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Abstract

Overshooting cloud tops are a symptom of violent updrafts in deep convective clouds.

These violent updrafts often occur alongside severe weather conditions, such as avi-

ation turbulence, lightning, strong winds, heavy rainfall, hail, and tornadoes. Due to

hazards caused by overshooting tops, several methods have been developed to detect

them. Convolutional neural networks (CNNs) are well suited to this challenge as they

perform excellently in image detection. This study uses two types of convolutional

neural network to detect overshooting tops in deep convective clouds in GOES-16 satel-

lite imagery from NOAAs Geostationary Operational Environmental Satellite. Visible

and infrared images of GOES-16 satellite imagery are the primary source of input data.

These images are divided into patches of approximately 15km wide. The model im-

plemented takes in each patch and outputs its classification for that patch, whether it

contains an overshooting tops or no overshooting top. One of the main challenges faced

in training this model was the unequal class sizes, overshooting tops are very rare and

therefore therefore 99.9% of patches do not contain one. To fix this, non-trivial sam-

pling techniques and cost-sensitive learning were implemented. The final results of this

model were very good, on par with the best detection models available with a probabil-

ity of detection 81.2%, false alarm ratio 86.8, and critical success index 0.050. It was

realised that one of the most important aspects of overshooting top detection was the

availability and quality of the labelling of the images, and in this way this thesis also

made improvements. A method of automatically labelling overshooting top regions the

number of training instances can be greatly increased. 63% of the manually identified

overshooting tops were within these regions so the regions serve as an appropriate guide

for where overshooting tops are most likely to occur.
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1 | Introduction

1.1 Background

This thesis will present a methodology to detect the presence of a particular type

of weather phenomenon (overshooting tops) that occurs in thunderstorms. Firstly,

I shall describe briefly the atmospheric conditions in a thunderstorm, this is im-

portant context for understanding how overshooting tops form and how we can

use computer vision to detect them.

Thunderstorms are simply defined as storms with the presence of lightning and

therefore thunder. Thunderstorms always occur in a cumulonimbus cloud, but

a cumulonimbus cloud does not necessarily always contain lightning. Thunder-

storms are frequently accompanied by severe weather: strong winds and heavy

rain.

1.1.1 Formation of a Thunderstorm

Thunderstorms are most common around the tropics, where there is a great dif-

ference between the air temperatures of the warm, moist air from the tropical

latitudes and the cooler air from polar latitudes.

Overshooting tops (OTs) are important weather phenomenon because of the haz-

ards associated with them. Having a system to automatically detect them would

be helpful for weather forecasters. Overshooting tops have characteristics that can

be observed in visible and infrared images of satellite data. Convolutional neural

networks (CNNs) seem like an appropriate basis for developing a automatic over-

shooting top detection system. Consequently, this thesis uses CNNs for detecting

OTs. This chapter gives a brief introduction to OTs, outlines the research objec-
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Figure 1.1: Image of an Overshooting top occurring above an anvil cloud taken
from the ground

tives of this thesis, overviews important results, discusses the contributions of this

thesis to the research community, then outlines the organization of the rest of the

thesis.

Overshooting tops (OTs), also called the penetrating tops, is a dome-like protru-

sions forming above a cumulonimbus anvil (K. M. Bedka & Khlopenkov, 2016).

They form when an air parcel in a deep convective cloud protrudes its equilibrium

level near the tropopause due to momentum from a thunderstorm’s updraft. In me-

teorology, equilibrium level is the height at which rising parcel of air is at the same

temperature of its surroundings. The tropopause is the boundary between Earth’s

atmosphere between troposphere and stratosphere. Overshooting tops with strong

ascending force can penetrate the tropopause and extend into the lower strato-

sphere. These OTs can transport gases and cloud ice into the lower stratosphere,

which has a direct impact on global climate change (Homeyer & Kumjian, 2015).

Thunderstorms with OTs can cause hazardous weather conditions such as heavy

3
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rainfall, large hail, and tornadoes, and these hazards are typically concentrated

near OT regions ((K. Bedka et al., 2010); (Homeyer & Kumjian, 2015); (K. M. Bedka

& Khlopenkov, 2016); (Kim et al., 2017), (Kim, Lee, & Im, 2018)). Detecting

OTs can be useful to forecasters for warning decision making as OTs can pre-

cede severe weather events 2 by 30 minutes or more ((?, ?)). OTs can produce

turbulences at vast distance as they interact and penetrate through the tropopause,

which can be a significant hazard for the aircraft ((K. Bedka et al., 2010)). Be-

cause of the hazards associated with OTs, various OT detection models have been

developed ((K. Bedka et al., 2010); (K. M. Bedka & Khlopenkov, 2016); (Kim

et al., 2017), (Kim et al., 2018)). Satellite data is commonly used for detecting

OTs. Several studies have used images of visible and infrared channels to detect

OTs ((K. M. Bedka & Khlopenkov, 2016), (Kim et al., 2017), (Kim et al., 2018)).

OTs can penetrate more than 2 km above the surrounding anvil cloud ((Homeyer

& Kumjian, 2015); (K. M. Bedka & Khlopenkov, 2016)), having a cauliflower-

like structure in the visible image and producing shadows on the surrounding anvil

clouds. Most OTs appear as a small cluster of cold infrared window (IRW) bright-

ness temperatures (BTs) surrounded by a warmer anvil cloud.

However, not all OTs are significantly colder than the surrounding anvil cloud. A

good outcome of the thesis would eb iOne of the goals of this thesis will be to

produce a model which does not rely on the infrared channel (measuring tempera-

ture) to detect OTs. Forgoing the infrared channel as an input will allow for much

earlier detection of OTs and detection of smaller OTs, creating in effect a detector

for ’strong storm convection’ rather than for OTs.

Previous studies have shown that OTs can be detected using visible channel and

infrared channel imagery ((Setvák et al., 2010); (K. M. Bedka & Khlopenkov,

2016), (K. Bedka, Murillo, Homeyer, Scarino, & Mersiovsky, 2018), (Kim et al.,

2017), (Kim et al., 2018)). An OT can be observed in a daylight reflectance image

4
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(visible) as it protrudes above a cloud forming a dome/cauliflower-like structure

and shadows by sunlight. Infrared images are used to get brightness tempera-

tures. OTs continue to cool at a rate of 7− 9Kkm−1 as they ascend into the lower

stratosphere ((Negri & Adler, 1981); (Negri, 1982)) and are usually colder than

surrounding regions. So, OTs are often isolated regions of cold infrared window

(IRW) brightness temperatures (BTs) relative to warmer surrounding anvil clouds.

