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1 Overview

These notes give a short introduction to the Probably Approximately Correct (PAC) learning model.
Within this model one can analyse a variety of popular approaches to classification problems, including
neural nets, support-vector machines, and boosting. We present a simple formulation of the PAC model
in which the goal of the learner is to identify an unknown target function c : X → {0, 1} drawn from
a known class of functions (this is often called the realisable setting). More precisely, based on the
values taken by c on a sufficiently large sample drawn from a fixed but arbitrary distribution D on X ,
the learner must infer a hypothesis function h that is “approximately equivalent” to c in the sense that c
and h agree with high probability on fresh samples from D. The notion of PAC learning is distribution
independent: we don’t say anything in these notes about learning under specific distributions.

While the PAC model is formulated in terms of prediction we describe the recently discovered result
that PAC learnability can equivalently be characterised in terms of sample compression. We also give a
classical combinatorial measure of the sample complexity of PAC learning in terms of VC dimension,
focussing particularly on the VC dimension of concept classes defined within predicate logic. Finally
we turn our attention to the computational complexity of learning. We show that certain concept classes
are not efficiently PAC learnable under standard cryptographic assumptions, and, motivated by this, we
introduce an extension of the PAC model with membership queries.

The notes are arranged as follows.

• In Section 2 we introduce the PAC model, considering only the amount of information required
for learning and ignoring computational questions.

• In Section 3 we define the notions of VC dimension and growth function of a concept class.
We calculate the VC dimension of various geometric concept classes and uniformly definable
families of sets in predicate logic. We obtain VC dimension bounds for certain neural net archi-
tectures.

• In Section 4 we prove the fundamental result that a concept class has finite VC dimension if and
only if it is PAC learnable.

• In Section 5 we introduce the notion of a sample compression scheme, which is a natural ab-
straction of many different learning procedures. We show that a concept class is PAC learnable
if and only if it has a sample compression scheme (the “only if” direction here is a recent re-
sult, due to Moran and Yehudayoff [14], that settled a longstanding conjecture of Littlestone and
Warmuth [10]).

• In Section 6 we consider the computational complexity of learning. We observe that certain
concept classes, including finite automata, that can be learned with polynomial many samples
can nevertheless not be learned in polynomial time under standard cryptographic assumptions.

• In Section 7, motivated by the above-mentioned cryptographic hardness results, we extend the
PAC model with membership queries and give a polynomial-time algorithm for learning learning
weighted automata in this setting.
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2 The PAC Model

2.1 Definition of PAC Learnability

A learning problem in the PAC model is specified by an input space X and concept class C, where C is
a family of functions from X to {0, 1} (or, equivalently, a family of subsets of X ). An instance of such
a learning problem in determined by a target concept c ∈ C and a fixed but unknown distribution D on
X . The output of the learner is a hypothesis h ∈ {0, 1}X . This output is generated based on a finite
sample S drawn i.i.d. from D and labelled by c. We define the generalisation error of h to be

err(h)
def
= Pr

x∼D

(
h(x) 6= c(x)

)
.

The goal of a learner is that h be probably approximately correct, where the term “approximately” is
quantified through an accuracy parameter ε and the term “probably” is quantified through a confidence
parameter δ. Specifically we require that that err(h) ≤ εwith probability at least 1−δ. The probability
here is with respect to the random sample S—intuitively we cannot rule out the unlucky event that the
learner draws an unrepresentative training set and is unable to infer a good approximation of c.

The formal definition of a PAC learnable concept class C is as follows. Define LC(m) to consist
of the collection of labelled samples, i.e., pairs (S, c|S) where S ∈ Xm and c ∈ C. We say that C
is PAC learnable with sample complexity m, accuracy ε, and confidence δ if there is a learning map
H : LC(m)→ {0, 1}X such that for any target concept c ∈ C and distribution D on X , we have that

Pr
S∼Dm

(
err(H(S, c|S)) ≤ ε

)
≥ 1− δ .

We furthermore say that H is a proper learning map if the range of H is included in the class C.
The above definition of PAC learnability abstracts from the representation and computability of the

learning map: for now our only concern is the the number of samples required for learning.

2.2 Learning Rectangles in the Plane

We illustrate the notion of a PAC learnable class with the following classic example. Let the input
space X be R2 and consider the concept class C of all rectangles in the plane with sides parallel to the
coordinate axes. Fix a distribution D on R2 and target concept R ⊆ R2. We show that by drawing a
suitably large finite sample S from D a learner can with probability at least 1− δ output a rectangle R′

such that
err(R′) = Pr

x∼D
(x ∈ (R \R′) ∪ (R′ \R)) ≤ ε .

This goal can be realised very simply. Given a sample S, define the hypothesis rectangle R′ to be
the smallest rectangle that is consistent with the sample, i.e., the smallest rectangle that includes all
the positive examples. Notice that R′ ⊆ R by construction (see Figure 1) and therefore R′ necessarily
excludes all negative examples.

We bound the error of the hypothesis as follows. Given E ⊆ R2, write Pr(E) for Prx∼D(x ∈
E). Now if Pr(R) ≤ ε then clearly Pr(R \ R′) ≤ ε. Otherwise define four “border rectangles”
E1, E2, E3, E4 ⊆ R (shown in Figure 1) such that Pr(E1) = Pr(E2) = Pr(E3) = Pr(E4) = ε/4 and
E1 ∪ E2 ∪ E3 ∪ E4 contains the boundary of R.1

If each border region Ei contains at least one sample point then the hypothesis rectangle R′ is such
that R \R′ ⊆ E1 ∪ E2 ∪ E3 ∪ E4. In this case,

Pr(R \R′) ≤ Pr(E1 ∪ E2 ∪ E3 ∪ E4)

≤
4∑
i=1

Pr(Ei) ≤ ε .

1In general it may not be possible select the Ei with measure exactly ε/4. The construction can be appropriately gener-
alised, but we will ignore this distracting possibility.
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Figure 1: Concept and hypothesis rectangles; border regions.

