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Abstract— This paper studies the infinite-horizon sensor the search tree based on certain properties of the Riccati
scheduling problem for linear Gaussian processes with linear recursions [8], [9].
measurement functions. Several important properties of the The methods in the first category are often easy to

optimal infinite-horizon schedules are derived. In particular, . | t but id ¢ for th I
it is proved that under some mild conditions, both the optimal Implement, but provide no guarantees for the overall es-

infinite-horizon average-per-stage cost and the corresponding timation performance. The “embedding” approach in the
optimal sensor schedules are independent of the covariance second category is a common trick to tackle complex dis-
ma_trix Qf the initial state. It is <’?1|SO pI’OVGd. tth the optimal crete optimization or optimal control problems [10], [11].
estimation cost can be approximated arbitrarily close by a The regylting relaxed schedule can often be interpreted as

periodic schedule with a finite period, and moreover, the the ti uf . “orobabilities” f .
trajectory of the error covariance matrix under this periodic € Ume-average ‘frequencies or “probabiliies” Tor ng

schedule converges exponentially to a unique limit cycle. These different sensors. It has been recently proved [7] that, in
theoretical results provide valuable insights about the problem continuous time, the performance of the optimal relaxed
and can be used as general guidelines in the design and analysisschedule can be approximated with arbitrary accuracy by a
of various infinite-horizon sensor scheduling algorithms. discrete schedule through fast switchings. This is analsgo

I. INTRODUCTION to the result derived in [11] for solving the optimal control

Th heduli bl . find hed Eqroblem of switched systems using embedding. However, in
e sensor scheduling problem tries to find a scheduig. oo time, the result no longer holds as the switching

over a certain time hor_izon to activate_/dea_ctivate a subsle?he is fixed; in this case, the relaxed schedule can only
of available sensors to_ improve the estimation perforrnancdee implemented probabilistically [6], resulting in a rando

and redu_ce Fhe estimation cost (e.g. energy consumpt!on aQz‘fjneduling of the sensors with random error performances.
communication overheads). It has numerous applications the pruning methods in the third category make essential use

variou; engineering fields [1.]’ [2], [3]. . . of the monotonicity and concavity properties of the Riccati
Previous research has mainly focused on the flnlte—horlzqﬂapping (See Lemma 1) to obtain conditions under which

sensor scheduling problem for linear Gaussian processks Wl.ihe exploration of certain branches can be avoided without
linear measurement functions. In this case, foragivenosrenqosing the optimal schedule. In our earlier paper [8], an
schedule, the_ optimal state estimate can be obtained_ us@@icient algorithm was proposed to prune out not only the
the Kalman filter and the corresponding error Covarlancﬁon-optimal branches but also less important ones to furthe

Qatnx_ can b(.a co_Thputed recgr_;l\;ely uzlng the dlflferer;]gpeduce the complexity. Some error bounds associated with
iccati recursion. Thus, a straightiorward way 1o Solve thiy;q pruning algorithm have also been derived in [12].

scheduling problem is to enumerate all the possible finite- In recent years, the sensor scheduling problem for nonlin-

horizon schedulgs [1]. The complexity of such an_approacgar stochastic systems with nonlinear measurement funsctio
grows exponentially fast as the horizon length increasef, e also been extensively studied [3], [13], [14]. The

Various methods have been proposed in the Iiteratqrg oblem is often formulated as a Markov decision problem
tackle this challenge. These methods can be roughly divid q1d solved using dynamic programming, where the value

into the following three categories: (i) methods that foons functions are computed either through gridding the state

cerr]ta(ljn |S|mrr)]le sp?mal cla_ldsse_s of Sg_hedulesf, such as MYyOoRKace or through sampling the state space using Monte Carlo
schedules that only consider immediate performance at eagly, ations. The approach applies to virtually all types of

time step instead of the overall performance over the who namical processes. but its complexity is prohibitive for
horizon [4], [5]; (i) methods that “embed” the discreteE}éh state dﬁmensions: plexiy 1s p

schedule into a .Iarger class of sghedules with continueusly ‘itarent from most previous research, this paper studies
variable sensor indices [6], [7]; (ili) and methods thatBU e infinite-horizon sensor scheduling problem for diseret
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der some mild conditions, both the optimal infinite-horizorthe measurement noises are mutually independent Gaussian
average-per-stage cost and the corresponding optimabrsenghite noises given by:

schedule are independent of the covariance matrix of the w Y

initial state. It is also proved that the optimal estimatimrst w(t) ~ N(0,9),  vi(t) ~ N (0, 87).

