Exactly Learning Weighted Automata over a Field

Preliminaries

A weighted automaton over a field \mathbb{K} is a tuple $\mathcal{A} = (n, \Sigma, \boldsymbol{\alpha}, \{M(\sigma)\}_{\sigma \in \Sigma}, \boldsymbol{\eta})$ comprising the dimension $n \in \mathbb{N}$, alphabet Σ , initial-state vector $\boldsymbol{\alpha} \in \mathbb{K}^n$, family of transition matrices $M(\sigma) \in \mathbb{K}^{n \times n}$, and final-state vector $\boldsymbol{\eta} \in \mathbb{K}^n$. Extend M freely to Σ^* by writing $M(\sigma_1 \dots \sigma_k) = M(\sigma_1) \cdots M(\sigma_k)$. Then \mathcal{A} is said to recognize a formal power series $f : \Sigma^* \to \mathbb{K}$ if $f(w) = \boldsymbol{\alpha}^T M(w) \boldsymbol{\eta}$ for all $w \in \Sigma^*$.

Write $e_i \in \mathbb{K}^n$ for the column vector with 1 in the *i*-th position and 0 in all other positions.

Define the Hankel matrix of a formal power series $f : \Sigma^* \to \mathbb{K}$ to be the infinite matrix F whose rows and columns are indexed by Σ^* , such that $F_{x,y} = f(xy)$ for $x, y \in \Sigma^*$. Recall that if f is recognized by a \mathbb{K} -weighted automaton \mathcal{A} then the rank of its Hankel matrix is at most the number of states of \mathcal{A} .

The Algorithm

We describe an algorithm (from [1]) to exactly learn a weighted automaton computing a given function $f: \Sigma^* \to \mathbb{K}$ using membership and equivalence queries. In a membership query the learner asks for the value of f on a given word $w \in \Sigma^*$.

At each stage the algorithm maintains the following data:

- A set of *n* "rows" $X = \{x_1, \ldots, x_n\} \subseteq \Sigma^*$, where $x_1 = \varepsilon$.
- A set of *n* "columns" $Y = \{y_1, \ldots, y_n\} \subseteq \Sigma^*$, where $y_1 = \varepsilon$.
- A full-rank $n \times n$ submatrix H of F, determined by X and Y:

$$H = \begin{bmatrix} f(x_1y_1) & f(x_1y_2) & \cdots & f(x_1y_n) \\ f(x_2y_1) & f(x_2y_2) & \cdots & f(x_2y_n) \\ \vdots & \vdots & \ddots & \vdots \\ f(x_ny_1) & f(x_ny_2) & \cdots & f(x_ny_n) \end{bmatrix}$$

The entries of the matrix H are determined by making membership queries.

These data determine a Hypothesis automaton \mathcal{A} as follows. Intuitively the states of \mathcal{A} correspond to the rows of H, with the *i*-th row being the state reached after executing word x_i from the initial state. The columns can be considered as tests that distinguish different states. Formally \mathcal{A} has dimension n, initial-state vector $\alpha = e_1^T H$, the first row of H, and final-state vector $\eta = e_1$. Since H has full rank, for each $\sigma \in \Sigma$ we can define the transition matrix $M(\sigma)$ by the equation

$$HM(\sigma) = \begin{bmatrix} f(x_1\sigma y_1) & f(x_1\sigma y_2) & \cdots & f(x_1\sigma y_n) \\ f(x_2\sigma y_1) & f(x_2\sigma y_2) & \cdots & f(x_2\sigma y_n) \\ \vdots & \vdots & \ddots & \vdots \\ f(x_n\sigma y_1) & f(x_n\sigma y_2) & \cdots & f(x_n\sigma y_n) \end{bmatrix}$$

In each step of the algorithm an equivalence query is performed to determine whether \mathcal{A} computes f. If not, a counterexample $w \in \Sigma^*$ is returned.

Proposition 1 A counterexample z has a prefix $w\sigma$, where $\sigma \in \Sigma$ and $w \in \Sigma^*$, such that for some $i \in \{1, ..., n\}$ the assignment $X \leftarrow X \cup \{w\}$, $Y \leftarrow Y \cup \{\sigma y_i\}$ increases the rank of H by one.

Proof. Say that automaton \mathcal{A} is *correct* on a word $w \in \Sigma^*$ if

$$\alpha M(w) = (f(wy_1), \dots, f(wy_n)). \tag{1}$$

Note that in this case $\mathcal{A}(w) = \alpha M(w)\eta = f(w)$. It follows that \mathcal{A} is not correct on z. Since it is clearly correct on the empty word, there must exist a prefix $w\sigma$ of z such that \mathcal{A} is correct on w, but not on $w\sigma$. For such a w we have that (1) holds, but also

$$\alpha M(w\sigma) \neq (f(w\sigma y_1), \dots f(w\sigma y_n)).$$

In particular, we can pick $i \in \{1, \ldots, n\}$ such that

$$\alpha M(w\sigma)e_i \neq f(w\sigma y_i). \tag{2}$$

Now consider the matrix H' defined by

$$H' = \begin{bmatrix} f(x_1y_1) & f(x_1y_2) & \cdots & f(x_1y_n) & f(x_1\sigma y_i) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ f(x_ny_1) & f(x_ny_2) & \cdots & f(x_ny_n) & f(x_n\sigma y_i) \\ f(wy_1) & f(wy_2) & \cdots & f(wy_n) & f(w\sigma y_i) \end{bmatrix}$$
$$\stackrel{(1)}{=} \begin{bmatrix} H & HM(\sigma)e_i \\ \alpha M(w) & f(w\sigma y_i) \end{bmatrix}.$$

It remains to show that H' has rank n + 1. By assumption H has rank n, so it suffices to show that the (n + 1)-st row of H' cannot be expressed as

a linear combination of the first *n* rows. Indeed, suppose for a contradiction that $u \in \mathbb{K}^n$ is such that $u^T H = \alpha M(w)$ and $u^T H M(\sigma) e_i = f(w \sigma y_i)$. Then

$$f(w\sigma y_i) = u^T H M(\sigma) e_i = \alpha M(w) M(\sigma) e_i,$$

which contradicts (2).

The word w and suffix σy_i in the above proposition can be found using membership queries.

Comparison with Angluin's Algorithm

The rows and columns in the above algorithm play a similar role to the access words and test words in Angluin's algorithm. The requirement that H have full rank corresponds to the conditions of closedness and separatedness in Angluin's algorithm. Intuitively the situation for weighted automata is more symmetric than for DFA: in particular, the number of rows and columns is always the same.

References

 A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varricchio. Learning functions represented as multiplicity automata. J. ACM, 47:2000, 2000.