It remains to give a lower bound on the sample sizem ensuring that with probability at least 1−δ the
sample contains a point in each border region Ei. Now the probability that a given sample point misses
E1 is at most 1− ε/4. Since the samples are drawn independently, the probability that all samples miss
E1 is at most

(1− ε/4)m ≤ e−εm/4 ,

using the inequality 1 + x ≤ ex. The same reasoning applies to each Ei. By a union bound, the
probability that the sample misses some border region Ei is at most 4e−εm/4. This quantity is at most
δ if m ≥ (4/ε) log(4/δ). Thus we can achieve the desired error and confidence bounds using a sample
of size linear in 1/ε and logarithmic in 1/δ.

This concludes our first example of a PAC learnable class. In Section 3 we give a sufficient and
necessary criterion for PAC learnability of a concept class in terms of VC dimension. From this charac-
terisation it follows, e.g., that the concept class of all convex polygons in the plane is not PAC learnable.

3 VC Dimension

3.1 Definition

Let C be a concept class on input set X . We say that S ⊆ X shattered by C if every function from S to
{0, 1} arises as the restriction of some c ∈ C. The VC dimension of C is defined by

VC(C) = sup
{
|S| : S a finite subset of X that is shattered by C

}
.

Figure 2 gives the VC dimension of some geometric concept classes. Notice that in all but the last
example the VC dimension corresponds to the number of real-valued parameters that define a concept.
We will justify the VC-dimension bounds in Figure 2 in the lecture. Here we give two cases by way of
example.

Example: half-spaces in Rn. We argue that the VC dimension of the class of half-spaces in Rn is at
most n + 1, i.e., we prove that no set of n + 2 points in Rn is shattered. Indeed given such a set S, by
Theorem 1 we can partition S into two disjoint sets S1 and S2 whose convex hulls meet. But then there
is no half space that includes all points in S1 and excludes all points in S2.

Theorem 1 (Radon’s Theorem). Any set of n + 2 points S ⊆ Rn can be partitioned into two subsets
S1 and S2 such that the convex hulls of S1 and S2 intersect.

Example: trigonometric functions. We argue that the class {x 7→ sgn(sinαx) : α ∈ R} has
infinite VC dimension. To this end, consider S = {x1, . . . , xm} ⊆ R, where xi = 2−i, together
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X C VC(C)
R2 axis-aligned rectangles 4
R2 convex k-gons 2k + 1
Rn half spaces n+ 1
R {x 7→ sgn(sinαx) : α ∈ R} ∞

Figure 2: VC dimension of geometric concept classes

with an arbitrary labelling f : S → {−1,+1}. Define α := π
2

(
1 +

∑m
i=1 2i(1− f(xi))

)
. Then for

k = 1, . . . ,m we have

αxk mod 2π = α2−k mod 2π

=
π

2

(
2−k +

k−1∑
i=1

(1− f(xi))2
i−k

)
+
π

2
(1− f(xk))

= cπ +
π

2
(1− f(xk)) ,

where c ∈ (0, 1). It is thus clear that sgn(sinαxk) = f(xk) for k = 1, . . . ,m.
Given a concept class C on an input space X , the dual concept class C∗ ⊆ {0, 1}C comprises the set

of functions fx : C → {0, 1}, x ∈ X , such that fx(c) = c(x) for all c ∈ C.

Proposition 2. VC(C) ≤ 2VC(C∗).

Proof. Suppose {c1, . . . , c2n} ⊆ C is shattered by C∗ for some n ∈ N. Then for each i ∈ {1, . . . , n}
there exists xi ∈ X such that fxi(cj) = 1 if and only if the i-th bit of j is 1. But then {c1, . . . , c2n}
shatters {x1, . . . , xn}.

3.2 The Growth Function

In this section we define the growth function of a concept class and show that VC dimension can be
used to obtain bounds on the growth function.

Consider a concept class C on input set X . Given a finite sample S ⊆ X , define

ΠC(S) = {c|S : c ∈ C} .

The growth function of C is defined as

ΠC(m) = max
S:|S|=m

|ΠC(S)|.

Thus ΠC(m) gives the maximum number of labellings induced by C on a set of cardinality m.

Example: open intervals. By way of example, we calculate the growth function in case the hypothe-
sis set C is the class of open sub-intervals of R. Given a set S of m distinct points in R, the subsets of S
of the form c∩S for c ∈ C are precisely the subsets of S consisting of contiguous elements. Such subsets
are determined by their (zero, one, or two) endpoints, and hence ΠH(m) =

(
m
2

)
+
(
m
1

)
+
(
m
0

)
= O(m2).

The following lemma gives an upper bound on the growth function in terms of VC dimension. It
implies that either ΠC(m) is polynomially bounded or ΠC(m) = 2m for all m.

Lemma 3 (Sauer [15], Shelah [17]). Let C be a hypothesis set with finite VC dimension d. Then for all
m ≥ d,

ΠC(m) ≤
d∑

k=0

(
m

k

)
≤
(em
d

)d
.
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Considering X = N and C the collection of subsets of N of cardinality at most d, one sees that the
upper bound in Lemma 3 is tight.

3.3 Concept Classes from Predicate Logic

Let σ be a signature of predicate logic. For a σ-formula ϕ(x1, . . . , xm, y1, . . . , yn), σ-structure A, and
elements b1, . . . , bn ∈ A, we write

ϕ(A, b1, . . . , bn) := {(a1, . . . , am) ∈ Am : A |= ϕ(a1, . . . , am, b1, . . . , bn)} .

We call ϕ(A, b1, . . . , bn) the set defined by ϕ with parameters b1, . . . , bn. Then the definable family of
sets

C(ϕ,A) = {ϕ(A, b1, . . . , bn) : b1 . . . , bn ∈ A}

specifies a concept class on the input space X = Am. We write VC(ϕ,A) for VC(C(ϕ,A)).
In this section we show that VC(ϕ,A) is finite if A = (R, 0, 1,+,×) is the field of real numbers

and, more generally, when A is an o-minimal structure. As we remark later, these results can be used
to bound the VC dimension of fixed neural-net architectures with polynomial and sigmoidal activation
functions.

