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1
Introduction

One of the fundamental problems in artificial intelligence is representing and reasoning

with knowledge. This is an essential requirement for any system that is to exhibit any

sort of intelligent behaviour, whether it is a self-driving car planning an optimal driving

route or a digital assistant using information from the internet to answer a user query.

A variety of formalisms for knowledge representation have been developed within

the field of artificial intelligence. A particular prominent such formalism are descrip-

tion logics (DL), a family of knowledge representation languages that not only allow

stating facts about entities in some domain of interest, but also support expressing

general background knowledge in the form of logical assertions. They have been used

with great success in many different domains, ranging from biomedical and medical

applications [Smith et al., 2007; Schulz et al., 2009; Hoehndorf et al., 2011] to the

semantic web [Grau et al., 2008; Horrocks, 2008].

A crucial feature of DLs is that they are rooted in a precise formal semantics, which

can be leveraged by a variety of reasoning algorithms [Tsarkov and Horrocks, 2006;

Kazakov et al., 2014; Glimm et al., 2014] to perform logical inference, i.e. uncover

information that implicitly follows from the recorded knowledge. Not only can this lead

to new insights about the domain of interest, but reasoning is also essential to ensure

the stated logical assertions are sensible and do not lead to contradictions.

1



1. Introduction 2

However, while these reasoning algorithms have been indispensable for the applica-

tion and success of DLs, the type of reasoning they can perform is inherently limited

to strict logical inference as defined by the underlying formal semantics. Often, we do

not want to limit ourselves to such rigid deductive reasoning, but instead want to derive

conclusions that are probable from the given data, a task known as inductive reasoning.

In recent years, this type of inductive reasoning with knowledge has received a

great deal of attention in the context of knowledge graphs (KG), a different formalism for

knowledge representation that is closely related to DL. A key technique in this setting

are so-called knowledge graph embeddings (KGE) [Q. Wang et al., 2017], an approach

where the entities and facts in a KG are embedded in a continuous latent vector space

in a way that preserves the underlying structure of the KG. A wide variety of such

embedding techniques have been developed [Nickel et al., 2011; Yang et al., 2015;

Trouillon et al., 2016; Schlichtkrull et al., 2018; Balazevic et al., 2019], and they have

shown great potential across a range of tasks.

In light of these developments, recent work [Kulmanov et al., 2019; Mondal et al.,

2021; Mohapatra et al., 2021; Xiong et al., 2022; Peng et al., 2022] has explored how

similar embedding methods can be applied to the setting of DL. The resulting description

logic embeddings (DLE) are useful in a variety of ways: on the one hand, they can com-

plement classical reasoning algorithms by enabling novel kinds of inductive reasoning,

both to predict missing information and to predict new background knowledge. On

the other hand, they also have the potential to approximate the deductive reasoning of

classical algorithms, possibly permitting substantial performance improvements.

Contribution. While a variety of different DLE techniques have been proposed and

shown to be effective in practice, the current approaches still suffer from a major

limitation: they are all based on the simple translational KGE model TransE [Bordes

et al., 2013] or slight variations thereof, which is known to be inexpressive and unable

to capture one-to-many, many-to-one, or many-to-many relationships [Z. Wang et al., 2014;

Lin et al., 2015; Abboud et al., 2020]. Furthermore, the current evaluation strategy for
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these models focuses only on the basic reasoning task of subsumption between named

concepts and does not take complex concepts into account.

In this dissertation, we address these limitations by introducing a new DLE model

and evaluation benchmark. Our contributions are as follows:

• We develop Box2EL, a new spatio-translational DLE model based on the expressive

BoxE KGE model [Abboud et al., 2020] and demonstrate how it overcomes the

shortcomings of existing approaches. Furthermore, we show that Box2EL is

theoretically sound, i.e. corresponds to logical models of the underlying DL.

• We introduce a new benchmark for evaluating the inductive reasoning capabilities

of DLE models based on predicting subsumptions between named and complex

concepts.

• We perform an extensive empirical analysis of Box2EL and report state-of-the-art

results both on our new proposed benchmark and on experiments that have

previously been considered. We conduct several ablation studies to highlight the

contributions of different parts of our model.

• We analyse the ability of our and competing methods to make logical inferences

in the embedding space and gain new insights about the relationship between

inductive and deductive sub-symbolic reasoning.

Structure. The remainder of this dissertation is structured as follows: we review rele-

vant background knowledge regarding KGs and define the concrete DL we are working

with in Chapter 2. Subsequently, in Chapter 3 we introduce our novel DLE model

Box2EL and discuss its conceptual advantages over existing methods. We also explain

how Box2EL is trained, and prove that it is theoretically sound. Chapter 4 contains our

empirical evaluation across three different settings and demonstrates the performance of

our model in practice. Finally, we review related work in Chapter 5, before concluding

this dissertation and outlining possible directions for future research in Chapter 6.



2
Background

In this chapter, we provide an account of relevant background material and introduce

the basic terms and definitions our work builds upon. We first give a brief review

of knowledge graphs, the link prediction task, and knowledge graph embedding

techniques. Subsequently, we introduce description logics, which constitute the fun-

damental formalism that underlies most of our work, and discuss how they relate

to knowledge graphs.

2.1 Knowledge graphs

Knowledge graphs (KG) are an effective means to represent and reason with knowledge

about the world. They store information in terms of relational data consisting of entities

and relationships between them.

2.1.1 Definition

We follow previous literature [S. Ji et al., 2022] and define a KG as a directed, edge-labelled

multi-graph. Formally, a KG is a triple G = (E ,R,F ), where E denotes the set of entities,

R the set of relations, and F ⊆ E ×R× E contains the facts in G. A fact (or triple)

(h, r, t) ∈ F connects the head entity h (sometimes also referred to as the subject of the

fact) with the tail entity t (the object) via the relation r.

4
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owned by

country
instance of

Eiffel Tower

part of

capital

head of state

France

Paris

part of Western Europe

Tourist Attraction

Emmanuel Macron

Europe

Figure 2.1: A fragment of the Wikidata knowledge graph [Vrandečić and Krötzsch, 2014].

Example 2.1.1. Consider the fragment of the Wikidata KG [Vrandečić and Krötzsch,

2014] depicted in Figure 2.1. In this example, we have the set of entities E = {Eiffel
Tower, Tourist Attraction, France, Paris, Europe, Western Europe, Emmanuel Macron}, the set

of relations R = {instance of, country, owned by, part of, capital, head of state}, and the set

of facts F corresponds to the edges of the graph.

2.1.2 Link prediction

Modern KGs often contain vast amounts of data — for instance, Wikidata encompasses

more than 99 million facts [Pintscher, 2022] — and are usually constructed and main-

tained in a semi-automated fashion, in which manually curated facts are combined with

automated web information extraction techniques [Nickel et al., 2016]. However, despite

containing an enormous amount of information and making use of the extensive amount

of data available on the internet, existing KGs are still known to be inherently incomplete.

For example, Freebase [Bollacker et al., 2008], the predecessor of Wikidata, does not

specify the place of birth for more than 70% of the people it contains [West et al., 2014].

A central concern in KG curation is therefore to identify missing information in a

given KG. This task can be formally specified as follows: given a KG G = (E ,R,F ),
let F+ ⊆ E × R × E denote the idealised set of all true facts over E and R. The

problem of link prediction (or knowledge graph completion) is to identify the true triples

F+ \ F not contained in G.
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2.1.3 Knowledge graph embeddings

A key approach to tackle the link prediction task that has recently emerged are knowledge

graph embeddings (KGE) [Q. Wang et al., 2017]. The main idea of this technique is to

embed the entities and relations of a KG in a continuous latent vector space that

preserves the important statistical characteristics of the KG. Predicting missing links

between entities then reduces to simple mathematical operations in this vector space.

While there exist a variety of different concrete KGE models, most of them can be

formulated as a combination of three interacting parts [Q. Wang et al., 2017]:

• an entity and a relation model that specify how entities and relations are mapped

into a continuous vector space;

• a scoring function that assigns scores to facts based on how likely they are to be

true; and

• a learning procedure that sets up and solves an optimisation problem in order to

find embeddings that produce higher scores for true facts than false facts.

Once a KGE model has been trained, i.e. once we have obtained entity and relation

embeddings using the learning procedure, we can use the scoring function to predict

the likelihood of facts that are not already contained in the KG.

Embedding models

A vast number of KGE models have been proposed in recent years, a detailed discussion

of all of which is unfortunately beyond the scope of this dissertation. We instead

refer the reader to the relevant literature, e.g. [Nickel et al., 2016; Q. Wang et al.,

2017; S. Ji et al., 2022].

Broadly, the different approaches can be divided into three categories [Abboud

et al., 2020]: translational, bilinear, and neural KGE models. Translational models such as

TransE [Bordes et al., 2013] and RotatE [Sun et al., 2019] embed entities as points and

compute scores as distances between these points. Bilinear models like DistMult [Yang

et al., 2015] on the other hand employ a multiplicative approach and score triples
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using matrix multiplications based on tensor factorisations. Finally, neural models,

e.g. [Dettmers et al., 2018; Nathani et al., 2019], utilise sophisticated neural network

architectures to differentiate true from false facts.

TransE. We discuss the classic translational model TransE [Bordes et al., 2013] in detail,

since it serves as a foundation for many state-of-the-art description logic embedding

models.

TransE embeds entities and relations as vectors in the same d-dimensional latent

vector space Rd. The embeddings of entities are interpreted as points, while relations

are interpreted as translations of these points. For a triple (h, r, t), the model tries

to find embeddings such that

h + r ≈ t, (2.1)

where e and r denote the embedding for entity e and relation r, respectively.

The likelihood of a fact should therefore depend on the distance of the translated

head embedding and the tail embedding. Hence, the scoring function s(h, r, t) is defined

as

s(h, r, t) = −‖h + r− t‖.

Example 2.1.2. Consider again the KG depicted in Figure 2.1. Based on the information

that Emmanuel Macron is the head of state of France and Paris is the capital of France, we

should be able to predict the missing link (Emmanuel Macron, lives in,Paris). Figure 2.2

illustrates how TransE could solve this link prediction problem in a two-dimensional

embedding space.

We finally need to specify how TransE is trained to obtain the entity and relation

embeddings. For now, assume we have access to a set of negative training examples

F−, i.e. a set of triples that are definitely false. Let F−
(h,r,t) denote the set of negative

examples that differ from (h, r, t) in only either the head or the tail. TransE then learns

embeddings by optimising the following margin-based ranking loss:

L = ∑
(h,r,t)∈F

∑
(h′,r,t′)∈F−

(h,r,t)

max{0, s(h′, r, t′)− s(h, r, t) + γ}, (2.2)
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Emmanuel
Macron

Paris

Eiffel
Tower

lives in

Francehead of state

Tourist
Attraction

Figure 2.2: An illustration of the TransE embedding model. Yellow circles represent entity
embeddings, while relation embeddings are illustrated by dotted arrows. Since the embedding
of Emmanuel Macron + lives in is close to the embeddings of Paris and France, the model
assigns a high score to the corresponding triples. Moreover, the model correctly captures
the fact that Emmanuel Macron is the head of state of France. Incorrect triples such as
(Emmanuel Macron, lives in,Eiffel Tower) are assigned a low score.

where γ ≥ 0 is a margin hyperparameter.

The loss in Equation 2.2 encourages true triples to be scored higher than false triples

and penalises the model if the opposite is the case. Therefore, in a trained model

Equation 2.1 should approximately hold for true facts, but not for false facts.

However, in reality we do not usually have access to negative training examples,

since KGs only encode true facts and we do not know whether triples not contained

in the KG are true or false. To address this issue, a technique called negative sampling

is commonly employed.

Negative sampling

Negative sampling is a general technique to obtain negative training examples from a

KG and variations of it are used in the training process of most KGE models [Q. Wang

et al., 2017]. The basic idea is to generate negative examples by corrupting existing facts

in the KG by randomly replacing either their head or tail.

Formally, for a given triple (h, r, t) define the set of head-corrupted and tail-corrupted
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facts as follows:

HC(h,r,t) = { (h′, r, t) | h′ ∈ E ∧ (h′, r, t) /∈ F },

TC(h,r,t) = { (h, r, t′) | t′ ∈ E ∧ (h, r, t′) /∈ F }.
(2.3)

We can then produce a set of negative examples by sampling uniformly from HC(h,r,t)

and TC(h,r,t) for every positive fact. A new set of negative samples is usually generated

at every iteration of the training algorithm [Bordes et al., 2013].

Note that this procedure produces a set of corrupted triples that is not contained

in the KG, but with no guarantee that the triples are actually false, i.e. not in F+.

However, since the likelihood of a randomly corrupted fact to be false is much higher

than the likelihood of it being true, the KGE model can still successfully learn to

differentiate true from false facts. Somewhat more sophisticated negative sampling

techniques exist that aim to reduce the number of wrongly generated examples [Z. Wang

et al., 2014; Krompaß et al., 2015].

Evaluation metrics

In order to evaluate KGE models, a KG is first partitioned into a set of training, validation,

and testing triples. As is customary in machine learning, models are trained on the

training set, hyperparameters are chosen based on validation set performance, and

models are finally evaluated on the testing set.

Given a trained KGE model and a test fact ϕ = (h, r, t), we can evaluate the model

performance by comparing the score assigned to ϕ to the score assigned to its corrupted

counterparts in HCϕ and TCϕ [Bordes et al., 2011]. A link prediction model that

successfully captures the semantics of the KG should assign a high score to the test

fact ϕ and lower scores to the corrupted triples.

Formally, let rkh(ϕ) denote the rank of ϕ within the set HCϕ ∪ {ϕ} ordered in

descending order using the model’s scoring function. Similarly, let rkt(ϕ) be the rank

of ϕ with respect to TCϕ ∪ {ϕ}. The mean rank is then simply defined as the average

rank of all facts in the testing set Ftest, i.e.

