(x
′
1, x

′
2))

∣

∣ dx̄1

≤h1‖(x1, x2)− (x′
1, x

′
2)‖L (A? ∩B?)

+ λk+1

∫

A?∩B?

‖(x̄1, f2(x1, x2))− (x̄1, f2(x
′
1, x

′
2))‖tx(x̄1|x′

1, x
′
2)dx̄1

≤h1‖(x1, x2)− (x′
1, x

′
2)‖L (Π1(Γk+1))

+ λk+1 h2‖(x1, x2)− (x′
1, x

′
2)‖

∫

A?∩B?

tx(x̄1|x′
1, x

′
2)dx̄1

≤ (h1Lk+1 + h2M
?λk+1) ‖(x1, x2)− (x′

1, x
′
2)‖.

Recalling that the value functions take values in the interval
[0, 1], the second term is upper bounded as follows:

∣

∣

∣

∣

∣

∫

A?\B?

Vk+1(x̄1, f2(x1, x2))tx(x̄1|x1, x2)dx̄1

−
∫

B?\A?

Vk+1(x̄1, f2(x
′
1, x

′
2))tx(x̄1|x′

1, x
′
2)dx̄1

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

A?\B?

Vk+1(x̄1, f2(x1, x2))tx(x̄1|x1, x2)dx̄1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

B?\A?

Vk+1(x̄1, f2(x
′
1, x

′
2))tx(x̄1|x′

1, x
′
2)dx̄1

∣

∣

∣

∣

∣

≤ML(A?\B?) +ML(B?\A?) = ML(A? 4B?)

=ML
(

Γ1
k+1(f2(x1, x2))4 Γ1

k+1(f2(x
′
1, x

′
2))

)

≤Mθk+1‖f2(x1, x2)− f2(x
′
1, x

′
2)‖

≤Mθk+1h2‖(x1, x2)− (x′
1, x

′
2)‖.

Collecting the two bounds, we obtain:

|Vk(x1, x2)− Vk(x
′
1, x

′
2)|

≤ (h1Lk+1 + h2M
?λk+1) ‖(x1, x2)− (x′

1, x
′
2)‖

+Mθk+1h2‖(x1, x2)− (x?
1, x

?
2)‖

=(h1Lk+1 + h2M
?λk+1 +Mθk+1h2) ‖(x1, x2)− (x′

1, x
′
2)‖

=λk‖(x1, x2)− (x′
1, x

′
2)‖,

which completes the proof.

Notice that 0 ≤ M? ≤ 1 and that the quantities M and M*
(hence, the overall bound) can be further refined to functions
of the time step k.

4. APPROXIMATION SCHEME AND
QUANTIFICATION OF THE ERROR

In this section we propose an approximation scheme to
perform the computations in (7), and furthermore explic-
itly quantify its error. To keep the notations light, in (7)
we replace the generic integration domain Γ1

k+1(f2(x1, x2))
by Π1(A) – however, the procedure applies similarly to the
general case.

4.1 Approximation scheme for computation
Select an arbitrary partition of the invariant set A =

∪p
i=1Ai, Ai1 ∩ Ai2 = ∅, i1, i2 = 1, . . . , p, i1 6= i2, where p

represents the cardinality. The whole state space S can be
also partitioned by adding the complement set Ap+1 = S\A.
Pick any point xi = (xi

1, x
i
2) ∈ Ai, i = 1, . . . , p + 1. Notice

that Π1(A) = Π1 (∪p
i=1Ai) = ∪p

i=1Π1(Ai), however the sets
Π1(Ai) produce a cover (in general not a partition) of the
set Π1(A). To make up for this, we can additionally select
an arbitrary partition Π1(A) = ∪q

j=1Xj for the projection of
the safe set along the first variable. This allows to express,
∀(x1, x2) ∈ A:

Vk(x1, x2) =

∫

Π1(A)

Vk+1(x̄1, f2(x1, x2))tx(x̄1|x1, x2)dx̄1

=

q
∑

j=1

∫

Xj

Vk+1(x̄1, f2(x1, x2))tx(x̄1|x1, x2)dx̄1.