Previous studies have proposed various OT detection methods using visible and/or

infrared images. Infrared images are widely used because infrared images can

be utilized irrespective of procuring time, while visible images are only avail-

able during daytime. Dual Channel Difference ((Setvák, Rabin, & Wang, 2007))

and InfraRed Window texture (IRW-texture) ((K. Bedka et al., 2010)) are the two

most widely used methods to detect OTs with infrared images. The Dual Chan-

nel Difference or Water Vapor-InfraRed Window channel Brightness Temperature

Difference (WV-IRW BTD) approach uses the brightness temperature difference

between water vapor and window channels to detect OTs. However, the threshold

used in this method varies with the characteristics of satellite data used.

The IRW-texture algorithm was developed to identify OTs as characteristics of

groups of low IRW BT pixels within surrounding anvil clouds. However, the

thresholds used in this approach are not sufficient to cover all the characteris-

tics of OTs. This method have a POD 35.1% and FAR 24.9%. (K. M. Bedka

& Khlopenkov, 2016) developed a probabilistic OT detection approach, that the

gives the probability of occurrence of OTs using logistic regression. This method

uses both infrared and visible image data. Although this approach has better re-

sults than above mentioned approaches this approach involves pattern recognition

analysis and several rating approaches that are time consuming. This method has

POD 69% and FAR 18.4%.

Two machine learning OT detection methods are developed recently using Himawari-

5



University of Oxford Green Templeton College

8 satellite data. One of the methods uses multiple channels in Himawari-8 satellite

images and spatial texture information to extract 15 input variables to the model

(Kim et al., 2017). In this approach, authors used three machine learning tech-

niques: random forest, extremely randomized trees, and logistic regression to get

the probability of OT/non-OT occurrence. This method has POD 77.06% and FAR

36.13%. The other method (Kim et al., 2018) uses a deep learning approach to

detect OTs. This method uses visible and infrared image channels in Himawari-

8 satellite images as input to the deep learning model. This method has POD

79.68% and FAR 9.78%.

1.2 Research Objectives

The specific objectives of this thesis are the following:

• To prepare GOES-16 imagery data to be input to the convolutional neural

network (CNN) model using interpolation, image patching, and normaliza-

tion techniques

• To prepare labelled image data to ensure that the CNN is simultaneously

appropriately trained whilst also being relatively free from human bias

• To develop a convolutional neural network model to detect the OTs in the

given input data.

• To validate the model performance on the test data

• To inspect and analyst different approaches to improve the performance of

the model

6



2 | Data

Three main sources of data are used throughout this thesis. Both the visible and

infrared (IR) imagery from the Advanced Baseline Imager (ABI) aboard the Geo-

stationary Operational Environmental Satellite (GOES)-16 series of satellites is

are used for the detection of OTs. Additionally observations from the geostation-

ary lightning mapper (GLM) also aboard GOES-16 are used for validation.

2.1 Advanced Baseline Imager

The Advanced Baseline Imager (ABI) is a visible and IR radiometer aboard the

GOES-16 weather satellite. GOES-16, sometimes called GOES-East, is located at

75.2◦W above the equator, providing a field of view covering all of South America

and the majority of North America. ABI has 16 channels operating at frequencies

from visible light to thermal-IR. Whilst the majority of the channels have a reso-

lution of 2km, over the continental United States this increases to 3km due to the

azimuth angle. The ABI take images every five minutes.

2.1.1 Previous Generations of GOES

The ABI’s refresh rate, spectral range, significantly improved signal to noise ratio

and resolution makes it a huge improvement on previous generations of geosta-

tionary weather satellites. This observation is key when comparing models that

were trained on GOES-14 or earlier to the models trained here, it is very diffi-

cult to disentangle performance of the model to improvements of the data without

replicating the whole model and training on newly available data.

There is a much larger choice of channels with GOES-16 than previous gener-

ations of satellites. GOES-14 had 5 channels to choose from, GOES-16 has 16
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channels as shown in Table (2.1)

Table 2.1: GOES-16 channels, their properties and names. The central wavelength
is used because the actual wavelength is a range. The visible bands are useful
indicators of OTs but only provide information in the daytime, in order to provide
24-hour detection capability, infrared channels must be used.

Band Central
Wavelength
(µm)

Pixel
Spacing
(km)

Nickname Classification

1 0.47 1 Blue Visible
2 0.64 0.5 Red Visible
3 0.865 1 Veggie Near-infrared
4 1.378 2 Cirrus Near-infrared
5 1.61 1 Snow/Ice Near-infrared
6 2.25 2 Cloud Particle Size Near-infrared
7 3.90 2 Shortwave Window Infrared
8 6.19 2 Upper-level Tropo-

spheric Water Vapour
Infrared

9 6.95 2 Mid-level Tropospheric
Water Vapour

Near-infrared

10 7.34 2 Lower-level Tropo-
spheric Water Vapour

Near-infrared

11 8.5 2 Cloud-Top Phase Near-infrared
12 9.61 2 Ozone Infrared
13 10.35 2 Clean Infrared Long-

wave Window
Infrared

14 11.2 2 Infrared Longwave
Window

Infrared

15 12.3 2 Dirty Infrared Long-
wave Window

Infrared

16 13.3 2 CO2 Longwave In-
frared

Infrared

In this thesis the models were trained on GOES-16 data, on channels
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2.1.2 Himawari-8 Imagery

Analagous to GOES-16 over the continental United States, there is also a geosta-

tionary satellite centred over Japan called the Advanced Himawari Imager (AHI)

onboard Himawari-8. This satellite sensor has similar capabilities to GOES-16

and is the data source used by (Kim et al., 2017) and (Kim et al., 2018) for detect-

ing overshooting tops. The area covered by Himawari-8 is conducive to single-cell

thunderstorms so sees many OTs, it is therefore a good training data set for any

OT detection model. GOES-16 will be used in this thesis for two reasons; the

easier access to the data, and two, the presense of the Geostationary Lightning

Mapper, which can provide useful validation.

2.1.3 Selection of ABI Channels and Channel Combinations

In order to have equal performance during both day and nighttime1, a selection

of longwave IR ABI channels are used for the detection and tracking of OTs.

These channels consist of the LW clean and dirty windows at 10.8µm and 12.3µm

respectively, and the upper and lower troposphere water vapour channels at 6.2µm

and 7.3µm respectively. Across much of the literature, LW window IR brightness

temperature is used for the detection of OTs, but even within the DCC this channel

varies considerably with meteorology and latitude so does not generalise well, so

it will not be used in this thesis to detect OT. However it is used for the optical

flow calculation of the cloud motion field, which is used for the detection of the

cloud anvil boundary.