1
2|Ftest| ∑

ϕ∈Ftest

(
rkh(ϕ) + rkt(ϕ)

)
.
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Since the mean rank is susceptible to outliers [Hoyt et al., 2022], often the median rank

or alternatively the mean reciprocal rank of the test facts, defined as

1
2|Ftest| ∑

ϕ∈Ftest

(
1

rkh(ϕ)
+

1
rkt(ϕ)

)
,

is reported instead.

The previous metrics are good measures of average model performance; however,

they do not necessarily capture how KGEs are used in practice. In particular, we

will often only consider the first k most highly ranked facts for some small integer k

to find potential missing links in the data, and are not interested in how the model

performs beyond these most highly ranked triples. In this scenario, hits at k (also

hits@k), which measures the fraction of test triples with rank ≤ k, is a more appropriate

metric [Hoyt et al., 2022]. It is defined as

1
2|Ftest| ∑

ϕ∈Ftest

(
1[rkh(ϕ) ≤ k] + 1[rkt(ϕ) ≤ k]

)
,

where 1[a ≤ b] is the indicator function that takes on the value of 1 if a ≤ b and 0 other-

wise.

Another evaluation metric that is commonly used especially in biomedical appli-

cations [Kulmanov and Hoehndorf, 2017; Alshahrani et al., 2017] is based on receiver

operating characteristic (ROC) curves (see e.g. [Fawcett, 2006]). To compute the ROC

curve for a KGE model, we regard it as a binary classifier parametrised by a threshold

value k, that assigns a label of true to a candidate fact if its rank is less than or equal

to k and false otherwise. We can then compute the true positive rate (TPR), which is

defined as the proportion of all true triples that are correctly labelled as true, and

the false positive rate (FPR), i.e. the number of triples incorrectly labelled as true over

the number of false triples. Plotting the TPR against the FPR for varying thresholds

k yields the ROC curve for a model.

As illustrated in Figure 2.3, ROC curves can be used to compare the performance

of different embedding models. It is furthermore often convenient to summarise an

ROC curve with a single number by calculating the area under the curve (AUC), i.e.
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Figure 2.3: ROC curves of two different models. Generally, the closer a curve is to the top left
corner, the better the performance of the corresponding model [Fawcett, 2006]. In this example,
the model represented by the blue line clearly outperforms the model represented by the red
line. The grey line depicts the performance of a classifier that randomly guesses whether a test
fact is true or false.

the integral of the ROC curve. The AUC can be interpreted probabilistically as the

probability that a model can correctly identify the true fact out of a randomly selected

true and a randomly selected false fact [Fawcett, 2006].

The evaluation metrics as defined above are known as the filtered versions of these

metrics, since true facts are removed from the corrupted facts in Definition 2.3. Generally,

this is considered to be the more reliable evaluation strategy [Bordes et al., 2013], but

sometimes raw metrics are also reported, for which true facts are not filtered out

from the corrupted facts.

2.2 Description logics

We now turn our attention to description logics (DL), a different, but related, paradigm

for knowledge representation. While DLs can represent facts in a similar fashion to

KGs, they also allow for the specification of logical axioms, which greatly increases their

expressive power. Our discussion of DLs closely follows [Baader et al., 2017].
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2.2.1 The description logic EL++

There exist a wide variety of DLs, which mostly differ in which language constructs

they provide for stating logical axioms. For the purpose of this dissertation, we will

focus on a subset of the DL EL++ [Baader et al., 2005].

As with any DL, the statements EL++ allows us to make about some domain of

interest encompass individuals, concepts, and roles. Individuals correspond to some

notion of objects in the domain of interest, concepts represent sets of objects, and roles

are binary relations between objects. In the following, we will first introduce the syntax

and precise semantics of EL++ concepts, before we show how they can be used together

with logical axioms to represent knowledge about the world.

Syntax of EL++ concepts

Let Σ = (C,R, I) be a signature of pairwise disjoint sets of concept names C, role

names R, and individual names I. The set of EL++ concepts over Σ is then induc-

tively defined as follows:

• Every named concept C ∈ C is an EL++ concept.

• The concepts > (top) and ⊥ (bottom) are EL++ concepts.

• For every individual a ∈ I, the nominal {a} is an EL++concept.

• If C and D are EL++ concepts, their conjunction C u D is an EL++ concept.

• If C is an EL++ concept and r ∈ R is a role name, the existential restriction ∃r.C is

an EL++ concept.

Note that we have omitted concrete domains from the above definition, since we will

not make use of them in this dissertation.

We often distinguish between two types of concepts: named (or atomic) concepts are

of the form C ∈ C, >, or ⊥ and constitute the basic building blocks of complex (also

called compound) concepts, which involve one or more EL++ constructors.
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Semantics of EL++ concepts

We next need to specify the semantics of concepts, i.e. how they correspond to sets of

objects. To this end, we introduce the notion of an interpretation.

Definition 2.2.1 (Interpretation). An interpretation is a tuple I = (∆I , ·I ) of a non-empty

set ∆I , the interpretation domain, and a mapping function ·I : Σ→ ∆I , that maps

• individuals a ∈ I to objects aI ∈ ∆I ;

• concept names C ∈ C to subsets CI ⊆ ∆I ; and

• role names r ∈ R to binary relations rI ⊆ ∆I × ∆I .

The mapping ·I is extended to arbitrary concepts as follows:

>I = ∆I ,

⊥I = ∅,

{a}I = {aI},

(C u D)I = CI ∩ DI ,

(∃r.C)I = { x ∈ ∆I | ∃y ∈ ∆I . (x, y) ∈ rI ∧ y ∈ CI }.

An interpretation thus establishes a precise correspondence between syntactical EL++

concepts and sets of objects in the interpretation domain.

Example 2.2.1. Consider the following interpretation I for a family domain:

∆I = {w, x, y, z} MaleI = {x, y}

hasChildI = {(w, x), (y, z)} FemaleI = {w, z}

ParentI = {w, y} FatherI = {y}

ChildI = {x, z} MotherI = {w}

We have that the complex concept (Male u ∃hasChild.Female)I = {y}, since MaleI =

{x, y} and (∃hasChild.Female)I = {y}.
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Ontologies

The primary purpose of EL++ concepts is to build an ontology, or knowledge base, that

encodes facts about the world. These facts can be divided into two categories: termino-

logical statements correspond to logical axioms and data assertions encode information

about individuals. In DL terminology, a set of terminological statements is called a

TBox and a set of data assertions is referred to as an ABox.

The kind of logical statements we can make in EL++ are called general concept

inclusion (GCI) axioms and specify that all objects in one concept must also be contained

in another concept. We write A v B for possibly complex concepts A and B to

denote that A must be contained in B. An EL++ TBox is then simply defined as

a finite set of GCIs. Furthermore, we say an interpretation I satisfies a GCI C v
D if CI ⊆ DI , and an interpretation that satisfies each GCI in a TBox T is called

a model of T , denoted as I |= T .

Example 2.2.2. Consider the following TBox:

T = {Maleu Female v ⊥, (2.4)

∃hasChild.> v Parent, (2.5)

Father v Maleu ∃hasChild.>, (2.6)

Mother v Femaleu ∃hasChild.>}. (2.7)

It can be easily checked that the interpretation I from Example 2.2.1 satisfies every

GCI in T and is therefore a model of T . In contrast, the interpretation J , defined by

ParentJ = {w} and otherwise equivalently to I , is not a model of T since it violates

Axiom 2.5.

EL++ ABoxes on the other hand consist of two different types of data assertions:

• concept assertions of the form C(a) for a possibly complex EL++ concept C and an

individual a ∈ I; and

• role assertions of the form r(a, b) for a role r ∈ R and individuals a, b ∈ I.
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Concept assertions specify that certain individuals must be included in certain con-

cepts, while role assertions denote relationships between individuals. Formally, an

interpretation I satisfies a concept assertion C(a) if aI ∈ CI and a role assertion r(a, b)

if (aI , bI ) ∈ rI . An interpretation that satisfies all concept and role assertions in an

ABox A is called a model of A, which we denote as I |= A.

We are now ready to define EL++ ontologies and their models.

Definition 2.2.2 (Ontology and models). An EL++ ontology is a tuple O = (T ,A) of

an EL++ TBox T and an EL++ ABox A. An interpretation that is both a model of T

and A is called a model of O.

Remark 1. We use the term ontology in order to be consistent with recent work in DLEs

(e.g. [Kulmanov et al., 2019; Özçep et al., 2020; Chen et al., 2021]). In traditional DL

literature, the term knowledge base is more commonly used [Baader et al., 2003; Baader

et al., 2017].

Remark 2. Formally, EL++ also allows role inclusion axioms, but we will not consider

them in this dissertation.

Note that the distinction between ABox and TBox is not mathematically meaningful,

since any ABox axiom can directly be translated into a semantically equivalent TBox

axiom as follows [Kulmanov et al., 2019]:

C(a)  {a} v C

r(a, b)  {a} v ∃r.{b}

However, separating ABox and TBox is often useful from a conceptual point of view.

2.2.2 Reasoning in EL++

We have seen that ontologies enable us to formally represent facts about data and logical

axioms, and how interpretations provide them with a formal semantics. Reasoning algo-

rithms leverage this formal semantics to make logical inferences that implicitly follow

from a given ontology. This can be useful in two different ways [Baader et al., 2017]:
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• During the construction phase of an ontology, i.e. when we model some domain

of interest, reasoning allows us to ensure that we do not make any errors in our

modelling. For example, when introducing a new concept assertion we may want

to check that it does not violate any existing axioms.

• Once we have constructed an ontology, we can make use of reasoning algorithms

to uncover hidden knowledge about the domain of interest that was not explicit

before. For example, we might discover that two different concepts we included

in our modelling are actually semantically equivalent.

Besides the two examples above, there exist a variety of other standard reason-

ing tasks for DL ontologies. For the purpose of this dissertation, we focus on the

central task of subsumption, to which all other reasoning problems in EL++ can be

reduced [Baader et al., 2005].

Definition 2.2.3 (Subsumption). Let O = (T ,A) be an EL++ ontology. We say that

a concept C is subsumed by a concept D with respect to O, written O |= C v D, if

CI ⊆ DI for every model I of O. The problem of subsumption is to determine whether

O |= C v D for two given concepts C and D.

Example 2.2.3. Consider the ontology O = (T , ∅) with the TBox T from Example 2.2.2

and an empty ABox. We have that O |= Father v Parent. To see why, consider an

arbitrary model I of O and an element x ∈ FatherI . Since I is a model, due to

Axiom 2.6, we have that x ∈ MaleI ∩ (∃hasChild.>)I . It follows that x ∈ (∃hasChild.>)I .

But then, due to Axiom 2.5, x ∈ ParentI .

Due to the central role of reasoning in constructing and using ontologies, much of

the research in DL has been focused on developing efficient reasoning algorithms and

tools. A key tradeoff that has to be made in this regard is between the expressivity of a

particular DL and the complexity of reasoning in it. While the subsumption problem is

known to be NP-complete or harder for many DLs [Baader et al., 2003], crucially, it is

decidable in polynomial time for EL++ [Baader et al., 2005]. This has enabled EL++ to
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be used as the basis of many particularly large ontologies, such as they are commonly

found in the life sciences, e.g. [Ashburner et al., 2000; Schulz et al., 2009].

2.2.3 EL++ and first-order logic

The model-theoretic definition of the semantics of EL++ we have given is also known as

the direct semantics. Alternatively, one can also specify the semantics of EL++ (and many

other DLs) via a translation to first-order logic (FOL). This is interesting for two reasons:

first, it shows that EL++ can be regarded as a decidable fragment of FOL, and second,

it allows us to directly apply decidability and complexity results for (fragments of) FOL

to DLs. While we refer the interested reader to [Baader et al., 2017, Chapter 2.6] for the

exact details of this translation, we provide an example to illustrate the basic principle.

Example 2.2.4. Axiom 2.4 and Axiom 2.5 from the TBox in Example 2.2.2 can be

translated into FOL sentences as follows:

Maleu Female v ⊥  ∀x. (Male(x) ∧ Female(x) =⇒ ⊥),

∃hasChild.> v Parent  ∀x. (∃y. hasChild(x, y) =⇒ Parent(x)).

Note how named concepts are translated to unary FOL predicates, role names to binary

FOL predicates, and TBox axioms to universally quantified FOL sentences.

2.2.4 Relationship to knowledge graphs

Another interesting perspective on DLs is to regard them as extensions of KGs with

logical background information [Kulmanov et al., 2019]. In particular, given an

EL++ ontology O = (T ,A), we can represent the relational part of A as a KG

GA = (E ,R,F ) by setting E = I, R = R, and F = { (a, r, b) | r(a, b) ∈ A}. The

other information encoded in O can then be seen as logical background knowledge

about the entities and facts in GA.

This perspective offers an interesting insight into the connection between link

prediction and logical reasoning. A reasoning algorithm that predicts role assertions of

the form r(a, b) (or equivalently, concept subsumptions of the form {a} v ∃r.{b}) can
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be regarded as predicting missing links in GA that follow logically from the background

knowledge. However, reasoning is not limited to only relational knowledge but can

also be used to infer new background information about GA.

In contrast, most statistical link prediction techniques such as KGEs do not take

logical background knowledge into account. Instead, they predict missing links solely

on their statistical likelihood based on the observed connections between entities.

While this approach does not provide any guarantees regarding the correctness of the

predictions, it has the advantage that it is not limited to inferences that rigorously

follow from a well-defined semantics.

In the next chapter, we will see how KGEs can be extended to the domain of

DLs in order to enable similar kinds of statistical inference and overcome some of

the drawbacks of purely logical reasoning.



