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Abstract— This paper studies the infinite-horizon sensor
scheduling problem for linear Gaussian processes with linear
measurement functions. Several important properties of the
optimal infinite-horizon schedules are derived. In particular,
it is proved that under some mild conditions, both the optimal
infinite-horizon average-per-stage cost and the corresponding
optimal sensor schedules are independent of the covariance
matrix of the initial state. It is also proved that the optimal
estimation cost can be approximated arbitrarily close by a
periodic schedule with a finite period, and moreover, the
trajectory of the error covariance matrix under this periodic
schedule converges exponentially to a unique limit cycle. These
theoretical results provide valuable insights about the problem
and can be used as general guidelines in the design and analysis
of various infinite-horizon sensor scheduling algorithms.

I. I NTRODUCTION

The sensor scheduling problem tries to find a schedule
over a certain time horizon to activate/deactivate a subset
of available sensors to improve the estimation performance
and reduce the estimation cost (e.g. energy consumption and
communication overheads). It has numerous applications in
various engineering fields [1], [2], [3].

Previous research has mainly focused on the finite-horizon
sensor scheduling problem for linear Gaussian processes with
linear measurement functions. In this case, for a given sensor
schedule, the optimal state estimate can be obtained using
the Kalman filter and the corresponding error covariance
matrix can be computed recursively using the difference
Riccati recursion. Thus, a straightforward way to solve this
scheduling problem is to enumerate all the possible finite-
horizon schedules [1]. The complexity of such an approach
grows exponentially fast as the horizon length increases.
Various methods have been proposed in the literature to
tackle this challenge. These methods can be roughly divided
into the following three categories: (i) methods that focuson
certain simple special classes of schedules, such as myopic
schedules that only consider immediate performance at each
time step instead of the overall performance over the whole
horizon [4], [5]; (ii) methods that “embed” the discrete
schedule into a larger class of schedules with continuously-
variable sensor indices [6], [7]; (iii) and methods that prune
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the search tree based on certain properties of the Riccati
recursions [8], [9].

The methods in the first category are often easy to
implement, but provide no guarantees for the overall es-
timation performance. The “embedding” approach in the
second category is a common trick to tackle complex dis-
crete optimization or optimal control problems [10], [11].
The resulting relaxed schedule can often be interpreted as
the time-average “frequencies” or “probabilities” for using
different sensors. It has been recently proved [7] that, in
continuous time, the performance of the optimal relaxed
schedule can be approximated with arbitrary accuracy by a
discrete schedule through fast switchings. This is analogous
to the result derived in [11] for solving the optimal control
problem of switched systems using embedding. However, in
discrete time, the result no longer holds as the switching
rate is fixed; in this case, the relaxed schedule can only
be implemented probabilistically [6], resulting in a random
scheduling of the sensors with random error performances.
The pruning methods in the third category make essential use
of the monotonicity and concavity properties of the Riccati
mapping (See Lemma 1) to obtain conditions under which
the exploration of certain branches can be avoided without
losing the optimal schedule. In our earlier paper [8], an
efficient algorithm was proposed to prune out not only the
non-optimal branches but also less important ones to further
reduce the complexity. Some error bounds associated with
this pruning algorithm have also been derived in [12].

In recent years, the sensor scheduling problem for nonlin-
ear stochastic systems with nonlinear measurement functions
have also been extensively studied [3], [13], [14]. The
problem is often formulated as a Markov decision problem
and solved using dynamic programming, where the value
functions are computed either through gridding the state
space or through sampling the state space using Monte Carlo
simulations. The approach applies to virtually all types of
dynamical processes, but its complexity is prohibitive for
high state dimensions.