1Visible channels do not work at night
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Figure 2.1: Geostationary Lightning Mapper, showing the lightning flashes across
the continental United State.

2.1.4 Geostationary Lightning Mapper

The Geostationary Lightning Mapper (GLM) is another instrument on GOES-16.

It is a single channel, optical transient detector that detects all forms of lightning

day and night, with a high spatial resolution and detection efficiency.

In this thesis the GLM is used to validate the Deep Convective Cloud (DCC)

detector, to enable the

The OT and non-OT reference data were constructed by manual inspection of the

visible channel by human experts. OT can be identified in the visible channel by a

couple of characteristic features; they have a ’cauliflower like’ texture and produce

shadows upon the anvil when illuminated at off-nadir angles. Visible identification

is then potentially fraught with biases: OTs can be less obvious at solar noon then

they can in low azimuth angle sunlight, and only the most pronounced OTs will

10
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protrude enough to show a cauliflower like shape.

Any OTs found by a human should therefore be considered to be firm positives.

It is hoped that more OTs can be found by a deep learning solution compared to

human labelling.

2.1.5 Troposphere Temperature

Troposphere temperature is a very useful measure that will be used in this thesis

to eliminate some false positive detections. The process of converting the infrared

radiance values into temperature is described by (Weinreb & Han, 2011) and writ-

ten out below:

1. Scene radiance R at a pixel with value X is calculated using the formula

R =
X − b

m
(2.1)

where the value of b and m are 5.2285 and 15.6854 respectively.

2. Radiance is converted to effective temperature using the function

Teff =
c2v

log
(
1 + c1+v3

R

) (2.2)

where c1 = 1.191066× 10−5, c2 = 1.438833 and v = 936.20.

3. Actual temperature T in Kelvin is computed from effective temperature

Teff using the following equation

T = α + βTeff (2.3)

where α = −0.2875616 and β = 1.001258

11



3 | Methodology

3.1 Different Available Architectures

The problem of object detection can lead to many different solutions proposed.

Whether the end goal is to locate the OT exactly, or just identify its presence is

one such design decision that must be made.

In the literature for detecting OT several architectures have been proposed. They

all share many common features and only differ on the details. In this section I

want to thoroughly review the architectures proposed by the academic community

and investigate whether there are any alternative architectures available that

So far, methods proposed have focused around three main architectures:

1. Detection of OT using image processing (K. M. Bedka & Khlopenkov,

2016). This approach centres around the key observation that an OT cools

down when it emerges above the tropopause. This technique only works

for clear, protruding OTs in developed cumulonimbus anvils, this is only a

subset of all OTs. Many OTs don’t cool down sufficiently to be noticed by

these methods and would go undetected.

2. Detection of OT using Convolutional Neural Networks. Particularly, two ar-

chitectures proposed by (Kim et al., 2017) This technique has seen a couple

of applications in recent years but still relies on the aforementioned temper-

ature drop of the OT penetrating into the troposphere.

3. Detection of OT using a U-net. The U-net is really an extensions of the

downsampling CNN, with the addition of an upsampling network to create

high resolution outputs for the purpose of image segmentation. This ap-
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proach has the benefit of being able to produce OT regions rather than point

estimates.

Two satellite infrared-based overshooting convective cloud-top (OT) detection

methods have recently been described in the literature: 1) the 11 m infrared win-

dow channel texture (IRW texture) method, which uses IRW channel brightness

temperature (BT) spatial gradients and thresholds, and 2) the water vapor minus

IRW BT difference (WV-IRW BTD). Both of these methods have the problem that

they are not capable of detecting OTs before they appear above the tropopause,

and therefore the air parcel experiences the cooling that is visible in the IRW

channel and the protrusion that is obvious in the visible spectrum. How can you

detect something that has not happened yet? Overshooting tops do not occur in

isolation. Surrounding the top is a divergent flow field and the presence of this

divergent flow is evidence of the overshooting top that we seek to detect.

3.2 Convolutional Neural Network Theory

A CNN typically consists of a convolutional layer, pooling layer, and fully con-

nected layer, and its performance depends on how those layers are arranged and

how the network is trained. The convolutional layer and pooling layer are located

at the front of the CNN and serve to extract image features. The convolutional

layer uses a filter (kernel) to generate a convolved feature of an input image; the

feature extraction is done as a kernel matrix (in this case, 3 × 3), which sweeps

through the input image, multiplies the matrix corresponding to each element of

the image, and then adds them together. This process transforms the image into

a feature map. CNNs repeat this process to produce several features of the input

image and learns based on these diverse feature maps rather than using only one

dataset. Then, the pooling layer subsamples the result of the convolution opera-
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tion by extracting the maximum stimulus (i.e., the maximum value) of a feature

map. One of the greatest strengths of a CNN is its ability to extract features with-

out prior knowledge or effort from the user. Using the extracted features after the

convolutional and pooling layers, classification or regression proceeds in the fully

connected layer.

3.2.1 Components of CNNs

3.2.1.1 Convolution Layers

Convolution leverages three important ideas that can help improve a machine

learning system: sparse interactions, parameter sharing and equivariant represen-

tations. Sparse interactions is achieved by making the kernel smaller than the

input. The kernel can be interpreted as learning the smaller, meaningful features

such as edges that only occupy tens of pixels. Parameter sharing is a result of

using the same kernel for the whole input image. In contrast to a dense network,

where each parameter is used only once, in CNNs the same parameter is used at all

input locations. This has the dual benefit of ensuring that the layer has a property

called equivariance to translation and the network is quicker and easier to train.

