Exactly Learning Weighted Automata over a Field

Preliminaries

A weighted automaton over a field \mathbb{K} is a tuple $\mathcal{A}=\left(n, \Sigma, \boldsymbol{\alpha},\{M(\sigma)\}_{\sigma \in \Sigma}, \boldsymbol{\eta}\right)$ comprising the dimension $n \in \mathbb{N}$, alphabet Σ, initial-state vector $\boldsymbol{\alpha} \in \mathbb{K}^{n}$, family of transition matrices $M(\sigma) \in \mathbb{K}^{n \times n}$, and final-state vector $\boldsymbol{\eta} \in \mathbb{K}^{n}$. Extend M freely to Σ^{*} by writing $M\left(\sigma_{1} \ldots \sigma_{k}\right)=M\left(\sigma_{1}\right) \cdots M\left(\sigma_{k}\right)$. Then \mathcal{A} is said to recognize a formal power series $f: \Sigma^{*} \rightarrow \mathbb{K}$ if $f(w)=\boldsymbol{\alpha}^{T} M(w) \boldsymbol{\eta}$ for all $w \in \Sigma^{*}$.

Write $e_{i} \in \mathbb{K}^{n}$ for the column vector with 1 in the i-th position and 0 in all other positions.

Define the Hankel matrix of a formal power series $f: \Sigma^{*} \rightarrow \mathbb{K}$ to be the infinite matrix F whose rows and columns are indexed by Σ^{*}, such that $F_{x, y}=f(x y)$ for $x, y \in \Sigma^{*}$. Recall that if f is recognized by a \mathbb{K}-weighted automaton \mathcal{A} then the rank of its Hankel matrix is at most the number of states of \mathcal{A}.

The Algorithm

We describe an algorithm (from [1]) to exactly learn a weighted automaton computing a given function $f: \Sigma^{*} \rightarrow \mathbb{K}$ using membership and equivalence queries. In a membership query the learner asks for the value of f on a given word $w \in \Sigma^{*}$.

At each stage the algorithm maintains the following data:

- A set of n "rows" $X=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \Sigma^{*}$, where $x_{1}=\varepsilon$.
- A set of n "columns" $Y=\left\{y_{1}, \ldots, y_{n}\right\} \subseteq \Sigma^{*}$, where $y_{1}=\varepsilon$.
- A full-rank $n \times n$ submatrix H of F, determined by X and Y :

$$
H=\left[\begin{array}{cccc}
f\left(x_{1} y_{1}\right) & f\left(x_{1} y_{2}\right) & \cdots & f\left(x_{1} y_{n}\right) \\
f\left(x_{2} y_{1}\right) & f\left(x_{2} y_{2}\right) & \cdots & f\left(x_{2} y_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f\left(x_{n} y_{1}\right) & f\left(x_{n} y_{2}\right) & \cdots & f\left(x_{n} y_{n}\right)
\end{array}\right]
$$

The entries of the matrix H are determined by making membership queries.
These data determine a Hypothesis automaton \mathcal{A} as follows. Intuitively the states of \mathcal{A} correspond to the rows of H, with the i-th row being the state reached after executing word x_{i} from the initial state. The columns can be considered as tests that distinguish different states.

Formally \mathcal{A} has dimension n, initial-state vector $\alpha=e_{1}^{T} H$, the first row of H, and final-state vector $\eta=e_{1}$. Since H has full rank, for each $\sigma \in \Sigma$ we can define the transition matrix $M(\sigma)$ by the equation

$$
H M(\sigma)=\left[\begin{array}{cccc}
f\left(x_{1} \sigma y_{1}\right) & f\left(x_{1} \sigma y_{2}\right) & \cdots & f\left(x_{1} \sigma y_{n}\right) \\
f\left(x_{2} \sigma y_{1}\right) & f\left(x_{2} \sigma y_{2}\right) & \cdots & f\left(x_{2} \sigma y_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f\left(x_{n} \sigma y_{1}\right) & f\left(x_{n} \sigma y_{2}\right) & \cdots & f\left(x_{n} \sigma y_{n}\right)
\end{array}\right]
$$

In each step of the algorithm an equivalence query is performed to determine whether \mathcal{A} computes f. If not, a counterexample $w \in \Sigma^{*}$ is returned.

