Exercise Sheet 2

James Worrell

Answers to questions marked with $*$ will be posted on the course website.
1*. Using resolution, show that $P_{1} \wedge P_{2} \wedge P_{3}$ is a consequence of

$$
F:=\left(\neg P_{1} \vee P_{2}\right) \wedge\left(\neg P_{2} \vee P_{3}\right) \wedge\left(P_{1} \vee \neg P_{3}\right) \wedge\left(P_{1} \vee P_{2} \vee P_{3}\right)
$$

2*. Simulate a run of the DPLL algorithm with clause learning on the following formula. Use the decision strategy assign true to the currently unassigned variable of least index.

$$
\begin{aligned}
& \underbrace{\left(\neg p_{1} \vee \neg p_{2}\right)}_{C_{1}} \wedge \underbrace{\left(\neg p_{1} \vee p_{3}\right)}_{C_{2}} \wedge \underbrace{\left(\neg p_{3} \vee \neg p_{4}\right)}_{C_{3}} \wedge \underbrace{\left(p_{2} \vee p_{4} \vee p_{5}\right)}_{C_{4}} \wedge \underbrace{\left(\neg p_{5} \vee \neg p_{6} \vee \neg p_{7}\right)}_{C_{5}} \\
& \wedge \underbrace{\left(\neg p_{6} \vee p_{7} \vee \neg p_{8}\right)}_{C_{7}} \wedge \underbrace{\left(p_{8} \vee \neg p_{9}\right)}_{C_{8}} \wedge \underbrace{\left(p_{8} \vee p_{9} \vee \neg p_{1}\right)}_{8}
\end{aligned}
$$

3^{*}. As suggested in Footnote 1 of Lecture 7, give a formal proof that $C_{1}^{\prime}, \ldots, C_{m^{\prime}}^{\prime}$ is a pseudorefutation of PHP_{n-1}.
4. A renamable Horn formula is a CNF formula that can be turned into a Horn formula by negating (all occurrences of) some of its variables. For example,

$$
\left(P_{1} \vee \neg P_{2} \vee \neg P_{3}\right) \wedge\left(P_{2} \vee P_{3}\right) \wedge\left(\neg P_{1}\right)
$$

can be turned into a Horn formula by negating P_{1} and P_{2}.
Given a CNF-formula F, show how to derive a 2-CNF formula G such that G is satisfiable if and only if F is a renamable Horn formula. Show moreover that one can derive a renaming that turns F into a Horn formula from a satisfying assignment for G.
5. Let F be a Horn-CNF formula, with n variables, in which all clauses contains at least two literals. Argue that when run on F, the Walk-SAT algorithm finds a satisfying assignment for F with probabilty at least $1 / 2$ after $2 n^{2}$ steps.
6. Using resolution, or otherwise, show that there is a polynomial-time algorithm to decide satisfiability of those CNF formulas F in which each propositional variable occurs at most twice. Justify your answer.
(Hint: Show how to eliminate a variable from the formula without affecting satisfiability or increasing the number of clauses.)
7. Argue that if the DPLL algorithm is run on a 2-CNF formula then every clause that is learned is either empty or a singleton.
(Hint: Compare the DPLL algorithm with the algorithm for 2-SAT in Figure 2, Lecture 4.)
8. Positive resolution is a restriction of ordinary resolution, which is defined as follows: derive a resolvent from C_{1} and C_{2} only if C_{1} is a positive clause, i.e., it consists only of positive literals. Show that if F is an unsatisfiable CNF formula then one can derive the empty clause from F using only positive resolution.
9. Suppose that $\boldsymbol{S} \models F$ for some formula F and set of formulas \boldsymbol{S}. Show that there is a finite set $\boldsymbol{S}_{0} \subseteq \boldsymbol{S}$ such that $\boldsymbol{S}_{0}=F$.
10. Given an undirected graph $G=(V, E)$, a set of vertices $S \subseteq V$ is a clique if every pair of distinct vertices $u, v \in S$ is connected by an edge and S is an independent set if no pair of distinct vertices $u, v \in S$ is connected by an edge. Now consider the following two statements:
(A) Every infinite graph either has an infinite clique or an infinite independent set.
(B) For all k there exists n such that any graph with n vertices has a clique of size k or an independent set of size k.

The goal of this question is to show that (A) implies (B). ${ }^{1}$
(a) Carefully formulate the negation of (B).
(b) Assuming the negation of (B), use the Compactness Theorem to prove the negation of (A), i.e., that there is an infinite graph with no infinite clique and no infinite independent set.

[^0]
[^0]: ${ }^{1}$ As an optional exercise, beyond the scope of the course, you can try to prove (A). This result is Theorem 1 in https://www.dpmms.cam.ac.uk/~par31/notes/ramsey.pdf. Combining this with 7(b) we obtain a proof of (B).