A convolutional layer uses a filter (kernel) to generate a convolved feature of the

input image. Stride is the amount of movement between applications of filter to

the input image. In the convolutional layer, there will be a kernel matrix that

sweeps through the input image with a given stride and outputs the value that is

generally the sum of the product of corresponding elements in an image. This

process extracts features from the image called a feature map

In a convolutional layer, the network learns filters that extract specific features

related to the spatial positions in input images. Each filter moves across the width

and height of the input and produces a 2-dimensional feature map (a convolved
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Figure 3.1: A convolutional layer uses a filter (kernel) to generate a convolved
feature of the input image.

image) of that filter by computing the dot product between the entries of the filter

and the input and passing an activation function . This process is the same as the

way a neuron process information only for its receptive field. Under the assump-

tion that the input image and the filter are both squares, this takes the following

mathematical form:

huv = f((X ∗X)uv + b) (3.1)

(X ∗W )uv =
T∑

m=0

T∑
n=0

xu+m,v+nwmn (3.2)

where u, v = 1, ..., D

D =
I − T

S
+ 1 (3.3)
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where huv is a component of the u-th row and v-th column of feature h. I and

T are the size of an input image X and a filter W, respectively that consists of

x and w. The convolution operation, the bias term and the activation function

are denoted by ∗, b and f()̇ respectively. The generated feature map H has the

size D that depends on the step size of the filter denoted by S. When another

convolutional layer is added to the previous convolutional layer, the feature map

in a new convolutional layer can be calculated as

Hn
j = f

( K∑
k=1

Hn−1
k ∗W n

kj + bnkj

)
(3.4)

where Hn−1
k and Hn

j are the k th input and j th output feature maps. K is the

number of feature maps generated in he (n − 1) th layer. W n
kj is the filter of

the k th feature map in the (n − 1) th layer for the j th feature map in the n th

layer, and bnkj is the corresponding bias term. Every entry in a produced feature

map can be interpreted as a neuron that recognises a specific region in the input.

Neurons in the same feature map share parameters because each feature map is

created by one filter. The output of this layer is various feature maps generated

from various filters. In this process, the number of convolutional filters, the size

of these filters, and an activation function should be prefixed. The purpose of

using an active function in a CNN is basically to introduce non-linearity int he

network that calculates the linear operation (simply element-wise multiplication

and summing) in the convolutional layer.

3.2.1.2 Pooling Layers

Pooling layers make the representation approximately invariant to small transla-

tions of the input. Invariance to translation means that if the input is translated

by a small amount, the values of most of the pooled outputs are unchanged. This
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is a useful property in feature detection as it is much more important whether the

object being detected is present then where it is.

A convolutional neural network can be imagined as similar to a fully connected

network, but with an infinitely strong prior over its weights. An infinitely strong

prior says that the weights for one hidden unit must be identical to the weights of

its neighbour except shifted in space. The prior also says the weight must be zero,

except for in the small, spatially contiguous receptive field assigned to that hidden

unit. Overall, we can think of the use of convolution as introducing an infinitely

strong prior probability distribution over the parameters of the layer. This prior

says that the function the layer should learn only contains local interactions and is

equivalent to translation.

By this reasoning, it is clear that convolution and pooling can result in underfit-

ting. Like any prior, convolution and pooling are only useful when the assump-

tions made by the prior are reasonably accurate. If a task involves incorporating

information from very distant locations in the input, then the prior imposed by

convolution may be inappropriate.

This is why CNNs are appropriate for this task: overshooting tops are a local

phenomenon, the only information needed to detect them is the immediate area

around the OT, as this is the area that will give the informationt that is critical

to the detection: the temperature difference, the ’cauliflower like’ shape in the

visible spectrum, and the divergent flow field

3.2.1.3 Activation Function

The purpose of the activation function is to make the neural network learn nonlin-

ear functional mappings between the inputs and the output variable. The output

of a neuron is generally the activation function applied to the sum of products of
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its inputs and their corresponding weights. There are many activation functions

available, with differing benefits to each.

The ReLU activation is a good choice because it does not saturate for positive val-

ues and is fast to compute, but it suffers from a problem known as dying ReLUs:

during training, some neurons stop outputting anything other than 0, effectively

dying. Using leaky ReLUs ensure that neurons never die, by providing a small

gradient for z < 0 they can stay stagnant for a while but they always have a

chance to eventually wake up, as there is always a non-zero gradient upon which

to act.

LeakyReLUα(z) = max(αz, z) (3.5)

The hyperparameter α defines how much the function leaks, typical values range

from 0.01 to as high as 0.2. There are variants where α is randomised during

training and then fixed at an average value for testing, this is known as randomised

leaky ReLU or another variant where α is learned during training called the para-

metric leaky ReLU. Both of these variants show some improvement, especially

over large datasets. It would be remiss to not mention the state-of-the-art in ac-

tivation functions: the exponential linear unit (ELU) and Scaled ELU (SELU)

activation functions. Both these outperform leaky ReLU.

However, when it comes to choosing an activation function it is not all about per-

formance - ReLU is the most used activation function by far because of its sim-

plicity. This leads to the dominant machine learning libraries having outstanding

optimisation for ReLU and therefore despite the theoretical drawbacks of ReLU

it still has very good practical performance.
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3.2.1.4 Dropout

In neural nets, increasing the number of hidden layers improves the network’s

ability to learn complicated relations between their inputs and outputs. However,

with limited training data, these models may learn the noise in the training data,

which may not exist in the test data. This leads to overfitting in such networks.

Large networks are slow to learn and require more training data to get favorable

results. To address this problem, dropout was introduced (Srivastava, Hinton,

Krizhevsky, Sutskever, & Salakhutdinov, 2014). Dropout refers to randomly re-

moving neurons and its weights at the training phase. This prevents units from

co-adapting too much. In the simplest case, each neuron is retained with a prob-

ability p independent of other neurons, where p can be picked using a validation

set or simply set to 0.5.

3.2.1.5 Faster Optimisers

Training deep neural networks can be very slow. A huge speed boost can be gained

by using a faster optimiser than the regular Gradient Descent optimiser. Whilst

many have been proposed: momentum optimiser, Nestorov Accelerated Gradient,

AdaGrad, RMSProp. In this thesis the state-of-the-art shall be used, this is the

Adam Optimiser. Adam, which stands for adaptive momentum estimation, com-

bines the idea of two of its predecessors momentum optimisation and RMSProp:

just like momentum optimisation, it keeps track of an exponentially decaying av-

erage of past gradients; and just like RMSProp, it keeps track of an exponentially

decaying average of past squared gradients.
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m← β1m− (1− β1)∇θJ(θ) (3.6)

s← β2s− (1− β2)∇θJ(θ)⊗∇θJ(θ) (3.7)

m̂← m

1− βT
1

(3.8)

ŝ← s

1− βT
1

(3.9)

θ ← θ + ηm̂⊘
√
ŝ+ ϵ (3.10)

3.2.1.6 Contrast Normalisation

There is significant variation in the contrast of the images: this is the difference in

the magnitude between the bright and dark pixels. Global contrast normalisation

aims to prevent images from having varying amounts of contrast by subtracting

the mean from each image, then rescaling it so that the standard deviation across

its pixels is equal to some constant s. The problem with global contrast normalisa-

tion is it does not highlight edges and changes in contrast within an area, so in this

particular scenario the minimum and maximum of the contrast will be dominated

by clear sky and cloud tops respectively for most channels. This motivates lo-

cal contrast normalisation, where contrast is normalised over each small window,

rather than the image as a whole.