Lemma 4 (Shelah [16]). Let K be a class of structures such that for every formula ϕ(x, y1, . . . , yn)
the set {VC(ϕ,A) : A ∈ K} is bounded. Then it also holds that {VC(ϕ,A) : A ∈ K} is bounded for
every first-order formula ϕ(x1, . . . , xm, y1, . . . , yn).

The following result of semi-algebraic geometry is key to obtaining VC-dimension bounds of uni-
formly defined families over the reals. The result is an adaptation by Goldberg and Jerrum [4] of a
result of Warren [19].

Theorem 5. Let P1, . . . , P` be a set of polynomials of degree at most d in k real variables with ` ≥ k.
Then the number of realisable sign assignments to the Pi (either positive, negative, or zero) is at most
(8ed`/k)k.

With Theorem 5 in hand we can show:

Proposition 6. LetA = (R, 0, 1,+,×) and let ϕ(x1, . . . , xn, y1, . . . , yk) be a Boolean combination of
s polynomial equalities and inequalities, with each polynomial mentioned in ϕ having degree at most
d. Then VC(ϕ,A) is at most 2k log(8eds).

Proof. Suppose that S ⊆ Rn is a set of cardinality m ∈ N that is shattered by C. For each a ∈ S the
formula ϕ(a, ·) is defined by a Boolean combination of at most s equalities and inequalities involving
polynomials of degree at most d. Consider the collection P of polynomials that appear in some formula
ϕ(a, ·), a ∈ S. The behaviour of ϕ(·, b) on S is determined by the signs of the polynomials in P
when evaluated on b. Since |P| ≤ ms, by Theorem 5 the number of realisable sign assignments of the
polynomials in P is at most

(
8edms
k

)k
. Since S is shattered we must have 2m ≤

(
8edms
k

)k
and, taking

logarithms,
m ≤ k log(8eds) + k log(m/k) .

We now consider two cases: if m/k ≤ 8eds then the right-hand term in the above inequality is at most
2k log(8eds), while if m/k ≥ 8eds then we have m ≤ 2k log(m/k), which entails the result.

Recall that an ordered structure A is o-minimal if every definable subset of A is a finite union of
intervals.

Proposition 7. If A is an o-minimal structure then VC(ϕ,A) <∞ for every first-order formula ϕ.
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Proof. By Theorem 4 it suffices to prove that VC(ϕ,A) < ∞) for every formula ϕ(x1, y1, . . . , yn).
But it is shown in [11] that for such a formula ϕ there is a bound on the number intervals comprising
ϕ(A, b1, . . . , bn) that is independent of b1, . . . , bn ∈ A. Since a set of 2k + 1 distinct elements cannot
be shattered by the collection of all subsets of A that are comprised of unions of at most k intervals, the
proof is complete.

3.4 Uniform Bounds on VC Dimension over Classes of Structures

In this section we fix a signature σ comprising unary predicate symbols and a single binary relation
symbol E. For a given σ-formula ϕ and class K of σ-structures, we aim to give upper bounds on
{VC(ϕ,A) : A ∈ K}. The following simple example shows that no such bounds hold in case K is the
class of all finite graphs:

Example. Consider the formula ϕ := E(x, y) and let Gn = (U, V,E) be a bipartite graph with sets
of vertices U = {1, . . . , n} and V = 2{1,...,n} and edges E = {(i, α) : i ∈ U,α ∈ V, i ∈ α}. Clearly
VC(ϕ,Gn) ≥ n.

Say that a σ-structure A is a tree if the relation EA is the graph of a partial function and there is a
node r (the root) such that every other node has a unique path to r. We say that A is a forest if it is a
disjoint union of trees.

Theorem 8 ([12]). Let K be the class of σ-structures A such that the edge relation EA is the graph
of a function on A. Then for any formula ϕ(x1, . . . , xm, y1, . . . , yn) the set {VC(ϕ,A) : A ∈ K} is
bounded.

Proof. By Theorem 4 it suffices to prove the result in the case m = 1.
Given a, b ∈ A let d(a, b) denote the distance of a and b in the underlying undirected graph of A.

Given k, s ∈ N, denote by tpAk (a1, . . . , as) the k-type of a1, . . . , as ∈ A, i.e. the set of all formulas
ψ(x1, . . . , xs) of quantifier depth at most k that are satisfied by a1, . . . , as.

The idea of the proof is to consider two classes of sets that cannot be shattered by C(ϕ,A) and then
to argue that any suitably large sample S ⊆ A must contain a subset that is in one of the two classes of
“unshatterable” sets. (Note in passing that the restriction on the class of structures K in the statement
of the theorem only plays a role for the second class of unshatterable set.)

We first show that a set S ⊆ A of cardinality 4n such that tpAk (a) = tpAk (b) and d(a, b) > 4k for
all pairs of distinct elements a, b ∈ A cannot be shattered. Indeed, consider such a set and fix a set of
parameters c = (c1, . . . , cn). For each ci we have d(ci, a) < 2k for at most one element a ∈ A, hence
there exists S1 ⊆ S of cardinality 3n such that d(a, ci) > 2k for all a ∈ S1 and i = 1, . . . , n. Now by
locality of first-order logic we have that tpAk (ac) = tpAk (bc) for all a, b ∈ S1 (see, e.g., [5, Corollary
25]). Hence the function ϕ(·, c) is constant on S1. It follows that S cannot be shattered since there is
no set of parameters c such that ϕ(·, c) maps exactly 2n elements of S to true.