3
A Spatio-Translational Embedding Model for

the Description Logic EL++

In this chapter, we develop our main contribution: Box2EL, a novel embedding model

for the DL EL++ that represents roles using both spatial and translational representations.

We begin by introducing the basic ideas behind description logic embeddings and

subsequently discuss our model in comprehensive detail. Finally, we show that our

model is sound in that it corresponds to logical models of EL++.

3.1 Description logic embeddings and geometric models

Description logic embeddings (DLE) extend the idea behind KGEs to the domain of DL.

The basic principle is the same: given an ontology O with signature Σ = (C,R, I), we

want to embed the classes, roles, and individuals in O in a continuous latent vector

space Rn, in which we can then perform simple geometric operations to perform tasks

such as subsumption prediction. However, in contrast to the KG setting, the embeddings

we learn for an ontology must not only be based on statistical similarities, but crucially

also have to preserve its logical semantics.

We follow the approach proposed by Kulmanov et al. [2019] and expanded upon

in subsequent work [Mondal et al., 2021; Mohapatra et al., 2021; Xiong et al., 2022;

Peng et al., 2022], which involves leveraging the axioms in the EL++ ontology O to

19



3. A Spatio-Translational Embedding Model for the Description Logic EL++ 20

learn embeddings that correspond to geometric models of O; that is, (logical) models

with an interpretation domain ∆ = Rn. If we are able to find such embeddings,

they will by definition preserve the semantics of O and are as such well-suited for

sub-symbolic reasoning tasks.

In order to define the geometric models we want to learn, we have to specify how

concepts, roles, and individuals are mapped to the geometric embedding space Rn. As

a simplification, we omit mapping the individuals explicitly by first eliminating the

ABox from the ontology using the transformation rules described in Section 2.2.1. Let

us denote the set of all atomic concepts including nominals as

CI = C∪
⋃
a∈I
{{a}}.

Formally, we now have to define how elements of CI and R are represented in Rn.

3.2 Concept representation

Concepts correspond to sets of objects in the interpretation domain, and we thus have

to model them as subsets of Rn. Existing DLE methods usually represent concepts as

regions in the embedding space. Different such regions have been proposed, ranging

from convex cones [Özçep et al., 2020] to linear subspaces of complex vector spaces [Garg

et al., 2019]. In the context of EL++ embeddings, the two most prominent approaches

in the literature model concepts as either n-balls [Kulmanov et al., 2019; Mondal et al.,

2021; Mohapatra et al., 2021] or boxes, i.e. axis-aligned hyperrectangles [Xiong et al.,

2022; Peng et al., 2022].

In Box2EL we employ the latter representation of concepts as boxes, since they have

the conceptual advantage over n-balls that they are closed under intersection [Xiong

et al., 2022; Peng et al., 2022]. That is, the intersection of two boxes is guaranteed to also

be a box, whereas intersecting two n-balls may yield a shape that is not an n-ball. This

property of intersectional closure is useful for representing the conjunction of concepts

in the embedding space, as we demonstrate in the following example.
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Male




Father

Parent

Male

Father

Parent

Figure 3.1: Intersections of concepts in the embedding space. (Left) Intersecting concepts
represented as boxes in the embedding space yields a box, and the axiom ParentuMale v Father
can therefore naturally be represented. (Right) The intersection of two concepts represented as
n-balls may not be an n-ball, which leads to problems when modelling conjunction. Adapted
from [Xiong et al., 2022].

Example 3.2.1 (Xiong et al., 2022). Suppose we want to represent the following TBox in

the embedding space:

T = {ParentuMale v Father,

Father v Male,

Father v Parent}.

As illustrated in Figure 3.1, when representing concepts as boxes, we can naturally

model the concept Father as the intersection of Parent and Male. On the other hand, a

concept representation based on n-balls cannot accurately capture the semantics of T .

We now formally define boxes and a number of operations on them.

Definition 3.2.1 (Box). An n-dimensional box A is a subset of Rn for which there exist

vectors lA ∈ Rn and uA ∈ Rn with lA ≤ uA, such that

A = { x ∈ Rn | lA ≤ x ≤ uA },

where ≤ is applied element-wise. The vectors lA and uA are the lower and upper corner

of A, respectively. Sometimes we will write [lA, uA] as shorthand for A. We denote the

set of n-dimensional boxes as Bn.
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Centres and offsets. Given a box A, we can calculate its centre c(A) and offset o(A) as

follows:

c(A) =
lA + uA

2
(3.1)

and

o(A) =
uA − lA

2
. (3.2)

We can also go into the other direction and recover the lower and upper corner of a

box from c(A) and o(A). It follows immediately from the definitions that

c(A)− o(A)

=
lA + uA

2
− uA − lA

2

= lA

(3.3)

and similarly

uA = c(A) + o(A). (3.4)

Translation. The translation of a box A along a vector t ∈ Rn is defined as

A + t = [lA + t, uA + t].

Intersection. Given two boxes A and B, their intersection A∩ B can be computed as fol-

lows:

lA∩B = max{lA, lB},

uA∩B = min{uA, uB},

where max and min are applied element-wise. This is illustrated in Figure 3.2.

Model parameters. Box2EL represents every concept in CI as a box given by its centre

and offset. Formally, we denote all parameters of Box2EL by a vector θ and define the

function Boxθ : CI→ Bn, which returns the box embedding of a given concept. In total,

we require 2n(|C|+ |I|) parameters to store all concept embeddings.
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Figure 3.2: Computing the intersection of two boxes. The intersection of A and B is indicated by
the shaded area, whose lower corner is given by max{lA, lB} = lB and whose upper corner is
min{uA, uB} = uA. Since min and max are applied element-wise, the corners of the intersection
box A ∩ B need not in general be equal to one of the corners of either A or B.

3.3 Role representation

We next have to specify how to represent roles in the embedding space. Since our aim

is to learn geometric models, we need to map roles to binary relations r ⊆ Rn ×Rn. All

existing EL++ embedding models we are aware of represent these binary relations by

making use of some variation of the TransE KGE model [Bordes et al., 2013] described

in Section 2.1.3. However, this has several limitations as we show next.

3.3.1 Limitations of translational embedding models

Recall that in the KG setting, TransE represents entities and relations as n-dimensional

vectors and learns embeddings such that

h + r ≈ t

for triples that are likely to be true. This approach can readily be applied to DLEs by

similarly representing roles as translation vectors that induce a binary relation

{ (x, y) ∈ Rn ×Rn | x + r = y },

where r is the translation vector for the role r. Analogously to TransE, an axiom of

the form C v ∃r.D then holds in the embedding space if

Boxθ(C) + r ⊆ Boxθ(D).
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While this role representation is intuitive and relatively effective, it inherits one of

the fundamental limitations of TransE: its inability to model one-to-many, many-to-one,

or many-to-many relationships, as noted in e.g. [Z. Wang et al., 2014; Lin et al., 2015;

Abboud et al., 2020]. We illustrate the problem with an example.

Example 3.3.1. Let T be the following EL++ TBox:

T = {Mother u Father v ⊥,

Child v ∃hasParent.Mother,

Child v ∃hasParent.Father}.

The TransE role representation requires that Boxθ(Child) + hasParent ⊆ Boxθ(Mother)

and Boxθ(Child) + hasParent ⊆ Boxθ(Father). However, since the first axiom in T states

that Mother and Father must be disjoint, this can only be fulfilled if Boxθ(Child) = ∅.

The embedding model thus clearly does not align with the semantics of T .

Along similar lines, TransE is incapable of capturing symmetric relationships of the

form {C v ∃r.D, D v ∃r.C} without making the embeddings of C and D equal [Sun

et al., 2019]. Clearly, we need a more expressive representation of roles in the embedding

space to accurately capture the range of constructs expressible in EL++.

3.3.2 Traditional extensions of TransE

In the KGE literature, a variety of extensions to TransE have been proposed to resolve

the issues identified above [Z. Wang et al., 2014; Lin et al., 2015; G. Ji et al., 2015;

G. Ji et al., 2016]. The general idea behind most of these extensions is to separate the

embedding space of entities and relations. For example, the TransH model [Z. Wang

et al., 2014] associates every relation with a hyperplane and a translation operation

on that hyperplane. Scores for a triple (h, r, t) are then computed by first calculating

the projections h⊥ and t⊥ of h and t onto the hyperplane associated with r and then

applying the normal TransE scoring function in that projection space, i.e.

s(h, r, t) = −‖h⊥ + r− t⊥‖.
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Introducing Relation-Specific Entity Embeddings. To over-
come the disadvantages of TransE in dealing with 1-to-N,
N-to-1, and N-to-N relations, an effective strategy is to allow
an entity to have distinct representations when involved in
different relations. In this way, even if the embeddings of
Psycho, Rebecca, and RearWindowmight be very similar
given the relation DirectorOf, they could still be far away
from each other given other relations.

TransH [15] follows this general idea, by introducing
relation-specific hyperplanes. As shown in Fig. 1b, TransH
models entities again as vectors, but each relation r as a vec-
tor r on a hyperplane with wr as the normal vector. Given a
fact ðh; r; tÞ, the entity representations h and t are first pro-
jected onto the hyperplane, resulting in

h? ¼ h�w
>
r hwr; t? ¼ t�w

>
r twr:

The projections are then assumed to be connected by r on
the hyperplane with low error if ðh; r; tÞ holds, i.e.,
h? þ r 	 t?. The scoring function is accordingly defined as

frðh; tÞ ¼ �kh? þ r� t?k
2

2
;

similar to the one used in TransE. By introducing the mech-
anism of projecting to relation-specific hyperplanes, TransH
enables different roles of an entity in different relations.

TransR [16] shares a very similar idea with TransH. But it
introduces relation-specific spaces, rather than hyperplanes.
In TransR, entities are represented as vectors in an entity
space Rd, and each relation is associated with a specific
space Rk and modeled as a translation vector in that space.
Given a fact ðh; r; tÞ, TransR first projects the entity repre-
sentations h and t into the space specific to relation r, i.e.,

h? ¼ Mrh; t? ¼ Mrt:

Here Mr 2 R
k�d is a projection matrix from the entity space

to the relation space of r. Then, the scoring function is again
defined as

frðh; tÞ ¼ �kh? þ r� t?k
2

2
:

Fig. 1c gives a simple illustration of TransR. Although pow-
erful in modeling complex relations, TransR introduces a
projection matrix for each relation, which requires OðdkÞ
parameters per relation. So it loses the simplicity and effi-
ciency of TransE/TransH (which model relations as vectors
and require only OðdÞ parameters per relation). An even
more complicated version of the same approach was later
proposed in [48], [49]. In this version, each relation is

associated with two matrices, one to project head entities
and the other tail entities.

TransD [50] simplifies TransR by further decomposing
the projection matrix into a product of two vectors. Specifi-
cally, for each fact ðh; r; tÞ, TransD introduces additional
mapping vectors wh;wt 2 R

d and wr 2 R
k, along with the

entity/relation representations h; t 2 Rd and r 2 Rk. Two
projection matricesM1

r andM
2

r are accordingly defined as

M
1

r ¼ wrw
>
h þ I; M

2

r ¼ wrw
>
t þ I:

These two projection matrices are then applied on the head
entity h and the tail entity t respectively to get their projec-
tions, i.e.,

h? ¼ M
1

rh; t? ¼ M
2

rt:

With the projected entities, the scoring function is defined in
the same way as in TransR. TransD requires OðndþmkÞ
parameters and is more efficient than TransR (which
requires OðndþmdkÞ parameters).

TranSparse [51] is another work that simplifies TransR by
enforcing sparseness on the projection matrix. It has two
versions: TranSparse (share) and TranSparse (separate). The
former uses the same sparse projection matrix MrðurÞ for
each relation r, i.e.,

h? ¼ MrðurÞh; t? ¼ MrðurÞt:

The latter introduces two separate sparse projection matri-
ces M1

rðu
1

rÞ and M
2

rðu
2

rÞ for that relation, one to project head
entities, and the other tail entities, i.e.,

h? ¼ M
1

rðu
1

rÞh; t? ¼ M
2

rðu
2

rÞt:

Here, ur, u
1

r , and u
2

r denote sparseness degrees of these pro-
jection matrices. The scoring function is again the same with
that used in TransR. By introducing sparse projection matri-
ces, TranSparse reduces the number of parameters to
Oðndþ ð1� uÞmdkÞ, where u is the average sparseness
degree of projection matrices.

Relaxing Translational Requirement hþ r 	 t. Besides
allowing entities to have distinct embeddings when
involved in different relations, another line of research
improves TransE by relaxing the overstrict requirement of
hþ r 	 t. TransM [52] associates each fact ðh; r; tÞ with a
weight ur specific to the relation, and defines the scoring
function as

frðh; tÞ ¼ �urkhþ r� tk
1=2:

Fig. 1. Simple illustrations of TransE, TransH, and TransR. The figures are adapted from [15], [16].
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function as

frðh; tÞ ¼ �urkhþ r� tk
1=2:

Fig. 1. Simple illustrations of TransE, TransH, and TransR. The figures are adapted from [15], [16].
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Figure 3.3: An illustration of TransH and TransR [Q. Wang et al., 2017]. (Left) TransH associates
every relation with a hyperplane and projects entity embeddings onto that hyperplane before
applying the TransE scoring function. (Right) TransR learns a projection matrix Mr for every
relation, which is used to similarly project entity embeddings into the relation space of r.

With this formulation, the embedding e⊥ of an entity crucially depends on the

relation r. To see how this addresses the shortcomings of TransE, assume that the

relation r is a one-to-many relation. While TransE would require that the embeddings for

every possible tail of a tuple (h, r) be equal, in TransH, we only have that the projected

tails t⊥ must be equal. For a different relation that is not a one-to-many relation, the

model can therefore still learn distinct embeddings for the possible tails of (h, r).