3.2.1.7 Batch Normalisation

Batch normalisation helps further reduce the danger of vanishing gradients. It in-

volves adding an operation in the model just before or after the activation function

of each hidden layer. The operation simply zero-centres and normalises each in-

put, then scales and shifts the result using two new parameter vectors per layer:

one for scaling, the other for shifting. This essentially lets the model learn the
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optimal scale and mean for each of the layer’s inputs. Whilst most authors work-

ing in the field of detecting OTs do not use batch normalisation in their network

architectures, it was hypothesised that in this case it might be a good tool to enable

the training of deeper networks quicker.

µB =
1

mB

mB∑
i=1

x(i) (3.11)

σ2
B =

1

mB

mB∑
i=1

(x(i)−µB)2 (3.12)

x̂(i) =
x(i) − µB√

σ2
B + ϵ

(3.13)

z(i) = γ ⊗ x̂(i) + β (3.14)

3.3 Processing of Data

3.3.1 Pre-processing

The details of the GOES-16 imager and the data it produces have already been

outlined in Table (2.1) This study uses both visible and infrared images. Visible

images of Channel 1 have a spatial resolution of 500m. The infrared image of

Channel 9 has a spatial resolution of 2 km. The infrared images are used to get the

brightness temperature, which is the temperature at the cloud top. OTs are usually

colder than surrounding regions (Setvák et al., 2010). So, OTs are often isolated

regions of cold brightness temperatures (BTs) relative to a warmer surrounding

anvil cloud, this will be a key feature that is used in distinguishing them. GOES-

16 imagery is collected every minute for the infrared and visible images.

The data used in this study for training is all taken on 25th May 2015, with a
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total of 259 GOES-16 images available at this time. Each image has a size of

1300 × 2400, with infrared images being half the size of visible images. All

images are taken at nadir.

3.3.1.1 Bicubic Downscaling

In order to ensure that the inputs are the same size the infrared image is bicubi-

cally upsampled to be the same dimension as the visible image. This involves

interpolating every second pixel to generate a higher quality image. Obviously

the information contained in the image is preserved by this approach.

Now both the visible and the infrared images have the same dimension, so both in

effect have 1km pixels. The best input to a deep neural network is a high dimen-

sional one, as the image dimension is constantly reduced by the process of pooling

and convolution, therefore in order to ensure that a high dimensional image is feed

through the network, another downscaling operation is performed on both images

again by a factor of two this time to 500m resolution. The interpolation performed

here was bicubic interpolation (Sermanet et al., 2013) based on the 16 (4×4 grid)

pixels surrounding the target pixel to interpolate. This leads to a smoother image.

3.3.1.2 Contrast Normalisation

The images were then globally normalised to a min-max scale so that all the im-

ages had intensities in the range 0− 1.

3.3.1.3 Splitting into Patches

Both images, which is now of resolution 2600 × 4800, is split into patches of

size 31× 31. This patch size is chosen as it optimally represents the distance be-

tween overshooting tops whilst containing all the information required to detect

one. OTs are not points and have a sometimes significant spatial extent. They can
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Figure 3.2: Bicubic interpolation of the nearest 16 pixels.
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be anywhere between 5-10km in diameter (K. Bedka et al., 2010). A patch size of

31 × 31 is approximately 15.5km in width and height 1, this means that even the

biggest OTs are fully contained within a patch. Why not make the patch size big-

ger? This would be useful to contain more context around the OT and potentially

help detection, after all, it is the distinctive cauliflower-shape in the visible spec-

trum and the temperature difference in the infrared spectrum that make the OT

detectable in the first place. Both these features require the background to make

them features, you cannot detect an OT based on temperature without comparing

the temperature to the anvil cloud. Because we are not hoping to determine where

in the patch the OT is, only that it is present. Therefore you can effectively treat

these 31 × 31 patches as our ’pixels’ they are the smallest resolution to which

we locate the OTs. In addition, OTs do not occur closer than 16km, so there is a

guarantee that there will not be more than one OT per patch.

The stride of these patches is 31, it is important not to confuse these patch sizes

with the kernel size later on in the thesis.

3.3.2 Post-processing

Two post-processing steps were included in the CNN-based model to improve

OT detection. First, patches detected as OTs with outside of the Deep Convec-

tive Cloud (DCC) anvil were eliminated to reduce potential misclassifications. A

methodology using the algorithm outlined in (Jones, Christensen, & Stier, 2022)

was used to identify the cloud anvil and eliminate these misclassifcations. This is

because in a patch caught by cloud edges, a spatial difference between the anvil

and the cloudless sky surrounding it could be misinterpreted as the same kind of

difference as between an OT and the surrounding anvil. Therefore, OT detection

1On average, as the patch size changes with longitude, patches closer to the equator are smaller
than those further north.
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Figure 3.3: The visible and IR images split into patches. The actual size of the
grid is much much smaller, each image generates 13884 patches.
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results can be bettered by ensuring that detections are only valid if they occur in

the anvil. Different thesholds of detection could be played around with here, but

it was decided in the interest of time to use the thresholds proposed by Jones.

In the second post-processing step, to clearly show OT regions within patches, the

pixels with relatively low brightness temperatures in OT patches were extracted.

Adjacent patches were bundled together at first. Then, pixels with brightness tem-

peratures that were lower than the sum of the minimum value (min) of brightness

temperatures in bundled patches plus the standard deviation (σ) of brightness tem-

peratures in bundled patches times the scaling factor (λ) (i.e., pixels < min+ σλ)

were found. The optimal value of the scaling factor was determined using calibra-

tion data.

3.3.3 Validation

As a performance measure, the probability of detection (POD) and false alarm

ratio (FAR) were used. Where TP is True positive, FP is false positive and FN is

false negatives,

POD =
TP

TP + FN
(3.15)

FAR =
FP

TP + FP
(3.16)

The performance of each approach is evaluated using these metrics. It is better to

have a model with high probability of detection (POD) and low false alarm ratio

26



University of Oxford Green Templeton College

(FAR). Fifty full images at different timestamps are used for validation.

3.4 Labelling of Data

3.4.1 Manually Labelled

The OT and non-OT reference data were constructed by manual inspection of the

visible channel by human experts. OT can be identified in the visible channel by a

couple of characteristic features; they have a ’cauliflower like’ texture and produce

shadows upon the anvil when illuminated at off-nadir angles. Visible identification

is then potentially fraught with biases: OTs can be less obvious at solar noon then

they can in low azimuth angle sunlight, and only the most pronounced OTs will

protrude enough to show a cauliflower like shape.

