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Abstract—In this paper, we prove that a discrete-time
switched linear system is exponentially stabilizable if and only
if there exists a stationary hybrid-control law that consists
of a homogeneous switching-control law and a piecewise-
linear continuous-control law under which the closed-loop
system has a piecewise quadratic Lyapunov function. Such
a converse control-Lyapunov function theorem justifies many
of the earlier controller-synthesis methods that have adopted
piecewise-quadratic Lyapunov functions and piecewise-linear
continuous-control laws for convenience or heuristic reasons.
Furthermore, several important properties of the proposed
stabilizing control law are derived and their connections to
other existing controllers studied in the literature are discussed.

I. INTRODUCTION

The stabilization problem of switched systems, especially
autonomous switched linear systems, is receiving increasing
research attention in recent years ([1], [2]). Many existing
results approach the problem by searching for a switching
strategy and a Lyapunov or Lyapunov-like function with de-
creasing values along the closed-loop system trajectory ([3],
[4], [5], [6]). The main idea is first to parameterize the
switching strategy and the Lyapunov-like function in terms
of certain matrices and then to translate the Lyapunov or
multiple-Lyapunov function theorem into matrix inequalities.
If the solution of the matrix inequalities defines a quadratic
common Lyapunov function under the proposed switching
strategy, then the system is called quadratic stabilizable.
It is proved in [3], [7] that the quadratic stabilizability is
equivalent to the strict completeness of a certain set of sym-
metric matrices. From a different perspective, in [8], [9], it is
shown that the system is quadratic stabilizable if there exists
a stable convex combination of the subsystem matrices. The
main limitation of these results is their conservatism. Many
switched linear systems are asymptotically or exponentially
stabilizable without having a quadratic common Lyapunov
function ([2]). In [4], a piecewise quadratic structure is
adopted for the Lyapunov function. By taking a so-called
“largest-region-function switching strategy”, the stabilization
problem is formulated as a bilinear matrix inequality (BMI)
problem and some heuristics are proposed to solve the BMI
problem numerically.
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Recently, stabilization of nonautonomous switched lin-
ear systems through both switching control and continuous
control has also been studied ([6], [10], [11], [12]). The
methods are mostly direct extensions of the switching sta-
bilization results for autonomous systems. By associating to
each subsystem a feedback gain and a quadratic Lyapunov
function, the stabilization problem is also formulated as a
matrix inequality problem, where the feedback-gain matrices
are part of the design variables.
The extensive use of various Lyapunov functions has

sparked a great interest in the study of the converse Lyapunov
function theorems for switched linear systems. In [13], [14],
it is proved that the exponential stability of a switched
linear system under arbitrary switching is equivalent to the
existence of a piecewise quadratic, or a piecewise linear,
or a smooth homogeneous common Lyapunov function. A
converse control-Lyapunov function theorem is also derived
in [15] for a switching-stabilizable uncertain switched linear
system. Although the piecewise quadratic Lyapunov function
has been widely used in studying the stabilization problem,
its existence has not been proved for general exponentially
stabilizable switched linear systems.
Despite the extensive literature in this field, some funda-

mental questions regarding the stabilization of a switched
linear system remain open. As stated in [16], “necessary
and sufficient conditions for the existence of a general
(not necessarily quadratic) stabilizing feedback strategy are
not known”. In this paper, we derive an answer to this
open problem. Our main contribution is the proof of the
equivalence of the following statements for a discrete-time
switched linear system:

(i) The system is exponentially stabilizable;
(ii) There exists a piecewise-quadratic control-Lyapunov

function;
(iii) There exists a stationary exponentially-stabilizing

hybrid-control law that consists of a homoge-
neous switching-control law and a piecewise-linear
continuous-control law.

The equivalence of the above statements constitutes a
converse piecewise-quadratic control-Lyapunov function the-
orem (Theorem 2), which has not been shown yet in the lit-
erature. Furthermore, this result also guarantees that to study
the stabilization problem, it suffices to only consider the
control-Lyapunov functions of piecewise-quadratic form and
the continuous-control laws of piecewise-linear form. This
justifies many of the earlier controller-synthesis methods
that have adopted these forms for convenience or heuristic



reasons.
This paper is organized as follows. The main results are

stated as Theorem 2 and Theorem 3 in Section II. Then, the
two theorems are proved in Sections III and IV, respectively.
Some concluding remarks are given in Section V.