Other approaches such as TransR [Lin et al., 2015] and its variations follow this idea

of learning embeddings in two separate vector spaces and projecting entities into the

relevant relation space before applying a translational scoring function. An illustration

of TransH and TransR is given in Figure 3.3.

While these approaches have been employed successfully in the KGE setting, there

are several issues when trying to apply them to DLEs. The most immediately obvious

problem is the question of how to preserve the representation of concepts when

projecting them to the relation space. For instance, if we try to project an n-dimensional

box onto a hyperplane using the TransH approach, we will end up with an (n− 1)-

dimensional shape that may not be a box anymore.

The same issue arises when mapping concepts back from the relation space to the

space of concept embeddings, which is required for existentially restricted concepts.

To illustrate, consider the concept ∃r.D. Using TransE, we can easily and naturally

represent this concept in the embedding space by translating the embedding of D
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backwards along r, i.e. as Boxθ(D) − r. If we try to use TransH to represent roles

on the other hand, we would have to apply this translation along the reverse of r in

the corresponding relation space and then map the result back to the space of concept

embeddings. However, the resulting region in the concept space is not guaranteed to

be a box and thus does not conform to our representation of concepts.

While it is possible to find ways around this problem, for example by heavily

limiting the expressiveness of the representation of roles by only allowing axis-aligned

hyperplanes, we adopt a different approach that does not require making such com-

promises for Box2EL.

3.3.3 A spatio-translational model for roles

Instead of using one of the direct replacements of TransE, we adapt the expressive KGE

model BoxE [Abboud et al., 2020] to the domain of DLEs. We first describe BoxE in the

KG setting, before we show how its relational model can be used in the context of DLEs.

BoxE

BoxE is a KGE model that, like TransE, embeds entities as points in the embedding

space Rn. Instead of using a translational approach to represent relations, BoxE

models relations using spatial representations. In particular, each relation is associated

with two boxes in the embedding space: a head and a tail box. A triple (h, r, t) is

considered to be true if

h ∈ rh and t ∈ rt,

where e denotes the embedding for entity e, and rh and rt are the head and tail

boxes of r, respectively.

However, this purely spatial representation of relations is still quite restricted in its

current form, since it relates every entity whose embedding lies in the head box of a

relation to every entity with an embedding in the corresponding tail box. To illustrate, if

we try to model the simple set of facts {(a, r, b), (c, r, d)} with this approach, the model

will also consider the facts (a, r, d) and (c, r, b) to be true.
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To overcome this limitation, BoxE introduces an additional bump vector be for each

entity e. For a fact (h, r, t), these bump vectors intuitively modify the position of h

and t by “bumping” the corresponding points in the vector space before they are

compared to the head or tail box of r, respectively. Formally, with the introduction

of bump vectors a fact is now considered true if

h + bt ∈ rh and t + bh ∈ rt.

The embeddings of entities are therefore dynamic and depend on the particular triple

that is being considered. It is easy to see that bump vectors allow us to correctly

represent the set of facts from above without making any additional facts true.

This spatio-translational approach of embedding relations by combining a spatial box

representation with translational bumps turns out to yield a very strong KGE model that

overcomes the limitations of TransE in the KG setting. Furthermore, one can show that

BoxE does not suffer from any similar kinds of shortcomings — it is a fully expressive KGE

model, i.e. can correctly capture an arbitrary set of facts in a KG [Abboud et al., 2020].

Adapting BoxE to the DLE setting

The relational model of BoxE can almost directly be applied to the DLE setting: we

similarly associate every role r ∈ R with a head box Headθ(r) and a tail box Tailθ(r),

inducing the binary relation

Headθ(r)× Tailθ(r) ⊆ Rn ×Rn

in the embedding space. We furthermore introduce bump vectors Bumpθ(C) for

every concept C ∈ CI, which, as in BoxE, enable a dynamic representation of concept

embeddings. An axiom of the form C v ∃r.D is thus considered to hold if

Boxθ(C) + Bumpθ(D) ⊆ Headθ(r)

and

Boxθ(D) + Bumpθ(C) ⊆ Tailθ(r),

and we can similarly represent other axioms in the embedding space.
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Figure 3.4: An illustration of Box2EL. White boxes represent concept embeddings, whereas role
embeddings are illustrated as coloured boxes and labelled as rh or rt for the head or tail box of
r, respectively. Bump vectors are drawn as arrows and labelled with the corresponding concept.
In this configuration, the axiom Child v ∃hasParent.Father is modelled as true, since the box
embedding of Child bumped by the bump vector of Father lies in hasParenth, and similarly the
embedding of Father bumped by Child’s bump vector is in hasParentt. Conversely, the axiom
Child v ∃hasParent.Grandfather does not hold.

Since we use boxes not only for the representation of concepts, but also to represent

relations, we call our method Box2EL.

Example 3.3.2. Consider the following TBox T :

T = {Mother u Father v ⊥, Father v ∃hasParent.Grandfather,

Child v ∃hasParent.Mother, Child v ∃hasParent.Father,

Child v ∃relatedTo.Uncle, Uncle v ∃relatedTo.Child}.

Figure 3.4 illustrates a Box2EL model that correctly represents the axioms in T .

The previous example demonstrates the expressive power of Box2EL and shows

how it is able to overcome the shortcomings of TransE. In particular, note that we can

now successfully model one-to-many relationships such as hasParent and symmetric

relationships like relatedTo.

Model complexity. In order to represent the head and tail boxes for every relation

and a bump vector per concept, we require 4n|R|+ n(|C|+ |I|) parameters. Together

with the parameters needed to store the concept embeddings (see Section 3.2), the total

space complexity of Box2EL is thus O
(
n(3(|C| + |I|) + 4|R|)

)
.
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3.4 Training procedure

So far, we have defined how Box2EL represents concepts and roles in the embedding

space, and gained some intuition how these representations could be used to encode the

axioms of an ontology. We now describe the training procedure that learns embeddings

for a given ontology in detail. Subsequently, we will formally show that the learnt

embeddings corresponds to a geometric model of the ontology.

3.4.1 Normal forms

In order to learn embeddings for an EL++ ontology O, we first eliminate the ABox,

as previously discussed. Afterwards, we transform every axiom in O into a normal

form using the normalisation procedure described in [Baader et al., 2005]. The first

four normal forms involve subsumptions between concepts:

C v D (NF1)

C u D v E (NF2)

C v ∃r.D (NF3)

∃r.C v D (NF4)

The remaining normal forms specify that concepts are not satisfiable:

C u D v ⊥ (NF5)

∃r.C v ⊥ (NF6)

C v ⊥ (NF7)

Crucially, the normalised ontology is a conservative extension of O, that is, every

model of the normalised ontology is also a model of O [Baader et al., 2005]. In particular,

if we learn a geometric model for the normalised ontology, it will also be a model of O.
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A

B

Figure 3.5: Calculating the distance between two boxes. The blue lines indicate the element-wise
distances d1(A, B) and d2(A, B) between A and B. They are obtained by subtracting the offsets
o(A) and o(B), represented by red lines, from the element-wise distances of the centres of the
boxes. Inspired by [Peng et al., 2022].

3.4.2 Loss functions

We follow the framework of Kulmanov et al. [2019] and introduce a separate loss

function for every normal form. During training, we then optimise the corresponding

loss function for every axiom in the ontology.

There exist two main approaches for defining loss functions in the literature: distance-

and volume-based formulations. In the distance-based approach, utilised for example

in [Kulmanov et al., 2019; Peng et al., 2022], we aim to minimise the distance between

the embeddings of related concepts. The volume-based definition, due to Xiong et al.

[2022], on the other hand uses the volume of concept embeddings (or rather a modified

soft volume) as the basis of the various loss functions. Since we empirically find the

distance-based formulation to work better, as is also suggested by previous results [Peng

et al., 2022], we employ the first approach.

Distance between boxes. In the following, we will often need to calculate the element-

wise distance d(A, B) between two boxes A and B. As illustrated in Figure 3.5, it

can be computed as

d(A, B) = |c(A)− c(B)| − o(A)− o(B).



3. A Spatio-Translational Embedding Model for the Description Logic EL++ 31

Inclusion loss. We first define a general inclusion loss L⊆(A, B) that encourages the

box A to be contained in the box B for two arbitrary boxes A, B ∈ Bn, which will be

helpful when defining the axiom-specific loss functions.

In order for A to be completely contained in B, for every dimension the side

that is the furthest away from B needs to be inside B. From Figure 3.5, we can

see that this exactly the case when

dk(A, B) + 2o(A)k ≤ 0

for every dimension 1 ≤ k ≤ n. Consequently, we define the inclusion loss L⊆(A, B) as

L⊆(A, B) = ‖max{0, d(A, B) + 2o(A)− γ}‖,

where the max function and the subtraction of γ is applied element-wise. Note that we

have introduced a margin hyperparameter γ, which allows the loss to become 0 even if

A is not precisely contained in B, as long as it lies within γ-distance in each dimension.

We now formally show that this loss ensures that A lies within B.

Proposition 3.4.1. Let A and B be boxes in Bn and γ ≤ 0. If L⊆(A, B) = 0, then A ⊆ B.

Proof. We show the proposition by proving that lB ≤ lA and uA ≤ uB. Assume

L⊆(A, B) = 0. We have that

d(A, B) + 2o(A)− γ ≤ 0

|c(A)− c(B)|+ o(A)− o(B)− γ ≤ 0

and thus

|c(A)− c(B)|+ o(A)− o(B) ≤ γ ≤ 0.

Now fix an arbitrary dimension k such that 1 ≤ k ≤ n. We distinguish two cases:

Case 1: c(A)k ≥ c(B)k. We eliminate the absolute value function and use Equation 3.4

to obtain

uA, k − uB, k ≤ 0

uA, k ≤ uB, k.
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Since c(A)k ≥ c(B)k, we furthermore have by Equation 3.1

lA, k + uA, k

2
≥ lB, k + uB, k

2

lA, k ≥ lB, k + uB, k − uA, k︸ ︷︷ ︸
≥0

lA, k ≥ lB, k.

Case 2: c(A)k ≤ c(B)k. Similarly to the first case, we eliminate the absolute value

function and use Equation 3.3 to obtain

−lA, k + lB, k ≤ 0

lB, k ≤ lA, k.

Because c(A)k ≤ c(B)k and using Equation 3.1, we have

lA, k + uA, k

2
≤ lB, k + uB, k

2

lA, k − lB, k︸ ︷︷ ︸
≥0

+ uA, k ≤ uB, k

uA, k ≤ uB, k.

Now, consider an arbitrary point a ∈ A. By Definition 3.2.1 we have that lA ≤ a ≤

uA. But then

lB ≤ lA ≤ a ≤ uA ≤ uB

and thus a ∈ B.

Disjoint loss. We define a further generic loss function Ld(A, B) that ensures that

boxes A and B are disjoint. Intuitively, the loss makes the element-wise distance d(A, B)

greater than 0 in all dimensions. It is defined as follows:

Ld(A, B) = ‖max{0, −(d(A, B) + γ)}‖. (3.5)

Similarly to before, we prove that the loss corresponds to our intuition.

Proposition 3.4.2. Let A and B be boxes in Bn and γ ≤ 0. If Ld(A, B) = 0, then A ∩ B = ∅.
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Proof. The proof is similar to that of Proposition 3.4.1. Assume Ld(A, B) = 0. We have

that

−(d(A, B) + γ) ≤ 0

−(|c(A)− c(B)| − o(A)− o(B) + γ) ≤ 0

and therefore

|c(A)− c(B)| − o(A)− o(B) ≥ −γ ≥ 0.

We again fix a dimension k such that 1 ≤ k ≤ n and distinguish two cases:

Case 1: c(A)k ≥ c(B)k. By eliminating the absolute value function and using Equa-

tions 3.3 and 3.4 we obtain

lA, k − uB, k ≥ 0

lA, k ≥ uB, k. (3.6)

Case 2: c(A)k ≤ c(B)k. Analogously to Case 1, we have

lB, k − uA, k ≥ 0

lB, k ≥ uA, k. (3.7)

Now consider an arbitrary point a ∈ A. From the case analysis above, we know that

either lA, k ≥ uB, k or lB, k ≥ uA, k. However, in both cases a cannot be in B.

We are now ready to state the loss functions for the different normal forms in EL++

ontologies. Since we also represent concepts as boxes and use a distance-based approach

similar to Peng et al. [2022], some of our loss functions are equivalent to theirs.

First normal form (NF1). Given an axiom C v D, we want to learn embeddings such

that Boxθ(C) ⊆ Boxθ(D), since this corresponds to the semantics of concept inclusion.

Therefore, we define the loss for the first normal form as simply the inclusion loss:

L1(C, D; θ) = L⊆(Boxθ(C), Boxθ(D)).
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Second normal form (NF2). For an axiom of the form C u D v E, we similarly

require that the intersection of the box embeddings of C and D is a subset of the

box associated with E. The intersection of two boxes can be easily computed as

discussed in Section 3.2 and so we have

L2(C, D, E; θ) = L⊆
(

Boxθ(C) ∩ Boxθ(D), Boxθ(E)
)

.

However, this formulation is problematic since it can be easily minimised to 0 by

setting Boxθ(C) and Boxθ(D) to be disjoint. While disjoint embeddings for C and D

would technically not violate the semantics, usually an axiom of the form C u D v ⊥

would have been used directly if it had been the intention that C and D should be

disjoint. Therefore, we introduce the following non-empty loss for arbitrary boxes A and B

LNE(A, B) = ‖max {0, max{lA, lB} −min{uA, uB}}‖,

which encourages A ∩ B to be non-empty. Intuitively, the loss ensures that all elements

of the offset vector o(A ∩ B) are positive.

