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Abstract

Practitioners in various disciples rely more and more on models for their decision
making. From such models, they not only demand precise estimates, but also
precise uncertainty estimates [Gelman et al., 2020, 2013]. Luckily, Markov Chain
Monte Carlo (MCMC) sampling provides a generic tool that allows practitioners
to obtain both predictions and uncertainty estimates for their models. However,
practitioners demand that these tools are highly efficient and scale to large data
sets. Unfortunately, MCMC is often criticised to not provide sufficient scalability
[Johndrow et al., 2020, Song et al., 2020, Homan and Gelman, 2014] and therefore
practitioners fall back on alternatives.

This research extensively studies an alternative class of algorithms that promises
to address some of the limitations of MCMC: Variational inference (VI). In
addition, we extend publicly available implementations of Variational Inference by
implementing missing distributions that are commonly used in practice. Through
simulation studies, we show that caution is required by practitioners as VI may
provide a false sense of accuracy and lead to poor estimates even on simple data sets.
To mitigate this problem, we propose a Variational Inference Workflow building
on our findings, recent research [Welandawe et al., 2022, Dhaka et al., 2020] and
existing best-practices for MCMC [Vehtari et al., 2021a, Gelman et al., 2013, Brooks
and Gelman, 1998]. This workflow aims to help practitioners to obtain confidence
in their model estimates when using Variational Inference.
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1
Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Motivation

For many machine learning applications, the objective is to train a function

fθ(x) that approximates a sample of training data (x, y) for a given loss func-

tion L, i.e., find

θ∗ = arg min
θ∈Θ

L(fθ(x), y). (1.1)

Unfortunately, such a point estimate θ∗ neither contains information about the

distribution of the unknown parameter θ, nor the distribution of new predictions

ŷ = fθ∗(x̂) at a new point x̂.

Bayesian inference provides a general framework that addresses this limitation

and offers extensive information about the distribution of the parameter θ and

the predictions ŷ.

To achieve that, Bayesian inference extends Equation (1.1) such that it optimizes

for the full posterior distribution of θ given the training data (x, y), i.e., p(θ |

1



2 1.1. Motivation

y,x). If we know the posterior distribution p(θ | y,x), then the distribution of

predictions ŷ can be inferred by

p(ŷ | y,x) =
∫ ∫

p(ŷ | θ)︸ ︷︷ ︸
likelihood of ŷ

p(θ | y,x)︸ ︷︷ ︸
posterior

dθ.

Fortunately, using Bayes rule, we can reformulate the posterior distribution

p(θ | x) (omitting y for ease of notation) as the product of the prior over the latent

variables p(θ) as well as a likelihood p(x | θ), i.e.,

p(θ | x) = 1∫
p(x | θ)dθp(x | θ)p(θ). (1.2)

Unfortunately, the integral
∫
p(x | θ)dθ is typically not analytically tractable and

therefore approximation algorithms for p(θ | x) are required in general.

Remark 1.1.1 (MAP estimator). Note that Equation (1.2) is often used to as a

loss function in Equation (1.1), i.e.,

θ∗ = arg max
θ∈Θ

p(θ | x) = arg max
θ∈Θ

p(x | θ)p(θ),

where the second equality follows by the fact that
∫
p(x | θ)dθ does not depend on

θ.

The complexity of this problem is significantly lower than estimating the full

posterior since both the likelihood and prior are specified by the practitioners and

the problem therefore reduces to a (non-convex) optimization problem. θ∗ in this

case is commonly known as the maximum a posterior estimate or short MAP.

Example 1.1.1. Figure 1.1 shows n = 500 data points drawn from some unknown

probability distribution p(x | θ) with unknown parameter θ. Visual inspection

of Figure 1.1 suggest that p(x | θ) originates from a multivariate Gaussian with

θ = (µ,Σ) ∈ R2 × R2×2. Note that Σ is a covariance matrix, i.e., it can be

decomposed into the variance σ2
i of xi as well as the correlation ρ of x1 and x2, i.e,

there exists σ1, σ2, ρ ∈ R>0 such that

Σ =
(
σ1 0
0 σ2

)
·
(

1 ρ
ρ 1

)
·
(
σ1 0
0 σ2

)
=
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
.
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Figure 1.1: Observed data x from an unknown distribution p(x | θ). Bayesian inference
is required to calculate the posterior distribution of θ given x.