can be approximately arbitrarily close by a periodic schedu pefine Ao = Amimn(®¥) and A; = minier{ Amin(®?)}.
with a finite period, and moreover, the trajectory of the Brroassyme that\; > 0 andA; > 0. Let M := {1,..., M} be
covariance matrix under this periodic schedule convergege set of sensor indices. For eadhe Z., denote byM
exponentially fast to a unique limit cycle, regardless ofhe set of all the sequences of sensor indices of lehgtAn
the initial covariance matrix. These theoretical progsti glements ¢ MY is called anN-horizon sensor schedule
provide us valuable insight into the infinite-horizon sensoThe set of all infinite-horizon sensor schedules is denoged b
scheduling problem and will be useful for developing algopge_An infinite-horizon schedule € M is called periodic
rithms. In addition, the existence of a periodic suboptimalith a periodl € Z.. if o(t) = o(t+1) for all t € Z,. Under

schedule justifies the experimental results of many finites given sensor schedulec M, the measurement sequence
horizon scheduling algorithms [8], [15] that yield periodi js getermined by:

schedules for relatively large horizons.

It is worth mentioning that the above results are proved  ¥(t) = Yo(1)(t) = Co)z(t) + vo(1) (1), Yt € Zy..
based on an important property of the time-varying diffee=n
Riccati recursion derived in Section Il (see Theorem 1)jsTh
property is of its own importance and can be used to stuc&
various filtering problems of time-varying stochastic hne

For eacht; < t2 < oo, denote byi?(¢2]t;) the minimum
ean-square error (MMSE) estimate oft;) given the
easurementgy(0),...,y(t1)}, the initial covariancepg

¢ and the sensor schedutec M*°. Define the predictor error
Systems. . : .. e?(tlt —1) by
The rest of the paper is organized as follows. The infinite-
horizon sensor scheduling problem is formulated in Sec- e?(tt —1) =a(t) — Az7(t — 1|t — 1),

tion 1. Some important properties of the difference Riccat . , , i o
recursion are derived in Section IIl. These propertiesfaeat aNd 1127 (¢0) be its covariance matrix. When no ambiguity

used in Section IV to prove various properties of the optimatiS€S, we may drop its dependence on the initial covariance

solutions of the infinite-horizon sensor scheduling proble Matrix and simply writeX37. For any@ € A, denote by

Finally, some concluding remarks are given in Section v. ££i(@Q) the Kalman gain associated with sengar M and
Notation: Let A be the semi-definite cone, namely, theMalrix @, which is given by:

set of all the positive semidefinite matrices. Denote by Ki(Q) = QCT(C;QCT + ov)~ 1. ©)

Amin (+) @ndAnax(+) the smallest and the largest eigenvalues,

respectively, of a given matrix il. Let R, andZ, be the By a standard result of the linear estimation theory, thererr

set of nonnegative real numbers and integers, respectiveppvariance of the predictor can be updated recursivelygusin

Let || - || be the standard Euclidean norm of vectors as wethe Riccati recursion:

as the corresponding induced norm of matrices. Denote b)&:(, _ o 4 AN AT

|- | the cardinality of a given set. For amy. € A andr > 0, ¢+l ¢

defineB(¢c;7) = {p € A: [[¢ — || <r}. Denote byl,  — an7ct, (ca(t)zgcf(t) + @g(t)) CoyS7AT. (4)

the identity matrix of dimensiom.