Overall, the loss for axioms in the second normal form is given by

L2(C, D, E; θ) = L⊆
(

Boxθ(C) ∩ Boxθ(D), Boxθ(E)
)
+ LNE

(
Boxθ(C), Boxθ(D)

)
.

Third normal form (NF3). The third normal form involves existential restriction,

and we thus need to define a loss that takes the novel role representation of Box2EL

into account. From the discussion in Section 3.3.3, we have that for an axiom of

the form C v ∃r.D we need to learn embeddings such that Boxθ(C) + Bumpθ(D) ⊆

Headθ(r) and Boxθ(D) + Bumpθ(C) ⊆ Tailθ(r). This requirement is captured by the

following loss function:

L3(C, r, D; θ) =
1
2

(
L⊆(Boxθ(C) + Bumpθ(D), Headθ(r))

+L⊆(Boxθ(D) + Bumpθ(C), Tailθ(r))
)

.
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Fourth normal form (NF4). For an axiom of the form ∃r.C v D, we need to ensure

that all points in the embedding space that are connected to C via the role r are

contained in Boxθ(D). It can be easily seen from our geometric representation that

the set of these points is contained in Headθ(r) − Bumpθ(C). We therefore define

the loss for the fourth normal form as

L4(r, C, D; θ) = L⊆(Headθ(r)− Bumpθ(C), Boxθ(D)).

Fifth normal form (NF5). Axioms of the fifth normal form C u D v ⊥ state that the

concepts C and D have to be disjoint. Consequently, we define the corresponding loss as

L5(C, D; θ) = Ld(Boxθ(C), Boxθ(D)).

Sixth normal form (NF6). The sixth normal form requires that a concept ∃r.C be unsat-

isfiable. As with most previous approaches [Kulmanov et al., 2019; Peng et al., 2022], one

limitation of our method is that we can not accurately capture this requirement in the

embedding space. As an approximation, we define the loss for the sixth normal form as

L6(r, C; θ) = ‖o(Headθ(r))‖.

While this does ensure that ∃r.C becomes unsatisfiable, it obviously does not precisely

correspond to the desired semantics, since the loss will also make any concept ∃r.C′

with C′ 6= C unsatisfiable. However, we note that this normal form does not seem to

be very common in practice; indeed, we do not find any NF6 axioms in any of the

datasets we consider in our empirical evaluation in Chapter 4.

Seventh normal form (NF7). Finally, for axioms of the form C v ⊥ the following

loss encourages Boxθ(C) to be empty:

L7(C; θ) = ‖o(Boxθ(C))‖.
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Total loss. We have now defined a loss function for every possible axiom in a

normalised ontology O. The total loss of the embeddings θ with respect to O is

then simply given as the sum of the squares of the individual loss functions for every

axiom in O. In practice, we augment this loss using a negative sampling procedure

and a regularisation term, as we describe next.

3.4.3 Negative sampling

While the embeddings could in theory be directly optimised with the loss functions we

have specified, it is common to additionally employ a form of negative sampling during

training in order to further improve the quality of the learnt embeddings [Kulmanov

et al., 2019; Xiong et al., 2022; Peng et al., 2022]. We follow previous work and generate

negative samples for axioms in the third normal form analogously to negative sampling

in KGEs. In particular, for an axiom of the form C v ∃r.D we generate a set of corrupted

axioms by replacing either C or D with a randomly selected different concept.

An intuitive choice regarding the loss function for negative training examples would

be to use the disjoint loss from Equation 3.5, which ensures that the element-wise

distance d(A, B) between two boxes A and B is positive in all dimensions. However, in

practice we find a loss formulation based on the minimal distance between A and

B to yield better results.

Minimal distance between boxes. Let A and B be boxes in Bn. Recall that the

function d(A, B) computes the element-wise distance between A and B. As illustrated in

Figure 3.6, the minimal distance between any two points in A and B can be computed as

‖max{0, d(A, B)}‖.

For our loss, we again add the margin hyperparameter γ to the minimal distance,

yielding the following function µ:

µ(A, B) = ‖max{0, d(A, B) + γ}‖.
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Figure 3.6: Computing the minimal distance between two boxes. (Left) If the element-wise
distance d(A, B) is greater than 0 in all dimensions, the minimal distance is simply given by
‖d(A, B)‖. (Right) In this case, we have d1(A, B) < 0 and we correspondingly need to set the
first element of d(A, B) to 0 before computing the norm.

We now introduce another hyperparameter, the negative sampling distance δ > 0, and

define the loss for a negative training example C 6v ∃r.D as

L 6v(C, r, D) =
(
δ− µ(Boxθ(C) + Bumpθ(D), Headθ(r))

)2

+
(
δ− µ(Boxθ(D) + Bumpθ(C), Tailθ(r))

)2 .

This loss encourages the minimal distance between the bumped embedding of C

and the head box of r, as well as the minimal distance between the bumped embedding

of D and the tail box of r, to be close to the negative sampling distance δ. As desired, it

thus makes the negative training example less likely to be induced by the model. Our

formulation is based on a similar loss that can be found in the implementation of

ELBE [Peng et al., 2022].

Negative sampling procedure. In contrast to existing DLE methods, which generate

a single set of negative samples in the beginning of the training process, we follow

the approach more common in the KGE setting and generate new negative training

examples every epoch. This has the advantage that our model learns to differentiate

negative samples from positive ones in general, and not just for a specific fixed set

of negative training examples.

We also experiment with generating ω > 1 negative samples per NF3 axiom, which

further improves the performance of the model as we demonstrate in Section 4.6.3.
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Algorithm 1 Training procedure of Box2EL

Require:
An EL++ ontology O = (T ,A), the embedding dimensionality n, the margin γ, the
negative sampling distance δ, the number of negative samples ω, the regularisation
parameter λ, the step size η, and the number of training epochs e.

1: procedure Train(T , A, n, γ, δ, ω, λ, η, e)
2: T ← T ∪ EliminateABox(A)
3: T ← Normalise(T )
4: θ← U (−1, 1) . initialise all embeddings randomly
5: for i ∈ {1, . . . , e} do
6: B← SampleMiniBatch(T )
7: N ← ∅
8: for j ∈ {1, . . . , ω} do
9: N ← N ∪ SampleNegatives(B)

10: end for
11: θ← θ− η

|B|∇θL(B, N, γ, δ, λ; θ)

12: end for
13: end procedure

3.4.4 Regularisation

The final ingredient in our loss formulation is a regularisation term for the bump vectors.

Intuitively, the bump vectors make our relation model very expressive — as can be seen

by the fact that they are a key ingredient in the proof of the full expressiveness of

BoxE [Abboud et al., 2020] — and we thus want to limit their power in order to prevent

overfitting. We therefore add the following regularisation loss:

Lr(θ) = λ ∑
C∈CI

∥∥Bumpθ(C)
∥∥,

where λ is a regularisation hyperparameter.

3.4.5 Training algorithm

To learn embeddings for a given ontology, we first eliminate the ABox and normalise

the TBox, as previously discussed. We then start with a random initialisation of the

embeddings and minimise the sum of the loss terms of all normal forms via mini-batch

gradient descent. Similar to previous work [Kulmanov et al., 2019; Xiong et al., 2022],

we formally specify the training algorithm in Algorithm 1.
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3.5 Soundness

The loss function that is minimised during the training of Box2EL intuitively encodes

the axioms of an ontology in the embedding space by requiring certain geometric

relationships to hold between the representations of concepts and roles. We now

show that the geometric interpretation we learn indeed corresponds to a logical model

of the given ontology. Our proof is inspired by similar work for other embedding

models [Kulmanov et al., 2019; Xiong et al., 2022].

Theorem 3.5.1 (Soundness). Let O = (T ,A) be an EL++ ontology. If there exists a Box2EL

model with parameters θ and a γ ≤ 0 such that L(O; θ) = 0, then O has a model.

Proof. We first perform the standard steps of eliminating the ABox and normalising the

axioms in O. Let O′ denote the resulting ontology.

Consider the following geometric interpretation Iθ = (∆Iθ, ·Iθ), induced by the

trained Box2EL model:

1. ∆Iθ = Rn,

2. for every concept name C ∈ CI, let CIθ = Boxθ(C),

3. for every role r ∈ R, let rIθ = Headθ(r)× Tailθ(r).

We show that Iθ is a model ofO′. First, note that L(O; θ) = 0 implies that Lr(θ) = 0,

and thus Bumpθ(C) = 0 for any C ∈ CI. We now show that Iθ satisfies every axiom

α ∈ O′, distinguishing between the different normal forms. Implicitly, we make frequent

use of Proposition 3.4.1, which we do not state explicitly for the sake of brevity.

Case 1: α = C v D. Since L1(C, D; θ) = L⊆(Boxθ(C), Boxθ(D)) = 0, we have that

Boxθ(C) ⊆ Boxθ(D). But then it immediately follows from the definition of Iθ

that CIθ ⊆ DIθ .

Case 2: α = C u D v E. We have that L2(C, D, E; θ) = 0 and therefore it follows that

Boxθ(C) ∩ Boxθ(D) ⊆ Boxθ(E). Hence, we have (C u D)Iθ = CIθ ∩ DIθ =

Boxθ(C) ∩ Boxθ(D) ⊆ Boxθ(E) = EIθ .
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Case 3: α = C v ∃r.D. Let x ∈ CIθ = Boxθ(C). Since L3(C, r, D; θ) = 0 and all bump

vectors are 0, we have Boxθ(C) ⊆ Headθ(r) and therefore x ∈ Headθ(r). Similarly,

for any y ∈ DIθ we have y ∈ Tailθ(r). But then (x, y) ∈ rIθ and therefore

x ∈ (∃r.D)Iθ .

Case 4: α = ∃r.C v D. Let x ∈ (∃r.C)Iθ. Hence, there exist a y ∈ CIθ such that

(x, y) ∈ rIθ. By the definition of rIθ, we must therefore have x ∈ Headθ(r).

Since L4(r, C, D; θ) = 0, furthermore Headθ(r) ⊆ Boxθ(D) and therefore x ∈ DIθ .

Case 5: α = C u D v ⊥. We have Ld(Boxθ(C), Boxθ(D)) = 0, so by Proposition 3.4.2

we have that (C ∩ D)Iθ = Boxθ(C) ∩ Boxθ(D) = ∅ ⊆ ⊥Iθ .

Case 6: α = ∃r.C v ⊥. The loss L6(r, C; θ) = 0 implies that Headθ(r) = ∅. Therefore

rIθ = ∅, which means (∃r.C)Iθ = ∅ and hence (∃r.C)Iθ ⊆ ⊥Iθ .

Case 7: α = C v ⊥. We have that L7(C) = 0, from which we immediately obtain

Boxθ(C) = ∅. Thus, CIθ ⊆ ⊥Iθ .

We have shown that Iθ satisfies every axiom in O′, and is therefore a model of O′.
But since O′ is a conservative extension of O [Baader et al., 2005], it follows that Iθ is

also a model of O.



4
Empirical Evaluation

In this chapter, we perform an extensive empirical evaluation of Box2EL in a variety

of different settings, and demonstrate that the theoretical advantages of our model

manifest themselves in practice. Furthermore, we present a novel benchmark for

predicting subsumptions between named and complex concepts, and use it to evaluate

the inductive reasoning capabilities of Box2EL and of a variety of standard models.

We begin by first giving a brief overview of our implementation of Box2EL. Subse-

quently, we introduce a simple proof of concept ontology to demonstrate the workings

of Box2EL and its conceptual advantages over competing models. We proceed with

our empirical evaluation in the three different settings of subsumption prediction, link

prediction, and deductive reasoning. Finally, we present a number of ablation studies

that highlight the contribution of different parts of our model.

4.1 Implementation

We implemented Box2EL in the PyTorch machine learning framework [Paszke et al.,

2019], using the publicly available code of ELBE [Peng et al., 2022] as a starting point

for our implementation. Our code is roughly organised into the following subsystems:

41
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• The implementation of the model itself, which largely follows the mathematical

description given in Chapter 3. In particular, the model implementation specifies

the loss functions for the different normal forms.

• The training subsystem, which implements the training algorithm given in Algo-

rithm 1.

• The evaluation subsystem, which takes a trained Box2EL model and evaluates it

on a validation or testing dataset, computing standard ranking-based metrics.

• Finally, a variety of data loaders handle parsing ontologies given in the Web

Ontology Language (OWL) format [Grau et al., 2008] and transforming them to

an internal tensor-based representation.

The normalisation procedure that transforms an EL++ ontology into a set of

axioms in one of the normal forms is handled as a pre-processing step. We use

the implementation provided by Kulmanov et al. [2019], which internally makes use

of the jcel reasoner [Mendez, 2012].

4.2 Proof of concept: family ontology

In order to validate our implementation and demonstrate the expressiveness of our novel

role representation, we evaluate Box2EL on the following proof of concept ontology

from the family domain, which is adapted from [Kulmanov et al., 2019]:

Father v Male Mother v Female

Father v Parent Mother v Parent

Maleu Parent v Father Femaleu Parent v Mother

Maleu Female v ⊥ Parentu Child v ⊥

Child v ∃hasParent.Mother Child v ∃hasParent.Father

Parent v ∃hasChild.Child
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Figure 4.1: Visualisation of the embeddings learnt by Box2EL (left) and ELBE (right) for the
proof of concept ontology. While Box2EL can accurately represent the axioms in the ontology,
the limitations of TransE as a model for roles prevent ELBE from learning correct embeddings.

This ontology contains a variety of interesting features: first, the axioms Male u

Parent v Father and Femaleu Parent v Mother require a concept representation that can

accurately model intersections in the embedding space. Second, the role hasParent forms

a one-to-many relationship between the concepts Child and Mother/Father.