With this parameterization, the unknown parameter θ has 5 degrees of freedom,

i.e., θ = {µ1, µ2} × {σ1, σ2, ρ} ∈ R2 × R3
>0. Given the likelihood p(x | θ) (i.e.,

multivariate Gaussian) as well as the prior distribution p(θ), the aim of Bayesian

inference is to compute p(θ | x). Note both the likelihood and the prior are provided

by the practitioner through knowledge of the underlying problem that is being

solved.

Figure 1.2 shows estimates for the full posterior distribution of each parameter

instead of only point estimates. These estimates were obtain using MCMC sampling

(see Section 2.2). We see that the distribution of ρ is very narrow, i.e., it can be

estimates with high certainty. The distributions of the other parameters are wider

and therefore less certain. Practitioners can use these output to calculate detailed

uncertainty estimates.

Example 1.1.1 shows the variety of challenges associated with Bayesian inference.

From the perspective of a practitioner, the following challenges arise when trying

to apply Bayesian inference to a data set x:

Challenge 1: How to choose the likelihood p(x | θ)?
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Figure 1.2: Estimate of the posterior distribution p(θ | x) obtained from MCMC
sampling.

Challenge 2: How to choose the prior distribution p(θ)?

Challenge 3: How to calculate or approximate the posterior p(θ | x)?

Challenge 4: How to assess the quality of an approximation of p(θ | x)?

1.2 Contributions

This work focuses on Challenges 3 and 4 as outlined in Section 1.1. More specifically,

we focus on Variational Inference as a class of methods to approximate the posterior

(Challenge 3) and investigate metrics to asses the quality of the approximation

(Challenge 4). Challenges (1) and (2) are typically very specific to the underlying

problem that is being solved. They require domain knowledge and are considered

out of scope for this work.

With respect to quality metrics, we investigate three different approaches

in Section 4.2:

1. Apply best-practices from MCMC such as Gelman-Rubin criteria R̂ to VI

[Vehtari et al., 2021a, Gelman et al., 2013, Brooks and Gelman, 1998].
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2. Study quality metrics from recent research on VI [Welandawe et al., 2022,

Dhaka et al., 2020, Vehtari et al., 2021b, Embrechts et al., 1997].

3. Derive an entirely new metric that provides an upper bound on the Wasserstein-

2 distance between the true posterior and its variational approximation.

Through simulation studies, we apply the above metrics and show that caution is

required when using off-the-shelve available VI algorithms (e.g., ADVI). In addition,

we evaluate the newly proposed RAABBVI algorithm [Welandawe et al., 2022] and

extend their publicly available implementation such that it is able to cover the

multivariate Gaussian distribution with full rank covariance matrix (instead of mean-

field only) as variational distribution family. This is required such that RAABBVI

is able to cover the range of data sets that we investigate in our simulation studies.

The code associated with the thesis is publicly available on GitHub1

Our results show that Variational Inference may provide a false sense of accuracy

and lead to poor estimates even on simple models and data sets. As a solution

to this problem, this work proposes a novel Variational Inference Workflow that

can be used by practitioners interested in applying VI. Therefore, we extend the

Bayesian Workflow [Gelman et al., 2020, Section 3.3] by providing additional

guidance specifically focusing on Variational Inference.

1https://github.com/patrickzoechbauer/beyondmcmc
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Background

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Markov Chain Monte Carlo (MCMC) . . . . . . . . . . 8
2.3 Variational inference . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Automatic Differentiation Variational Inference . . . . . 12
2.3.2 Robust, Automated, and Accurate Black-box Variational

Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Introduction

In general, p(θ | x) cannot be calculated analytically and hence needs to be

approximated. A widely used and well understood method for that task is

Markov Chain Monte Carlo (MCMC) sampling. MCMC is a powerful class of

algorithm that provides strong guarantees to the practitioner in terms of convergence.

Unfortunately, this often comes at the cost of long runtimes even for moderately

complex examples [Yao et al., 2018].

To address some of these challenges, Variational Inference (VI) provides an

interesting alternative. In this Chapter, we briefly review the motivation and general

objective of MCMC and VI. In Section 2.3.1 and Section 2.3.2, we introduce two

specific VI algorithms that form the basis for our simulation studies in Chapter 3.

7



8 2.2. Markov Chain Monte Carlo (MCMC)

2.2 Markov Chain Monte Carlo (MCMC)

In general, the objective of Bayesian inference is to sample from an unknown

posterior distribution. Luckily based on Equation (1.2), this unknown posterior

is known up to a normalizing constant
∫
p(x | θ)dθ. MCMC describes a class of

algorithms that are capable of sampling from unnormalized probability distributions,

i.e., the normalizing constant does not need to be known.

Formally, the idea is to generate a Markov process that converges to a stationary

distribution π which equals the unknown posterior distribution.