For eachi € M andQ € A, define
Il. PROBLEM FORMULATION

. N L . Ai(Q) £ A— AK;(Q)C;. )
Consider the following linear time-invariant stochastic
system: Then, the Riccati recursion (4) can also be written as ([16])
o w A o o A o\17T
z(t+1) = Az(t) + w(t), t € Z, @ S = @Y+ [A)(27)] - 27 - [Ao(r) (27)]
g v g T
where z(t) € R™ is the state of the system and(t) is + A Ko (57)] o(t) (Ko (27)] - AT (8)

the process noise. The initial state(0), is assumed to be g, any finite integerV, the performance of aiV-horizon

Gaussian with zero mean and covariance maifdX i.e., sensor schedule € MY can be evaluated according to the
x(0) ~ N(0,¢0). There areM different sensors attached ;44| estimation error defined by:

to the process. At each time step, we assume that only one

of the M sensors is available to take measurements. The L "
measurement of thé" sensor is given by: JIn (03 ¢0) = Ztr(zt (¢0)), @)
t=1
yi(t) = Ciz(t) + vi(t), t € Zy, (2)  oraccording to the average-per-stage estimation erranetkfi

where y;(t) € RP and v;(t) € RP are the measurement by:
output and measurement noise of tif& sensor at time 7 a1

. . JIn (o, = —Jn(o;¢0). 8
t, respectively. We assume that the process noise and all n (75 6o) N n (73 60) ®)



Clearly, whenevelV is finite, the two cost functiondy and ~ With this notation, for a generic initial covariance matrix
J are equivalent in the sense that they produce the same getc 4, the covariance matrix2? (¢), defined in (4), is
of optimal solutions. However, the total co&f (o;¢9) — oo the trajectory of the following matrix-valued time-vargin
asN — oo for all o € M* and¢, € A because the system nonlinear system:
is constantly perturbed by a nontrivial Gaussian naige). e - : o
Thus, the performance of an infinite-horizon sensor scleedul X1 = por) (B7), fort € Zy, with 35 = ¢ (11)
is usually measured by the limsup of thehorizon average- One can also vievwt? (-) as the composition of a sequence
per-stage cost: of Riccati mappings, i.e.,

Joo (03 $0) = limsup Jy (05 do). B7 = Po(t—1) © Po(t—2) """ © Po(0), tE L. (12)

N—o0

This cost function has been extensively used for studying To solve Problem 1, it is critical to understand the dy-
various infinite-horizon optimal control and estimatiomipr amical behavior of the matrix-valued nonlinear system) (11

lems [7], [L7]. However, this cost function depends onl)pnder Qifferent infi_nite—horizon_ schedules. Two vv_ell—kerw
on the limiting behavior of the schedule, which may lead®"OPerties of the Riccati mapping are useful for this puepos
to rather abnormal optimal solutions. For example, one can -éMma L:Foranyi € M, Q1,Q» € Aandc € [0,1], we
manipulate a finite portion of an optimal schedule to creaﬁ%ave

an arbitrary transient behavior for the error trajectorthout () @1 = Q2 = pi(Q1) = pi(Q2);

affecting the optimality of the schedule. In some extreme (i) pi(cQ@1 + (1 —¢)Q2) = cpi(Q1) + (L = ¢)pi(Q2)-
cases, the optimal schedule may even have an unboundedi®mark 2:The lemma indicates that the Riccati mapping
error covariance while still resulting in the minimum infesi 1S Monotoneand concave The monotonicity property is
horizon average error. To exclude these abnormalitiesfer t@ Well-known result and its proof can be found in [18].
infinite horizon, we introduce the following feasible set of /€ concavity property is an immediate consequence of

sensor schedules with bounded peak covariance: Lemma 1-(e) in [19]. . .
Based on these two properties, one can prove the following
o ={o0eM™ 38 <oo, sit. results.
X7 (o) 2 BI,,Vt e L1}, ¢ € A Theorem 1:For any¢ € A, e € RT andt € Z., we have

Y (¢+ely) 2 E7(¢) + g7 (¢) - €. Furthermore, ifSf (¢) <
BI, for all t € Z, and someB < oo, then t(g? (¢)) <
nB/A,nt, vVt € Z., where

For an arbitrary matrixp € A, an infinite-horizon sensor
scheduler is calledfeasiblefor ¢ if o € MgZ°. The following
assumption is adopted throughout this paper.