In order to be able to visualise the learnt embeddings, we train Box2EL with an

embedding dimensionality of n = 2. We set the margin γ = 0, apply a regularisation of

λ = 1, and do not employ any negative sampling. We select similar hyperparameters for

training ELBE [Peng et al., 2022], a comparable state-of-the-art EL++ embedding model

that also interprets concepts as boxes and uses TransE to represent roles. Furthermore,

we add the following visualisation loss term to the objective function to ensure the learnt

boxes have a big enough volume for plotting:

LV =
1

n|CI| ∑
C∈CI

∑
1≤i≤n

max{0, 0.2− o(Boxθ(C))i}.

The resulting embeddings of both models are depicted in Figure 4.1.

We can clearly see that Box2EL is able to successfully learn embeddings that align

with the axioms in the ontology. In particular, the embeddings fulfill all disjointness

axioms and correctly represent the relationship between the concepts Father, Male,

Mother, Female, and Parent.
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In contrast, we find that the embeddings learnt by ELBE violate several of the

axioms in the ontology. This is due to the inability of the underlying TransE model to

correctly represent one-to-many relationships: because the ontology contains the axioms

Child v ∃hasParent.Mother as well as Child v ∃hasParent.Father, the model is forced to

let the embeddings of Mother and Father overlap.

4.3 Subsumption prediction

Having demonstrated the effectiveness of our method on a proof of concept example,

we next consider a variety of large-scale real-world datasets. We first focus on the

task of subsumption prediction, i.e. predicting subsumptions that are not necessarily

entailed by the given ontology.

4.3.1 Datasets

We evaluate Box2EL on the following biomedical ontologies:

• GALEN [Rector et al., 1996], a clinical ontology that comprises a wide collection

of medical terminology, ranging from specific diseases and treatments to general

structures and processes.

• Gene Ontology (GO) [Ashburner et al., 2000], which represents genes and their

associated functions in a unified way across species.

• Anatomy [Mungall et al., 2012] (also called Uberon), a multi-species ontology that

captures a wide variety of anatomical structures and the relationships that hold

between them.

The size of these ontologies in terms of the number of classes, roles, and axioms is

summarised in Table 4.1. Note that none of the datasets we consider contain axioms

in the sixth or seventh normal form.
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Ontology Classes Roles NF1 NF2 NF3 NF4 NF5

GALEN 23,142 397 27,874 13,595 28,118 13,597 0
GO 45,895 9 85,471 12,131 20,324 12,129 30
Anatomy 106,363 157 122,022 2,121 152,289 2,143 184

Table 4.1: Sizes of the different ontologies we consider. The number of classes, roles, and axioms
in each normal form is reported.

4.3.2 Subsumptions between named and complex concepts

The ontologies we have introduced have previously been used to evaluate EL++

embedding methods on the task of subsumption prediction [Mondal et al., 2021; Xiong

et al., 2022]. In these previous works, the axioms in the first normal form are first split

into a training, validation, and testing set in a proportion of 70%/20%/10%, respectively.

However, when inspecting the data contained in the relevant splits provided with

the implementation of these previous methods, we find that the validation set is in fact

contained entirely within the training set, i.e. the data is actually split in a 90%/10%

fashion. This lack of an independent validation makes it very difficult to perform a

proper hyperparameter search without overfitting on the training data.

Moreover, the existing benchmark only takes axioms in the first normal form into

account, i.e. subsumptions between named concepts of the form C v D. In order to

enable a more thorough analysis of the capabilities of DLE models, we propose to also

evaluate their ability to predict subsumptions between named and complex concepts. To

this end, and to address the issue with the validation set identified earlier, we develop

a new prediction benchmark for the three datasets described above.

Our novel benchmark consists of training (80%), validation (10%), and testing (10%)

sets for axioms in all the normal forms NF1–NF4. This enables the evaluation of DLE

models regarding subsumption prediction between named concepts (NF1), named

concepts and conjunctions (NF2), and named concepts and existentially restricted

concepts (NF3 and NF4). We furthermore ensure that all classes and roles that occur

in the validation and testing sets also occur in the training set, and verify that the

validation set is not contained in the training set. We provide the exact data splits
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we used together with our implementation in order to make the benchmark available

to the wider research community.

4.3.3 Baselines

We compare our proposed method Box2EL with two representative state-of-the-art

EL++ embedding methods: ELEm [Kulmanov et al., 2019] and ELBE [Peng et al.,

2022]. Both of these methods use TransE as the underlying model for roles and

employ a distance-based approach for their loss functions. The main difference

between them is that ELEm represents concepts as n-balls, whereas ELBE uses a

box representation equivalent to ours.

We also attempted to evaluate BoxEL [Xiong et al., 2022] on our benchmark, but

were unfortunately unable to reproduce results similar to what is reported in the paper,

even after contacting the authors. For this reason we omit BoxEL from our comparison.

Furthermore, we also do not consider any traditional KGE methods in our experi-

ments, since they have been shown to be considerably outperformed by DLEs [Mondal

et al., 2021; Xiong et al., 2022] and are not applicable in the setting of complex concepts.

4.3.4 Evaluation protocol

As in previous work [Mondal et al., 2021; Xiong et al., 2022], we evaluate the subsump-

tion prediction performance of the embedding models with a variety of ranking-based

metrics on the testing set. This is similar to the evaluation of KGE models, as discussed

in Section 2.1.3. In order to compute these metrics, we first need to define scoring

functions for the embedding models we consider.

Scoring functions

As in the KGE setting, a scoring function s(·) assigns scores to candidate predictions

such that the scores for axioms that are likely to be true based on the learnt embeddings

are higher than those that are considered false. We need to define scoring functions

for candidate predictions in all four normal forms.
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First and second normal form. For an axiom C v D in NF1, we define the score based

on the distance between the embeddings of C and D, i.e. for Box2EL we have

s(C v D) = −‖c(Boxθ(C)− c(Boxθ(D)))‖.

The same formulation can be used for the baseline methods. Similarly, for NF2 axioms

C u D v E, we define the score as the negative distance of the embedding of E to the

intersection of C and D in the embedding space.

Note how these scoring functions closely follow the loss functions for the first two

normal forms we have defined in Section 3.4.2. If the embedding model successfully

captures the semantics of the ontology it was trained on, we expect the loss for axioms

in the testing set to be low, or equivalently the score to be high.

Third normal form. For axioms in the third and fourth normal form the scoring

function differs between Box2EL and the baseline methods, because of the different role

representation. For Box2EL, we define the score for a subsumption C v ∃r.D as

s(C v ∃r.D) =−
∥∥c(Boxθ(C) + Bumpθ(D))− c(Headθ(r))

∥∥
−
∥∥c(Boxθ(D) + Bumpθ(C))− c(Tailθ(r))

∥∥,

again closely following the corresponding loss function.

In the baseline methods, the score is computed similarly to TransE:

s(C v ∃r.D) = −‖c(Boxθ(C)) + r− c(Boxθ(D))‖.

Fourth normal form. Finally, for an axiom ∃r.C v D in NF4, the score assigned

by Box2EL is given by

s(∃r.C v D) = −
∥∥c(Headθ(r)− Bumpθ(C))− c(Boxθ(D))

∥∥,

and for the baseline methods we define

s(∃r.C v D) = −‖c(Boxθ(C))− r− c(Boxθ(D))‖.
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Evaluation metrics

The scoring functions defined above can be used to compute several ranking-based

metrics, analogously to how evaluation is performed for KGE models. To illustrate,

consider a testing axiom C v D in the first normal form. We fix the concept C and

rank the set of corrupted axioms

CCvD = {C v D′ | D′ ∈ CI }

using the scoring function. Finally, we record the rank of the true subsumption C v D.

If our model performs well, it should assign a high score to the true subsumption

and the corresponding rank should therefore be low.

We similarly compute ranks for testing axioms in the other normal forms. Finally,

we report the following standard metrics introduced in Section 2.1.3: hits at k, where

k ∈ {1, 10, 100}, the median rank (Med), the mean reciprocal rank (MRR), the mean

rank (MR), and the area under the ROC curve (AUC). We compute these metrics for

all axioms in each normal form individually, as well as in a combined setting in which

the ranks of all normal forms are taken together.

Filtering. Recall from our discussion in Section 2.1.3 that ranks can be computed in

either a raw or a filtered fashion, where we filter out true axioms from the set of corrupted

axioms. For subsumption prediction, we follow previous work [Mondal et al., 2021;

Xiong et al., 2022] and only report the raw ranking-based metrics instead of the filtered

versions, which are challenging to compute for the sizes of the datasets we consider.

However, since the filtered metrics are generally considered to be more reliable [Bor-

des et al., 2013], we implement a simple and efficient approximation of filtering for

NF1 and NF2 axioms as follows:

• For NF1 axioms C v D, filter out C v C from CCvD.

• For NF2 axioms C u D v E, filter out C u D v C and C u D v D from CCuDvE.
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4.3.5 Experimental protocol

We train the embedding models on the training set of the considered ontology, con-

sisting of 80% of the axioms in NF1–NF4. Optimisation is performed with the Adam

optimiser [Kingma and Ba, 2015] and a learning rate in {1e−2, 5e−3, 1e−3, 5e−4}. We

choose the learning rate and all other hyperparameters based on validation set perfor-

mance. The values we consider for the other hyperparameters are n ∈ {50, 100, 200},

γ ∈ {0, 0.05, 0.1}, δ ∈ {1, 2, 3}, ω ∈ {1, 2, 3}, and λ ∈ {0, 0.05, 0.1}.

Training is performed for a maximum of e = 10, 000 epochs. We evaluate the models

on a fraction of the validation set every 100 epochs and choose the embeddings that

achieve the best performance for final evaluation on the testing set. The results we

report are averages across 5 runs with different random seeds, which we provide in our

implementation to ensure our results are reproducible. All experiments were conducted

on a machine with an Intel Xeon Bronze 3204 processor with 12 cores at a clock speed

of 1.90 GHz, 128 GB of RAM, and an NVIDIA Quadro RTX 8000 GPU.

4.3.6 Results

We report the results of the embedding methods on the GALEN, GO, and Anatomy

ontologies in Tables 4.2 to 4.4.

General findings

We first observe that all methods we consider perform reasonably well across the

different normal forms. This is to our knowledge the first result to demonstrate that

the learnt embeddings are not only useful for comparing named concepts, but are

also expressive enough to perform predictive reasoning with complex concepts. As

expected, performance is generally better for NF1, which involves only named concepts,

but interestingly this is not always the case: for example in Anatomy we find that all

models achieve stronger results for NF3 axioms than for NF1 axioms.

Comparing the different methods, we find ELEm and ELBE to perform similarly

well, although ELEm is better in general, especially when it comes to complex concepts
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Table 4.2: Subsumption prediction results on GALEN. NFk refers to the ranking metrics
computed only on the ranks achieved on axioms in normal form k. The ‘Combined‘ row lists
the metrics computed on all ranks across normal forms.

Normal form Model Hits@1 Hits@10 Hits@100 Med MRR MR AUC

NF1
ELEm 0.01 0.16 0.40 430 0.06 3568 0.85
ELBE 0.03 0.24 0.47 138 0.10 2444 0.89
Box2EL 0.02 0.25 0.55 62 0.09 2039 0.91

NF2
ELEm 0.01 0.07 0.17 5106 0.03 7432 0.68
ELBE 0.03 0.06 0.11 6476 0.04 8068 0.65
Box2EL 0.05 0.13 0.22 3468 0.08 7246 0.69

NF3
ELEm 0.02 0.14 0.28 1479 0.05 4831 0.79
ELBE 0.03 0.14 0.25 2154 0.07 5072 0.78
Box2EL 0.08 0.19 0.31 1060 0.12 4530 0.80

NF4
ELEm 0.00 0.05 0.18 3855 0.02 6793 0.71
ELBE 0.00 0.03 0.07 7563 0.01 8884 0.62
Box2EL 0.00 0.08 0.19 3426 0.02 6806 0.71

Combined
ELEm 0.01 0.12 0.29 1662 0.05 5153 0.78
ELBE 0.02 0.14 0.27 1865 0.06 5303 0.77
Box2EL 0.04 0.18 0.36 643 0.09 4511 0.81

Table 4.3: Subsumption prediction results on GO. NFk refers to the ranking metrics computed
only on the ranks achieved on axioms in normal form k. The ‘Combined‘ row lists the metrics
computed on all ranks across normal forms.

Normal form Model Hits@1 Hits@10 Hits@100 Med MRR MR AUC

NF1
ELEm 0.01 0.13 0.35 590 0.05 6433 0.86
ELBE 0.01 0.10 0.24 1156 0.04 5657 0.88
Box2EL 0.03 0.16 0.59 61 0.08 2616 0.94

NF2
ELEm 0.12 0.49 0.63 11 0.24 4508 0.90
ELBE 0.01 0.05 0.09 6456 0.02 9421 0.80
Box2EL 0.22 0.65 0.77 5 0.36 1546 0.97

NF3
ELEm 0.06 0.40 0.52 54 0.15 6292 0.86
ELBE 0.02 0.15 0.30 959 0.07 7131 0.84
Box2EL 0.00 0.14 0.51 90 0.04 5074 0.89

NF4
ELEm 0.01 0.49 0.60 12 0.12 6272 0.86
ELBE 0.00 0.07 0.12 9049 0.02 12868 0.72
Box2EL 0.00 0.45 0.66 14 0.10 4960 0.89

Combined
ELEm 0.03 0.24 0.43 272 0.09 6204 0.86
ELBE 0.01 0.10 0.22 1838 0.04 6986 0.85
Box2EL 0.04 0.23 0.60 50 0.10 3151 0.93
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Table 4.4: Subsumption prediction results on Anatomy. NFk refers to the ranking metrics
computed only on the ranks achieved on axioms in normal form k. The ‘Combined‘ row lists
the metrics computed on all ranks across normal forms.