Next we show that C(ϕ,A) cannot shatter S = {a1, . . . , a4n} ⊆ A such that there exist subtrees
T1, . . . , T4s ofA such that ai ∈ Ti, the respective roots of the Ti are all children of a common node, and
tpTik (ai) = tp

Tj
k (aj) for all i, j ∈ {1, . . . , 4n}. Indeed, consider such a set S and fix a set of parameters

c = (c1, . . . , cn). For each ci we have ci ∈ Tj for at most one j ∈ {1, . . . , 4n} and hence without loss
of generality we may suppose that ci 6∈ Tj for all i ∈ {1, . . . , n} and j ∈ {1, . . . , 3n}. It follows by
a version of the composition method for forests (see, e.g., [5, Lemma 2.7]) that tpAk (aic) = tpAk (ajc)
for all i, j ∈ {1, . . . , 3n}. Thus the function ϕ(·, c) is constant on {a1, . . . , a3n} and we conclude that
there is no set of parameters c such that ϕ(·, c) maps exactly 2n elements of S to true.

It remains to argue that a sufficiently large sample S ⊆ A contains one of the above two types of
unshatterable set. We only give a very quick sketch. The argument has two ingredients. First by the
Ramsey theorem, for all positive integers N1 and N2 there exists a positive integer M such that any set
S ⊆ A of cardinality M contains either S1 ⊆ S of cardinality N1 such that d(a, b) > 4k for all distinct
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a, b ∈ S1 or a subset S2 ⊆ S of cardinality N2 such that d(a, b) ≤ 4k for all distinct a, b ∈ S2. Using
the fact that there are finitely many depth-k types in one variable one can show that for N1 sufficiently
large S1 contains an unshatterable set of the first type and for N2 sufficiently large S2 contains an
unshatterable set of the second type.

A related result has been obtained by by Grohe and Turán [5], who showed that for ϕ an MSO
formula over a relational signature σ and w ∈ N, there is an upper bound on {VC(ϕ,A) : A ∈ K} for
K the class of σ-structures of tree-width at most w. A class of graphs that has unbounded tree-width
and is closed under subgraphs (minors?) contains arbitrarily large grids and hence, by the following
example, cannot have bounded VC dimension.

Example: grid graphs. Let Gm,n denote the graph set of vertices {1, . . . ,m} × {1, . . . , n} such
that there is an edge from (i, j) to (i′, j′) if |i − i′| + |j − j′| = 1. Such a graph can be viewed as
being embedded in the plane as a grid in an obvious manner. We describe a formula ϕ(x, y) such
that VC(ϕ,Gn,2n) ≥ n. The formula ϕ is such that Gn,2n |= ϕ((i, 1), (1, j)) if the i-th bit in the
binary expansion of j is 1. Then the concept class C(ϕ,Gn,2n) shatters the set {(1, 1), . . . , (n, 1)}. The
definition of ϕ involves an existentially quantified monadic variableX such thatX(i, j) holds precisely
when the i-th bit in the binary expansion of j is 1. (The formula ϕ uses the predicate X to simulate a
binary counter: for j = 1, . . . , 2n the bit vector X(·, j) gives the binary expansion of j.) The formula
ϕ(x, y) expresses that the vertical path starting at x meets the horizontal path starting at y at a vertex z
such that X(z) is true.

3.5 VC Dimension Bounds for Neural Nets

In this section we consider multilayered feedforward neural nets with a single output that use sgn(x) as
activation function. Each neuron in such a network implements a linear threshold function.

Theorem 9. Fix an architecture with n0 inputs and ω parameters and write C ⊆ {0, 1}Rn0 the for class
of functions that can be implemented by instantiating the parameters. Then

VC(C) ≤ 2ω log2(eω) .

Proof. Suppose that the network has depth d and ni neurons in the i-th level for i = 0, . . . , d. Let ωi,j
be the number of free parameters of the j-th neuron on level i and let Ci,j ⊆ {0, 1}R

ni−1 be the class of
functions that can be implemented by this neuron. Then the VC dimension of Ci,j is equal to ωi,j and

hence ΠCi,j (m) ≤
(
em
wi,j

)ωi,j

by Sauer’s Lemma. It follows that

ΠC(m) ≤
d∏
i=1

ni∏
j=1

ΠCi,j (m)

≤
d∏
i=1

ni∏
j=1

(
em

ωi,j

)ωi,j

≤ (em)ω (since ωi,j ≥ 1) .

Now for any positive integer m we have that VC(C) < m if 2m > (em)ω. This is satisfied for
m = 2ω log2(eω) for all ω > 1. Since the result holds trivially when ω = 1 the proof is complete.

4 VC Classes are PAC Learnable

In this section we show that concept classes with finite VC dimension are learnable with a sample bound
that is linear in the VC dimension and polynomial in 1/ε and 1/δ. In fact we show that any function
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that returns a consistent hypothesis given a “sufficiently large” sample is a PAC learning map. At this
stage we don’t say anything about the computational complexity of finding a consistent hypothesis.

Let C be a concept class on input set X and c ∈ C a given target concept. Given a finite set S ⊆ X
the empirical error of h ∈ C on S is defined to be errS(h) := 1

|S|
∑

x∈S I(h(x) = c(x)). In this section
we show, roughly speaking, that if C has finite VC dimension then there exists m such that for any
distribution D on X , with high probability a sample S ∼ Dm is such that errS(h) is close to err(h) for
all h ∈ C. Moreover the sample size m is independent of the distribution D.

Let S = {x1, . . . , x2m} be an arbitrary list of elements of X for some positive integer m, and
consider the following random experiment: for each index i = 1, . . . ,m, swap xi with xi+m with prob-
ability 1/2 and otherwise do nothing. Now define S1 := {x1, . . . , xm} and S2 := {xm+1, . . . , x2m}.

Proposition 10. Given ε > 0, the probability that there exists h ∈ C such that |errS1(h)−errS2(h)| > ε

is at most ΠC(2m)2 exp(−mε
2

2 ).

Proof. Fix h ∈ C. Consider independent random variables Xi, i ∈ {1, . . . ,m}, defined by

Xi :=


−1 if c(si) = h(si) and c(s′i) 6= h(s′i)
+1 if c(si) 6= h(si) and c(s′i) = h(s′i)
0 otherwise.

Writing X = 1
m(X1 + · · ·Xm) and applying Hoeffding’s Inequality (see Section A), we have that

Pr(|errS1(h)− errS2(h)| > ε) = Pr(|S| > ε) ≤ 2 exp

(
−mε2

2

)
.