A Markov process with transition probabilities k(θ′ | θ) converges to a stationary

distribution π if the detailed balance conditions holds, i.e., for each two states θ and

θ′, it is equally likely to transition from θ to θ′ as it is to transition from θ′ to θ, that is

π(θ)k(θ′ | θ) = π(θ′)k(θ | θ′). (2.1)

The Metropolis-Hastings algorithm is a simple example of such an MCMC

algorithm. It generates a Markov chain step by step, where in each step a proposal

distribution q samples a new candidate state θ∗. This new state in step i+1 is either

accepted or rejected depending on an acceptance probability A(θi, θ
∗) for which the

unknown posterior distribution only needs to be know up to a constant. For the

Metropolis-Hastings algorithm this acceptiance probability is given by

A(θi, θ
∗) = min

{
1, p(θ

∗ | x)q(θi | θ∗)
p(θi | x)q(θ∗ | θi)

}
. (2.2)

Note the ratio p(θ∗ | x)/p(θi | x) in Equation (2.2) can be calculated even

if the normalizing constant is unknown as it cancels out. Algorithm 1 shows

the full Metropolis-Hastings algorithm. The algorithm defines a Markov chain

with transition kernel

k(θ′ | θ) = q(θ′ | θ)A(θ, θ′) + δθ(θ′)R(θ),

with

R(θ) = P (reject θ′) = 1 −
∫
A(θ, u)q(u | θ)du.
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Based on this, we can directly show that the detailed balance conditions Equa-

tion (2.1) holds for π(θ) = p(θ | x), i.e.,

p(θ | x)k(θ′ | θ =) = p(θ | x)q(θ′ | θ)A(θ, θ′)

= min
{

1, p(θ
′ | x)q(θ | θ′)

p(θ | x)q(θ′ | θ)

}
p(θ | x)q(θ′ | θ)

= min {p(θ | x)q(θ′ | θ), p(θ′ | x)q(θ | θ′)}

= p(θ′ | x)k(θ | θ′).

This shows that Algorithm 1 generates a Markov Chains with stationary distribution

equal to the unknown posterior distribution. That means after a ’warm-up’ period

that is required for the Markov chain to converge, we can us Algorithm 1 to

sample from p(θ | x).

Algorithm 1 Metropolis-Hastings algorithm
Require: Initial state θ0

1: for i = 0 to N − 1 do
2: Sample u ∼ U(0, 1)
3: Sample a proposal state θ∗ ∼ q(θ∗ | θi)
4: Calculate the acceptance ratio

A(θi, θ
∗) = min

{
1, p(θ

∗ | x)q(θi | θ∗)
p(θi | x)q(θ∗ | θi)

}

5: If u ≤ A(θi, θ
∗) then θi+ = θ∗ (accept), else θi+1 = θi (reject)

6: end for

However, despite the above theoretical guarantees also MCMC algorithms

come with a set of limitations:

1. Exploring the full support: The Markov chain may get stuck in certain areas

of the support of the true posterior if that area is separated from other areas

by another area of low density. For example if the posterior is a multi-modal

Gaussian mixture, then new proposals θ∗ may never be able to cross that

regions of low probability step-by-step between two modes.

2. Speed of convergence: Unfortunately, the theoretical guarantee does not tell

us how many ’warm-up’ steps are required until stationarity has been reached.
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3. Scaling towards high dimensions: MCMC faces various challenges when scaling

to very large data sets. This is due to the high computational cost per step

and growth of the variance as a function of dimension [Johndrow et al., 2020].

4. Scaling towards large data sets: Calculating A(θi, θ
∗) requires to load the

full data set x into memory [Song et al., 2020]. For very large problems

(e.g., image classification) this is not possible due to hardware limitations and

therefore alternatives (e.g., mini-batches) are needed.

5. Sensitivity towards correlations: MCMC algorithms such as Metropolis

Hastings are sensitive towards correlated parameters [Homan and Gelman,

2014]. In particular in higher dimension this becomes a problem in practice.

There exists a wide body of research that aims to improve MCMC algorithms such

as as Algorithm 1. Homan and Gelman [2014] proposed the No-U-Turn Samplers

(NUTS) which is a specialized MCMC sampler that addresses some of the above

problems (e.g., sensitivity towards correlation) and is currently considered the state-

of-the-art of general purpose MCMC samplers that work for any probabilistic model.