The images are chopped into patches of size 31x31. Each patch is labelled as

"OT" or "non-OT" depending on whether that patch has OT center or not. There

are total 406 OT occurrence patches, and 693794 non-OT patches in test data. So,

the ratio of OT and non-OT patches in test data is 1:1709.

Of the 459 images that have OT labels in Bedka’s labelled dataset, 40 were ran-

domly selected for testing. These images would then go through the same process

as the training images in being chopped into 31 × 31 patches. They are given a

binary label for whether or not they contain an OT.

3.4.2 Algorithmically Labelled

Given the relative scarcity of labelled OT data, a good way to vastly increase the

number of labelled instances is by following a process based approach to labelling,

one that can be performed automatically.
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Another problem with the labelled dataset above is that it treats OT as points. In

reality every OT has a spatial extent and therefore a more accurate model would

treat the OTs as occupying an region, therefore the images should be labelled with

OT regions rather than OT points. Points would be a reasonable approximation if

distance from the OT is a good metric for success, however if the model detects

an OT within the cloud anvil, that is a lot less wrong than an OT being detected

outside of the cloud anvil. Equally due to the way in which Bedka’s dataset was

created, it does not encourage the algorithm to learn what an early stage OT looks

like, it only allows the algorithm to learn what a human-detectable mature OT

looks like. By learning that

This process works on the Brightness Temperature of the cloud top, and follows

the following process, as outlined by (Zha et al., 2020):

1. Segmenting the infrared window brightness temperature (IRW BT) cloud

image into 31× 31 patches (same patch size as before)

2. Finding the minimum brightness temperature T i
min of the ith patch.

3. Determining the initial candidate OT pixels T i
HOT (n)

which satisfy both T i
HOT (n)

<

T i
min + 4 and T i

HOT (n)
< 215, where n = 1, 2...N .

4. Determine the anvil-shaped cloud pixels T i
ZOT (n)

. Here we differ from the

method proposed by (Zha et al., 2020) and use the methodology to detect

Deep Convective Clouds (DCCs) produced by (Jones et al., 2022), with this

algorithm demonstrated in Fig. (3.4).

5. With each candidate OT pixel, check that it is within a DCC as detected by

Jones’ algorithm. If it is not within the DCC, then it must be in clear sky

and therefore is a false alarm. If it is within a DCC, then it is likely an OT.

6. Repeat the steps above to find all the candidate OT pixels, and merge this
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Figure 3.4: Example output from (Jones et al., 2022) algorithm to detect the grow-
ing and developed anvil of a Deep Convective Cloud (DCC).

pixels if they are adjacent to form OT regions.

7. Ideally every OT region would then be confirmed by a human expert, how-

ever due to time constraints this was not possible. Adding this step in would

greatly decrease the number of false alarm OTs but would also add in a hu-

man bias to the labelling and limit the number of labelled instances that

would be able to be produced.

The purpose of the algorithmic labelling is another angle to look at whether the

learned CNN really is learning the ground truth, and whether the OTs identified

in Bedka’s dataset are complete.

3.5 Convolutional Neural Network Architecture

The architecture used for this CNN is below, this architecture has been used before

by (Kim et al., 2018), but with less advanced filtering of clear sky detections.

29



University of Oxford Green Templeton College

Table 3.1: Model Architecture

Layer Type Maps Size Kernel Size Stride Padding Activation
In Input 3 31× 31 - - - -
C1 Convolution 32 29× 29 3× 3 1 same Leaky ReLU
C2 Convolution 32 27× 27 3× 3 1 same ReLU
S3 Max Pooling 32 13× 13 3× 3 1 same -
C4 Convolution 64 11× 11 3× 3 1 same ReLU
C5 Convolution 64 9× 9 3× 3 1 same ReLU
S6 Max Pooling 64 4× 4 3× 3 1 same -
F7 Fully connected - 1024 - - - -
F8 Fully connected - 256 - - - -
Out Fully connected - 2 - - - Softmax

3.5.1 Data Augmentation

Previous studies (Yu, Wu, Luo, & Ren, 2017), (Perez & Wang, 2017) and (Inoue,

2018) have proposed several data augmentation techniques to overcome limited

samples or create diverse data set with variants. For each OT example we have

in the training set, we created three copies of it with the following characteristics

essentially oversampling the minority class. For training data, we extracted three

different categories of patches for each OT occurrence, they are listed below:

1. An OT center as the center or close to center of the 31× 31 patch

2. Offset images with the centre of the OT slightly shifted from the geometric

centre of the 31× 31 patch

3. Peripheral images with the centre of the OT within 2km of the edge of the

31× 31 window.

This approach has the twofold advantage of increasing the number of positive OT

examples in the training data and also increasing the robustness of the model as in

the test data there is no guarantee that a chosen patch will contain an OT near the
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Figure 3.5: Data Augmentation was performed on the manually labelled data to
increase the number of positive OT examples in the training data by approximately
threefold. This was done by translating each patch in which an OT occurs to be
either in the centre, peripheral or edge. This also increases the robustness of the
model in testing to off-centre OTs.

centre of the image.

3.5.2 Training

The computational work was done by the servers based in (CUDA, n.d.), the data

was stored on Google Cloud and downloaded from the NOAA Class website.

3.5.3 Testing

Of the 459 images that have OT labels in Bedka’s labelled dataset, 40 were ran-

domly selected for testing. These images would then go through the same process

as the training images in being chopped into 31 × 31 patches. They are given a
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binary label for whether or not they contain an OT.
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4 | Results

4.1 Building the Labelled Dataset

There is an existing labelled dataset available, one produced by Christopher Bedka.

This dataset is available on satellite imagery from the 25th May 2015, a day where

over the continental United States there were plenty of overshooting tops to iden-

tify. In total there are 3407 OTs detected in the dataset, across 459 images. For

a particular snapshot of what one of the images in the labelled dataset looks like,

see Fig. (4.1).

Before even beginning training the CNN on this dataset, the same images were ap-

plied to the DCC tracker to draw the outlines of the DCCs. The DCC detector was

run independently of the OT region detector, and also independently of Bedka’s la-

belled OT point dataset then the three were brought together as can be seen in Fig

(4.2). This figure is really interesting because three independent methods show

remarkable agreement on both OT locations and how these OT are constrained

within DCCs (the latter conclusion is less of a surprise). By demonstrating align-

ment in particular between Bedka’s labelled dataset and the OT region - 63% of

Bedka’s OT points were within the regions, the methodology of the OT regional

assignment has been validated. Moreover, just 11% of the area contained within

the anvil cloud of the DCC was given a OT region label, indicating that the algo-

rithm was not succeeding to contain OT points by occupying as large an area as

possible. Just 0.85% of the labelled OT points were outside of a DCC outline.