The proposition now follows by taking a union bound over the ΠC(2m) possibilities for h|S .

Theorem 11 (Uniform Convergence). Let C be a concept class on input set X that has VC dimension
d. Then there is an absolute constant c0 such that for any ε, δ > 0, if

m ≥ c0

ε2

(
log

1

δ
+ d log

d

ε

)
(1)

then for any target concept c : X → {0, 1} and distribution D on X ,

Pr
S∼Dm

(
∃h ∈ C : |errS(h)− err(h)| > ε

)
≤ δ .

Proof. Choose a sample S = {x1, . . . , x2m} ∈ X 2m i.i.d. from distribution D. For each index
i ∈ {1, . . . ,m} swap xi and xi+m with probability 1/2 and otherwise do nothing. Writing S1 :=
{x1, . . . , xm} and S2 := {xm+1, . . . , x2m}, the resulting distribution on S1 and S2 is the same as if we
were to draw two lists of m elements i.i.d. from D.

LetA be the event that there exists h ∈ C with |errS1(h)−err(h)| > ε. We show that Pr(A) ≤ δ. To
this end, consider the eventB that there exists h ∈ C with |errS1(h)−errS2(h)| > ε/2 together with the
random variable Pr(B | S1)—the probability of B conditioned on S1. We argue that Pr(B | S1) ≥ 1

2
if S1 corresponds to an outcome in event A, i.e., if there exists h1 ∈ H with |errS1(h1)− err(h1)| > ε.
Indeed, since S1 and S2 are independent, the distribution of S2 conditioned on S1 is identical to Dm.
Hence by Hoeffding’s Inequality and the bound (1) we have

Pr(B | S1) ≥ Pr(|errS2(h1)− err(h1)| ≤ ε/2) ≥ 1/2 .

It follows that Pr(B) ≥ Pr(B ∩A) ≥ 1/2 Pr(A) and hence Pr(A) ≤ 2 Pr(B).
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Thus to show that Pr(A) ≤ δ it suffices to prove that Pr(B) ≤ δ/2. To this end, write Pr(B | S)
for the probability of B conditioned on a particular outcome S of the initial sample of 2m elements
from X . Then we have

Pr(B | S) ≤ ΠC(2m)2 exp
(
−ε2m/8

)
≤
(

2em

d

)d
2 exp

(
−ε2m/8

)
,

where the first inequality follows from Proposition 10 and the second follows from Corollary 3. By
simple algebra it can be shown that for c0 sufficiently large, if m satisfies the bound (1) then the above
expression for Pr(B | S) is at most δ/2. Since this inequality holds irrespective of S, we have that
Pr(B) ≤ δ/2.

Theorem 12. A concept class that has finite VC dimension admits a proper PAC learning function.

Proof. By Theorem 11 if m ∈ N satisfies (1) then any function that maps a labelled sample of size m
to a consistent hypothesis is a PAC learning map.

For later use we state the following immediate consequence of Proposition 16.

Corollary 13. Let C ⊆ {0, 1}X have VC dimension d. Let D be a distribution on X and ε > 0. Then
there exists a multiset S ⊆ X of cardinality O(d/ε2) such that for all h ∈ C,∣∣∣∣∣ Pr

x∼D
(h(x) = 1)− 1

|S|
∑
x∈S

h(x)

∣∣∣∣∣ < ε . (2)

Proof. The result holds by applying Proposition 16 in the special case that c : X → {0, 1} is the con-
stant zero function. Note that we seek the mere existence of a set S satisfying (2) while Proposition 16
gives bounds on the probability that a set S randomly chosen from Dm satisfies (2).

The final result of this section shows that PAC learnable classes have finite VC dimension. In
particular the result shows that the class of all convex polygons in the plane is not PAC learnable. The
proof (omitted) is an application of the probabilistic method.

Theorem 14. Let C be a concept class that has VC dimension at least d. Then for any learning al-
gorithm there exists a target concept c ∈ D and distribution D on the input space X such that if the
algorithm is given d/2 examples then the output hypothesis h ∈ C is such that

Pr(err(h) > 1/8) > 1/8 .

5 Sample Compression Schemes

5.1 Definitions

The notion of a sample compression scheme captures a common property of many learning procedures.
A sample compression scheme of size k for a concept class consists of a compression function and a
reconstruction function. Given a finite set of examples, labelled by the target concept, the compression
function returns a subset of examples of size at most k and some side information from a finite set.
The reconstruction function uses the subset of examples to construct a hypothesis for the concept to
be learned. The reconstructed hypothesis is required to predict the correct label for all examples in the
original sample set.

Formally, a sample compression scheme for a concept class C consists of positive integer k ∈ N,
called the kernel size, and a finite information set I , together with:
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• A compression map
κ :

⋃
m∈N

LC(m)→ LC(k)× I

mapping (S, f) to ((S′, f ′), σ), where S′ ⊆ S and f ′ = f |S′ .

• A reconstruction map
ρ : LC(k)× I → {0, 1}X ,

such that ρ(κ(S, f))|S = f for all (S, f) ∈ LC(m), m ≥ k.

Example: rectangles in the plane. Our first example of a sample compression scheme concerns
the concept class of axis-aligned rectangles, as described in Section 2.2. Here the compression function
selects from a given sample a subset of at most four points—namely the points with the least and greatest
x and y coordinates. The reconstruction function maps the four selected points to the smallest enclosing
rectangle. Clearly this rectangle correctly predicts the label of all points in the original sample.

Example: intervals in the real line. Consider the concept class of all subsets of R that are formed
of at most n intervals. We describe a sample compression scheme of kernel size 2n. The compression
function that scans a sample left-to-right, saves the first positive example, the first subsequent negative
example, the first subsequent positive example, and so on. At most 2n points are saved by the compres-
sion map. The reconstruction map builds a union of left-closed right-open intervals whose endpoints
are adjacent positive and negative examples from the compressed sample.