2.3 Variational inference

The core idea of Variational Inference is to formulate the posterior approximation as

an optimization problem similar to Equation (1.1). For that a family of variational

distributions qλ is defined and an optimisation problem is solved to find the member

of this family that minimises the error L between to the true posterior distribution

and the variational distribution family. More formally, for a variational family

qλ(θ) parameterised by a vector λ ∈ Rm, VI minimises

λ∗ = arg min
λ∈Rm

L(qλ(θ), p(θ|x)). (2.3)

For Equation (2.3), a measure of distance L between two probability distributions is

required. Variational inference commonly uses the Kullback-Leibler (KL) divergence

for that purpose.
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Definition 2.3.1 (Kullback-Leibler divergence). Given two probability measure p

and q, the KL divergence is given by

KL(q||p) =
∫

Θ
q(θ) log

(
q(θ)
p(θ)

)
dθ.

Based on Definition 2.3.1, it holds that KL(q||p) = 0 if and only if q = p.

This property makes it an ideal candidate to be used for Equation (2.3), which

leads to the objective

λ∗ = arg min
λ∈Rm

KL(qλ(θ)||p(θ|x)). (2.4)

Unfortunately, the KL contains the intractable posterior distribution p(θ|x). There-

fore, it cannot be minimized directly. However, it holds that

KL(qλ(θ)||p(θ|x)) =
∫
qλ(θ) log qλ(θ)

p(θ|x)dθ

=
∫
qλ(θ) log qλ(θ) − qλ(θ) log p(θ|x)dθ

= Eqλ
(log qλ(θ)) − Eqλ

(log p(θ|x))

= Eqλ
(log qλ(θ)) − Eqλ

(
log p(θ,x)

p(x)

)
= Eqλ

(log qλ(θ)) − Eqλ
(log p(x, θ) − log p(x))

= Eqλ
(log qλ(θ) − log p(x, θ)) + Eqλ

(log p(x))

= Eqλ
(log qλ(θ) − log p(x, θ)) + log p(x)︸ ︷︷ ︸

≤0

≤ −(Eqλ
(log p(x, θ)) − Eqλ

(log qλ(θ)).

Hence, minimizing the KL divergence is equivalent to maximizing the Evidence

Lower Bound (ELBO) given by

ELBO(λ) = Eqλ(θ)[log p(x, θ)] − Eqλ(θ)[log qλ(θ)]

Note the ELBO is tractable as it only depends on the joint distribution of x and

θ as well as the variational distribution family qλ.
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2.3.1 Automatic Differentiation Variational Inference

One constraint of VI is that supp(qλ(θ)) ⊆ supp(p(θ|x)) since the KL divergence

between the variational distribution and the posterior would otherwise always

be infinite. Without loss of generality, it can be assumed that supp(p(θ)) =

supp(p(θ|x)). Thus, if one wants to use variational inference for a given probabilistic

model, the variational family will have to be hand picked to have the same support

as the prior distribution of the model.

The aim of ADVI is to offer a way of applying variational inference to a

given probabilistic model without having to think about this support matching

constraint. ADVI achieves this by bijecitvely mapping the original latent variable

space to the real coordinate space and then performing variational inference in

the transformed space.

For a one-to-one differentiable function T : supp(p(θ)) → RK , the transformed

joint density p(x, ζ) has the representation p(x, ζ) = p(x, T−1(ζ))|detJT −1(ζ)|.

Intuitively, the Jacobian here describes how the transformation warps the unit

volumes and thus ensures that the integral of the transformed distribution equals

1. The ELBO in real coordinate space then takes the form:

ELBO(λ) = Eqλ(ζ)[log p(x, T−1(ζ))) + log |detJT −1(ζ)|] − Eqλ(ζ)[log qλ(ζ)] (2.5)

Commonly, a Gaussian distribution is assumed for qλ(ζ) with mean µ and variance

diag(σ). However, the ELBO in Equation (2.5) involves an expectation over qλ(ζ)

which depends on µ and σ. Unfortunately, this leads to an intractable integral and

hence automatic differentiation cannot be applied to this term directly. Instead, an

additional transformation is applied to transform the variational distribution into a

standard Gaussian. This second transformation is given by S : RK → RK is given by

S(ζ) = diag(σ)−1 (ζ − µ) .

By doing so the expectation in the ELBO is computed with respect to a standard

Gaussian rather than the original variational distribution. Finaly, we parameterize
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the standard deviation, σ = exp(w), to ensure it remains positive. Based on

this, the ELBO can be written as

ELBO(λ) = EN (η;0,1)[log p(x, T−1(S−1
µ,w(η))) + log |detJT −1(S−1

µ,w(η))|] +
K∑

k=1
wk.