Different from most previous research, this paper studies
the infinite-horizon sensor scheduling problem for discrete-
time linear Gaussian processes observed by linear sensors.
The problem is much more challenging than its finite-horizon
counterpart and has not been adequately investigated in the
literature. Instead of proposing a specific scheduling algo-
rithm, we focus on deriving several fundamental properties
of the problem that can be used as general guidelines in
the design and analysis of various infinite-horizon sensor
scheduling algorithms. In particular, it is proved that un-



der some mild conditions, both the optimal infinite-horizon
average-per-stage cost and the corresponding optimal sensor
schedule are independent of the covariance matrix of the
initial state. It is also proved that the optimal estimationcost
can be approximately arbitrarily close by a periodic schedule
with a finite period, and moreover, the trajectory of the error
covariance matrix under this periodic schedule converges
exponentially fast to a unique limit cycle, regardless of
the initial covariance matrix. These theoretical properties
provide us valuable insight into the infinite-horizon sensor
scheduling problem and will be useful for developing algo-
rithms. In addition, the existence of a periodic suboptimal
schedule justifies the experimental results of many finite-
horizon scheduling algorithms [8], [15] that yield periodic
schedules for relatively large horizons.

It is worth mentioning that the above results are proved
based on an important property of the time-varying difference
Riccati recursion derived in Section III (see Theorem 1). This
property is of its own importance and can be used to study
various filtering problems of time-varying stochastic linear
systems.

The rest of the paper is organized as follows. The infinite-
horizon sensor scheduling problem is formulated in Sec-
tion II. Some important properties of the difference Riccati
recursion are derived in Section III. These properties are then
used in Section IV to prove various properties of the optimal
solutions of the infinite-horizon sensor scheduling problem.
Finally, some concluding remarks are given in Section V.

Notation: Let A be the semi-definite cone, namely, the
set of all the positive semidefinite matrices. Denote by
λmin(·) andλmax(·) the smallest and the largest eigenvalues,
respectively, of a given matrix inA. Let R+ andZ+ be the
set of nonnegative real numbers and integers, respectively.
Let ‖ · ‖ be the standard Euclidean norm of vectors as well
as the corresponding induced norm of matrices. Denote by
| · | the cardinality of a given set. For anyφc ∈ A andr > 0,
defineB(φc; r) := {φ ∈ A : ‖φ − φc‖ ≤ r}. Denote byIn
the identity matrix of dimensionn.

II. PROBLEM FORMULATION

Consider the following linear time-invariant stochastic
system:

x(t+ 1) = Ax(t) + w(t), t ∈ Z+, (1)

where x(t) ∈ R
n is the state of the system andw(t) is

the process noise. The initial state,x(0), is assumed to be
Gaussian with zero mean and covariance matrixφ0, i.e.,
x(0) ∼ N (0, φ0). There areM different sensors attached
to the process. At each time step, we assume that only one
of the M sensors is available to take measurements. The
measurement of theith sensor is given by:

yi(t) = Cix(t) + vi(t), t ∈ Z+, (2)

where yi(t) ∈ R
p and vi(t) ∈ R

p are the measurement
output and measurement noise of theith sensor at time
t, respectively. We assume that the process noise and all

the measurement noises are mutually independent Gaussian
white noises given by:

w(t) ∼ N (0,Φw), vi(t) ∼ N (0,Φv
i ).

Define λ−w = λmin(Φ
w) and λ−v = mini∈M{λmin(Φ

v
i )}.

Assume thatλ−w > 0 andλ−v > 0. Let M := {1, . . . ,M} be
the set of sensor indices. For eachN ∈ Z+, denote byMN

the set of all the sequences of sensor indices of lengthN . An
elementσ ∈ M

N is called anN -horizon sensor schedule.
The set of all infinite-horizon sensor schedules is denoted by
M

∞. An infinite-horizon scheduleσ ∈ M
∞ is called periodic

with a periodl ∈ Z+ if σ(t) = σ(t+l) for all t ∈ Z+. Under
a given sensor scheduleσ ∈ M

∞, the measurement sequence
is determined by:

y(t) = yσ(t)(t) = Cσ(t)x(t) + vσ(t)(t), ∀t ∈ Z+.