Let us now approximate the value functions Vk by piece-
wise constant ones V̄k, which are computed over the selected
points {xi ∈ Ai}p+1

i=1 , as follows:

V̄k(x1, x2) =

p+1
∑

i=1

V̄k(x
i
1, x

i
2)IAi

(x1, x2),

∀(x1, x2) ∈ A. Denote V i
k

.
= V̄k(x

i
1, x

i
2). These functions are

initialized as V i
N = 1, i = 1, . . . , p, V p+1

N = 0, and recursively
computed as follows:

V i
k =

q
∑

j=1

∫

Xj

V̄k+1(x̄1, f2(x
i
1, x

i
2))tx(x̄1|xi

1, x
i
2)dx̄1.

In this formulation the values of V̄k+1 over the hyperplane
Xj × {f2(xi

1, x
i
2)} are needed. In order to implement the



procedure in a discrete manner, the function V̄k+1 should be
constant over this hyperplane. This feature is achieved by
raising the following assumption on the partition sets Xj of
Π1(A):

∀i, j ∃i′ : Xj × {f2(xi
1, x

i
2)} ⊆ Ai′ .

Notice that this assumption does not depend on the step
k, and is immediately satisfiable by selecting a partition for
A uniformly along the first variable x1, while considering
non-redundant sets of Π1(Ai) as a partition for Π1(A).
Consider a map i′ = R(i, j), which assigns to each par-

tition set Xj and value f i
2

.
= f2(x

i
1, x

i
2) the corresponding

partition set Ai′ containing Xj × f i
2. Having this map, we

are able to formulate the discrete version of our continuous
recursive procedure (7) as:

V i
k =

q
∑

j=1

V i′

k+1

∫

Xj

tx(x̄1|xi
1, x

i
2)dx̄1. (8)

To recapitulate, the following steps are required to imple-
ment the algorithm:

• Select a partition ∪iAi of the invariant set A and the
associated partition ∪jXj of Π1(A);

• Compute the map i′ = R(i, j) based on the selected
partitions;

• Compute the marginal matrix P with the entries: Pij =
∫

Xj
tx(x̄1|xi

1, x
i
2)dx̄1;

• Compute recursively: V i
k =

∑q

j=1 PijV
i′

k+1 as in (8),

initialized by V i
N = 1;

• Use the support set Γk at step k to set the required
entries equal to zero, namely V i

k = 0 for all i such that
Ai ⊂ S\Γk.

Note that in the above steps we allow for additional ap-
proximation error, since there exist partition sets that may
cross the boundaries of the support sets, and which are not
contained in neither Γk nor S\Γk. In order to avoid this
error, we should further adapt the selected partition to the
boundaries of support sets.

4.2 Bound on the approximation error

Theorem 2. Suppose we approximate the value functions
Vk by the piecewise constant functions V̄k, as described in
the previous section. Then the approximation error is upper
bounded, ∀(x1, x2) ∈ Γk, by

|Vk(x1, x2)− V̄k(x1, x2)| ≤ Ek,

where

Ek = λkδ +M?Ek+1,

initialized by EN = 0, and where δ is the partition size of
∪p

i=1Ai (namely, δ = maxp
i=1 δi, where δi is the diameter of

Ai), λk is the Lipschitz constant of the value function Vk,
and M? is defined as in Theorem 1.

Proof. We reason again by induction. The statement
holds for k = N , since VN = V̄N = IA. Suppose now that

it is valid for step k + 1. Noting that ∀(x1, x2) ∈ A, ∃i :
(x1, x2) ∈ Ai, then:

|Vk(x1, x2)− V̄k(x1, x2)| = |Vk(x1, x2)− V̄k(x
i
1, x

i
2)|

≤ |Vk(x1, x2)− Vk(x
i
1, x

i
2)|+ |Vk(x

i
1, x

i
2)− V̄k(x

i
1, x

i
2)|

≤ λkδ +

∣

∣

∣

∣

∣

p
∑

j=1

∫

Xj

Vk+1(x̄1, f2(x
i
1, x

i
2))tx(x̄1|xi

1, x
i
2)dx̄1

−
p

∑

j=1

∫

Xj

V̄k+1(x̄1, f2(x
i
1, x

i
2))tx(x̄1|xi

1, x
i
2)dx̄1

∣

∣

∣

∣

∣

≤ λkδ +

p
∑

j=1

∫

Xj

∣

∣

∣
Vk+1(x̄1, f2(x

i
1, x

i
2))− V̄k+1(x̄1, f2(x

i
1, x

i
2))