II. PROBLEM STATEMENT
We consider the discrete-time switched linear systems

described by:

x(t + 1) = Av(t)x(t) + Bv(t)u(t), t ∈ Z
+, (1)

where Z+ denotes the set of nonnegative integers, x(t) ∈ Rn

is the continuous state, v(t) ∈ M ! {1, . . . , M} is the
switching control that determines the discrete mode, and
u(t) ∈ Rp is the continuous control. The sequence of pairs
{(u(t), v(t))}∞t=0 is called the hybrid-control sequence. For
each i ∈ M, Ai and Bi are constant matrices of appropriate
dimensions and the pair (Ai, Bi) is called a subsystem.
The most general way of making a control decision is

through the time-dependent (state-feedback) hybrid-control
law, namely, the function ξt ! (µt, νt) : Rn → Rp ×M that
maps each continuous state to a hybrid-control action that
may vary with time t. Here, µt : Rn → Rp and νt : Rn → M

are called the (state-feedback) continuous-control law and the
(state-feedback) switching-control law, respectively, at time
t ∈ Z+. A sequence of hybrid-control laws constitutes an
infinite-horizon feedback policy: π ! {ξ0, ξ1, . . . , . . .}. A
policy π = {ξ, ξ, . . .} with the same control law ξt = ξ
at each time t is called a stationary policy. If system (1) is
driven by a feedback policy π, then the closed-loop dynamics
is governed by

x(t + 1)=Aνt(x(t))x(t)+Bνt(x(t))µt(x(t)), t ∈ Z
+. (2)

The exponential stabilization problem is to find a policy
π under which the trajectory x(t) of system (2) originating
from any initial state x(0) = z satisfies1:

‖x(t)‖2 ≤ act‖z‖2, ∀t ∈ Z
+, (3)

for some constants a ≥ 1 and 0 < c < 1, where ‖ · ‖
denotes the standard Euclidean norm in Rn. If such a policy
exists, then system (1) is called exponentially stabilizable. As
a standard result of Lyapunov theory, a sufficient condition
for the exponential stabilizability is the existence of the
following Lyapunov function.
Theorem 1 ([17]): Suppose that there exist a policy π and

a nonnegative function V : Rn → R+ satisfying:
(i) κ1‖z‖2 ≤ V (z) ≤ κ2‖z‖2 for any z ∈ Rn and some

finite positive constants κ1 and κ2;
(ii) V (x(t)) − V (x(t + 1)) ≥ κ3‖x(t)‖2 for any t ∈ Z+

and some constant κ3 > 0, where x(·) is the closed-
loop trajectory of system (2) under policy π.

Then system (1) is exponentially stabilizable by the policy π.
Definition 1: A nonnegative function V : Rn → R+ is

called a control-Lyapunov function of system (1) if there

1In this paper, the variable z ∈ Rn denotes a generic initial value of
system (1).

exists a policy π such that V and π satisfy all the conditions
in Theorem 1.
By Theorem 1, the existence of a control-Lyapunov

function is a sufficient condition for the stabilizability of
system (1). The main goal of this paper is to show that
this condition is also necessary and more importantly, that
the control-Lyapunov function can always be chosen to be
piecewise quadratic and that the corresponding stabilizing
policy can always be made stationary with a homogeneous
switching-control law and a piecewise-linear continuous-
control law. In other words, we shall prove the following
theorems.
Theorem 2: System (1) is exponentially stabilizable if and

only if there exists a piecewise-quadratic control-Lyapunov
function, hereby referred to as PQCLF.
Theorem 3: System (1) is exponentially stabilizable (by

an arbitrary feedback policy) if and only if it is exponentially
stabilizable by a stationary feedback policy that consists of a
homogeneous switching-control law and a piecewise-linear
continuous-control law.
The proofs of Theorems 2 and 3 can be found in Sec-

tions III-C and IV-A, respectively.