For eacht1 ≤ t2 < ∞, denote byx̂σ(t2|t1) the minimum
mean-square error (MMSE) estimate ofx(t2) given the
measurements{y(0), . . . , y(t1)}, the initial covarianceφ0
and the sensor scheduleσ ∈ M

∞. Define the predictor error
eσ(t|t− 1) by

eσ(t|t− 1) = x(t)−Ax̂σ(t− 1|t− 1),

and letΣσ
t (φ0) be its covariance matrix. When no ambiguity

arises, we may drop its dependence on the initial covariance
matrix and simply writeΣσ

t . For anyQ ∈ A, denote by
Ki(Q) the Kalman gain associated with sensori ∈ M and
matrix Q, which is given by:

Ki(Q) = QCT
i (CiQC

T
i +Φv

i )
−1. (3)

By a standard result of the linear estimation theory, the error
covariance of the predictor can be updated recursively using
the Riccati recursion:

Σσ
t+1 = Φw +AΣσ

t A
T

−AΣσ
t C

T
σ(t)

(

Cσ(t)Σ
σ
t C

T
σ(t) +Φv

σ(t)

)−1

Cσ(t)Σ
σ
t A

T . (4)

For eachi ∈ M andQ ∈ A, define

Āi(Q) , A−AKi(Q)Ci. (5)

Then, the Riccati recursion (4) can also be written as ([16])

Σσ
t+1 = Φw +

[

Āσ(t)(Σ
σ
t )
]

· Σσ
t ·

[

Āσ(t)(Σ
σ
t )
]T

+A ·
[

Kσ(t)(Σ
σ
t )
]

Φv
σ(t) ·

[

Kσ(t)(Σ
σ
t )
]T

·AT . (6)

For any finite integerN , the performance of anN -horizon
sensor scheduleσ ∈ M

N can be evaluated according to the
total estimation error defined by:

JN (σ;φ0) ,
N
∑

t=1

tr(Σσ
t (φ0)), (7)

or according to the average-per-stage estimation error defined
by:

J̄N (σ;φ0) ,
1

N
JN (σ;φ0). (8)



Clearly, wheneverN is finite, the two cost functionsJN and
J̄N are equivalent in the sense that they produce the same set
of optimal solutions. However, the total costJN (σ;φ0) → ∞
asN → ∞ for all σ ∈ M

∞ andφ0 ∈ A because the system
is constantly perturbed by a nontrivial Gaussian noisew(t).
Thus, the performance of an infinite-horizon sensor schedule
is usually measured by the limsup of theN -horizon average-
per-stage cost:

J̄∞(σ;φ0) , lim sup
N→∞

J̄N (σ;φ0).

This cost function has been extensively used for studying
various infinite-horizon optimal control and estimation prob-
lems [7], [17]. However, this cost function depends only
on the limiting behavior of the schedule, which may lead
to rather abnormal optimal solutions. For example, one can
manipulate a finite portion of an optimal schedule to create
an arbitrary transient behavior for the error trajectory without
affecting the optimality of the schedule. In some extreme
cases, the optimal schedule may even have an unbounded
error covariance while still resulting in the minimum infinite-
horizon average error. To exclude these abnormalities for the
infinite horizon, we introduce the following feasible set of
sensor schedules with bounded peak covariance:

M
∞
φ = {σ ∈ M

∞: ∃β <∞, s.t.

Σσ
t (φ)�βIn, ∀t ∈ Z+}, φ ∈ A.

For an arbitrary matrixφ ∈ A, an infinite-horizon sensor
scheduleσ is calledfeasiblefor φ if σ ∈ M

∞
φ . The following

assumption is adopted throughout this paper.
Assumption 1:M∞

φ 6= ∅, ∀φ ∈ A.
Remark 1:The assumption requires that for any initial co-

variance, there always exists an infinite-horizon schedulethat
can keep the estimation error bounded for all time. This is
a reasonable assumption for typical estimation applications.
It can be guaranteed if, for example, one of the subsystems
is detectable.

Problem 1: For a givenφ0 ∈ A, solve the following
problem

V̄ ∗(φ0) , inf
σ∈M

∞

φ0

lim sup
N→∞

J̄N (σ;φ0) (9)

Assumption 1 implies thatV̄ ∗(φ0) is finite for all
φ0 ∈ A. The functionV̄ ∗ : A → R+ defined implicitly by
equation (9) is called the optimal infinite-horizon (average-
per-stage) cost function. For a generalφ ∈ A, a schedule
that achieves the costV ∗(φ) will be referred to as anoptimal
schedulefor φ.

