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Governors in US States
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Who is responsible for a larger
capacity of biogas plants,
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Algebraic Expressions give rise to Random Variables

Democratic Biomass Capacity ≥ Republican Biomass Capacity

Φ = [x1⊗17 + x2⊗5 + x3⊗9 ≥ x4⊗8 + x5⊗14 + x6⊗2]

Assume xi are Boolean random variables

Then the sum expression α = x1⊗17 + x2⊗5 + x3⊗9 is a
N-valued random variable

Hence Φ is a B-valued random variable

PΦ[>] is the probability that a random choice of possible values
for the variables xi satisfies the inequality

In this example, PΦ[>] is the probability that Democrats are
responsible for more biomass capacity than Republicans
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Monoids, Semirings, Semimodule

What do we mean by + in Φ1 ⊗ 17+Φ2 ⊗ 5?
Well, it depends . . .

Aggregation modelled by commutative monoids

Carrier M, e.g. N or R

Binary operation M ×M → M

Neutral element 0 ∈ M

Examples for aggregation monoids:
SUM (N,+, 0), MIN (N,min,∞), MAX (N,max,−∞),
PROD, COUNT (special case of SUM)
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Monoids, Semirings, Semimodule

What are Φ1,Φ2 in Φ1 ⊗ 17 + Φ2 ⊗ 5?

Consider Query:

AGGB

[
(R∪S) 1A T

]
R

A Φ

1 x1
2 x2

S

A Φ

1 y1

T

A B Φ

1 17 z1
2 5 z2

Tuples annotations modelled by semirings

(R ∪ S) 1A T yields

(R ∪ S) 1A T

A B Φ

1 17 (x1 + y1) · z1
2 5 x2 · z2

Aggregation on top of this table yields:
((x1 + y1) · z1)⊗ 17 + (x2 · z2)⊗ 5
where the meaning of + depends on the aggregation monoid
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Monoids, Semirings, Semimodule

Semimodule
Algebraic framework introduced by Amsterdamer et al. [2011]

The algebraic structure combining semirings and monoids is
called semimodule

Generalisation of vector space. “Scalars”: tuple annotations,
“Vectors”: aggregation values

Semimodule expressions represent data values conditioned on
tuple annotations

Semiring and semimodule expressions are random variables

Semimodule: Random variable over aggregation domain

Semiring expressions: ?
I So far in probabilistic databases:

Boolean random variable
I However: B is in general not large enough for aggregation; need

larger semiring, for example natural numbers



Aggregation Needs Semirings Larger Than B
ProducerEU

A Φ

1 x1
2 x2

ProducerUS

A Φ

1 y1

Products

A Price Φ

1 17 z1
2 5 z2

Query: SUMPrice

[
(ProducerEU ∪ ProducerUS) 1A Products

]
asking for total price of products sold by all producers

Resulting expression: ((x1 + y1) · z1)⊗ 17 + (x2 · z2)⊗ 5

Valuation ν : x1, x2, y1, z1, z2 7→ > yields >⊗ 17 +>⊗ 5 = 22
Arguably not the expected result

Boolean semiring is not large enough for SUM

Better choice: Semiring N. Identify ⊥ ∼ 0, > ∼ 1.

Valuation ν : x1, x2, y1, z1, z2 7→ 1 yields
((1 + 1) · 1)⊗ 17 + (1 · 1)⊗ 5 = 2⊗ 17 + 1⊗ 5 = 39.
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A More Formal View: Expressions, Random
Variables

The probability space induced by X has as samples the set of
valuations from X to S,

Ω = {ν : X→ S}

Every expression Φ ∈ K is an S-valued random variable over Ω

with probability distribution

PΦ[s] = P
(
{ν ∈ Ω | ν(Φ)=s}

)
=
∑
ν∈Ω:
ν(Φ)=s

P(ν)

for every s ∈ S
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The pvc-tables Representation System

Ingredients for pvc-tables

A set X of variable symbols

Tuples contain constants or semimodule expressions over X

Every tuple is annotated with a semiring expression over X

Queries

Query Q maps pvc-table database D to pvc-table Q(D)

Annotations are propagated via query operators

Expressions concisely encode probability distributions of answers

Properties of pvc-tables

Polynomial overhead (Amsterdamer et al. [2011]):
|Q(D)| ∈ O

(
poly(|D|)

)
(unlike pc-tables)

Completeness: Every finite probability distribution over relations
(with set or bag semantics) can be represented by pvc-tables



The pvc-tables Representation System

Semantics: Set vs Bag & Deterministic vs Probabilistic

Different choices for the semiring and the probability distributions of
the annotation variables give rise to different database semantics.