∣

∣

∣
·

tx(x̄1|xi
1, x

i
2)dx̄1

≤ λkδ +

p
∑

j=1

∫

Xj

Ek+1tx(x̄1|xi
1, x

i
2)dx̄1

≤ λkδ + Ek+1

∫

Π1(A)

tx(x̄1|xi
1, x

i
2)dx̄1

≤ λkδ +M?Ek+1,

which equals to Ek.

Note that the constant M∗ can be replaced by a decreasing
finite sequence {M∗

k}1k=N , which yields a lower abstraction
error.

5. AFFINE DETERMINISTIC DYNAMICS
ON POLYTOPIC INVARIANT SET

It is in general difficult to find an explicit and computable
bound for Condition 3 in Assumption 1. Such a bound de-
pends directly on the shape of the sets Γk. However, a bound
can be derived for models with deterministic dynamics that
are affine and when the invariant set is a convex polytope.
Under these conditions, the following lemma gives an ex-
plicit representation for the invariant sets Γk.

Lemma 1. Suppose that the deterministic dynamics in (1)
are characterized by affine functions, namely:

f2(x1, x2) = A1x1 +A2x2 +A3,

where A1 ∈ R
n2×n1 , A2 ∈ R

n2×n2 , A3 ∈ R
n2×1. Further-

more, suppose that the invariant set A is a (bounded) convex
polytope, characterized by the following set of linear inequal-
ities:

A =
{

(x1, x2) ∈ R
n|A1

Nx1 +A2
Nx2 ≤ BN

}

.

Then the support sets Γk, k = N −1, . . . , 0, are also bounded
convex polytopes.

Proof. Based on Equation (6), we can compute the sets
Γk, k = 0, . . . , N − 1, as:

Γk = f−1
2 (Π2(Γk+1)) ∩ Γk+1.

Suppose Γk+1 is compact and convex then Π2(Γk+1) is also
a compact and convex set since the operator Π2 is linear.
Additionally, as the function f2 is linear (and continuous),
then f−1

2 (Π2(Γk+1)) is also compact and convex.
Suppose now that set Γk+1 is a polytope in R

n, charac-
terized by the following set of linear inequalities:

Γk+1 =
{

(x1, x2) ∈ R
n|A1

k+1x1 +A2
k+1x2 ≤ Bk+1

}

.



Then Π2(Γk+1) is also a polytope in n2 dimensions, charac-
terized by:

Π2(Γk+1) = {x2 ∈ R
n2 |Ck+1x2 ≤ Dk+1} .

Techniques to perform a perpendicular projection of bounded
polytopes allow to obtain Π2(Γk+1) from Γk+1. [9] proved
that the polyhedral projection is equivalent to the feasibil-
ity of a parametric linear programming problem. The MPT
toolbox [12] constructs a vertex representation of Γk+1, hav-
ing its half-space representation (vertex enumeration prob-
lem); it then projects these vertices based on the Π2 op-
erator; and finally it obtains a half-space representation of
Π2(Γk+1) from its vertex representation (facet enumeration
problem).
Having obtained matrices Ck+1, Dk+1 expressing Π2(Γk+1),

we can find Γk as follows:

Γk = {(x1, x2) ∈ Γk+1|f2(x1, x2) ∈ Π2(Γk+1)}
= {(x1, x2) ∈ Γk+1|Ck+1f2(x1, x2) ≤ Dk+1}
= {(x1, x2) ∈ Γk+1|Ck+1(A1x1 +A2x2 +A3) ≤ Dk+1}
= {(x1, x2) ∈ Γk+1|Ck+1A1x1 + Ck+1A2x2 ≤

(Dk+1 − Ck+1A3)}.
Then Γk is a convex and bounded polytope with the follow-
ing half-space representation:

Γk =
{

(x1, x2) ∈ R
n|A1

kx1 +A2
kx2 ≤ Bk

}

, (9)

where:

A1
k =

[

Ck+1A1

A1
k+1

]

, A2
k =

[

Ck+1A2

A2
k+1

]

,

Bk =

[

Dk+1 − Ck+1A3

Bk+1

]

.