III. SEQUENTIAL RICCATI MAPPING AND ITS STABILITY

The Riccati recursion in (4) can be viewed as a mapping
that maps a given matrixΣσ

t ∈ A to another matrix
Σσ

t+1 ∈ A depending on the sensor index chosen at timet.
In general, for each sensori ∈ M, we can define theRiccati
mappingas

ρi(Q) = Φw +AQAT

−AQCT
i

(

CiQC
T
i +Φv

i

)−1
CiQA

T , ∀Q ∈ A. (10)

With this notation, for a generic initial covariance matrix
φ ∈ A, the covariance matrixΣσ

t (φ), defined in (4), is
the trajectory of the following matrix-valued time-varying
nonlinear system:

Σσ
t+1 = ρσ(t) (Σ

σ
t ) , for t ∈ Z+, with Σσ

0 = φ. (11)

One can also viewΣσ
t (·) as the composition of a sequence

of Riccati mappings, i.e.,

Σσ
t = ρσ(t−1) ◦ ρσ(t−2) · · · ◦ ρσ(0), t ∈ Z+. (12)

To solve Problem 1, it is critical to understand the dy-
namical behavior of the matrix-valued nonlinear system (11)
under different infinite-horizon schedules. Two well-known
properties of the Riccati mapping are useful for this purpose.

Lemma 1:For anyi ∈ M, Q1, Q2 ∈ A andc ∈ [0, 1], we
have

(i) Q1 � Q2 ⇒ ρi(Q1) � ρi(Q2);
(ii) ρi(cQ1 + (1− c)Q2) � cρi(Q1) + (1− c)ρi(Q2).
Remark 2:The lemma indicates that the Riccati mapping

is monotoneand concave. The monotonicity property is
a well-known result and its proof can be found in [18].
The concavity property is an immediate consequence of
Lemma 1-(e) in [19].

Based on these two properties, one can prove the following
results.

Theorem 1:For anyφ ∈ A, ǫ ∈ R
+ andt ∈ Z+, we have

Σσ
t (φ+ ǫIn) � Σσ

t (φ) + gσt (φ) · ǫ. Furthermore, ifΣσ
t (φ) �

βIn for all t ∈ Z+ and someβ < ∞, then tr(gσt (φ)) ≤
nβ/λ−wη

t, ∀t ∈ Z+, where

η =
1

1 + αλ−w
< 1 and α =

λ−w
‖A‖2β2 + λ−wβ

. (13)

Proof: See [20].
The above theorem reveals an important property of sys-

tem (11), namely, boundedness of the trajectory implies an
exponential disturbance attenuation. This property playsa
crucial role in deriving the various properties of the optimal
infinite-horizon schedules in Section IV.

IV. PROPERTIES OFOPTIMAL SCHEDULE

In this section, we will use the properties of the sequential
Riccati mapping derived in the last section to gain some
insights on the optimal solutions of Problem 1.

A. Independence of Initial Covariance

We first show that the feasible set is independent of the
initial covariance.

Lemma 2: If σ ∈ M
∞
φ1

for someφ1 ∈ A, thenσ ∈ M
∞
φ

for all φ ∈ A.
Proof: Fix arbitrary φ1 ∈ A, φ ∈ A and σ ∈ M

∞
φ1

.
Sinceφ � φ1 + ‖φ− φ1‖In, by Theorem 1, we have

Σσ
t (φ) � Σσ

t (φ1) + gσt (φ1) · ‖φ− φ1‖.

The first term on the right hand side is bounded because
σ ∈ M

∞
φ1

, while the second term is bounded due to
Theorem 1. Thus,σ ∈ M

∞
φ .

Therefore, if an infinite-horizon schedule is feasible for
some initial covariance matrix, it will be feasible for all initial



covariances. This allows us to drop the dependence of the
feasible set on the initial covariance and simply define

M
∞
f = {σ ∈ M

∞ : ∃β <∞, φ ∈ A,

s.t.Σσ
t (φ) � βIn, ∀t ∈ Z+}. (14)

We next show that under a fixed scheduleσ ∈ M
∞
f , all

the trajectories starting from different initial covariances will
eventually converge to the same trajectory.