Investigating the cases where the OT points were outside of the DCC outline fur-

ther it was found that these often occurred on the edge of the thunderstorm, where

the three channels used to calculate the DCC outline were poorly correlated. Of-
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Figure 4.1: Manually labelled OT, using Kristopher Bedka’s dataset.

ten, one channel can show a change in pixel intensity whilst the others can remain

constant. This appears to happen particularly during the growing stage of the

DCC. However, this is a computer science thesis and not a physics one, so this

problem was not explored further.

Having assembled the OT regions, this could then be used to validate directly the

OT candidates produced by the CNN, rather than comparing directly with the OT

points. The way this works is by a simple point-in-polygon approach, which is

somewhat unusual in computer vision, as normally it’s matching point to point or

area to area. The area to area comparison would be a suitable extension but would

require a completely different architecture to resolve, involving a U-net which

would produce a high resolution regional outputs.

34



University of Oxford Green Templeton College

Figure 4.2: Using the DCC outline detector, the automatic labelling of OT regions
was made possible, particularly by discounting areas that were not within the
DCC.

4.1.1 Plotting the Polygons

A note on how these polygons were plotted and how the closed shapes are pro-

duced. The algorithm that detects the edge of DCCs does exactly that, detects

the edge. Therefore there is no guarantee that a closed shape will be produced.

Similarly, for the algorithm producing the OT region there is also no guarantee of

a closed shape. Ordinarily in image segmentation this is not an issue as a closed

shape is produced through the appending of pixels, such that the image segment is

accreted. This works well when every pixel satisfies the condition for being part

of the image segment, but not so well when only the edges of an image segment

satistfy the conditions as is the case here. Therefore if a closed shape was not

formed by the line segments produced by the algorithms for detecting DCCs and

OT regions, then the lines were buffered until the smallest enclosed shape could

be found.
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The buffering and then un-buffering, essentially simplifying the polygons, also

helps in smoothing out the shapes.

Additionally, in order to ensure that polygons did not become open because they

reach the image edge, when a line segment reaches the edge of an image the line

segment is connected to another line segment that results in the smallest possible

enclosed area. The principle motivation being that the area covered by DCCs is

much smaller than the area covered by other cloud types and clear sky. Therefore

completing polygons using an area minimisation approach is valid.

4.2 Training the CNN

The CNN, with the architecture described in the methodology was trained on the

labelled OT dataset. All the experiments were performed on an Intel Core i7-7700

CPU at 3.5 GHz with 64-GB RAM. The weights were initialized with random

values, the batch size was to 5, the learning rate was set to 0.0001 and 2000

epochs were trained on 11G NVIDIA GeForce GTX 1080Ti GPU, with Stochastic

Gradient Descent (SGD) as optimizer.

4.2.1 First successful CNN iteration

Several months of coding, testing, failing, and then repeating finally led to some

meaningful results, the first of which is shown in Fig. (4.3). This figure demon-

strates a key problem with OT detection: there are very few OTs but many, many

patches of clear sky and clear cloud. This means that the algorithm has a difficult

time finding enough training examples to really understand what to look for in

identifying an OT. Therefore to avoid being punished by a high error, it simply

predicts many OTs, in the hope that some of them will be close to the ground

truth, knowing that it is not punished relatively as much for false positives as it is
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Figure 4.3: Comparison of the output of the first iteration of the model with the
labelled (red circles) with the labelled ground truth (white crosses)

for true negatives. This approach is clearly not desirable. In this case whilst the

probability of detection is quite high, at 70% the false alarm ratio is also unac-

ceptably high at 90% showing that clearly the great majority of the proposed OT

detections are mistakes.

Couple of approaches were implemented to address this and improve the perfor-

mance of the model further:

4.2.1.1 Increasing the OT occurrences

Increasing the number of instances of the minority class (a positive OT detection),

so that they appear in the ratio 1:2 in the training set. This is done by selectively

sampling the positive OT detections much stronger than the negative OT detection.

Obviously the test set remains unchanged, but by massively increasing the number

of examples the model sees then it is able to better learn OT detection.
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4.2.1.2 Increasing the near-OT occurrences

The majority of the false positives were actually near a real positive, indicating an

inability of the model to distinguish being near an OT and being on an OT. Whilst

this might be slightly symptomatic of the fact that OT have a spatial extent and are

not points. For the purpose of the training it was decided to increase the number

of patches that are near an OT but not contain an OT.

4.2.1.3 Increasing the cost of misclassifying

The model currently produces a high FAR because the cost of predicting incor-

rectly is not high enough, so as a trade off in order to get as many of the OTs

as possible it predicts many OTs are occurring. In a simple binary classification

process such as this the way to solve this is to make the error from predicting the

majority class (OT) as the minority class (non-OT) higher than the inverse. By

changing the cost function the weights will be updated through the whole model

through backpropagation. The cost of misclassifying OT reference as non-OT is n

times the inverse, this was a hyperparameter that was learned and after performing

a grid search on ranges 2− 20 the optimum value was found to be 12.

4.2.1.4 Local Normalisation

Global normalisation was already performed on the images, but locally there was

significant variations in intensity of signal. Due to the global normalisation the

signal was almost binary: either inside a cloud or outside, which made it very dif-

ficult to get sufficient signal when inside the cloud to identify OT. Local normali-

sation is very simple, within each patch, perform the same max-min normalisation

as was done before for the whole image. This increases the contrast between the

OT and the rest of the anvil, improving performance.
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Figure 4.4: Comparison of the output of the second iteration of the model with
the labelled (red circles) with the labelled ground truth (white crosses)

4.2.1.5 DCC clipping

Any detections that fell outside the bounds of the DCC were also removed. This

reduced the tendency of the model to predict OTs on the edge of clouds or on non-

convective clouds in clear sky, as these clouds have a similar infrared difference

to an OT within the anvil cloud.

4.2.2 Improved CNN

These improvements were implemented and there was a substantial boost in the

precision of the detections made by the CNN, see Fig. (4.4).

The improved CNN showed a similar performance at detecting the OT but with

many fewer false positives, as was hoped by the improvements specified. The

model appears to have really learnt the relevant features of an OT. Nonetheless,

the false alarm rate of 86.8% might appear quite high, the reasons for this high
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FAR will be analysed in the next chapter.

