
Computational Learning Theory
Lecture 13: Online Convex Optimisation

Lecturer: James Worrell

In this lecture we briefly introduce some basic concepts behind online convex optimisation. We present
the online subgradient descent procedure and show how the Perceptron algorithm can be seen as an
instance of this procedure. More generally we show that both the Perceptron and Winnow algorithms
are instances of follow-the-leader algorithms, but with different regularisation functions.

1 Subgradients

Let S ⊆ Rn be a convex set. One characterisation of when a function f : S → R is convex is that for
all w ∈ S there exists a vector z ∈ Rn such that for u ∈ S we have

f(u)− f(w) ≥ z · (u−w) . (1)

Inequality (1) says that the linear function g(u) = f(w) + z · (u−w) is a lower bound of f which is
tangent to f at w. (See the book of Boyd and Vandenberghe for details.)

The set of vectors z that satisfy (1) defines the collection

∂f(w) = {z ∈ Rn : f(u)− f(w) ≥ z · (u−w) for all u ∈ S}

of subgradients of f at w.
If f is convex and differentiable at w then there is exactly one subgradient at w, which is equal to

the gradient: ∂f(w) = {∇f(w)}.

Example 1. Consider the hinge function f : R → R, given by f(w) = max(0,−w). Then ∂f(w) =
{0} if w > 0, ∂f(w) = {−1} if w < 0, and ∂f(w) = [−1, 0] if w = 0. More generally, consider a
labelled feature vector (x, y), with x ∈ Rn and y ∈ {−1,+1}. Let f : R→ R be the loss function

f(w) = max{0,−y(w · x)}

of the linear classifier w at the point (x, y). Then

∂f(w) =

{0} if y(w · x) > 0
{−yx} if y(w · x) < 0
{−yαx : α ∈ [0, 1]} if y(w · x) = 0

Let ρ > 0. We say that f : S → R is ρ-Lipschitz if for all u,w ∈ S,

|f(u)− f(w)| ≤ ρ‖u−w‖ .

Suppose that f : S → R is ρ-Lipschitz and that S is an open convex subset of Rn. Then for any
w ∈ S and subgradient z ∈ ∂f(w) we have ‖z‖ ≤ ρ. Indeed pick ε > 0 sufficiently small that
u := w + εz ∈ S. Then

ρε‖z‖ = ρ‖u−w‖ ≥ |f(u)− f(w)| ≥ z · (u−w) = ε‖z‖2 .

Hence ‖z‖ ≤ ρ.

1

2 Online Convex Optimisation

The setup of online convex optimisation is as follows. Let S ⊆ Rn be a convex set and G a set of
convex loss functions S → R.

for t = 1, 2, . . .
the learner chooses prediction wt ∈ S
the adversary chooses convex loss function ft ∈ G
the learner loses ft(wt)

The regret of the learner over the first T rounds is then the difference between their total loss and the
total loss of the best comparator:

Regret(T) = sup
u∈S

T∑
t=1

(ft(wt)− ft(u)) .

Our goal is to minimize regret. In particular, we would like the regret to be sublinear in the number of
rounds T so that our average regret goes to 0 as T goes to infinity.

2.1 Follow the (Regularised) Leader

A natural policy for the learner in the situation of online convex optimisation is called follow the leader.
The idea is to select in round t a vector wt ∈ S that minimises the total loss on the previous t−1 rounds:

wt ∈ arg min
w∈S

t−1∑
i=1

fi(w) . (2)

Follow the leader is similar to the idea of minimising empirical error in the setting of batch learning.
The following is an example of a series of loss functions for which follow the leader generates regret

linear in the number of rounds.

Example 2. Let S = [−1, 1] be the set of possible predictions of the learner. Assume that the adversary
provides the following alternating sequence of (linear) loss functions:

f1(w) = −0.5w, f2(w) = w, f3(w) = −w, f4(w) = w, . . .

In response the learner will generate the following sequence of predictions:

w1 = 0, w2 = 1 w3 = −1, w4 = 1, . . .

The total loss over the first T rounds is T − 1, but the comparator w = 0 obtains a loss of 0 over the
first T rounds, so the regret is at least T − 1. This falls short of our goal sublinear regret.

Intuitively, the bad behaviour of follow-the-leader algorithm in Example 2 stems from from the
instability of the predictions, which oscillated between the two vertices of the set S. We can improve
the stability of the follow-the-leader algorithm by adding a regulariser term R(w) to the expression
that the learner minimises in each step, for some convex function R : S → R. This leads to the
follow-the-regularised-leader (FTRL) rule:

wt ∈ arg min
w∈S

(
t−1∑
i=1

fi(w) +R(w)

)
. (3)

The following theorem gives an upper bound on the regret of follow the regularised leader. Notice
that the first term in the upper bound corresponds to the stability of the algorithm.

2

Theorem 1. For any number of rounds T and any u ∈ S:

T∑
t=1

(ft(wt)− ft(u)) ≤
T∑
t=1

(ft(wt)− ft(wt+1)) +R(u)−R(w1) .

Proof. Subtracting
∑T

t=1 ft(wt) from both sides, it is sufficient to show that

T∑
t=1

ft(wt+1) +R(w1) ≤
T∑
t=1

f(u) +R(u) for all u ∈ S (4)

We prove (4) by induction on T . Assume by induction that

T−1∑
t=1

ft(wt+1) +R(w1) ≤
T−1∑
t=1

f(u) +R(u) for all u ∈ S

Adding fT (wT+1) to both sides we have

T∑
t=1

ft(wt+1) +R(w1) ≤
T−1∑
t=1

f(u) + fT (wT+1) +R(u) for all u ∈ S

In particular this holds for u = wT+1, that is,

T∑
t=1

ft(wt+1) +R(w1) ≤
T∑
t=1

ft(wT+1) +R(wT+1) (5)

But since wT+1 ∈ argminu∈S

(∑T
t=1 ft(u) +R(u)

)
the inequality (5) directly implies (4).