Theorem 2:For any feasible scheduleσ ∈ M
∞
f , we have

‖Σσ
t (φ1)− Σσ

t (φ2)‖ → 0 exponentially ast→ ∞,

for all φ1, φ2 ∈ A.
Proof: Fix arbitrary φ1 ∈ A and φ2 ∈ A. Define

ǫ = ‖φ1 − φ2‖. Without loss of generality, letβ < ∞
be the bound such thatΣσ

t (φi) � βIn for all t ∈ Z+ and
i = 1, 2. By Theorem 1, we have

Σσ
t (φ2) � Σσ

t (φ1 + ‖φ2 − φ1‖In)

� Σσ
t (φ1) + gσt (φ1) · ǫ

� Σσ
t (φ1) +

(

nβǫ

λ−w
ηt
)

· In. (15)

Similarly, we can obtain

Σσ
t (φ1) � Σσ

t (φ2) +

(

nβǫ

λ−w
ηt
)

· In,

for all t ∈ Z+. The result follows directly from the above
inequalities ast→ ∞.

An immediate consequence of the above theorem is that
the infinite-horizon average-per-stage cost of any feasible
schedule is independent of the initial covariance matrix.

Corollary 1: For anyσ ∈ M
∞
f , J̄∞(σ;φ1) = J̄∞(σ;φ2)

for all φ1, φ2 ∈ A.
Proof: By Theorem 2,Σσ

t (φ1) → Σσ
t (φ2) as t → ∞.

Thus, the two sequences{ 1
N

∑N

t=1 Σ
σ
t (φi)}N∈Z+

, i = 1, 2,
must have the same limsup.

By the above corollary, it is easy to see that if a feasible
scheduleσ is optimal for some initial covarianceφ1, then it
must also be optimal for any other initial covarianceφ2. In
addition, the optimal infinite-horizon average-per-stagecosts
corresponding to these two initial covariances must also be
the same.

Corollary 2: For any φ1, φ2 ∈ A, if σ∗ is optimal for
φ1, then it must also be optimal forφ2; and in addition,
V̄ ∗(φ1) = V̄ ∗(φ2).

Therefore, to solve Problem 1, we can start from any
initial covariance matrix at our convenience. The obtained
optimal solution would also be optimal for all the other initial
covariances.

B. Stable Accumulation Sets Under Feasible Schedules

For anyσ ∈ M
∞
f , let Lσ be theaccumulation setof the

closed-loop trajectory of the nonlinear system (11) under
scheduleσ with a zero initial covariance. In other words, the
setLσ contains all the points whose arbitrary neighborhoods
will be visited infinitely often by the trajectory{Σσ

t (0)}t∈Z+
.

This set characterizes the dynamical behavior of system (11)
under the scheduleσ.

According to Theorem 2, a trajectory{Σσ
t (φ)}t∈Z+

under
scheduleσ starting from any initial covarianceφ ∈ A will
converge to the same accumulation setLσ. This implies the
global attractiveness of the accumulation set.

Theorem 3:The accumulation set is globally asymptoti-
cally stable, i.e.,Σσ

t (φ) → Lσ as t→ ∞, for all φ ∈ A.
Proof: Follows directly from the definition of the

accumulation set and Theorem 2.

C. Periodic Suboptimal Schedule

The goal of this subsection is to show that the optimal
infinite-horizon cost can be approximated with an arbitrary
accuracy by a periodic schedule. Throughout this subsection,
unless otherwise stated, we will denote byσ an arbitrary
feasible schedule inM∞

f , by φ̂ an arbitrary accumulation
point in Lσ, by c an arbitrary constant in(0, 1) and by r
an arbitrary positive finite constant. In addition, for anyj ∈
Z+, let σj+ be another infinite-horizon schedule obtained by
removing the firstj steps fromσ, i.e., σj+ = {σ(j), σ(j +
1), . . .}.