Example: support vector machines. This example assumes knowledge of the support vector ma-
chines algorithm for learning half-spaces in Rn. Given a labelled sample, this algorithm returns a linear
classifier of maximum margin. This algorithm can be seen as the composition of a compression map
and a reconstruction map. The compression map selects from the sample a subset (of so-called support
vectors) that determine a maximum margin classifier for the whole set. The reconstruction map builds
this classifier from the support vectors.

Example: mistake-bounded algorithms. Our final example of a compression scheme assumes fa-
miliarity with notions from online learning. Consider a concept class C ⊆ {0, 1}X that admits an online
mistake-driven learning algorithm A with mistake bound k (e.g., the Winnow algorithm for learning
monotone disjunctions.) We describe a compression scheme of kernel size k. Fix a linear order on X ,
which we call the default order. The compression map sends a sample (S, c|S) to the subsequence of
inputs for which algorithm A would predict an incorrect label if given S in the default order. In order
to predict the label of some x ∈ X that does not lie in the compression set, the reconstruction map
runs algorithm A on all the entries of the compression set that precede x in the default order, and then
outputs the label for x that is predicted by A.

Next we prove that every concept class that has a sample compression scheme is PAC learnable:

Theorem 15. Let C be a concept class on input space X that has a sample compression scheme κ, ρ of
kernel size k. Given ε > 0 and δ > 0, let

m ≥ max

(
2

ε

(
log

(
2

δ

)
+ log |I|

)
,
4k

ε
log

(
4k

ε

)
+ 2k

)
.

Then the functionH : LC(m)→ {0, 1}X defined byH(S, f) = ρ(κ(S, f)) is a PAC learning map with
generalisation error ε and failure probability δ.
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Proof sketch. Let c ∈ C be the target concept and D a distribution on the input space X . Consider a
sample S = {x1, . . . , xm} of m points drawn i.i.d. from D. Given the labelled sample (S, c|S), the
compression map determines a subset T ⊆ {1, . . . ,m} of cardinality k and σ ∈ I such that, writing
S′ = {xi : i ∈ T}, the hypothesis returned by the learning map is hT,σ := ρ((S′, c|S′), σ). Note that
hT,σ is a consistent hypothesis—it agrees with c on S. Intuitively our goal is to bound the probability
(over the random sample S) that there exists a “bad” choice of T and σ, i.e., such that hT,σ is a consistent
hypothesis for S and err(hT,σ) > ε.

Fix σ ∈ I and T ⊆ {1, . . . ,m} of cardinality at most k. For these fixed values of σ and T consider
hT,σ (as defined above) as a random variable on the space of samples S. Since the sample points are
independent, the probability that err(hT,σ) > ε and hT,σ agrees with c on all samples xi for i 6∈ T
is at most (1 − ε)m−k. Taking a union bound over all |I|

(
m
k

)
choices of σ and T and doing some

arithmetic (see [10] for details), we have that the probability that there exists some σ and T such that
err(hT,σ) > ε and hT,σ agrees with all c on S is at most δ.

5.2 VC Classes have Sample Compression Schemes

Littlestone and Warmuth [10] conjectured that any concept class with finite VC dimension d has a com-
pression scheme of kernel size d. Obtaining compression schemes for VC classes has been studied in
the context of model theory. Johnson and Laskowski [7] showed that ifA is an o-minimal structure then
the concept class C(ϕ,A) has a compression scheme of kernel size equal to the number of parameters
of ϕ. Livni and Simon [8] and Chernikov and Simon [3] show the existence of compression schemes
in case A is an NIP structure, that is, a structure in which all definable families C(ϕ,A) have finite VC
dimension. In this section we present a result of Moran and Yehudayoff [14] that a concept class of VC
dimension d has a sample compression scheme of kernel size 2poly(d).

We will need two preliminary results. The first, Proposition 16, is a direct application of Theo-
rem 13.

Proposition 16. Let C ⊆ {0, 1}X be a concept class such that the dual class C∗ ⊆ {0, 1}C has VC
dimension d∗. Let D∗ be a distribution over C and ε > 0. Then there is a multiset F ⊆ C of size
O(d∗/ε2) such that for all x ∈ X ,∣∣∣∣∣ Pr

h∼D∗
(h(x) = 1)− 1

|F|
∑
h∈F

h(x)

∣∣∣∣∣ ≤ ε .
The second result we will need is Von Neumann’s minimax theorem for zero-sum matrix games:

Theorem 17 (Minimax). Let M ∈ Rm×n be a real matrix. Then

min
p∈∆m

max
q∈∆n

p>Mq = max
q∈∆n

min
p∈∆m

p>Mq ,

where ∆` denotes the set of distributions on {1, . . . , `} for ` ∈ N.

We now come to the main result of the section.

Theorem 18. Let C be a concept class of VC dimension d and dual VC dimension d∗. Then C admits a
sample compression scheme of kernel size O(d · d∗).

The rest of this section is devoted to the proof of Theorem 18.
Since C has finite VC dimension there exists s ∈ N and a proper learning map H : LC(s) → C

such that for every target concept c ∈ C there exists a sample T ⊆ X of cardinality at most s such that
err(H(T, c|T )) ≤ 1/3.
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Let (S, c|S) be a labelled sample to be compressed, where S ⊆ X . Let H = {H(T, c|T ) : T ⊆
S, |T | ≤ s} be the image of the learning map on subsets of S of cardinality at most s. We claim
that there is finite subset F ⊆ H of cardinality O(d∗) such that the label of each element of S can be
determined by a majority vote among the concepts in F .