Database Semantics Semiring Probability Distributions

Deterministic Set B Px [>] = 1 or Px [⊥] = 1
Deterministic Bag N ∃n ∈ N : Px [n] = 1
Probabilistic Set B Px [>],Px [⊥] ∈ [0, 1]

Probabilistic Bag N ∀n ∈ N : Px [n] ∈ [0, 1]
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Query Evaluation in pvc-tables (1)

Step 1: Construction of Expressions

Alongside (standard) query evaluation, compute annotations.

Project, Union, Cartesian Product: Construction of semiring
expressions (· for joint, and + for alternative use of data)

Aggregation (with grouping): Construct semimodule expressions
(
∑

AGG Φ⊗ v )

R

A B Φ

a 1 x1
a 2 x2
b 3 x3
b 4 x4

select AGG(B) from R group by A−−−−−−−−−−−−−−−−−−→

pvc-table

A AGG(B) Φ

a x1 ⊗ 1 + x2 ⊗ 2 [x1 + x2 6= 0]

b x3 ⊗ 3 + x4 ⊗ 4 [x3 + x4 6= 0]



Query Evaluation in pvc-tables (1)

Step 1: Construction of Expressions

Alongside (standard) query evaluation, compute annotations.

Project, Union, Cartesian Product: Construction of semiring
expressions (· for joint, and + for alternative use of data)

Aggregation (with grouping): Construct semimodule expressions
(
∑

AGG Φ⊗ v )

R

A B Φ

a 1 x1
a 2 x2
b 3 x3
b 4 x4

select AGG(B) from R group by A−−−−−−−−−−−−−−−−−−→

pc-table

A SUM(B) Φ

a 0 x̄1 · x̄2
a 1 x1 · x̄2
a 2 x̄1 · x2
a 3 x1 · x2
b 0 x̄3 · x̄4

. . .

Exponential overhead!
Lechtenbörger et al. [2002]



Query Evaluation in pvc-tables (2)

Step 2: Probability Computation

Problem: Given a tuple, compute its probability distribution.

Idea: Tuple probability is equivalent to joint probability distribution of
its semimodule expressions and annotation expression as obtained
from evaluation step 1.

Approach: Compile expressions into a tractable form consisting of
independent and mutually exclusive sub-expressions.



Compilation: Independent Decomposition

Consider semiring expression Φ = x + y . Since x , y are independent
random variables, the probability distribution of Φ is given by the
convolution of x and y .

If x , y are in N: Px+y [n] =
∑
i,j∈N
i+j=n

Px [i]Py [j]

If x , y are Boolean: Px+y [⊥] =
∑

a,b∈{⊥,>}
a∨b=⊥

Px [a]Py [b] = Px [⊥]Py [⊥]

Px+y [>] =
∑

a,b∈{⊥,>}
a∨b=>

Px [a]Py [b]

= Px [>]Py [>] + Px [⊥]Py [>] + Px [>]Py [⊥]

= 1− Px [⊥]Py [⊥]
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Compilation: Independent Decomposition

The applicability of convolution is not limited to “sums”; convolution is
equally well defined for other binary operations:

Convolution for algebraic operations

Semiring expressions: Φ ·Ψ, Φ + Ψ

Semimodule expressions: α + β

Mixed semiring and semimodule expressions: Φ⊗ α

Convolution is also applicable to comparisons of expressions,
such as α ≤ β



Compilation: Mutually Exclusive Expressions

What if there are no independent sub-expressions?
Example: α = a(b + c)⊗ 10 + c ⊗ 20

Idea: Instantiate one of the variables to create mutually exclusive
sub-expressions.

P(α) = Pc[1] · P
(
a(b + 1)⊗ 10 + 1⊗ 20

)
+

Pc[2] · P
(
a(b + 2)⊗ 10 + 2⊗ 20

)
+

Pc[3] · P
(
a(b + 3)⊗ 10 + 3⊗ 20

)
+

· · ·

Need to consider all possible values of c with non-zero probability.
In particular: For Boolean variables, the above construction yields
Shannon’s expansion.



Decomposition Trees (d-trees)

Decomposition gives rise to a tree whose nodes explain the
decomposition steps taken. For example,

⊔
for mutex decomposition,

⊕ for convolution w.r.t. +, ⊗ for convolution w.r.t. ⊗, etc.