III. A CONVERSE PQCLF THEOREM

This section is devoted to proving Theorem 2. The proof is
based on a connection between the exponential stabilization
problem and the switched LQR problem [18], [19]. Before
proving the theorem, we first briefly review some of the
key results for the switched LQR problem. Interested readers
are referred to [18], [19] for an in-depth discussion on the
switched LQR problem.

A. The Switched LQR Problem

Let Qi = QT
i ) 0 and Ri = RT

i ) 0 be the
weighting matrices for the state and the control, respectively,
for subsystem i ∈ M. Define the running cost as

L(x, u, v) = xT Qvx + uT Rvu, (4)

for x ∈ Rn,u ∈ Rp,v ∈ M. Denote by Jπ(z) the total cost,
possibly infinite, starting from x(0) = z under policy π, i.e.,

Jπ(z) =
∑∞

t=0
L(x(t), µt(x(t)), νt(x(t))). (5)

Define V ∗(z) = infπ∈Π Jπ(z). Since the running cost is
always nonnegative, the infimum always exists. The function
V ∗(z) is called the infinite-horizon value function. It will be
infinite if Jπ(z) is infinite for all the policies π ∈ Π. As a
natural extension of the classical LQR problem, the Discrete-
time Switched LQR problem (DSLQR) is defined as follows.
Problem 1 (DSLQR problem): For a given initial state

z ∈ Rn, find the infinite-horizon policy π ∈ Π that
minimizes Jπ(z) subject to equation (2).
Dynamic programming solves the DSLQR problem by

introducing a sequence of value functions. Define the N -



horizon value function VN : Rn → R as:

VN (z)= inf
u(t)∈Rp,v(t)∈M

0≤t≤N−1

{ N−1
∑

t=0

L(x(t), u(t), v(t))
∣

∣

∣

subject to (1) with x(0)=z

}

. (6)

For any function V : Rn → R+ and any control law ξ =
(µ, ν) : Rn → Rp ×M, denote by Tξ the operator that maps
V to another function Tξ[V ] defined as:

Tξ[V ](z) = L(z, µ(z), ν(z))

+ V (Aν(z)z + Bν(z)µ(z)), ∀z ∈ R
n. (7)

Similarly, for any function V : Rn → R+, define the operator
T by

T [V ](z)= inf
u∈Rp,v∈M

{

L(z, u, v)

+ V (Avz + Bvu)
}

, ∀z ∈ R
n. (8)

The equation defined above is called the one-stage value
iteration of the DSLQR problem. We denote by T k the
composition of the mapping T with itself k times, i.e.,
T k[V ](z) = T

[

T k−1[V ]
]

(z) for all k ∈ Z+ and z ∈
Rn. Some standard results of Dynamic Programming are
summarized in the following lemma.
Lemma 1 ([20]): Let V0(z) = 0 for all z ∈ Rn. Then
(i) VN (z) = T N [V0](z) for all N ∈ Z+ and z ∈ Rn;
(ii) VN (z) → V ∗(z) pointwise in Rn as N → ∞.
(iii) The infinite-horizon value function satisfies the Bell-

man equation, i.e., T [V ∗](z) = V ∗(z) for all z ∈ Rn.
(iv) If Rv ) 0 for all v ∈ M, then there exists a stationary

optimal policy, i.e., there exists a hybrid-control law
ξ∗ such that Tξ∗ [V ∗](z) = V ∗(z), ∀z ∈ Rn.

To derive the value function of the DSLQR problem, we
introduce a few definitions. Denote by ρi : A → A the
Riccati Mapping of subsystem i ∈ M, i.e.,

ρi(P ) =Qi + AT
i PAi

− AT
i PBi(Ri + BT

i PBi)
−1BT

i PAi. (9)

Definition 2: Let 2A be the power set of A. The mapping
ρM : 2A → 2A defined by: ρM(H) = {ρi(P ) : i ∈
M and P ∈ H} is called the Switched Riccati Mapping
associated with Problem 1.
Definition 3: The sequence of sets {Hk}N

k=0 generated
iteratively by Hk+1 = ρM(Hk) with initial condition H0 =
{0} is called the Switched Riccati Sets associated with
Problem 1.
The switched Riccati sets always start from a singleton set