Claim 19. There are k = O(d∗) functions f1 . . . , fk ∈ H such that for all x ∈ S,

|{i : fi(x) = c(x)}| > k/2 .

proof of claim. We will apply the minimax theorem to the S×HmatrixM such thatMx,f = I{f(x) =
c(x)}. By definition of the learning mapH , for every distributionD on S there is h ∈ H such that such
that

Pr
x∼D

(h(x) = c(x)) ≥ 2/3

Therefore, by the Minimax Theorem applied to the matrix M , there is a distribution D∗ onH such that
for every x ∈ S,

Pr
h∼D∗

(h(x) = c(x)) ≥ 2/3

By Proposition 16 applied to H and D∗, with ε = 1/8, there is a multiset {f1, . . . , fk} ⊆ H of size
k = O(d∗) such that for every x ∈ S,

|{i : fi(x) = c(x)}|
k

≥ Pr
h∼D∗

(h(x) = c(x))− 1/8 > 1/2

This concludes the proof of the claim.

Given the claim, we can proceed to describe a sample compression scheme for C.

Compression. Let Zi ⊆ S be such fi = H(Zi, c|Zi) for i = 1, . . . , k. We define the compression
map κ by κ(S, c|S) = ((Z, c|Z), σ) where Z = ∪ki=1Zi and the information σ identifies which elements
of Z lie in each of the subsets Z1, . . . , Zk. Note that |Z| = O(s · d∗) = O(d · d∗).

Reconstruction. We define h = ρ((Z, f), σ) as follows. Consider the sets Z1, . . . , Zk determined
by Z and σ and define fi = H(Zi, c|Zi) for i = 1, . . . , k. For every x ∈ X , we define h(x) to be the
majority element in the list f1(x), . . . , fk(x).

6 Concepts that are Hard to Learn

In this section we turn our attention to the computational complexity of learning. Here it is natural
to consider concept classes C = {Cn : n ∈ N} that are parameterised by the input size of a learning
problem, e.g., for a given alphabet we might have Cn be the class of regular languages whose minimum
automaton has n states. Under a widely believed cryptographic assumption, we’ll show that there
are classes such that VC(Cn) grows polynomially in n (so there is no information theoretic barrier to
efficient learning) and yet there is no polynomial-time PAC learning algorithm (due to the difficulty of
predicting the value of a concept on a new input based on its behaviour on previously seen inputs). This
negative result applies even in the case of improper learning, where the output hypothesis is allowed to
come from any polynomially evaluable hypothesis class.

12



6.1 The Discrete Cube Root Assumption

In this section we describe the cryptographic assumption on which the hard-to-learn class is based.
Given primes p, q such that p, q ≡ 2 mod 3, write N = pq. Let Z∗N denote the multiplicative group

{a ∈ ZN : gcd(a,N) = 1}. Then |Z∗N | = ϕ(N) = (p − 1)(q − 1), where ϕ denotes Euler’s totient
function. By the choice of p and q we have that gcd(3, ϕ(N)) = 1 and hence there exist d, k ∈ N such
that 3d = 1 + kϕ(N).

Consider the function fN : Z∗N → Z∗N , given by fN (x) = x3 mod N . This function is a bijection:
indeed, defining gN : Z∗N → Z∗N by gN (y) = yd mod N, then by Fermat’s Little Theorem we have

fN (gN (x)) = gN (fN (x)) = x3d = x1+kϕ(N) = x

for all x ∈ Z∗N . We naturally call gN the discrete cube root function.
Given N and x ∈ Z∗N , suppose we want to compute gN (x). We can do this in polynomial time (in

the bit length of N ) if we know the prime factors p and q of N , since then we can compute ϕ(N) and
hence determine the exponent d. However it is a different matter if only N and x are known. In fact the
following is a standard assumption in cryptography:

Definition 20 (Discrete Cube Root Assumption (DCRA)). For any polynomial P (·), there does not
exist any algorithm, A, that runs in time P (n) and on input N and x, where N is the product of
two random n-bit primes p, q ≡ 2 mod 3 and x is chosen randomly from Z∗N , outputs gN (x) with
probability at least 1/P (n). The probability is over the random choices of p, q, x and any internal
randomisation of A.

6.2 A Learning Problem Based on DCRA

Let us try to phrase the question of finding the cube root of x ∈ Z∗N as a learning question. Suppose
that we have access to a sample, (x1, y1), (x2, y2), . . . , (xm, ym), where yi = gN (xi) for i = 1, . . . ,m,
and xi are drawn uniformly at random from Z∗N . The learning question is, given such examples, can
we obtain h : Z∗N → Z∗N such that for x drawn uniformly at random from Z∗N it holds with probability
at least 1− δ over the sample, that Pr(h(x) 6= gN (x)) ≤ ε?

Suppose there were a learning algorithm that computed such a function h in polynomial time in the
bit size of N . We observe that this supposition would contradict DCRA. Indeed it is easy to generate
a sample on which to train such an algorithm since, although finding the cube root is hard, finding
the cube is easy. As gN is a bijection, we can choose yi ∈ Z∗N uniformly at random, and then set
xi = y3

i mod N . Note that this implies that the distribution of xi is uniform over Z∗N .
The above learning problem almost fits into our formulation of the PAC model, except that the

output of the target function is not in {0, 1}. This can be easily fixed. We know that the output of
gN is some 2n bit string. Thus we consider 2n different target functions, gN,i : Z∗N → {0, 1}, for
i = 1, . . . , 2n, where gN,i outputs the i-th bit of the function gN . If we could learn all the functions,
gN,i to accuracy ε

2n , then we could reconstruct gN to accuracy ε. Thus, if learning gN is hard, then at
least one of the Boolean functions gN,i must also be hard to learn.