Note that this representation is not unique: it is possible to
eliminate redundant half-spaces in the representation of Γk

in each step.

The following theorem derives the bound for Condition 3 in
Assumption 1.

Theorem 3. Suppose Γk is a bounded convex polytope
with the representation in (9). Then the sets Γ1

k(x2) are
polytopes in R

n1 , which satisfy the Condition 3 in Assump-
tion 1 with the following constant:

θk =

mk
∑

i=1,A1
k
(i) 6=0

sk(i)
‖A2

k(i)‖
‖A1

k(i)‖
.

The vectors A1
k(i) and A2

k(i) represent the ith row of A1
k and

A2
k, respectively. The constant mk accounts for the number

of inequalities in the half-space representation of Γk, i.e. mk

is equal to the number of rows of A1
k (we do not account

for the rows of A1
k that are equal to the zero vector). The

constant sk(i) is computed as follows:

1. if n1 = 1 then sk(i) = 1.

2. if n1 ≥ 2, project Π1(Γk) along the normal to the ith

hyperplane, i.e. along vector A1
k(i). The result is a

polytope in R
n1−1, namely Π⊥(Π1(Γk)). Then sk(i) =

L(Π⊥(Π1(Γk))) or any upper bound for this Lebesgue
measure.

Proof. Recall the definition of Γ1
k(x2): for any x2 ∈

Π2(Γk)

Γ1
k(x2) = {x1 ∈ Π1(Γk)|(x1, x2) ∈ Γk}

=
{

x1 ∈ R
n1 |Ak

1x1 ≤ Bk −A2
kx2

}

.

For any fixed x2 the set Γ1
k(x2) is represented by a set of lin-

ear inequalities, which again characterizes a polytope. Each
facet of the polytope is represented by one row of the above
half-space representation:

Ak
1(i)x1 ≤ Bk(i)−A2

k(i)x2, i = 1, . . . ,mk.

The normal vector to this hyperplane in R
n1 is independent

of parameter x2. Varying x2 to x′
2, we obtain two parallel

hyperplanes in R
n1 . The volume bounded within the two

hyperplanes is proportional to their distance d:

d =
|(Bk(i)−A2

k(i)x2)− (Bk(i)−A2
k(i)x

′
2)|

‖A1
k(i)‖

=
|A2

k(i)(x2 − x′
2)|

‖A1
k(i)‖

.

Suppose the values of sk(i) are defined as in the statement.
Then:

L(Γ1
k(x2)4 Γ1

k(x
′
2))

≤
mk
∑

i=1

sk(i)
|Ak

2(i)(x2 − x′
2)|

‖Ak
1(i)‖

=

mk
∑

i=1

sk(i)
‖Ak

2(i)‖
‖Ak

1(i)‖
‖(x2 − x′

2)‖

= θk‖(x2 − x′
2)‖,

which completes the proof.

For the sake of completeness, let us explicitly derive the
Lipschitz constant required for Condition 2 in Assumption
1, given affine deterministic dynamics.

Proposition 2. The Lipschitz constant of the affine func-
tion f2(x1, x2) = A1x1 +A2x2 +A3 is equal to:

h2 = ‖[A1, A2]‖2.
Proof.

‖f2(x1, x2)− f2(x
′
1, x

′
2)‖ = ‖A1(x1 − x′

1) +A2(x2 − x′
2)‖

= ‖[A1, A2][x1 − x′
1, x2 − x′

2]
T ‖

≤ ‖[A1, A2]‖2‖(x1, x2)− (x′
1, x

′
2)‖.