A lot of the false negative detections appear to be near-misses: adjacent to an OT

patch. Therefore a more leniant criteria was developed that checks if the detection

is within the OT region, as created earlier. Almost all (80%) of OT predictions

were in the OT region, indicating that with slightly looser and more reasonable

criteria for what qualifies as a match between prediction and observation, there is

much greater agreement.

4.3 Overall Results

The total number of actual OT references in the test data is 406. Table (4.1)

summarises the number the POD, FAR and CSI for the approach presented in this

thesis and comparable approaches from other authors.

Table 4.1: Overall performances for the different models used and comparisons to
models in existing literature

Num Approach POD (%) FAR (%)
1 CNN with DCC clear sky

elimination
81.2 86.8

2 IRW-texture candidates and
detection criteria

35.1 24.9

3 OT probability 69.2 18.2
4 OT probability with visible

rating detection
51.4 1.6

5 CNN with tropopause tem-
perature processing

72.66 90.44

6 CNN with clear sky process-
ing

79.68 9.78
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5 | Discussion

The model fails to detect around 20% of overshooting tops, and in this chapter the

reasons behind this are investigated.

5.1 The Problem with Patches

The patches are the greatest drawback the model has. The model has to learn to

identify an overshooting top whether it is in the middle, near the edge or on the

very edge of each patch, and it is only given the single patch to identify this. This

is the equivalent of expecting a object classification model to be able to tell apart

animals from half the face. It’s hard.

It is very rare that an OT is in the centre of the patch, in fact over 50% of the OTs

are located on the periphery of the patches. In the extreme case where the OT

is just on the edge of the patch, the model essentially has to guess which of the

two adjacent patches the OT falls into. Even with a perfect model, this leads to a

naturally high false alarm rate.

It is found that when an OT is not detected (a false negative), the majority of the

time a neighbouring patch was identified as having an OT. Demonstrating that, in

fact the model is learning for the signs of OT, it just struggles with finding the

exact centre.

Therefore the more lenient validation approach proposed using the OT region

makes even more sense, if it is found that the image of an OT effectively bleeds

across multiple patches, it seems unfair to penalise the model for identifying those

neighbouring patches as having OT-like features.
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5.2 Early Detection

In some cases the OT identified by the model, classified as false negatives, were

in fact early detections of OTs. Early, in this context, means before the human

identified them as an OT. This can be easily verified by checking through time

and confirming that the same patch did eventually become an OT in a later image,

within a time range of 10-15 minutes.

This was a minor contributor for the high FAR however as inevitably the model

ended up adopting human standards for what an OT feature looks like, which

means that early detection was somewhat stunted. If a Recurrent Neural Network

were applied to the data then there is the possibility of enhancing the early detec-

tion aspect of the model.
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6 | Conclusion

This chapter is divided into two sections. The first section presents conclusions

based on the analysis conducted for this research. The second section presents the

recommendations of this thesis.

6.1 Conclusions

Overshooting tops are an important weather phenomenon. They give an insight as

to what is happening within a cloud that is completely opaque to satellite imagery.

As the correlate so strongly with severe weather, the detection of overshooting

tops is therefore a important mission and target for computer vision. Early, ac-

curate detection could lead to warning systems being put in place in areas where

weather radar is not established. This thesis shows that convolutional neural net-

works are a very appropriate tool for detecting overshooting tops. There are some

unique challenges faced by this application. One of the most difficult is the prob-

lem of filtering out ’clear sky detections’. This is because the change in tempera-

ture between a cloud and clear sky is similar to that of the change in temperature

between an overshooting top and its anvil. This makes the filtering out of these

detections very important to ensuring accurate detections. In this thesis this was

done by a deep convective cloud identification and segmentation algorithm that

filtered out any detections made outside of the deep convective cloud, which is

where all the overshooting tops occur. This led to a slight improvement on other

convolutional neural network based models. The other insight was to adopt a

region based approach to overshooting top labelling. This enabled a more rea-

sonable validation of the performance of the model and it was not penalised as

heavily for near miss detections.
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6.2 Future Work

This thesis leaves a number of questions unanswered and work remaining to be

done, among these are:

1. It is possible to infer the physical flow field from the visible image and use

this to detect for divergent flow around the overshooting tops, which would

be a completely novel way of detecting them.

2. The use of visible images to detect OTs is effective because of the nature

of the CNN, which can extract representative image features particularly

well. However, since visible images are only available during daytime, this

model is limited, in that it cannot work at night. In order to detect OTs

during nighttime, it would be necessary to develop a CNN model that uses

infrared images only.

3. GOES-16 images form a sequential run of data. In order to improve de-

tection a sequence of images could be feed into a CNN, or a variant of the

CNN the Recurrent Neural Network (RNN). This would allow the network

to understand the temporal relations of the movement of OT and lead to

applications of tracking, forecasting and earlier detection.

4. Weather radar is the gold standard of rainfall tracking. By using radar sys-

tems well located across Europe and the United States, an OT tracker could

feasibly be trained by radar systems with only the visible and infrared chan-

nels as inputs. The reason this would work is because the majority of the

false positives obtained by the OT detection algorithms are found at the edge

of clouds, where the temperature change looks similar to the model as at the

centre. However rainfall occurs within clouds and most strongly underneath

OTs. An example of weather radar within clouds is shown in Fig. (6.1)
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Figure 6.1: Weather radar, used to detect rainfall, is one feature that strongly
correlates with where OTs occur. Therefore using radar systems to validate the
detection of OTs would be a good avenue for future work (Jones et al., 2022). The
270K contour roughly indicates the edge of the cloud.

5. The work done on algorithmically labelling the OT region naturally leads

to applications from high resolution output CNNs, such as U-nets. By out-

putting regions of detection at a pixel level rather than categorising large.

This would have the other benefit of removing the need for patches, which

is one the biggest limitations of the current model.
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A | Appendix

A.1 Alternative Detection Methods

Table A.1: The name, approach taken, data used and author of comparable meth-
ods

Num Approach Data Author
1 CNN with

DCC clear sky
elimination

GOES-16 this thesis

2 IRW-texture
candidates
and detection
criteria

GOES-14 Bedka (K. M. Bedka & Khlopenkov, 2016)

3 OT probability GOES-14 Bedka (K. M. Bedka & Khlopenkov, 2016)
4 OT probability

with visible
rating detec-
tion

GOES-14 Bedka (K. M. Bedka & Khlopenkov, 2016)

5 CNN with
tropopause
temperature
processing

GOES-14 (Kanneganti, 2020)

6 CNN with
clear sky pro-
cessing

Himawari-8 (Kim et al., 2018)
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