(2.6)

This means that automatic differentiation can be applied to the expression inside

of the expectation to calculate the gradient of Equation (2.6). The expectation is

then approximated via Monte Carlo sampling from the standard Gaussian.

Figure 2.1: Illustration of the mappings T and S used in ADVI to ensure that using the
Gaussian variational distribution family is well-defined for a general probabilistic model
[Kucukelbir et al., 2015].

Optimizing the ELBO in Equation (2.6)

Based on this, we can use any gradient decent algorithms to maximize the ELBO

in Equation (2.6). As a stopping criteria, the author of the original on paper

ADVI [Kucukelbir et al., 2015] suggest to stop training if the relative improve in

the ELBO falls below a threshold δ. The implementation of ADVI in Stan [Stan

Development Team, 2018] uses δ = 0.01 as a default value. Numpyro [Bingham

et al., 2019] does not provide a default to the user.

Note that the threshold δ is primarily a stopping criteria rather than a measure

to assess the quality of the approximation q of p(θ | x). There is no direct

connection that likes the absolute size or the relative improvements in the ELBO

to the quality of q. In Chapter 3, we will show that even small changes in ELBO

can result in large changes in q.
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Benefits and limitations of AVDI for practitioners

By design, ADVI can be applied to an arbitrary probabilistic model as long as

suitable transformations T are specified. Luckily, existing implementations available

in Stan [Stan Development Team, 2018] or numpyro [Bingham et al., 2019] has the

most important transformations already integrated. Therefore, ADVI, similar to

MCMC, is a general purpose algorithm that can be used by practitioners for an

arbitrary problem without the need to worry if the inference is well-defined.

The downside of ADVI, in contrast to MCMC, is that it does not provide

theoretical guarantees that it converges to the true posterior distribution in general.

For practitioners, there are two main concerns to be aware of:

1. Robustness: To what extent is a small change in ELBO a good enough

criteria to asses if the gradient descent algorithm has converged? See detailed

discussion in Section 2.3.1.

2. Accuracy: To what extent does the Gaussian variational distribution family

provide a good approximation to the true posterior distribution in the

transformed parameter space?

Based on our findings in Chapter 3, this research derives a Variational Inference

Workflow in Section 4.4 that addresses the above concerns by providing a set of

standard diagnostics methods to practitioners.

2.3.2 Robust, Automated, and Accurate Black-box Vari-
ational Inference

In addition to ADVI, this research also evaluate a more recent method named

Robust, Automated, and Accurate Black-box Variational Inference (RAABBVI).

RAABBVI is an extension of ADVI proposed by Welandawe et al. [2022] that aims

to address some of the limitations of ADVI stated in Section 2.3.1.

The objective of RAABBVI is to provide a VI algorithm that offers integrated

diagnostics of the posterior approximation to automatically inform the practitioner



2. Background 15

if the obtained model estimates are reliable. To achieve this objective, RAABBVI

addresses four dimensions:

1. Robustness: An algorithm that ensures robustness of the parameter estimates

λ of the variational distribution qλ such that it does not heavily depend on

the choice of an individual tuning parameters (e.g., δ in ADVI).

2. Automated: An algorithm that requires minimal input from the practitioner

beyond the data and the likelihood function.

3. Accuracy: An algorithm that stops model training only if the accuracy of q

provides a sufficiently good approximation to the true posterior. If no suitable

fit has been found after reaching the maximum iteration, the user will be

automatically informed by the algorithm. For example, the authors replaces

the stopping criteria based on the relative improvement in ELBO with more

advanced quality measures.

4. Black-box: An algorithm that is of general purpose, i.e., that can be used

with any probabilistic model and variational distribution family for which the

KL-divergence can be calculated.

Algorithm 2 provides a high-level overview of the key steps of the RAABBVI

algorithm. Section 2.3.2 and Section 2.3.2 detail the Steps 1, 2 and 3 in Algorithm 2

and show how they address the objectives of RAABBVI.

Step 1 and 4 in Algorithm 2: Averaging of λ(k)

First, we look into why RAABBVI uses λ̄γ instead of λ(k)
γ as the final parameter

of the variational distribution q.

For stochastic optimizations of the form

λ(k+1) = λ(k) − γg(k),

where γ is the learning rate and g(k) the gradient at the k-th iteration, it holds

that λ(1), λ(2), ... form a homogeneous Markov Chain that under suitable conditions
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Algorithm 2 RAABBVI algorithm
Require: Select an initial learning rate γ, let λ(k)

γ be the parameter of the k-th
iteration of the variational distribution.