Normal form Model Hits@1 Hits@10 Hits@100 Med MRR MR AUC

NF1
ELEm 0.07 0.30 0.57 43 0.14 9059 0.91
ELBE 0.05 0.24 0.55 68 0.11 5177 0.95
Box2EL 0.04 0.25 0.62 39 0.11 4367 0.96

NF2
ELEm 0.03 0.18 0.42 394 0.08 11592 0.89
ELBE 0.02 0.11 0.26 1394 0.05 4885 0.96
Box2EL 0.13 0.34 0.55 66 0.20 2465 0.98

NF3
ELEm 0.12 0.47 0.69 13 0.23 4686 0.96
ELBE 0.04 0.44 0.70 16 0.18 5408 0.95
Box2EL 0.30 0.62 0.75 4 0.41 2612 0.98

NF4
ELEm 0.00 0.03 0.23 813 0.01 10230 0.91
ELBE 0.00 0.02 0.06 6261 0.01 15187 0.86
Box2EL 0.00 0.07 0.25 615 0.02 6166 0.94

Combined
ELEm 0.10 0.40 0.64 22 0.19 6464 0.94
ELBE 0.04 0.36 0.63 29 0.15 5400 0.95
Box2EL 0.19 0.48 0.69 13 0.29 3312 0.97

and especially on GO. Box2EL consistently outperforms the baseline methods on all

datasets, almost always achieving the best results in the combined setting, and in most

cases when considering the different normal forms in isolation. The performance gains

are usually significant: for example, we find that the median rank of Box2EL is more

than 60% lower than the second best-performing method on GALEN, more than 80%

lower on GO, and more than 40% lower on Anatomy.

When it comes to absolute performance scores, we see that the results of Box2EL

are promising, especially on Anatomy and on some normal forms for GO. For instance,

on Anatomy we manage to achieve a median rank of 13 in the combined setting, and

a hits at 1 ratio of 19%. With these strong results, we believe our model can be used

in practice to investigate potentially missing axioms in real-world ontologies.

Detailed discussion

Box2EL. Clearly, the novel role representation introduced in Box2EL greatly improves

the quality of the learnt embeddings. This becomes especially evident when comparing
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the performance of Box2EL to that of the similar model ELBE, which mainly differs

in the fact that it uses TransE to model roles. We see that our new approach for

representing roles not only generally improves prediction performance for NF3 and

NF4 axioms, but also for the first two normal forms. This can be explained by the fact

that the different normal forms are used to optimise the same embeddings; i.e. if Box2EL

can better represent an axiom of the form C v ∃r.D, it will learn better embeddings for

C and D, therefore also improving prediction quality for axioms in NF1 or NF2.

Notably, while Box2EL consistently outperforms the baseline methods for NF3 and

NF4 axioms on GALEN and Anatomy, we find that ELEm performs better on most

metrics on GO, despite relying on the weaker TransE role representation. While we can

only hypothesise why this might be the case, we conjecture that it is related to the fact

that GO is the ontology with the fewest number of roles (see Table 4.1). We also note

that GO has the fewest number of one-to-many and many-to-one relationships among all

the datasets. The impact of the role representation is further discussed in Section 4.6.1.

Baseline methods. As discussed above, we find ELEm to outperform ELBE in most of

our experiments in this particular subsumption prediction setting. Interestingly, this is

also the case for axioms in NF2, despite the fact that ELBE uses a box representation for

concepts, which is advantageous for modelling conjunction in the embedding space, as

discussed in Section 3.2. However, since our own model Box2EL also represents concepts

as boxes and performs the strongest overall, it is unlikely that the comparatively poor

performance of ELBE is caused by its concept representation.

Furthermore, we note that we generally achieve much better results with the baseline

methods than have previously been reported [Mondal et al., 2021; Xiong et al., 2022].

This is despite the fact that our benchmark requires reasoning with complex concepts,

and is thus more challenging.

A possible explanation is that our choice of hyperparameters differs from the

literature: we generally use a much higher embedding dimension of n = 200, which

has previously only be used by Mondal et al. [2021] on the Anatomy dataset. When
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reducing the dimensionality of the embeddings, our results significantly worsen and

are closer to what has been reported before. However, all previous evaluations claim

that they included the dimensionality of 200 in their hyperparameter search, and we do

not know exactly why they did not manage to produce similar results as ours.

We do note that, as far as we are aware, none of the previous studies evaluated

the performance of the models on the validation set during the training stage. In

contrast, recall from Section 4.3.5 that we evaluate the embeddings on the validation

set every 100 epochs and choose the best performing model overall, which we find

has a significant positive effect on our results.

Possibly, previous studies did not evaluate models during training because they

found the frequent computation of ranks to be a major performance bottleneck. We

circumvent this problem in two ways: first, we only perform evaluation on the first 1, 000

validation examples, instead of on the whole validation set. Second, we implement

an efficient form of batched ranking that can directly be executed in parallel on the

GPU, in comparison to the loop-based CPU ranking procedures we find in previous

implementations. Overall, this allows us to compute ranks in a matter of a few seconds,

compared to several minutes with the previous approaches.

Metrics. Lastly, we want to point out that throughout our experiments the median

ranks often are several order of magnitudes smaller than the mean ranks. This suggests

that we frequently encounter outliers on which our methods partially fail and yield high

ranks. For this reason, we consider median rank and MRR, which are explicitly designed

to counteract the influence of outliers, to be the more reliable evaluation metrics.

4.4 Link prediction

We next evaluate our model on the task of link prediction, i.e. predicting role assertions

of the form r(a, b). Recall that the first step of our training algorithm is to eliminate the

ABox from a given ontology, and predicting links is therefore equivalent to predicting

subsumptions of the form {a} v ∃r.{b}.
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While this means we can directly apply ideas from subsumption prediction to the

link prediction task, the focus between the two settings is very different. In subsumption

prediction, our goal is to predict new axioms, i.e. logical background knowledge about

the domain of interest. In contrast, in link prediction, we want to predict new relational

facts about real-world individuals.

4.4.1 Datasets

We consider the protein-protein interaction (PPI) prediction task introduced by Kul-

manov et al. [2019]. They provide two ontologies of PPIs in human and yeast organisms,

constructed by combining the STRING database of PPIs [Szklarczyk et al., 2021] with

the Gene Ontology (GO) [Ashburner et al., 2000]. The proteins and their interactions

recorded in STRING form the ABox of the constructed ontologies, while GO acts as the

TBox, and is enriched with additional information about the association of proteins with

functions. The task is to predict subsumptions of the form {P1} v ∃interacts.{P2}

between proteins P1 and P2.

4.4.2 Baselines

We compare Box2EL with the state-of-the-art EL++ embedding methods ELEm [Kul-

manov et al., 2019], ELBE [Peng et al., 2022], EmEL++ [Mondal et al., 2021], and

BoxEL [Xiong et al., 2022]. ELEm and ELBE were already introduced earlier (see

Section 4.3.3). EmEL++ is similar to ELEm, but considers additional role axioms that are

part of EL++. BoxEL represents concepts as boxes and roles as affine transformations,

which is comparable to the TransE model used by ELBE. We do not re-evaluate the

models, but instead report the relevant best results from the literature.

4.4.3 Evaluation and experimental protocol

In order to evaluate our method, we use the 80%/10%/10% training, testing, and

validation split of the PPI data provided by Kulmanov et al. [2019]. We report the
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Table 4.5: PPI prediction results on the yeast and human datasets. Columns annotated with (F)
contain filtered metrics, other columns contain raw metrics. All baseline results except for BoxEL
are from [Peng et al., 2022]. The results for BoxEL are from the original paper [Xiong et al.,
2022].

Dataset Model H@10 H@10 (F) H@100 H@100 (F) MR MR (F) AUC AUC (F)

Yeast

ELEm 0.10 0.23 0.50 0.75 247 187 0.96 0.97
EmEL++ 0.08 0.17 0.48 0.65 336 291 0.94 0.95
BoxEL 0.09 0.20 0.52 0.73 423 379 0.93 0.94
ELBE 0.11 0.26 0.57 0.77 201 154 0.96 0.97
Box2EL 0.10 0.30 0.62 0.84 180 130 0.97 0.98

Human

ELEm 0.09 0.22 0.43 0.70 658 572 0.96 0.96
EmEL++ 0.04 0.13 0.38 0.56 772 700 0.95 0.95
BoxEL 0.07 0.10 0.42 0.63 1574 1530 0.93 0.93
ELBE 0.09 0.22 0.49 0.72 434 362 0.97 0.98
Box2EL 0.08 0.24 0.52 0.79 314 241 0.98 0.98

same ranking-based metrics as in the subsumption prediction setting, computed with

the same scoring function, i.e.

s
(
{P1} v ∃interacts.{P2}

)
=−

∥∥c(Boxθ({P1}) + Bumpθ({P2}))− c(Headθ(interacts))
∥∥

−
∥∥c(Boxθ({P2}) + Bumpθ({P1}))− c(Tailθ(interacts))

∥∥.

Since the number of proteins is much smaller than the number of classes in the

datasets we considered in the subsumption prediction setting, we are now able to

efficiently compute all metrics in a raw and filtered (F) fashion. The experimental

protocol is the same as before (see Section 4.3.5).

4.4.4 Results

Table 4.5 lists the results of Box2EL and the baseline methods on the yeast and human

PPI prediction datasets. We see that Box2EL outperforms the current state of the art

on all metrics except raw hits at 1, usually with a significantly better performance of

several percentage points. The results once again demonstrate the expressiveness of our

novel role representation, which is especially important in the link prediction setting,

where all subsumptions we predict are in third normal form.
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4.5 Deductive reasoning

Our evaluation so far has been concerned with the setting of inductive reasoning, or

prediction. We now examine how well our model is able to approximate deductive

reasoning in the embedding space.

4.5.1 Experimental setup

We consider the same three ontologies we have used for the subsumption prediction

task (Section 4.3): GALEN, GO, and Anatomy. However, instead of splitting the datasets

into separate training, validation, and testing sets, we now train our models on the

entire ontology including all axioms.

For evaluation, we use the standard ELK reasoner [Kazakov et al., 2014] to create a

set of inferences for each of the ontologies we consider. These inferences correspond to

subsumptions between named concepts that logically follow from the given ontology.

We again point out the difference to the subsumption prediction setting: instead of

predicting axioms that are statistically and semantically likely to be missing from the

ontology, we now evaluate the ability of the embedding models to infer subsumptions

that logically follow from the axioms in the ontology.

We report the results of Box2EL and the same baseline methods considered pre-

viously. The evaluation and experimental protocol is equivalent to the subsumption

prediction setting (Sections 4.3.4 and 4.3.5). However, note that the inferences we

evaluate the models on only include named concepts (i.e. all test subsumptions are in

NF1). We split off 10% off the inference set and use it for validation.

A similar experiment evaluating the deductive reasoning capabilities of EL++

embedding models has been previously conducted by Mondal et al. [2021]. However,

in contrast to our approach, the inferences they evaluate their models on are drawn

from an arbitrary training set containing only 80% of the axioms from the ontology.

These inferences will thus inherently be incomplete, whereas our setup includes all

subsumptions that follow from the complete ontology. Furthermore, and more gravely,

upon inspecting their data we find that the inferences they use for evaluation in fact are
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Table 4.6: Deductive reasoning results on GALEN, GO, and Anatomy.

Dataset Model Hits@1 Hits@10 Hits@100 Med MRR MR AUC

GALEN
ELEm 0.00 0.04 0.20 1807 0.01 4405 0.81
ELBE 0.00 0.06 0.16 1961 0.02 4115 0.82
Box2EL 0.01 0.08 0.24 1030 0.03 2825 0.88

GO
ELEm 0.00 0.04 0.22 1629 0.02 7377 0.84
ELBE 0.00 0.06 0.21 935 0.02 3846 0.92
Box2EL 0.00 0.08 0.50 100 0.04 1569 0.97

Anatomy
ELEm 0.00 0.07 0.28 901 0.02 7958 0.93
ELBE 0.00 0.08 0.32 336 0.03 2312 0.98
Box2EL 0.00 0.09 0.47 120 0.04 1178 0.99

all also contained in their training set. Therefore, any model that manages to overfit

on the training data will be able to achieve strong results on their benchmark.

4.5.2 Results

The results for the deductive reasoning task are listed in Table 4.6. We observe that all

methods exhibit some capability for sub-symbolic deductive reasoning, although the

results are generally worse than in the subsumption prediction setting. On GALEN,

ELEm performs better than ELBE, whereas ELBE is the better baseline method on

GO and Anatomy. Our own model Box2EL outperforms the other methods on all

metrics across the three datasets, with significant performance gains especially for

hits at 100, median rank, and mean rank.

4.5.3 Comparison of the reasoning and prediction task

While the results we were able to achieve are promising, it may seem counterintuitive at

first that the embedding methods generally perform worse on the reasoning than the

prediction task. Whereas the latter involves predicting axioms that do not necessarily

have any direct semantic relation to the training data, in the prediction setting, all

testing subsumptions follow logically from the ontology that was used for training.

In order to explain why the embedding models still perform comparatively worse on

the reasoning task, it is instructive to investigate some of the training and testing data in
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detail. For example, in the GALEN ontology, we find the following subsumption

in the inference set:

SodiumLactate v SodiumCompound.