{0} and evolve according to the switched Riccati mapping.
For any finite N , the set HN consists of up to MN p.s.d.
matrices. An important fact about the DSLQR problem is
that its value functions are completely characterized by the
switched Riccati sets.
Theorem 4 ([21]): The N -horizon value function for the

DSLQR problem is given by

VN (z) = minP∈HN zT Pz. (10)

Remark 1: Clearly, for any finite N , the value function
VN is a piecewise quadratic function. It will be shown that
if the system is exponentially stabilizable, then there must
exist a finite N such that VN is a control-Lyapunov function
of system (1).

B. V ∗ as a Control-Lyapunov Function
It is a well-known result that if a linear time-invariant

system is stabilizable, then the infinite-horizon value function
of the corresponding classical LQR problem is a control-
Lyapunov function. This subsection generalizes this result
to the switched linear system case. We shall show that if
system (1) is exponentially stabilizable, then the infinite-
horizon value function V ∗ of the DSLQR problem must be
a control-Lyapunov function of system (1).
We first introduce some notations. Denote by λmin(·) and

λmax(·) the smallest and the largest eigenvalue of a p.s.d.
matrix. Define

λ−
Q = min

i∈M
{λmin(Qi)}, λ+

Q = max
i∈M

{λmax(Qi)},

λ−
R = min

i∈M
{λmin(Ri)}, λ+

R = max
i∈M

{λmax(Ri)},

σ+
A = max

i∈M

{

√

λmax(AT
i Ai)

}

.

Denote by I+
B ⊂ M the set of indices of nonzero B matrices,

i.e., I+
B ! {i ∈ M : ‖Bi‖ ,= 0}. Let σ+

min(·) be the smallest
positive singular value of a nonzero matrix. If I+

B ,= ∅, define
σ̂B = mini∈I+

B
{σ+

min(Bi)}. Since Rv ) 0 for each v ∈ M,
by Lemma 1, there must exist a hybrid-control law ξ∗ such
that Tξ∗ [V ∗](z) = V ∗(z), ∀z ∈ Rn. Then, the policy π∗ =
{ξ∗, ξ∗, . . .} is the stationary optimal policy.
Our first task is to relate the exponential stabilizability to

the boundedness of the value function V ∗. In particular, we
want to show that the exponentially stabilizability implies
that V ∗(z) ≤ β‖z‖2 for all z ∈ Rn and some constant
β < ∞. The main challenge here is that the stabilizing policy
may employ a continuous control sequence u(t) whose norm
does not converge to zero exponentially fast. Our strategy is
to project out the component of each u(t) that lies in the
null space of Bv(t) and show that the norm of its orthogonal
part converges to zero exponentially fast. To this end, the
following lemma is needed.
Lemma 2: Let B ∈ Rn×p be arbitrary but B ,= 0.

Then for any u ∈ Rp in the column space of BT , i.e.,
u ∈ col(BT ), we must have ‖u‖ ≤ ‖Bu‖/σ+

min(B).
Proof: The result follows immediately when B has a

full column rank. Suppose that B is not full column rank.
By the theory of singular value decomposition, there exists
unitary matrices U = [U1, U2] and V = [V1, V2] such that

B = [U1, U2]

[

Σ 0
0 0

] [

V T
1

V T
2

]

Since the column space col(BT ) is the orthogonal comple-
ment of the null space of B, we have V T

2 u = 0. Thus,
‖u‖ = ‖V T u‖ = ‖V T

1 u‖. Therefore,

‖Bu‖2=uT V1Σ
2V T

1 u≥σ+
min(B)2‖V T

1 u‖2=σ+
min(B)2‖u‖2.



Thus ‖u‖ ≤ ‖Bu‖/σ+
min(B).

With the above lemma, we are able to relate the exponen-
tial stabilizability to the boundedness of V ∗.
Lemma 3: Suppose that system (1) is exponentially sta-

bilizable. Then there exists a positive constant β < ∞ such
that λ−

Q‖z‖
2 ≤ V ∗(z) ≤ β‖z‖2, for all z ∈ Rn.