1: Run fixed-learning rate gradient descent for Equation (2.3) until the following
stopping criteria are met:

• R̂ below 1.1, see [Dhaka et al., 2020]
• Number of effective samples (ESS) of λ(k)

γ below threshold

• Monte Carlo Standard Error (MCSE) of λ̄γ = Eµγ (λ) below threshold (see
Section 2.3.2 for a formal definition of λ̄γ)

2: Check if a smaller learning rate γ∗ might improve the fit using an ’inefficiency
index’ I (see Equation (2.7)). The measure I balances the improvement in
accuracy versus the additional computation time required.

3: If Î below threshold, then return to step 1 otherwise continue with step 4.
4: Calculate the average λ̄γ and return qλ̄γ

converges to a stationary distribution µγ. Furthermore, Dieuleveut et al. [2017]

show that under regularity conditions on the loss function and unbiased gradient

estimates, it holds that λ̄γ = Eµγ (λ) is a good estimate for the optimal variational

distribution parameter λ∗ defined by Equation (2.3). Formally, they show that

there exist A,B ∈ Rm such that

λ̄γ − λ∗ = Aγ +Bγ2 + o(γ2),

and A′ ∈ Rm×m such that∫
(λ− λ∗)(λ− λ∗)Tµγ(λ)dλ = A′γ + O(γ2).

Therefore, at stationarity it holds that λ̄γ − λ∗ = O(γ), which is much better than

λ(k)−λ∗ = O(γ1/2) for λ < 1. Hence, Step 4 in Algorithm 2 aims to improve accuracy.

In addition, evaluating the Monte Carlo Standard Error of λ̄γ as a convergence

criteria in Step 1 of Algorithm 2 helps to improve robustness of RAABBVI

as the algorithm continues to update λ(k) until it has reached a stable region

with low variance.

Finally, we note that λ̄γ = Eµγ (λ) needs to be estimated in practice as no closed

form expression for µγ is available. Welandawe et al. [2022] propose to use the

sample mean of the last W samples of λ(1)
γ , ..., λ(W )

γ for that.
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Step 2 in Algorithm 2: The inefficiency index I

Let qγ∗ be the optimal variational approximation when using the fixed learning rate

γ, then the inefficiency index I in Step 2 of Algorithm 2 balances improvements

of reducing the learning rate γ by a factor ρ with the additional computing time

required to again reach convergence with the new learning rate ργ in Step 1. To

formalize this, consider the following definition of the inefficiency index I.

Definition 2.3.2 (Inefficiency index). Let q∗ be the optimal variational approxi-

mation and qγ∗ be the optimal variational approximation when using learning rate

γ, then the inefficiency index I is given by

I =
(
SKL(q∗, qργ∗)1/2 + ξ

SKL(q∗, qγ∗)1/2

)
︸ ︷︷ ︸

Relative SKL improvement (RSKL)

·
(

Kργ∗

Kγ∗ +K0

)
︸ ︷︷ ︸

Relative iteration increase (RI)

, (2.7)

where SKL denotes the symmetrized KL divergence, ξ denotes the target accuracy

and K0 denotes the number of iterations a user considers small.

The two factors in Definition 2.3.2 can be interpreted as follows:

• RSKL: The relative SKL improvement is small if qργ∗ provides a much better

fit than qγ∗ , i.e., SKL(q∗, qργ∗) ≪ SKL(q∗, qγ∗)

• RI: The relative iteration increase is small if the number of steps to reach

convergence using learning rate ργ is smaller than the steps required for γ

plus some additional small amount of steps, i.e., Kργ∗ < Kγ∗ +K0.

Therefore, if the product of these factors is small, it is worth the additional cost of

exploring a smaller learning rate. Unfortunately, we need to know our target q∗ to

calculate I. Therefore, Welandawe et al. [2022] propose an estimator for I.

Proposition 2.3.1. Let qλ ∼ N (τ, diag(exp(ψ))) and with λ = (τ, ψ) ∈ R2d, i.e.,

the mean-field Gaussian, and assume there exists constant vectors A,B ∈ R2d such

that

λ̄γ − λ∗ = Aγ +Bγ2 + o(λ2), (2.8)
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and γ′ ∈ O(γ). Then there exists a constant C > 0 such that

SKL(qγ∗ , qγ′∗) = C(γ − γ′) + o(γ2).