Lemma 3 (Uniform Bound):For any bounded setE ⊂ A,
there exists finite constantsβE , αE andηE ∈ (0, 1) such that
Σ

σj+

t (φ) � βEIn and tr(gσj+

t (φ)) ≤ αEη
t
E , for all j, t ∈ Z+

andφ ∈ E.
Proof: Fix an arbitraryφ1 ∈ E. Define the covariance

trajectory underσ with initial covarianceφ1 asψt = Σσ
t (φ1),

t ∈ Z+. Sinceσ is feasible, there must exist a finite constant
β1 such thatψt ≤ β1In for all t ∈ Z+. By Theorem 1,
there exist constantsα1 < ∞ and η1 ∈ (0, 1) such that
tr(gσt (φ1)) ≤ α1η

t
1, for all t ∈ Z+. It can be easily verified

that for anyt, j ∈ Z+, we haveΣσj+

t (ψj) = ψt+j . Thus,
tr(gσj+

t (ψj)) ≤ α1η
t
1 as well for allt, j ∈ Z+. Therefore, by

Theorem 1,

Σ
σj+

t (φ) � Σ
σj+

t (ψj + ‖φ− ψj‖In)

� Σ
σj+

t (ψj) + g
σj+

t (ψj)‖φ− ψj‖

� ψt+j + α1η
t
1(κE + β1)In,

for all φ ∈ E, where κE , supφ∈E ‖φ‖. This implies
the existence of the desired constantβE , which in turn
guarantees the existence of the desired constantsαE and
ηE according to Theorem 1.

The above lemma indicates that the covariance trajectories
starting from any initial covariance in a bounded setE are
bounded uniformly byβEIn. The boundβE depends only
on the underlying setE instead of the particular value of the
initial covariance. Furthermore, the same bound also applies
if we remove a finite number of steps from the schedule. We
next use this result to show a key lemma of this subsection.

Lemma 4 (Contraction):Let j ∈ Z+ be arbitrary.

(i) For any bounded setE ⊆ A, there exists a finite integer
l0 such that

‖Σ
σj+

l (φ1)− Σ
σj+

l (φ2)‖ ≤ c‖φ1 − φ2‖, (16)

for all φ1, φ2 ∈ E and all l ≥ l0.



(ii) There exists a finite integerl (possibly depending on̂φ
andr) such thatΣσj+

l is a contraction onB(φ̂; r) with
contraction constantc, namely, it satisfies (16) for all
φ1, φ2 ∈ B(φ̂; r) andB(φ̂; r) is invariant underΣσj+

l .
(iii) For any 0 < r1 < r2 <∞, there exists a finitel ∈ Z+

such thatΣσj+

l is a contraction on bothB(φ̂; r1) and
B(φ̂; r2) with the same contraction constantc.

Proof: (i) Fix arbitraryφ1, φ2 ∈ E. By Theorem 1 and
Lemma 3, we have

Σ
σj+

t (φ1) � Σ
σj+

t (φ2 + ‖φ1 − φ2‖In)

� Σ
σj+

t (φ2) + αEη
t
E‖φ1 − φ2‖In,

whereαE andηE are the constants mentioned in Lemma 3.
Thus, there exists a finite integerl0 such that

Σ
σj+

l (φ1) � Σ
σj+

l (φ2) + c‖φ1 − φ2‖In, ∀l ≥ l0.

Similarly, we can show that

Σ
σj+

l (φ2) � Σ
σj+

l (φ1) + c‖φ2 − φ1‖In, ∀l ≥ l0.

(ii) SinceB(φ̂; r) is bounded, part (i) implies the existence
of an l0 for which inequality (16) holds for allφ1, φ2 ∈
B(φ̂; r). Furthermore, sincêφ ∈ Lσ is an accumulation point,
there exists a finite integerl > l0, such that

‖Σ
σj+

l (φ)− φ̂‖ ≤ (1− c)r.