Proof: Let z ∈ Rn be arbitrary and fixed. Obviously,
V ∗(z) can be no smaller than the one-step state cost, which
implies V ∗(z) ≥ λ−

Q‖z‖2. To prove that V ∗(z) ≤ β‖z‖2 ,
let π = {(µt, νt)}∞t=0 be an exponentially stabilizing policy.
By (3), the closed-loop trajectory x(t) with initial condition
x(0) = z satisfies ‖x(t)‖2 ≤ act‖z‖2, for some a ∈ [1,∞)
and c ∈ (0, 1). Thus,

∑∞

t=0 ‖x(t)‖2 ≤ a
1−c‖z‖

2. Denote by
(u(t), v(t)) the hybrid-control sequence generated by π, i.e.,
u(t) = µt(x(t)) and v(t) = νt(x(t)). If I+

B = ∅, then u(t)
can be chosen to be zero for each t ≥ 0. Thus,

V ∗(z) =
∞
∑

t=0

xT (t)Qv(t)x(t) ≤
aλ+

Q

1 − c
‖z‖2,

which is the desired result with β =
aλ+

Q

1−c . We now suppose
that I+

B ,= ∅, which implies that σ̂B > 0. Define a new
control sequence

ũ(t) =

{

0, if Bv(t) = 0,

[u(t)]BT
v(t)

, otherwise,

where [·]BT
v(t)

denotes the projection of a given vector onto
the column space of BT

v(t). Then u(t) − ũ(t) is in the null
space of Bv(t), implying that Bv(t)ũ(t) = Bv(t)u(t). As a
result, under the new hybrid control sequence (ũ(t), v(t)),
the closed-loop trajectory is still x(t). Since (ũ(t), v(t)) is
just one choice of the hybrid control sequence, we have

V ∗(z) ≤
∞
∑

t=0

L(x(t), ũ(t), v(t))

≤ λ+
Q

a

1 − c
‖z‖2 + λ+

R

∑∞

t=0
‖ũ(t)‖2. (11)

Furthermore, by Lemma 2, we have
∑∞

t=0
‖ũ(t)‖2 ≤

1

σ̂2
B

∑∞

t=0
‖Bv(t)ũ(t)‖2

=
1

σ̂2
B

∑∞

t=0
‖Bv(t)u(t)‖2

≤
1

σ̂2
B

∑∞

t=0
‖x(t + 1) − Av(t)x(t)‖2

≤
2

σ̂2
B

[

ac

1 − c
+ (σ+

A)2
a

1 − c

]

‖z‖2

≤
2a[c + (σ+

A)2]

σ̂2
B(1 − c)

‖z‖2.

This inequality together with (11) yields the desired result.

We now prove the main theorem of this subsection.
Theorem 5: If system (1) is exponentially stabilizable,

then the infinite-horizon value function V ∗(z) is a control-
Lyapunov function of system (1) with a stabilizing policy
π∗ = {ξ∗, ξ∗, . . .}.

Proof: Suppose that system (1) is exponentially sta-
bilizable. By Lemma 3, V ∗ satisfies the first condition of
Theorem 1. By the definition of ξ∗, V ∗(z) = Tξ∗ [V ∗](z).
This implies that

V ∗(z) − V ∗(Aν∗(z)z + Bν∗(z)µ
∗(z))

=zT Qν∗(z)z + [µ∗(z)]T Rν∗(z)[µ
∗(z)]

>λ−
Q‖z‖2.

Hence, V ∗ is a control-Lyapunov function of system (1) with
a stationary stabilizing policy π∗ = {ξ∗, ξ∗, . . .}.
By this theorem, whenever system (1) is exponentially

stabilizable, the optimal policy π∗ is stabilizing and V ∗(z)
is a control-Lyapunov function. However, the function V ∗

may not be piecewise quadratic. To prove Theorem 2, in the
next section we shall find an approximation of V ∗ which is
piecewise quadratic yet close enough to V ∗ so that it remains
a valid Lyapunov function.