6. CASE STUDY
This section applies the probabilistic invariance problem

and the results derived above to a chemical reaction network
characterized by species with heterogeneous concentrations.
The dynamics of chemically reacting environments can be
described by the general Chemical Master Equation (CME)
[8], which unfortunately has seldom an analytical solution
and is usually quite hard to integrate. Alternatively, species
dynamics in time are studied via the Stochastic Simulation
Algorithm (SSA) [8], which is a computational scheme that
has attracted much research. Among the various approaches
to approximate and speed up the SSA, the work in [10] has



investigated one that is based on the use of first- and second-
order approximations: species that are abundant in the en-
vironment are associated with deterministic dynamics (ordi-
nary differential equations), whereas species with negligible
numbers are given probabilistic dynamics (stochastic differ-
ential equations).
The underlying stoichiometry, reaction and degradation

rates are directly taken from [6] and summarized in Table 1.
Let us introduce the following vector:

x =
[

D D? M P
]T

,

describing the (low) concentration of an inactive and ac-
tive gene (D and D? respectively), as well as the (relatively
abundant) concentration of m-RNA (M) and of a protein
(P ). The continuous dynamics are described by the follow-
ing stochastic differential equation:

dx = f(x)dt+ σ(x)dW.

Time is discretized with sampling interval ∆, according to
an Euler-Maruyama, first-order scheme, obtaining:

x(k + 1) = x(k) + f(x(k))∆ + σ(x(k))
√
∆W (k),

where f(x) = Ax and

A =









−ka kd 0 0
ka −kd 0 0
0 kr −γr 0
0 0 kp −γp









,

and

σ(x) =









−
√
kaD

√
kdD?√

kaD −
√
kdD?

0 0
0 0









,

and finallyW (k) = [W1(k),W2(k)]
T , andWi(k), i = 1, 2, k ∈

N∪{0}, are independent standard Normal random variables,
which are also independent of the initial condition of the pro-
cess. The steady-state values for the dynamics are estimated
as in [10]:

• Pss = 65 [nM ] ⇒ Mss =
γp

kp
Pss,

• Dss = D?
ss = γr

kr
Mss = γr

kr

γp

kp
Pss =

γp

bkr
Pss.

Since the dynamics of D and D? are coupled, it is possible
to eliminate the variable D, which leads to the following
dynamical system:

x1(k + 1) = (1− kd∆− ka∆)x1(k) + 2ka∆D?
ss

+
√

2ka∆D?
ssW (k)

x2(k + 1) = kr∆x1(k) + (1− γr∆)x2(k)

x3(k + 1) = kp∆x2(k) + (1− γp∆)x3(k),

where we have denoted
[

D? M P
]T

=
[

x1 x2 x3

]T
,

and W (k), k ∈ N ∪ {0}, are again independent standard
Normal random variables. Notice that the model is mixed
deterministic-stochastic: namely, deterministic over the dy-
namics of x2 (M), x3 (P ), whereas stochastic for x1 (D

?).

We select a hyper-boxA around the steady state values de-
fined above, and compute probabilistic invariance over this

ka = kd kr γr kp γp
0.001 0.0078 0.0039 bγr, b = 11 0.0007

Table 1: Parameters for the case study, taken from
[6], and expressed in [s−1].

region, for a given time horizon. The hyper-box is charac-
terized by the parameters r1, r2, and r3 as:
∣

∣

∣

∣

x1 −D?
ss

D?
ss

∣

∣

∣

∣

≤ r1,

∣

∣

∣

∣

x2 −Mss

Mss

∣

∣

∣

∣

≤ r2,

∣

∣

∣

∣

x3 − Pss

Pss

∣

∣

∣

∣

≤ r3.

The kernel for the x1 dynamics is Normal and admits a
density tx(x̄1|x1) ∼ N (µ, σ), where the mean is an affine
function of the conditional variable x1 and the variance is
constant:

µ = (1− kd∆− ka∆)x1 + 2ka∆D?
ss, σ =

√

2ka∆D?
ss.

The Lipschitz constant h1 is computed based on the maxi-
mum norm of the partial derivative of the density function
with respect to the conditional variable x1:

h1 = max

{∣

∣

∣

∣

∂tx
∂x1

(x̄1|x1)

∣

∣

∣

∣

∣

∣x1, x̄1 ∈ Π1(A)

}

= (1− kd∆− ka∆)
exp(−0.5)

σ2
√
2π

.

The constants M and M∗ have been considered independent
of the step k and take the following values:

M =
1

σ
√
2π

,

M∗ = 2

∫
r1
σ

D?
ss

0

1√
2π

exp

[

−u2

2

]

du = erf

(

r1

σ
√
2
D?

ss

)

,

where erf is the error function.