Therefore, for anyφ ∈ B(φ̂; r), we have

‖Σ
σj+

l (φ)− φ̂‖ ≤‖Σ
σj+

l (φ̂)− φ̂+Σ
σj+

l (φ)− Σ
σj+

l (φ̂)‖

≤(1− c)r + c · r = r,

which implies thatB(φ̂; r) is invariant under the mapping
Σ

σj+

l (·).
(iii) Let l0 be a constant such that (16) holds for all

φ1, φ2 ∈ B(φ̂; r2). Then, following the argument as in the
proof of part (ii), we can show that the samel > l0 that
makesΣσ

l a contraction onB(φ̂; r1) will guarantee thatΣσ
l

is a contraction onB(φ̂; r2) as well.
The following corollary highlights an important conse-

quence of the above lemma.
Corollary 3: Let l be an integer satisfying the desired

properties of part (ii) of Lemma 4. Then, for anyφ ∈ B(φ̂; r),
we haveΣσ

k·l(φ) ∈ B(φ̂; r), for all k ∈ Z+.
Proof: The result holds trivially fork = 0. Suppose

it is true for some generalk ∈ Z+, i.e., Σσ
k·l(φ) ∈ B(φ̂; r),

then

Σσ
(k+1)·l(φ) = Σ

σj0+

l (Σσ
k·l(φ)) ∈ B(φ̂; r),

wherej0 := k · l and the last step follows from the fact that
B(φ̂; r) is invariant under the mappingΣ

σj0+

l .
Corollary 3 indicates an important property of a feasible

scheduleσ, namely, for any neighborhoodB(φ̂; r) around
any accumulation point̂φ ∈ Lσ, there always exists an
l ∈ Z+ such that the covariance trajectory underσ must
return to the neighborhoodB(φ̂; r) every l steps. This is a
key property that guarantees the existence of a suboptimal
periodic schedule.

Theorem 4 (Periodic Suboptimal Schedule):For anyδ >
0 andφ ∈ A, there exists a periodic scheduleσ̃ with a finite
period l ∈ Z+, such that

(i) (Exponential Convergence):Σσ̃
k·l(φ) → P ∗ exponen-

tially as k → ∞, whereP ∗ is a fixed point of the
composite Riccati mappingΣσ̃

l (·).
(ii) (Suboptimal Performance): The infinite-horizon cost of

σ̃ is bounded from above by

J̄∞(σ̃;φ) ≤ V̄ ∗(φ) + δ.

Proof: Let σ∗ be an optimal infinite-horizon schedule
and letφ∗ be an accumulation point inLσ∗

. According to
Lemma 4, for any0 < r1 < r2 <∞, there exists anl ∈ Z+

for which Σ
σ∗

j+

l is a contraction onB(φ∗; ri), i = 1, 2, with
contraction constantc for all j ∈ Z+. Divide the schedule
σ∗ into a sequence ofl-horizon sub-schedules and denote by
σ
(k)
l the (k + 1)th sub-schedule fork ∈ Z+, i.e.,

σ
(k)
l ={σ∗(k · l), σ∗(k · l + 1), . . . , σ∗((k + 1) · l − 1)}.

By Lemma 4 and the Banach fixed point theorem, we know
thatσ(k)

l has a unique fixed point inB(φ∗; r1) for all k ∈ Z+.
Define

M
l
c , {σl ∈ M

l :Σσl

l (·) is a contraction onB(φ∗; ri)

i = 1, 2, with contraction constantc }.

Clearly, the setMl
c is non-empty asσ(k)

l ∈ M
l
c for all

k ∈ Z+. By the Banach fixed point theorem, for any
σl ∈ M

l
c, the composite Riccati mappingΣσl

l (·) has a fixed
point in B(φ∗; r1). Denote this fixed point byΓ(σl). Define

σ∗
l , argmin

σl∈Ml
c

Jl(Γ(σl);σl),

The goal now is to show that thel-periodic schedule defined
by:

σ̃ , {σ∗
l , σ

∗
l , . . .},

is a suboptimal schedule with the desired properties.
To show property (i), we chooser2 large enough so that

φ ∈ B(φ∗; r2). Then the result follows directly from the
contraction mapping theorem.