C. Proof of Theorem 2
Since V ∗ is a control-Lyapunov function, roughly speak-

ing, any function that is uniformly close to V ∗ will also
be a control-Lyapunov function. By part (ii) of Lemma 1,
the finite-horizon value function VN , which is piecewise
quadratic, converges pointwise to V ∗ as N → ∞. This
motivates us to use VN to approximate V ∗ for large N .
To guarantee that VN will eventually become a Lyapunov
function, we shall first ensure that the convergence of VN to
V ∗ is uniform on a compact set, say the unit ball.
Theorem 6 ([22]): If V ∗(z) ≤ β‖z‖2 for some β < ∞,

then

|VN1(z) − VN (z)| ≤ αβγN
β ‖z‖2, (12)

for any N1 ≥ N ≥ 1, where

γβ = 1
1+λ−

Q/β
< 1 and αβ = max{1,

σ+
A

γβ
}. (13)

By this theorem, for large N , V ∗ can be approximated
by VN uniformly well on any compact set. As a result, the
optimal control law ξ∗ can also be approximated by ξN ,
which is defined by:

ξN (z) = (µN (z), νN (z))

! arg inf
u∈Rp,v∈M

{L(z, u, v) + VN (Avz + Bvu)} (14)

Let πN ! {ξN , ξN , . . .} be the stationary policy generated
by VN . Due to the convergence of VN to V ∗, the policy πN

will eventually become a stabilizing policy.
Proof: [Proof of Theorem 2] By Lemma 1 and equa-

tion (14), we know that VN+1(z) = TξN [VN ](z), for all
z ∈ Rn. This implies that

VN+1(z) − VN (AνN (z)z + BνN (z)µN (z))

= zT QνN (z)z + µN (z)T RνN (z)µN (z)

> λ−
Q‖z‖2. (15)

By Lemma 3, the exponential stabilizability implies the
existence of a positive constant β < ∞ such that V ∗(z) ≤



β‖z‖2, ∀z ∈ Rn. Let γβ and αβ be defined in terms of β
as in (13). By Theorem 6, VN+1(z) ≤ VN (z) + αβγN

β ‖z‖2.
Substituting this inequality into (15) yields

VN (z) − V (AνN (z)z + BνN (z)µN (z))

≥ (λ−
Q − αβγN

β )‖z‖2.

Since γβ < 1 and λ−
Q > 0, there must be a finite integer

N0 such that (λ−
Q −αβγN

β ) > 0 for all N ≥ N0. Therefore,
for all N ≥ N0, the stationary policy πN is exponentially
stabilizing and VN is a PQCLF.
The above proof is constructive. It not only shows the

existence of a PQCLF, but also indicates that the stabilizing
policy and the PQCLF can be chosen to be πN and VN ,
respectively. We point out this important fact in the following
corollary.
Corollary 1: If system (1) is exponentially stabilizable,

then there exists a finite integerN0 such that for all N ≥ N0,
VN is a PQCLF of system (1) with a stationary stabilizing
feedback policy πN .

IV. THE STATIONARY STABILIZING FEEDBACK POLICY
By Corollary 1, if system (1) is exponentially stabilizable,

then it must be stabilizable by πN = {ξN , ξN , . . .} for all
large N . In this section, we will prove Theorem 3 and derive
some important properties of the policy πN .

A. Proof of Theorem 3
Due to the special structure of the value function as

given in (10), the control law ξN defined in (14) can be
characterized analytically.
Theorem 7: The control law defined in (14) is given by:

ξN (z) = (µN (z), νN(z))

=
(

−KiN (z) (PN (z)) · z, iN(z)
)

, (16)

where Ki(P ) denotes the Kalman gain of subsystem i for a
given p.s.d. matrix P , i.e.,

Ki(P ) ! (Ri + BT
i PBi)

−1BT
i PAi. (17)

and

(PN (z), iN (z)) = argmin
P∈HN ,i∈M

zT ρi(P )z. (18)

Proof: To find ξN , we need to solve the following
optimization problem:

f(z)! inf
u∈Rp,i∈M

[

min
P∈HN

uT Riu+zTQiz

+ (Aiz+Biu)T P (Aiz+Biu)
]