6.1 First Experiment (original parameters)
Suppose we select equal rates for the hyper-box that de-

fines the invariance set: ri = r, i = 1, 2, 3. It can be ex-
plicitly shown that in this case the invariance set does not
shrink backwards, namely since

∀(x1, x2, x3) ∈ A, f2(x1, x2, x3) ∈ Π2(A),

then the support sets are such that

ΓN−1 = A ⇒ Γk = A ∀k ∈ {0, 1, ..., N}.
This fact also means that, with regards to Assumption 1,

Γ1
k(x2, x3) = Π1(A) = [(1− r)D?

ss, (1 + r)D?
ss],

which leads to θk = 0. The parameters Lk required for the
error bounds are:

L = Lk = L(Π1(Γk)) = L(Π1(A))

= (1 + r)D?
ss − (1− r)D?

ss = 2rD?
ss.

We have selected a time horizon N = 10, a time dis-
cretization step ∆ = 1, and a parameter r = 0.05. Recall
that n1 = 1, n2 = 2. This has lead to a variance σ = 0.03
and to constants

h1 = 227.7, h2 = 1.02, L = 0.05,M = 12.25,M? = 0.58.

Finally, the abstraction error can be computed as E0 =
70.01δ. A partition size δ = 0.03 has been selected for the
experiment. Figure 1 shows the level set V8 = 0.12 together
with the invariant set (transparent bounding box).



Figure 1: Representation of the level set V8 = 0.12
for the value function of the first experiment.

6.2 Second Experiment (rescaled parameters)
It is easily seen that Γk are all equal by selecting the rates

for the invariance hyper-box such that r1 ≤ r2 ≤ r3. In
order to show the efficiency of the proposed algorithm, the
following rates have been thus selected:

r1 = 0.20, r2 = 0.10, r3 = 0.05.

Furthermore, we have rescaled the constants kr, kp, γr, γp by
a factor of 100. The equilibrium point of the dynamics is not
affected by this choice, and we obtain a variance σ = 0.32
and the following constants:

h1 = 1.82, h2 = 4.43,M = 12.25,M? = 0.99.

The algorithm results in time varying support sets Γk, how-
ever it turns out that Π1(Γk) = Π1(A) for any k. This leads
to constants L = Lk = L(Π1(A)) = 0.21. We have selected
again a time horizon N = 10, a time discretization step
∆ = 1, and a partition size δ = 0.03.
Figure 2 displays the support sets ΓN ,ΓN−1, and Γ0. No-

tice that the sets shrink as time decreases.
Over the support sets Γk, the probabilistic invariance is

computed. Figure 3 displays the level sets of V0(x) = px(A),
for varying invariance levels: 0, 0.02, 0.04, 0.06, 0.08, 0.1. No-
tice that the set of points V0 = 0 cover a region that is the
complement of in Γ0 in A (cfr. the top left plot in Figure 3
with the bottom plot in Figure 2).
Figure 4 displays the level set Vk(x) = 0.1, for varying

time instants k = 2, 4, 6, 8. Additionally, for k = 0 we obtain
the last (bottom-right) plot of Figure 3.

7. CONCLUSIONS
This work has presented an approach to compute proba-

bilistic invariance (or safety) over a finite horizon for mixed
deterministic-stochastic, discrete time processes. The com-
putational technique, based on state-space discretization,
has been associated to an explicit error bound. On the the-
oretical side, the contribution has shown that the problem
under study can be separated into a deterministic reachabil-
ity problem, and a probabilistic invariance one that depends

Figure 2: Representation of the support sets
ΓN ,ΓN−1, and Γ0 for the second experiment.



Figure 3: Representation of the level sets of V0(x) = px(A), for varying levels (0, 0.02, 0.04, 0.06, 0.08, 0.1), for the
second experiment.



Figure 4: Representation of the level set Vk(x) = 0.1,
for varying time instants k = 2, 4, 6, 8, for the second
experiment.

on the outcome of the first. The technique has been tested
on a case study modeling a chemical reaction network.

The authors are interested in extensions and further com-
putational improvements of the proposed method.
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