See Welandawe et al. [2022] for a proof of Proposition 2.3.1. If we assume γ0 is the

initial learning rate, then at the t-th iteration of Step 1 in Algorithm 2 the learning

rate is γt = γ0ρ
t. Let δt := SKL(qγ∗

t
, qγ∗

t−1
), then we can use Proposition 2.3.1

to estimate C by

δt = C

(
γt − γt

ρ

)
+ o(γ2

t ). (2.9)

Note, at the end of the t-th iteration of step 1 of Algorithm 2, we can sample

from qγ
∗
t . Hence, we can calculate a Monte Carlo estimate for δt and C is the only

unknown in Equation (2.9). Therefore for each iteration t = 1, ..., T , we store the

history δt and use a regression model to calculate an estimate Ĉ given by

log δt = log(C) + 2 log
(

1
ρt

− 1
)

+ 2 log(γt) + ηt, (2.10)

where ηt ∼ N (0, σ2). Then it follows that

R̂SKLt+1 = ρ+ ξ

Ĉ1/2γt+1
.

Note that Welandawe et al. [2022] provide additional variations as well as op-

timizations of the above approach to account for various effects including the

relaxation of the mean-field assumption on Proposition 2.3.1 as well as a weighted

regression approach for Equation (2.10) to account for the fact that early estimate

of SKL may be inaccurate.

Finally, we need to estimate the relative iteration increase RI. For that

Welandawe et al. [2022] assume that the number of iterations grows exponentially

as the learning rate decreases and hence they estimate K using

log(Kγt) = α log(γt) + β + νt, νt ∼ N (0, σ2
t ) for t = 1, ..., T, (2.11)

and since Kγt is know at time t + 1, we obtain the estimate

R̂I t+1 = K̂γt+1

Kγt +K0
= γα̂

t+1
Kγt +K0

exp(β̂).
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Benefits and limitations of RAABBVI for practitioners

The main benefit of RAABBVI is that it provides integrated diagnostics to

practitioner that help them to understand if the obtained model predictions provide

a good approximation to the true posterior. Therefore, RAABBVI address both

robustness and accuracy concerns of ADVI as described in Section 2.3.1.

However, practitioners should also be aware of the following three main concerns

with respect to RAABBVI that we identified as part of this research:

1. The algorithm relies on some complex assumption with respect to regularity

as well as the variational distribution family (see Proposition 2.3.1). Verifying

these assumptions is usually not possible in practice and introduces additional

model risk.

2. The existing implementation of RAABBVI on GitHub1 is very experimental

and therefore not easily accessible to practitioners. This includes the following

limitations:

• It only supports mean-field Gaussian as a variational distribution family.

For our experiments in Chapter 3, we extend the existing code to support

multivariate Gaussian with full-rank covariance matrix.

• It depends on an old deprecated version of pystan that is used to estimate

the coefficients in the regression models defined by Equation (2.10) and

Equation (2.11). Currently, the user has to manually install pystan

version 2 or older for RAABBVI to work.

3. The existing implementation of RAABBVI does not leverage state-of-the-

art libraries for machine learning (e.g., pytorch or TensorFlow). Therefore,

implementing GPU support or approaches to increase computational efficiency

cannot no easily be integrated.
1https://github.com/Manushi22/viabel
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Finally, Table 2.1 provides s summary of the theoretical aspects of ADVI and

RAABBVI as described in Section 2.3.1 and Section 2.3.2. Note, in Table 2.1,

∆ELBO-ADVI refers to ADVI using the ∆ELBO criteria introduced in Section 2.3.1

as a stopping criteria. In Chapter 3, we show that some limitation of ADVI can

be addressed by introducing a more advanced stopping criteria.

Based on our findings, we are able to propose a novel Variational Inference

workflow that is able to address the limitation of ∆ELBO-ADVI. More specifically,

we are able to show that the robustness limitations can be largely associated with

the ∆ELBO rule, see Section 3.3.2 and Section 3.3.3. The accuracy limitations can

be addressed by using appropritate quality measure as proposed in Section 4.2.

Table 2.1: Comparison between ∆ELBO-ADVI and RAABBVI on the core objectives
for VI formulated by Welandawe et al. [2022].

Variational inference algorithm
Objective Description ∆ELBO-ADVI RAABBVI
Robustness Robustness assess if small changes

in tuning parameters does not
lead to large changes in the model
predictions.

× (Section 3.3.2,
Section 3.3.3)

✓

Automated Automated asses if minimal input
is required from the practitioner
beyond the data and likelihood
function.

✓ ✓

Accuracy Accuracy assess if the model pre-
dictions provide a good estimate
for the true posterior.