In order to arrive at this inference, a reasoning algorithm such as ELK has to

perform the following derivations, where we abbreviate SodiumLactate as SL and

ChemicalSubstance as CS in the first derivation1:

SL v NAMEDComplexChemical NAMEDComplexChemical v CS

SodiumLactate v ChemicalSubstance
(4.1)

SodiumLactate v ∃isMadeOf.Sodium (4.2)

(4.1) (4.2) ChemicalSubstanceu ∃isMadeOf.Sodium v SodiumCompound

SodiumLactate v SodiumCompound
(4.3)

In order to perform the same reasoning in the embedding space, the embeddings

learnt by our model have to be highly accurate for a number of different concepts and

roles such as SodiumLactate, isMadeOf, Sodium, and SodiumCompound, to name but a few

examples from the last derivation. Furthermore, recall that the scoring function we use

measures only the distance between concepts. It is quite likely in this example that the

embedding of SodiumLactate is closer to NAMEDComplexChemical than SodiumCompound,

simply because of the axiom SodiumLactate v NAMEDComplexChemical in the training

data, increasing the rank of the desired subsumption.

In contrast, in the prediction setting, we find that the following axiom is con-

tained in the testing data:

SodiumLactate v NAMEDComplexChemical.

While this axiom does not occur in the training data and cannot be logically inferred

1The derivations are meant to be read from top to bottom, similar to a natural deduction-style proof.
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from it, the following axioms do occur in the training data:

SodiumLactate v ∃isMadeOf.Sodium

SodiumBicarbonate v ∃isMadeOf.Sodium

SodiumCitrate v ∃isMadeOf.Sodium

SodiumBicarbonate v NAMEDComplexChemical

SodiumCitrate v NAMEDComplexChemical.

It seems quite likely that our model will be able to exploit this statistical information to

learn an embedding for SodiumLactate that is close to NAMEDComplexChemical, yielding

a low rank for the desired axiom.

In conclusion, reasoning is a harder task than prediction because it requires a number

of steps involving a variety of concepts. Furthermore, the scoring functions used in

current embedding models are not designed for the purpose of reasoning. In the predic-

tion setting on the other hand, embedding models can exploit statistical information to

make predictions that do not necessarily logically follow from the training data.

Nevertheless, existing embedding models still perform quite well on the deductive

reasoning task, and we are confident that future research will be able to address the

shortcomings we have identified above.

4.6 Ablation studies

The previous experiments show that Box2EL is a strong EL++ embedding model that

achieves state-of-the-art results on several benchmarks. We now conduct a variety of

ablation studies to investigate the performance impact of different parts of our model.

All studies are conducted on the GALEN ontology for the subsumption prediction task.

4.6.1 Impact of role representation

The central novel contribution of our method is its role representation based on BoxE.

We have illustrated the conceptual advantages of this role representation and argued

that it is a key ingredient for the performance of Box2EL. To strengthen these claims,
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Table 4.7: Impact of the role representation on the performance of Box2EL. We compare our
original model with a version where the BoxE-based role representation has been replaced with
TransE (Box2EL-TE). The results are for subsumption prediction on GALEN.

Normal form Model Hits@1 Hits@10 Hits@100 Med MRR MR AUC

NF1
Box2EL-TE 0.02 0.22 0.45 159 0.08 2417 0.90
Box2EL 0.02 0.25 0.55 62 0.09 2039 0.91

NF2
Box2EL-TE 0.02 0.05 0.13 5314 0.03 7510 0.68
Box2EL 0.05 0.13 0.22 3468 0.08 7246 0.69

NF3
Box2EL-TE 0.01 0.08 0.19 2544 0.03 5623 0.76
Box2EL 0.08 0.19 0.31 1060 0.12 4530 0.80

NF4
Box2EL-TE 0.00 0.02 0.09 4260 0.01 7092 0.69
Box2EL 0.00 0.08 0.19 3426 0.02 6806 0.71

Combined
Box2EL-TE 0.01 0.11 0.25 1557 0.05 5099 0.78
Box2EL 0.04 0.18 0.36 643 0.09 4511 0.81

we conduct an ablation study in which we replace our role representation with TransE,

similar to ELBE [Peng et al., 2022], and keep the rest of our model exactly the same.

The results are given in Table 4.7.

We observe that the model based on BoxE outperforms the TransE-based model on

all metrics, in most cases by a large margin. Furthermore, we again see that the different

role representation not only improves results for axioms involving roles (i.e. axioms

in NF3 or NF4), but consistently across the different normal forms. As noted earlier,

this is due to the fact that the axioms in different normal forms are used to optimise

the same concept embeddings. Overall, we conclude that the novel role representation

is indeed crucially important for the performance of our model.

4.6.2 Bump vectors and regularisation

The second ablation study we conduct concerns the details of our role representation.

As in BoxE, a central feature of our representation are bump vectors, which enable

the embeddings of concepts to dynamically adapt to different roles. In Table 4.8, we

investigate the performance of a model that does not use bump vectors, but instead

requires the embeddings of concepts to directly lie in a given head or tail box, without

previously having been “bumped”.
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Table 4.8: Impact of bump vectors and regularisation on the performance of Box2EL. We
compare our original model with a version without bump vectors (Box2EL-NB) and a version
without regularisation (Box2EL-NR). The results are for subsumption prediction on GALEN, in
the combined setting.

Model Hits@1 Hits@10 Hits@100 Med MRR MR AUC

Box2EL-NB 0.00 0.03 0.12 7336 0.01 8673 0.63
Box2EL-NR 0.04 0.16 0.33 877 0.08 4789 0.79
Box2EL 0.04 0.18 0.36 643 0.09 4511 0.81

Furthermore, recall from Section 3.4.4 that we employ a regularisation term to

prevent the bump vectors from becoming too large, in order to counteract overfitting.

We examine the importance of regularisation by training an unregularised model. The

results are also given in Table 4.8.

First, we observe that the model without bump vectors significantly underperforms,

which leads us to the conclusion that they are an important component of our model.

Furthermore, we see that regularisation consistently improves our results across all

metrics, suggesting that it successfully reduces overfitting.

4.6.3 Number of negative samples

Finally, we investigate the impact of the number of negative samples on the performance

of our model. In Table 4.9, we report the results achieved by various Box2EL models

trained with ω ∈ {0, 1, 2, 3} negative samples per axiom in NF3.

Comparing the results of the model that was trained without any negative sampling

to the others, we see that it performs significantly worse. This demonstrates that

negative sampling is essential to learn strong embeddings. Increasing the number ω

of negative samples improves the results on some metrics, but not on all. We find that

a number of 2–3 negative samples generally performs best.
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Table 4.9: Impact of the number of negative samples on the performance of Box2EL. The model
Box2EL-k denotes Box2EL trained with k negative samples per axiom in NF3. The results are for
subsumption prediction on GALEN, in the combined setting.

Model Hits@1 Hits@10 Hits@100 Med MRR MR AUC

Box2EL-0 0.00 0.02 0.10 7805 0.01 8925 0.61
Box2EL-1 0.04 0.19 0.35 694 0.09 4501 0.81
Box2EL-2 0.04 0.18 0.36 643 0.09 4511 0.81
Box2EL-3 0.04 0.18 0.36 635 0.08 4513 0.81



5
Related Work

Having introduced our novel method Box2EL and demonstrated its effectiveness on

a wide variety of benchmarks, we now compare our approach to related work. We

begin with a review of related DLE methods, subsequently draw comparisons to

KGEs, and finally give a brief overview of other approaches in the broad field of

neuro-symbolic reasoning.

Description logic embedding models. A number of methods for learning embed-

dings of various DLs have been proposed in recent years. We build upon the framework

for learning geometric models of EL++ ontologies introduced by Kulmanov et al.

[2019] and refined in subsequent work [Mondal et al., 2021; Mohapatra et al., 2021;

Xiong et al., 2022; Peng et al., 2022]. The primary difference between this previous

work and our approach is our novel role representation based on BoxE. Additionally,

some of or loss functions differ slightly from the literature, and we employ a different

negative sampling procedure. Furthermore, none of the methods have so far been

evaluated on predicting complex concepts.

Our concept representation based on boxes has previously been used in [Xiong

et al., 2022; Peng et al., 2022]. In contrast, the other EL++ embedding models

represent concepts as n-balls, which has conceptual disadvantages. Mondal et al.
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[2021] incorporate further EL++ axioms involving roles into their model, which we do

not consider. Mohapatra et al. [2021] aim to solve the same problem as we, namely

overcoming the limitations of TransE when it comes to one-to-many, many-to-one, or

many-to-many relationships, but their model is only a simple adaption of TransE and

comparable to the role representation used by Xiong et al. [2022].

Going beyond EL++, Özçep et al. [2020] introduce a cone-based model for the more

expressive DL ALC; however, their contribution is mainly theoretical since they do

not provide an implementation or experiments. Embed2Reason [Garg et al., 2019]

is another embedding approach for learning ALC based on quantum logic [Birkhoff

and Von Neumann, 1936]. In contrast to our work, its focus lies on ABox instead

of subsumption reasoning.

Finally, there exist a variety of other embedding approaches for OWL ontologies

that differ from our approach in that they require textual annotation data and cannot

model logical structure directly [Smaili et al., 2018; Smaili et al., 2019; Chen et al., 2021].

Knowledge graph embedding models. A vast number of KGE models have been

proposed recently [Nickel et al., 2011; Yang et al., 2015; Trouillon et al., 2016; Schlichtkrull

et al., 2018; Balazevic et al., 2019], an overview of which can be found in e.g. [Q. Wang

et al., 2017; S. Ji et al., 2022]. However, since they are concerned with KGs, most of

these methods can be thought of as only modelling the relational part of the ABox of

an ontology, whereas we learn embeddings for both the ABox and TBox.

Some KGE methods take background knowledge into account and are thus more

similar to our approach, especially in the setting of using DLEs for link prediction.

However, while most of these methods focus on embedding logical rules concerning

relations [Rocktäschel et al., 2015; Q. Wang et al., 2015; Guo et al., 2016; Nayyeri

et al., 2020; Nayyeri et al., 2021], our work is mainly concerned with subsumptions

between concepts. Furthermore, link prediction is only one possible application of

DLEs, which can also be used to predict new logical background knowledge itself

in the form of subsumptions.
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Neuro-symbolic reasoning. Our work fits within the broad body of research that

tries to combine symbolic and sub-symbolic reasoning techniques, sometimes called

neuro-symbolic reasoning. While embedding-based methods such as KGEs and DLEs are

one possible approach to integrate these two paradigms, there has been a vast amount

of work that makes use of different techniques. These include deep learning based

approaches [Eberhart et al., 2019; Hohenecker and Lukasiewicz, 2020] and differentiable

proving techniques inspired by classic symbolic methods [Rocktäschel and Riedel, 2017;

Minervini et al., 2018], to name but a few.



6
Conclusion and Future Work

6.1 Summary

We have introduced Box2EL, a novel EL++ embedding method that adapts the relation

representation of BoxE [Abboud et al., 2020] to the setting of DLs. We motivated the

need for a novel role representation by illustrating the limitations of TransE [Bordes

et al., 2013], which forms the basis of all current EL++ embedding models.

Subsequently, we gave a detailed description of the training procedure of Box2EL. As

in previous approaches, we learn ontology embeddings by optimising a variety of loss

functions corresponding to TBox axioms. We justified these loss functions intuitively,

and provided a formal proof that they are sound, i.e. give rise to embeddings that

correspond to logical models of the given ontology.

Our empirical results on several real-world ontologies in the three different settings

of subsumption prediction, link prediction, and deductive reasoning show that Box2EL

consistently outperforms state-of-the-art EL++ embedding models, demonstrating the

expressiveness of our novel role representation. Furthermore, we presented a new

benchmark to evaluate the inductive reasoning capability of DLE models regarding

predicting subsumptions between named and complex concepts. Overall, our results
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align with previous work and show that DLEs are a powerful set of techniques that

can be successfully applied in a wide variety of different settings.

6.2 Critical evaluation

We briefly outline a few aspects of our work that could have been improved.

The first two points concern our evaluation and the benchmark we have introduced.

While this novel benchmark does allow us to evaluate the subsumption prediction

performance of DLE methods regarding complex concepts, the complex concepts we

consider are only of the simplest form. In the beginning of this project, our goal was

to evaluate current embedding techniques on more involved complex concepts and

investigate at what point they might fail.

Furthermore, we have not been able to evaluate all current state-of-the-art DLE

methods on our benchmark. In particular, EmEL++ [Mondal et al., 2021] and EmEL-

var [Mohapatra et al., 2021] are missing from our evaluation, although both approaches

contain interesting ideas that we initially wanted to evaluate as well.

Finally, we note that our soundness proof in Theorem 3.5.1 relies on regularising the

bump vectors to 0. While regularisation is well-justified and significantly improves the

performance of Box2EL in practice (see Section 3.4.4), it would be desirable to have a

different proof that does not require the model to be regularised. This is particularly

the case because we have also shown that bump vectors play an essential part in the

performance of our model (Section 4.6.2).

6.3 Future work

Our approach offers several interesting directions for future work.

Minor improvements. Recall that the first step in our training procedure is to eliminate

the ABox from a given ontology. However, this means that individuals will be

represented as boxes in the embedding space as well, while it makes conceptually

more sense to treat them as points in the vector space. Previous results have confirmed
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that this improves the quality of the learnt embeddings [Xiong et al., 2022], and it should

be relatively straightforward to incorporate this idea to Box2EL.

Furthermore, we found our model to be somewhat susceptible to the choice of

hyperparameters. We believe that with more sophisticated techniques such as Bayesian

optimisation, we might be able to find even better hyperparameters that further

improve the performance of our model. Recent work has shown this to be the case

for KGEs [Ruffinelli et al., 2019].

More expressive DLs. Another interesting idea for future work is to adapt our

approach to more expressive DLs such as ALC or SROIQ. A starting point might

be recent work that investigates embeddings for more expressive DLs [Özçep et al.,

2020; Garg et al., 2019].

Improving deductive reasoning performance. Finally, as we have noted in our evalu-

ation, we find that the performance of our model is worse in the deductive reasoning

than the subsumption prediction setting. It would be interesting to explore new ideas

to address this issue and improve deductive reasoning performance, for example

potentially by modifying the ranking function used in our model.
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