3 Online Subgradient Descent

In this section we present an algorithm for online convex optimisation that can be seen as an instance
of FTRL with regulariser R(w) = 1

2η‖w‖
2, where η > 0 is a parameter of the algorithm.

Online Subgradient Descent (with parameter η > 0)
for t = 1, . . . , T

Predict wt := argminw∈S

∥∥∥w − η∑t−1
i=1 zi

∥∥∥
Receive gt : S → R
Choose a subgradient zt ∈ ∂gt(wt)

end

The prediction wt is chosen to be the closest point in S to the sum of the subgradients −η
∑t−1

i=1 zi. In
case S = Rn we simply have wt = −η

∑t−1
i=1 zi.

Remark 1. Suppose that each loss function gt is a linear function gt(w) = vt ·w. Then the above algo-
rithm makes exactly the same predictions as FTRL with regulariser R(w) = 1

2η‖w‖
2. Let w1, . . . ,wT

be the predictions on the online subgradient descent algorithm. Observe that the only choice for
zi ∈ ∂gi(wi) is zi = vi, and so we have

wt = argmin
w∈S

1

2η

∥∥∥w − η∑t−1
i=1 vi

∥∥∥2 . (6)

3

On the other hand, the FTRL update rule (3) with the given sequence of loss functions is

wt = argmin
w∈S

(
1

2η
‖w‖2 −

t−1∑
i=1

vi ·w

)
. (7)

But, completing the square, we see that the objectives in the two optimisation problems (6) and (7) are
equal up to a constant.

The main result of this section shows that the online subgradient descent procedure has total regret
O(
√
T) over T rounds, assuming that the loss functions ft are convex, ρ-Lipschitz for some fixed ρ,

and defined on a region S of bounded diameter. This achieves our goal of sublinear regret.

Theorem 2. Consider a run of the online subgradient descent algorithm in which the loss functions
g1, . . . , gT : S → R are ρ-Lipschitz and such that sup{‖u− v‖ : u,v ∈ S} ≤ D for some ρ,D > 0.
If η = D

ρ
√
2T

then the regret after T rounds is at most Dρ
√
2T .

Proof. For all u ∈ S we have

T∑
t=1

(gt(wt)− gt(u)) ≤
T∑
t=1

zt · (wt − u) (8)

≤
T∑
t=1

zt · (wt −wt+1) +
‖u‖2 − ‖w1‖2

2η
(9)

≤
T∑
t=1

‖zt‖ · η‖zt‖+
‖u‖2 − ‖w1‖2

2η
(10)

≤ Tρ2ηD +
D2

2η
.

Line (8) holds because zt is a subgradient of gt at wt. Line (9) follows from Theorem 9 applied to
FTRL with linear loss functions f1, . . . , fT : S → R, with ft(w) = zt ·w for t = 1, . . . , T .1 Line (10)
follows from the Cauchy-Schwartz inequality, using the fact that

‖wt+1 −wt‖ ≤

∥∥∥∥∥η
t∑
i=1

zi − η
t−1∑
i=1

zi

∥∥∥∥∥ = ‖ηzt‖ .

Putting η = D
ρ
√
2T

, the right-hand side above evaluates to Dρ
√
2T .

3.1 Perceptron

The Perceptron algorithm can be seen as an instance of the online subgradient descent algorithm with
parameter η = 1. Specifically let the loss function gt : Rn → R in round t of the online subgradient
descent algorithm be

gt(w) = max(0,−yt(w · xt)) ,

where (xt, yt) is the labelled example in round t of the Perceptron algorithm. Notice that the subgradi-
ent zt at round t satisfies zt = 0 if the prediction wt has loss 0 and zt = −ytxt otherwise. Thus the
prediction wt = −

∑t−1
i=1 zi is exactly matches the update rule of the Perceptron algorithm as presented

in Lecture 11.
1Note that by Remark 1 FTRL makes predictions w1, . . . ,wT when given this input by the adversary.

4

4 Winnow

Let us briefly sketch how the Winnow algorithm is based on follow-the-regularised-leader using the
entropy function as a regulariser.

Let p be a probability distribution of {1, . . . , n}. The entropy function is defined by

H(p) =
n∑
i=1

pi log
1

pi
.

Here, by convention, 0 log(1/0) is defined to be 0. Note that when p puts all of its weight on a single
feature, we have H(p) = 0. When p is uniform, we have H(p) = log n. In general, higher entropy
implies “more uniform” weights. Because of this, using the negative entropy as the regularization term
makes sense. Encouraging high entropy leads to more uniform weights, which leads to more stability
in the algorithm.

Consider the FTRL algorithm with regulariser − 1
ηH for some parameter η > 0. Assume that in

round t the adversary supplies the hinge loss function ft : Rn → R defined by

ft(w) = max(0,−yt(w · xt))

where (xt, yt) is the t-th input to the Winnow algorithm. As in the case of online subgradient descent
we can soundly apply the FTRL rule instead to the “surrogate” linear loss functions

gt(w) = zt ·w

where zt is a subgradient of ft at wt. Again we have that zt = 0 if the prediction wt was correct on
(xt, yt) and zi = −yixi otherwise.

The prediction wt+1 of FTRL algorithm in round t+ 1 is obtained by the following rule:

wt+1 = argmin
w∈S

t∑
i=1

zi ·w −
1

η
H(w) . (11)

Solving for w using calculus one obtains an update rule equivalent to that given in the Winnow algo-
rithm in Lecture 12.

5

