Exercise Sheet 5

James Worrell

1. Consider the theory \boldsymbol{T} of the structure $\mathcal{A}=(\mathbb{N}, 0, s,<)$, where s is the unary function given by $s(n)=n+1$.
(a) Suppose that F is a conjunction of atomic formulas, all of which mention the variable x. Show that there is a quantifier-free formula G such that $\boldsymbol{T} \models \exists x F \leftrightarrow G$.
(b) By following the reasoning in the lecture notes, conclude from (i) that \boldsymbol{T} has quantifier elimination.
(c) Say that $S \subseteq \mathbb{N}$ is definable if there is a formula F with one free variable x such that $\mathcal{A}_{[x \mapsto a]} \models F$ if and only if $a \in S$. Given that \boldsymbol{T} has quantifier elimination, show that the definable subsets of \mathbb{N} are the finite and cofinite subsets of \mathbb{N}.
2. This question concerns the theory \boldsymbol{T} of the structure $\mathcal{A}=\left(\mathbb{N}, 0,1,+,<,\left\{P_{k}\right\}_{k}\right)$, where for each integer $k>1$, the unary predicate $P_{k}(n)$ holds if and only if n is divisible by k. You are given that \boldsymbol{T} has quantifier elimination.
(a) Say that a set $S \subseteq \mathbb{N}$ is ultimately periodic if there exist positive integers n_{0} and p such that for all $n \geq n_{0}, n \in S$ iff $n+p \in S$. Show that any quantifier-free formula that mentions a single variable x defines an ultimately periodic subset of \mathbb{N}.
(b) Using your answer to part (a), or otherwise, show that there is no formula on free variables x, y and z that defines the multiplication relation $M=\left\{(a, b, c) \in \mathbb{N}^{3}: a b=c\right\}$ on the structure \mathcal{A}.