Proposition $1 A$ counterexample z has a prefix wo, where $\sigma \in \Sigma$ and $w \in \Sigma^{*}$, such that for some $i \in\{1, \ldots, n\}$ the assignment $X \leftarrow X \cup\{w\}$, $Y \leftarrow Y \cup\left\{\sigma y_{i}\right\}$ increases the rank of H by one.

Proof. Say that automaton \mathcal{A} is correct on a word $w \in \Sigma^{*}$ if

$$
\begin{equation*}
\alpha M(w)=\left(f\left(w y_{1}\right), \ldots, f\left(w y_{n}\right)\right) . \tag{1}
\end{equation*}
$$

Note that in this case $\mathcal{A}(w)=\alpha M(w) \eta=f(w)$. It follows that \mathcal{A} is not correct on z. Since it is clearly correct on the empty word, there must exist a prefix $w \sigma$ of z such that \mathcal{A} is correct on w, but not on $w \sigma$. For such a w we have that (1) holds, but also

$$
\alpha M(w \sigma) \neq\left(f\left(w \sigma y_{1}\right), \ldots f\left(w \sigma y_{n}\right)\right) .
$$

In particular, we can pick $i \in\{1, \ldots, n\}$ such that

$$
\begin{equation*}
\alpha M(w \sigma) e_{i} \neq f\left(w \sigma y_{i}\right) . \tag{2}
\end{equation*}
$$

Now consider the matrix H^{\prime} defined by

$$
\begin{aligned}
& H^{\prime}=\left[\begin{array}{ccccc}
f\left(x_{1} y_{1}\right) & f\left(x_{1} y_{2}\right) & \cdots & f\left(x_{1} y_{n}\right) & f\left(x_{1} \sigma y_{i}\right) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
f\left(x_{n} y_{1}\right) & f\left(x_{n} y_{2}\right) & \cdots & f\left(x_{n} y_{n}\right) & f\left(x_{n} \sigma y_{i}\right) \\
f\left(w y_{1}\right) & f\left(w y_{2}\right) & \cdots & f\left(w y_{n}\right) & f\left(w \sigma y_{i}\right)
\end{array}\right] \\
& \stackrel{(1)}{=}\left[\begin{array}{cc}
H & H M(\sigma) e_{i} \\
\alpha M(w) & f\left(w \sigma y_{i}\right)
\end{array}\right] .
\end{aligned}
$$

It remains to show that H^{\prime} has rank $n+1$. By assumption H has rank n, so it suffices to show that the $(n+1)$-st row of H^{\prime} cannot be expressed as
a linear combination of the first n rows. Indeed, suppose for a contradiction that $u \in \mathbb{K}^{n}$ is such that $u^{T} H=\alpha M(w)$ and $u^{T} H M(\sigma) e_{i}=f\left(w \sigma y_{i}\right)$. Then

$$
f\left(w \sigma y_{i}\right)=u^{T} H M(\sigma) e_{i}=\alpha M(w) M(\sigma) e_{i},
$$

which contradicts (2).
The word w and suffix σy_{i} in the above proposition can be found using membership queries.

Comparison with Angluin's Algorithm

The rows and columns in the above algorithm play a similar role to the access words and test words in Angluin's algorithm. The requirement that H have full rank corresponds to the conditions of closedness and separatedness in Angluin's algorithm. Intuitively the situation for weighted automata is more symmetric than for DFA: in particular, the number of rows and columns is always the same.

References

[1] A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varricchio. Learning functions represented as multiplicity automata. J. ACM, 47:2000, 2000.