Assumption 1:MZ° # (), Vo e A o n = 1 _ <1 and a:)‘—ﬁi. (13)
Remark 1: The assumption requires that for any initial co- 1+ aly |AI252% + Awf
variance, there always exists an infinite-horizon schethale Proof: See [20].

can keep the estimation error bounded for all time. This is The above theorem reveals an important property of sys-
a reasonable assumption for typical estimation applinatio €M (11), namely, boundedness of the trajectory implies an
It can be guaranteed if, for example, one of the subsysteri§Ponential disturbance attenuation. This property plays

is detectable. crucial role in deriving the various properties of the omim
Problem 1: For a givend, € A, solve the following infinite-horizon schedules in Section IV.
problem IV. PROPERTIES OFOPTIMAL SCHEDULE
V*(¢o) £ inf limsupJy(o; o) 9) In this section, we will use the properties of the sequential
oM, N—oo Riccati mapping derived in the last section to gain some

Assumption 1 implies thatV*(¢o) is finite for all
#o € A. The functionV* : A — R, defined implicitly by
equation (9) is called the optimal infinite-horizon (averag A. Independence of Initial Covariance
per-stage) cost function. For a genetale A, a schedule  We first show that the feasible set is independent of the
that achieves the co¥t*(¢) will be referred to as anptimal initial covariance.
scheduléefor . Lemma 2:If o € M7’ for some¢; € A, theno € M’
for all ¢ € A.

] ) T ] ) Proof: Fix arbitrary ¢ € A, ¢ € A ando € MZ.
The Riccati recursion in (4) can be viewed as a mappingince ¢ < ¢ + ||¢ — é1|1,., by Theorem 1, we have !
that maps a given matrix2y € A to another matrix N

%7., € Adepending on the sensor index chosen at time E7(¢) 257 (1) + 97 (¢1) - l|¢ — ¢nll-
In general, for each sensok M, we can define th®iccati
mappingas

insights on the optimal solutions of Problem 1.

IIl. SEQUENTIAL RICCATI MAPPING AND ITS STABILITY

The first term on the right hand side is bounded because
o € Mg, while the second term is bounded due to
pi(Q) = ¥ + AQAT Theorem 1. T.husa eMz. . o

- - 1 - Therefore, if an infinite-horizon schedule is feasible for
— AQC; (CiQCz‘ + ‘I)z') GiQA™,vQ e A (10)  some initial covariance matrix, it will be feasible for aiitial



covariances. This allows us to drop the dependence of tAéis set characterizes the dynamical behavior of system (11

feasible set on the initial covariance and simply define

F={ceM>:33< 00,0 €A,

st.X7(p) <X B, Vt €Z 1. (14)

We next show that under a fixed schedales M{°, all
the trajectories starting from different initial covarcas will
eventually converge to the same trajectory.

Theorem 2:For any feasible schedute € M%°, we have

|27 (1) — 27 (p2)]| — 0 exponentially ag — oo,

for all ¢1, ¢ € A.

Proof: Fix arbitrary ¢ € A and ¢» € A. Define
e = |lé1 — ¢2|. Without loss of generality, lef < oo
be the bound such that{(¢;) < g1, for all t € Z, and
1 =1,2. By Theorem 1, we have

Y7 (¢2) 2 E (1 + |lo2 — P1]/In)
N7 (1) + g7 (1) - €

<57 () + (’fn) I,

Similarly, we can obtain

(15)

7 (0n) = 2700 + () T

under the schedule.

According to Theorem 2, a trajectofyf (¢) }+cz, under
schedules starting from any initial covarianceé < A will
converge to the same accumulation g€t This implies the
global attractiveness of the accumulation set.

Theorem 3:The accumulation set is globally asymptoti-
cally stable, i.e.x7(¢) — L7 ast — oo, for all ¢ € A.