6.3 A Concept Class that is Hard to Learn

So far, we’ve established that if we choose random n bit primes p and q of the form 3k+ 2, there exists
a Boolean function, gN,i, such that if we get labelled examples from a specific distribution D over
2n bit strings, namely the uniform distribution over bit representations of elements in Z∗N , we cannot
output a (polynomially evaluable) hypothesis h, such that Prx∼D(gN,i(x) 6= h(x)) ≤ ε

2n . If we can
identify a parametrised concept class C = {Cn : n ∈ N} such that gN,i ∈ C2n, then the class C cannot
PAC-learnable in polynomial time.
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Let us try and understand what such a concept class could be. First, we note that if d is known,
there is a rather simple polynomial time algorithm to output gN (x). All we need to do is perform
the operation xd mod N . Naively computing xd is not efficient as d may be as large as ϕ(N), i.e.,
d may itself be 2n bits long. The first thing we need to ensure is that all operations are repeatedly
performed modulo N ; this way none of the representations get too large. The second is that we start by
computing, x mod N, x2 mod N, x4 mod N, x8 mod N, . . . , x2blogϕ(N)c

mod N , i.e., we compute
x2i mod N for i = 0, 1 . . . , blogϕ(N)c. To obtain xd mod N , we simply take the product of the terms
x2i mod N such that the i-th bit of d is 1. This shows that there exists a circuit of polynomial size that
computes gN where d is hard-wired into the circuit itself. In particular, this also implies that there exist
polynomial-size circuits for gN,i for all i = 1, . . . , 2n. This gives us the following result.

Theorem 21. There exists a fixed polynomial P (·), such that class of circuits, C, where Cn consists of
circuits of size at most P (n), is not PAC-learnable under the discrete cube root assumption.

This result can be strengthened to show that for a fixed polynomial P (·), the class of circuits C,
where Cn consists of circuits of size at most P (n) and depth log n, is not PAC-learnable under the
discrete cube-root assumption.

7 Learning Weighted Automata

7.1 Preliminaries

A weighted automaton over a field K is a tupleA = (n,Σ, α, {M(σ)}σ∈Σ, η) comprising the dimension
n ∈ N, alphabet Σ, initial-state vector α ∈ Kn, family of transition matricesM(σ) ∈ Kn×n, and final-
state vector η ∈ Kn. Extend M freely to Σ∗ by writing M(σ1 . . . σk) = M(σ1) · · ·M(σk). Then A is
said to recognise a formal power series f : Σ∗ → K if f(w) = α>M(w)η for all w ∈ Σ∗.

Write ei ∈ Kn for the column vector with 1 in the i-th position and 0 in all other positions.
Define the Hankel matrix of a formal power series f : Σ∗ → K to be the infinite matrix F whose

rows and columns are indexed by Σ∗, such that Fx,y = f(xy) for x, y ∈ Σ∗. Recall that if f is
recognised by a K-weighted automaton A then the rank of its Hankel matrix is at most the number of
states of A.

7.2 The Algorithm

We describe an algorithm (from [1]) to exactly learn a weighted automaton computing a given function
f : Σ∗ → K using membership and equivalence queries. In a membership query the learner asks for
the value of f on a given word w ∈ Σ∗.

At each stage the algorithm maintains the following data:

• A set of n “rows” X = {x1, . . . , xn} ⊆ Σ∗, where x1 = ε.

• A set of n “columns” Y = {y1, . . . , yn} ⊆ Σ∗, where y1 = ε.

• A full-rank n× n submatrix H of F , determined by X and Y :

H =


f(x1y1) f(x1y2) · · · f(x1yn)
f(x2y1) f(x2y2) · · · f(x2yn)

...
...

. . .
...

f(xny1) f(xny2) · · · f(xnyn)


The entries of the matrix H are determined by making membership queries.
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These data determine a Hypothesis automaton A as follows. Intuitively the states of A correspond
to the rows of H , with the i-th row being the state reached after executing word xi from the initial state.
The columns can be considered as tests that distinguish different states.

Formally A has dimension n, initial-state vector α> := e>1 H , the first row of H , and final-state
vector η := e1. Since H has full rank, for each σ ∈ Σ we can define the transition matrix M(σ) by the
equation

HM(σ) =


f(x1σy1) f(x1σy2) · · · f(x1σyn)
f(x2σy1) f(x2σy2) · · · f(x2σyn)

...
...

. . .
...

f(xnσy1) f(xnσy2) · · · f(xnσyn)


In each step of the algorithm an equivalence query is performed to determine whether A computes

f . If not, a counterexample w ∈ Σ∗ is returned.

Proposition 22. A counterexample z has a prefix wσ, where σ ∈ Σ and w ∈ Σ∗, such that for some
i ∈ {1, . . . , n} the assignment X ← X ∪ {w}, Y ← Y ∪ {σyi} increases the rank of H by one.

Proof. Say that automaton A is correct on a word w ∈ Σ∗ if

α>M(w) = (f(wy1), . . . , f(wyn)) . (3)

Note that in this case A(w) = α>M(w)η = f(w). It follows that A is not correct on z. Since it is
clearly correct on the empty word, there must exist a prefix wσ of z such thatA is correct on w, but not
on wσ. For such a w we have that (3) holds, but also

α>M(wσ) 6= (f(wσy1), . . . f(wσyn)) .

In particular, we can pick i ∈ {1, . . . , n} such that

α>M(wσ)ei 6= f(wσyi) . (4)

Now consider the matrix H ′ defined by

H ′ =


f(x1y1) f(x1y2) · · · f(x1yn) f(x1σyi)

...
...

. . .
...

...
f(xny1) f(xny2) · · · f(xnyn) f(xnσyi)
f(wy1) f(wy2) . . . f(wyn) f(wσyi)


(3)
=

[
H HM(σ)ei

α>M(w) f(wσyi)

]
.

It remains to show that H ′ has rank n + 1. By assumption H has rank n, so it suffices to show
that the (n + 1)-st row of H ′ cannot be expressed as a linear combination of the first n rows. Indeed,
suppose for a contradiction that u ∈ Kn is such that u>H = α>M(w) and u>HM(σ)ei = f(wσyi).
Then

f(wσyi) = u>HM(σ)ei = αM(w)M(σ)ei ,

which contradicts (4).

The word w and suffix σyi in the above proposition can be found using membership queries.

A Hoeffding’s Inequality

Theorem 23 (Hoeffding’s Inequality). LetX1, . . . , Xm be independent random variables taking values
in the interval [a, b]. Write X = 1

m

∑m
i=1Xi and µ = E[X]. Then for all ε > 0 we have

Pr(|X − µ| > ε) ≤ 2 exp

(
−2mε2

(b− a)2

)
.
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