= min
i∈M,P∈HN

{

zT Qiz + inf
u∈Rp

[

uT Riu

+ (Aiz + Biu)T P (Aiz + Biu)
]

}

. (19)

For each i ∈ M and P ∈ HN , the quantity inside the
square bracket is quadratic in u. Thus, the optimal value
of u can be easily computed as u∗ = −Ki(P )z, where
Ki(P ) is the Kalman gain defined in (17). Substituting u∗

into (19) and simplifying the resulting expression yields
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Fig. 1. Typical Decision regions

f(z) = zT ρiN (z)(PN (z))z, where PN (z) and iN(z) are
defined in (18).
We now prove Theorem 3.
Proof: [Proof of Theorem 3] Since bothHN andM con-

tain finitely many elements, the minimizer (PN (z), iN(z))
in (14) must be piecewise constant. Hence, by (16), we know
that µN is piecewise linear and νN is homogeneous. This
together with Corollary 1 implies Theorem 3.

B. Properties of ξN

For each pair (P, i) ∈ HN ×M, define a subset of Rn as:

ΩN (P, i)={z ∈ R
n : (P, i)= argmin

P̂∈HN ,̂i∈M

zT ρ0
î
(P̂ )z}. (20)

The set ΩN (P, i) such defined is called a decision region
associated with ξN in the sense that the points within the
same decision region correspond to the same pair of feedback
gainKi(P ) and switching control i under the control law ξN .
According to (20), a decision region must be a homoge-

neous cone. This implies that the control law ξN is also ho-
mogeneous. Furthermore, it follows immediately from (14)
that the continuous-control law µN is piecewise linear with
a constant feedback gain within each decision region. Note
that a decision region ΩN (P, i) may be disconnected except
at the origin 0 and the union of all the decision regions covers
the entire space Rn. For example, if M = {1, 2} and HN

contains two matrices P1 and P2, then there will be four
conic decision regions as shown in Fig. 1.
The decision regions that have the same switching control

constitute a switching region. For each i ∈ M, the switching
region SN (i) is defined as:

SN (i) = ∪P∈HN ΩN (P, i). (21)

The states that reside in the same switching region evolve
through the same subsystem; however, they may be con-
trolled by different feedback gains.



C. Relations to Other Controllers
Many hybrid-control laws proposed in the literature ([3],

[4], [11]) can be written in the following form:

ξ̃(z) = (µ̃(z), ν̃(z)) = (Fĩ(z)z, ĩ(z))

with ĩ(z) = argmin
i∈M

zT Qiz,
(22)

where {Fi}i∈M are the feedback gains and {Qi}i∈M are
some symmetric matrices characterizing the decision regions.
The control law ξ̃(z) is exponentially stabilizing if {Fi}i∈M

and {Qi}i∈M satisfy certain matrix inequalities. However,
these matrix inequalities are only sufficient conditions for
the exponential stabilizability. There may not be a stabilizing
control law necessarily of the form (22) even when the
switched linear system is exponentially stabilizable.
By a similar argument as in the last subsection, it can

be easily verified that (i) ξ̃ divides the state space into at
most M conic decision regions; (ii) each switching control
is associated with only one feedback gain.
Compared with ξ̃, the control law ξN is more general.

The number of decision regions of ξN may be larger than
M and the same switching control may be paired with more
than one feedback gains. It is interesting to realize that
these small differences are enough to render the structure of
ξN necessary for the exponential stabilization of a switched
linear system.

V. CONCLUSIONS
This paper establishes a necessary and sufficient condi-

tion for the exponential stabilizability of switched linear
systems. We have proved that a switched linear system is
exponentially stabilizable if and only if the there exists a
PQCLF and a stationary hybrid-control law that consists
of a homogeneous switching-control law and a piecewise-
linear continuous-control law. This existence result is rather
useful for the design of stabilizing controllers. It allows us to
only consider the control-Lyapunov functions of piecewise-
quadratic form and the continuous-control laws of piecewise-
linear form in studying the exponential stabilization problem
of a switched linear system. Future research will focus
on developing algorithms to efficiently compute a control-
Lyapunov function and the corresponding stabilizing control
law when the system is known to be exponentially stabiliz-
able.
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