Proof: Follows directly from the definition of the
accumulation set and Theorem 2. ]

C. Periodic Suboptimal Schedule

The goal of this subsection is to show that the optimal
infinite-horizon cost can be approximated with an arbitrary
accuracy by a periodic schedule. Throughout this subsectio
unless otherwise stated, we will denote byan arbitrary
feasible schedule i}, by d) an arbitrary accumulation
point in L7, by ¢ an arbitrary constant irf0, 1) and byr
an arbitrary positive finite constant. In addition, for ahyg
Z., let o, be another infinite-horizon schedule obtained by
removing the firstj steps fromo, i.e., 0,4+ = {0(j),0(j +
1),...}

Lemma 3 (Uniform Bound)For any bounded sdt C A,
there exists finite constant;, ax andng € (0, 1) such that
Y7 (¢) =X Brl, and tg)’ " (¢)) < apnt, forall j, t € Z,
and¢ € F.

Proof: Fix an arbitrarygp, € F. Define the covariance

for all t € Z,. The result follows directly from the above trajectory under with initial covariancep, asi; = 7 (1),

inequalities ag — co. ]

t € Z+. Sinceo is feasible, there must exist a finite constant

An immediate consequence of the above theorem is that such thaty, < $I, for all t € Z,. By Theorem 1,
the infinite-horizon average-per-stage cost of any feasibthere exist constants; < oo and#n;, € (0,1) such that

schedule is independent of the initial covariance matrix.
Corollary 1: For anyo € M, Jo(0;61) = Joo(0o; $2)
for all ¢1, ¢ € A.
Proof: By Theorem 2,57 (¢1) — X7 (¢2) ast — oc.
Thus, the two sequences: S | 27 (6:)}nez,, i = 1,2,
must have the same limsup. ]

By the above corollary, it is easy to see that if a feasible

scheduler is optimal for some initial covariance,, then it
must also be optimal for any other initial covariangg In
addition, the optimal infinite-horizon average-per-stagsts

tr(g? (¢1)) < aqnt, for all t € Z.. It can be easily verified
that for anyt,j € Z, we haveX;’"(¢;) = v;;. Thus,

tr(g77* (1)) < annl as well for allt, j € Z . Therefore, by
Theorem 1,

S7 (@) BTy + ¢ — wyllIn)
BT (W) + 977 ()l — sl
= iy + a1 (ke + B1)In,

for all ¢ € E, where kg £ supycp|/¢|. This implies

corresponding to these two initial covariances must also $Be existence of the desired constafi, which in turn

the same.
Corollary 2: For any ¢1,¢2 € A, if ¢* is optimal for
#1, then it must also be optimal fap,; and in addition,

V*(¢1) = V*(2).

guarantees the existence of the desired constaptsaand
ng according to Theorem 1. [ ]

The above lemma indicates that the covariance trajectories
starting from any initial covariance in a bounded &ttre

Therefore, to solve Problem 1, we can start from anfounded uniformly bySp1,. The boundSy depends only
initial covariance matrix at our convenience. The obtaine@N the underlying sek’ instead of the particular value of the

optimal solution would also be optimal for all the other iialit
covariances.

B. Stable Accumulation Sets Under Feasible Schedules

For anyo € M$°, let L7 be theaccumulation sebf the

closed-loop trajectory of the nonlinear system (11) under

initial covariance. Furthermore, the same bound also appli

if we remove a finite number of steps from the schedule. We

next use this result to show a key lemma of this subsection.
Lemma 4 (Contraction)iet j € Z, be arbitrary.

(i) Forany bounded sdf C A, there exists a finite integer
lp such that

scheduler with a zero initial covariance. In other words, the
setL? contains all the points whose arbitrary neighborhoods
will be visited infinitely often by the trajectory>¢ (0) };cz. -

1277 (61) = 277" (¢2)|| < ellgn — ¢all,
for all ¢1,¢2 € F and alll > [.