Example: α = a(b + c)⊗ 10 + c ⊗ 20

⊔
c

⊕

⊗

a ⊗

⊕

b 1

1⊗ 10

1⊗ 20

c ← 1

⊕

⊗

a ⊗

⊕

b 2

1⊗ 10

2⊗ 20

c ← 2



Tractable Probability Computation for d-trees

The probability distribution Pd of a d-tree d whose nodes have
probability distributions p1, . . . , pn can be computed in time

O(
∏
|pi |).

Specific polynomial time cases
For MIN and MAX monoids combined with any semiring

For SUM monoid: If monoid values and size of probability
distributions of semiring expressions are bounded by constants

I This subsumes COUNT aggregation



Further Applications of d-trees

Approximate probability computation by partial expansion of
d-tree (Olteanu et al. [2010], Fink et al. [2011])

Sensitivity analysis and explanation of query results (Kanagal
et al. [2011])

Conditioning probabilistic databases (Koch and Olteanu [2008])



Tractable Queries via d-trees

Tractability for query evaluation on probabilistic databases is
considered with respect to data complexity:

For which class of queries can probability distributions of query
answers be computed in polynomial-time data complexity for any

tuple-independent database?

Syntactic characterisation of tractable queries with aggregates
I There are known classes of tractable non-aggregate queries with

polynomial-time d-tree compilation, e.g. hierarchical queries
I Extend these classes by adding nested aggregation without

breaking the tractable (e.g. hierarchical) property
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Tractable Queries via d-trees

Example 1

select R.A from R where R.B =
(

select MIN(S.B) from S

where S.C = R.C
)

Tractable sub-queries without aggregation:
select S.B from S where S.C = R.C



Tractable Queries via d-trees

Example 2

select 1 where(
select MIN(R.A) from R

)
<=

(
select COUNT(*) from S,T

where S.A=T.A
)

Tractable sub-queries without aggregation:
select 1 where (select R.A from R)
select 1 from S,T where S.A=T.A

select 1 where (select R.A from R) <= (select 1 from S,T where S.A=T.A)
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Performance Analysis
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Figure: Varying the number of variables for a randomly generated semimodule
expression (L=90, #cl=2, #l=2, maxv=5, c=3, #runs=40, AGGL=MIN)

[
L∑

AGGL

Φi ⊗ vi = c

]
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Figure: Size of the probability distributions for SUM semimodule expressions of
varying size. When summing float numbers from a fixed range, the size of the
probability distribution grows potentially exponentially in the number of terms,
while summing integers from a fixed range it grows linearly.



Performance Analysis
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Figure: TPC-H Queries Q1 (modified) and Q2. For each query, the graphs
compare the execution times (1) on a deterministic database (Q0) without
expression or probability computation, (2) of the computation of the
expressions (J·K), and (3) of probability computation for the result tuples (P(·)).
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Definitions
Monoid
A monoid is a set M with an operation + : M ×M → M and a neutral
element 0 ∈ M that satisfy the following axioms for all m1,m2,m3 ∈ M:

(m1 + m2) + m3 = m1 + (m2 + m3)

0 + m1 = m1 + 0 = m1

A monoid is commutative if m1 + m2 = m2 + m1

Semiring

A commutative semiring is a set S together with operations
+, · : S × S → S and neutral elements 0, 1 ∈ S such that (S,+, 0)

and (S, ·, 1) are commutative monoids and the following holds for all
s1, s2, s3 ∈ S:

s1 · (s2 + s3) = (s1 · s2) + (s1 · s3)

(s1 + s2) · s3 = (s1 · s3) + (s2 · s3)

0 · s1 = s1 · 0 = 0



Definitions

Semimodule

Let (S,+S, 0S, ·S, 1S) be a commutative semiring. As S-semimodule
M consists of a commutative monoid (M,+M , 0M ) and a binary
operation ⊗ : S ×M → M such that for all s1, s2 ∈ S and m1,m2 ∈ M
we have

s1 ⊗ (m1 +M m2) = s1 ⊗m1 +M s1 ⊗m2

(s1 +S s2)⊗m1 = s1 ⊗m1 +M s2 ⊗m1

(s1 ·S s2)⊗m1 = s1 ⊗ (s2 ⊗m1)

s1 ⊗ 0M = 0K ⊗m1 = 0M

1S ⊗m1 = m1



Further Experiments
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Figure: Experiment A: Varying the constant c for different aggregation monoids
and comparison operators θ. #v=25, L=200, R=0, #cl=3, #l=3,
maxv=200.
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