To prove the second property, we letPk , Γ(σ
(k)
l ) and

P ∗ , Γ(σ∗
l ). Sinceσ(k)

l ∈ M
l
c for all k ∈ Z+, we have

Jl (P
∗;σ∗

l ) ≤ Jl

(

Pk;σ
(k)
l

)

, ∀k ∈ Z+,

Let ψ∗
t = Σσ∗

t (P ∗) be the optimal covariance trajectory
underσ∗ with initial covarianceP ∗ ∈ B(φ∗; r1). By Corol-
lary 3, we know thatψ∗

k·l ∈ B(φ∗; r1) for all k ∈ Z+. Hence,

‖ψ∗
k·l − Pk‖ ≤ 2r1, ∀k ∈ Z+.



Therefore, for anyk ∈ Z+, we have

Jl (P
∗;σ∗

l ) ≤
l

∑

t=1

tr

(

Σ
σ
(k)
l

t (Pk)

)

≤
l

∑

t=1

[

tr

(

Σ
σ
(k)
l

t (ψ∗
k·l)

)

+ 2r1 · tr

(

g
σ
(k)
l

t (ψ∗
k·l)

)]

≤

(k+1)·l
∑

t=k·l+1

[tr(ψ∗
t ) + 2r1αr2 ]

whereαr2 denotes the constantαE introduced in Lemma 3
whenE = B(φ∗; r2). After some simple computations, the
above inequality leads to

J̄∞(σ̃;P ∗) = J̄l(σ
∗
l ;P

∗) ≤ J̄∞(σ∗;P ∗) + 2r1αr2 .

Sincer1 is arbitrary and can be chosen independently ofr2,
the term2r1αr2 can be made arbitrarily small, which proves
the result when initial covariance isP ∗. The result also holds
whenP ∗ is changed to an arbitraryφ ∈ A due to Lemma 1.

Theorem 4 reveals several fundamental properties of the
optimal solution of Problem 1 and the corresponding optimal
trajectory of the covariance matrix. It shows that the optimal
infinite-horizon cost can be approximated arbitrarily close by
a periodic schedule with a finite period. It also indicates that
under this periodic schedule, the trajectory of the covariance
matrix converges exponentially to a limit circle. Letσ̃ be
a periodic suboptimal schedule with periodl ∈ Z+, which
satisfies all the properties in Theorem 4. LetP ∗ be the fixed
point of the mappingΣσ̃

l (·). Define

C := {P ∗,Σσ̃
1 (P

∗),Σσ̃
2 (P

∗), . . . ,Σσ̃
l−1(P

∗)}. (17)

Then by Theorem 4, the trajectoryΣσ̃
t (φ) converges expo-

nentially to the limit circleC. Furthermore, theN -horizon
average-per-stage cost̄JN (σ̃;φ) converges to the average
cost within the limit circle, namely,1

l

∑

P∈C
tr(P ).

V. D ISCUSSIONS ANDCONCLUSIONS

The theoretical results derived in the last section pro-
vide us valuable insights about the infinite-horizon sensor
scheduling problem. Theorem 4 motivates us to focus on the
periodic schedules in solving the problem. The discussion
in Section IV-A indicates that one can always evaluate the
performance of a periodic schedule by directly starting from
its fixed point. For example, the cost of the periodic schedule
{1, 2, 2, 1, 2, 2, . . .} is

1

3
[tr(P ∗ + ρ1(P

∗) + ρ2(ρ1(P
∗)))] ,

where P ∗ satisfies the equationρ2(ρ2(ρ1(P ∗))) = P ∗,
which can be efficiently computed using the contraction
mapping algorithm. Therefore, one can easily evaluate the
infinite-horizon performance of a periodic schedule. A
straightforward way to solve Problem 1 is to first find the best
l-periodic schedule by enumerating all the possiblel-horizon
sequences, and then gradually increase the period length until
the performance no longer improves. Theorem 4 guarantees

that one can approach the optimal cost arbitrarily close using
this approach. Although the complexity of this approach
grows exponentially asl increases, it is still a reasonable
solution procedure because a schedule with a large period is
difficult to implement and is thus not preferred in practice.

In general, we envision the theoretical results derived in
this paper being useful for the design and analysis of various
infinite-horizon sensor scheduling algorithms. An important
direction for further research is to establish conditions under
which the optimal finite-horizon average-per-stage costV̄N
will converge to the optimal infinite-horizon average-per-
stage cost̄V ∗ asN → ∞.
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