(16)



(i) There exists a finite integér(possibly depending o¢ Theorem 4 (Periodic Suboptimal Schedul&pr anyé§ >
andr) such thatZ;’* is a contraction onB(gb, r)with 0 and¢ € A, there exists a periodic scheddewith a finite
contraction constant namely, it satisfies (16) for all period! € Z., such that
b1, 02 € B(d;r) andB(é;r) is invariant undes:;’*

(i) Forany0 < r; < ry < o0, there exists a finité € Z.
such that™))’* is a contraction on bot#8(¢; ;) and
B(¢; r2) with the same contraction constant

Proof: (i) Fix arbitrary ¢, ¢ € E. By Theorem 1 and
Lemma 3, we have

577 (61) 2577 (62 + 161 — ba1) Jool8:0) < VE(@) +
< X5 (¢o) + apnilér — dol|In, Proof. Let o* be an optimal infinite-*horizon schedule
and let¢* be an accumulation point i . According to
wherear andng are the constants mentioned in Lemma 3Lemma 4, for anyd < r; < r» < oo, there exists aih € Z,

Thus, there exists a finite integky such that for which E;T” is a contraction om3(¢*;7;), i = 1,2, with

() (Exponential Convergence}l? ,(¢) — P* exponen-
tially as ¥ — oo, where P* is a fixed point of the
composite Riccati mapping? (-).

(i) (Suboptimal Performance): The infinite-horizon cost o
& is bounded from above by

ST (¢y) = 20 (o) + cl| g1 — ballIn, VI > lo. contraction constant for all j € Z. Divide the schedule
o N N co* into a sequence dfhorizon sub-schedules and denote by
Similarly, we can show that o™ the (k + 1)t sub-schedule fok € Z,, i.e.,

S0 (92) 2577 (1) + cll g2 — b1l 1, VI = lo.

(ii) Since B(¢; r) is bounded, part (i) implies the existence

of an I, for which inequality (16) holds for alb;, ¢ € py Lemma 4 and the Banach fixed point theorem, we know

(¢, r). Furthermore, sinceé € £ is an accumulation point, thata ) has a unique fixed point iB(¢*; 1) for all k € Z...
there exists a finite integér> [y, such that

=77 (6) = dll < (1= e)r.

Therefore, for any € B(¢;r), we have

=777 (@) = Sl IE7* () = & + 774 () — £ (9)] i
<Q-crtecr=r Clearly, the setM[ is non-empty aSU_Z( ) e ML for all
k € Z.. By the Banach fixed point theorem, for any
which implies thatB(¢;r) is invariant under the mapping o, e M, the composite Riccati mapping;(-) has a fixed

)= {o*(k-1),0"(k-1+1),...,0"°((k+1)-1—1)}.

Deflne

ML 2 {o; € M' :X7'(-) is a contraction orB(¢*;7;)
i = 1,2, with contraction constant }.

7). point in B(¢*; r1). Denote this fixed point by'(o;). Define
(iii) Let Iy be a constant such that (16) holds for all

01,02 € B(é;r2). Then, following the argument as in the o} = argmin Ji(T'(a); 07),

proof of part (i), we can show that the same> [, that oeM,

makesX{ a contraction or3(¢; ) will guarantee thab?

is a contraction orB(¢; ;) as well. m The goal now is to show that tHeperiodic schedule defined

The following corollary highlights an important conse-by:
guence of the above lemma.

Corollary 3: Let [ be an integer satisfying the desired g & {of,0/,.. .},
properties of part (i) of Lemma 4. Then, for apye B(¢; ),
we haveXLy ,(¢) € B(¢;r), forall k € Z. is a suboptimal schedule with the desired properties.

Proof: The result holds trivially fork = 0. Suppose  To show property (i), we choose large enough so that
it is true for some generat € Z,, i.e., X7 ,(¢) € B(¢;r), ¢ € B(¢*;rz). Then the result follows directly from the
then contraction mapping theorem.

o _ v+ To prove the second property, we |B} £ F(al(k)) and
Hlern1(9) = 5 (Ha(9)) € B, P* 2 7T(o7). Sinces™ € ML for all k € Z, we have
wherej, := k-1 and the last step follows from the fact that
B(¢;r) is invariant under the mappirg;”°*. (]
Corollary 3 indicates an important property of a feasible
scheduleos, namely, for any neighborhooﬂ(q@;r) around §
any accumulation pointy € £°, there always exists an Let ¥y = X7 (P*) be the optimal covariance trajectory
| € Z. such that the covariance trajectory undemust underc” with initial covarianceP” € B(¢*;r1). By Corol-
return to the neighborhooB8($;r) everyl steps. This is a lary 3, we know thaty;, € B(¢*;r1) forall k € Z,.. Hence,
key property that guarantees the existence of a suboptimal
periodic schedule. li, — Pl < 2r, VkeZ,.

H(Ps0i) < T (Pol™) vk € 2y,



Therefore, for anyk € Z,., we have

l
(k)
Ji(Pop) <)t (2;’1 (Pk)>
t=1

(k)

gzl: tr <Ef§k) (wz.l)> + 2rq - tr (gfl <w:.l>>}

that one can approach the optimal cost arbitrarily closegusi
this approach. Although the complexity of this approach
grows exponentially ag increases, it is still a reasonable
solution procedure because a schedule with a large period is
difficult to implement and is thus not preferred in practice.

In general, we envision the theoretical results derived in
this paper being useful for the design and analysis of variou

t=1

(k+1)-1

< [tr(v7) + 2riam,]
t=Fk-l1+1

infinite-horizon sensor scheduling algorithms. An impotta
direction for further research is to establish conditionder
which the optimal finite-horizon average-per-stage dasgt

wherea,, denotes the constanty; introduced in Lemma 3 will converge to the optimal infinite-horizon average-per-

when E = B(¢*;ry). After some simple computations, the
above inequality leads to

Joo (55 P*) = jl(al*;P*) < Joo(0*; P*) + 2r . [1]

Sincer; is arbitrary and can be chosen independentlyof
the term2r, ., can be made arbitrarily small, which proves
the result when initial covariance B*. The result also holds
when P* is changed to an arbitrary € A due to Lemma 1. [3]
[ ]
Theorem 4 reveals several fundamental properties of they
optimal solution of Problem 1 and the corresponding optimal
trajectory of the covariance matrix. It shows that the optim [5]
infinite-horizon cost can be approximated arbitrarily eldy
a periodic schedule with a finite period. It also indicatest th
under this periodic schedule, the trajectory of the covaea
matrix converges exponentially to a limit circle. Lé&tbe
a periodic suboptimal schedule with peribd Z,, which  [7
satisfies all the properties in Theorem 4. It be the fixed
point of the mapping=? (-). Define 8]

C:={P*, X9 (P*),%5(P*),....%¢ (P} (17)

(2]

9

Then by Theorem 4, the trajecto®? (¢) converges expo-
nentially to the limit circleC. Furthermore, theV-horizon
average-per-stage codly(d;¢) converges to the average

cost within the limit circle, namely; > . tr(P). [11]

V. DIScuUsSIONS ANDCONCLUSIONS [12]

The theoretical results derived in the last section pro-
vide us valuable insights about the infinite-horizon sensd#3l
scheduling problem. Theorem 4 motivates us to focus on the
periodic schedules in solving the problem. The discussiomg
in Section IV-A indicates that one can always evaluate the
performance of a periodic schedule by directly startingnfro 15]
its fixed point. For example, the cost of the periodic schedul[
{1,2,2,1,2,2,...} is

3 (P + 51 (P) + palon (P
where P* satisfies the equatioms(p2(p1(P*))) = P*,
which can be efficiently computed using the contractioftl
mapping algorithm. Therefore, one can easily evaluate the
infinite-horizon performance of a periodic schedule. A19]
straightforward way to solve Problem 1 is to first find the best
l-periodic schedule by enumerating all the possikerizon [5q;
sequences, and then gradually increase the period lentith un
the performance no longer improves. Theorem 4 guarantees

[16]

[17]

stage cost’* as N — oc.
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