× (Section 4.2) ✓

Black-box Black-box asses if the algorithm
can be applied to any probabilistic
model

✓ ✓

Legend: ✓ = Integrated in algorithm, × = Not integrated in algorithm.
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3.1 Introduction

In this chapter, we use simulated data to compare the performance of MCMC,

ADVI and RAABBVI with respective to accuracy as well as computation time. The

simulated data sets vary in complexity in order to test the proposed algorithms

under various conditions. Based on these findings, we aim to develop a workflow

that provides guidance to practitioners on how to use variational inference methods.

21
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3.2 Data generating processes for p(θ) and p(x | θ)

We test the algorithms on four different data sets: (1) Linear regression, (2) Poisson

regression, (3) Multivariate Gaussian, and (4) Hierarchical regression.

The benefit of using simulated data is that we know the underlying data

generating process. This allows us to investigate various interesting quantities, e.g.,

average quality of each model across multiple simulations. In practice, one does

not know p(x | θ) and p(θ), but it is subject to the expertise of the practitioner to

choose a suitable model (see Challenges (1) and (2) in Section 1.1).

As our focus lies on analyzing Challenges (3) and (4) as outline in Section 1.1,

we use the same likelihood p(x | θ) and prior p(θ) for both data generation and

model estimation. Hence, there is no additional error due to model misspecification

in the results of our simulation studies. Therefore, any resulting predictions errors

can be associated to the inference algorithm, e.g., converge or the limitations of

the variational distribution family.

3.2.1 Multivariate linear data with Gaussian noise

The first data generating process is given by

βd ∼ N (0, 1) for d = 0, ..., D

εi ∼ N (0, σ) for i = 1, ..., n

xij ∼ N (0, 1) for i = 1, ..., n, and j = 1, ..., D

yi = xi
T β + εi with xi = (1, xi1, ..., xiD) and β = (β0, β1, ..., βD)

Figure 3.1 shows an example of the data generating process for D = 2 and n = 100.

This model is mostly known as Linear regression and widely used by practitioners

[Gelman et al., 2013].
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Figure 3.1: Example output of data generating process using D = 2 and n = 100 and
σ = 2.

Remark 3.2.1. For this data generating process, it is straight forward exercise

to show that the posterior p(β|y1, ..., yn) is mean-field Gaussian. Since for both

ADVI and RAABBVI, mean-field Gaussian is also the default assumptions, it holds

that the true posterior distribution is included in the variational distribution family

assumed by ADVI and RAABBVI. Consequently, if enough data is available, we

may expect from both inference algorithms a very high quality in recovering the

true posterior.

3.2.2 Poisson regression with log-linear intensity

Second, we simulate data from a Poisson distribution with a log-linear intensity

function, i.e., for i = 1, ..., n

βd ∼ N (0, 1) for d = 1, ..., D

xij ∼ N (0, 1) for i = 1, ..., n, and j = 1, ..., D

β0 = − log
 1
n

n∑
i=

exp
 D∑

j=1
xijβj

+ log(10)

λ(xi) = exp(xi
T β), with xi = (1, xi1, ..., xiD) and β = (β0, β1, ..., βD)

yi ∼ Poisson(λ(xi))

The choice of β0 is such that on E(yi) = 10. In particular the expectation of yi

neither depends on D nor n which is important to avoid overflow when increase

the size and dimensionality of the data set. Figure 3.2 shows an example of the

data generating process for D = 2 and n = 100.
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Figure 3.2: Example output of data generating process using D = 2 and n = 100.

Remark 3.2.2. Note that the conjugate prior of the Poisson distribution is the

Gamma distribution resulting in a Gamma-distributed posterior. In our case, the

intensity function is the product of random variables with log-normal prior which

is not conjugate to the Poisson model. Therefore, no closed-form expression for

the posterior exists. In particular, this implies that the posterior distribution for a

Poisson regression with log-linear intensity and normal prior is not Gaussian. Even

though the model is still relatively simple, it will already impose larger challenges

on the inference algorithms and accuracy metrics.

3.2.3 Multivariate Gaussian with full rank covariance ma-
trix

In the previous data generating processes, the likelihood factorized, i.e.,

p(x | θ) =
D∏

j=1
p(xj | θ).

This is commonly referred to the mean-field assumption and it reduces the complexity

of the posterior distribution significantly as there are no correlation between

individual dimensions (given θ) that need to be learned.

Next, we simulate a data set that does not fulfill this assumption and the

respective algorithms have to learn the entire joint distribution. This increased

complexity results in longer runtimes by the inference algorithm, including MCMC,

as the dimensionality of the parameter space increases exponentially.
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Figure 3.3: Observed data x from an unknown distribution p(x | θ). Bayesian inference
is required to calculate the posterior distribution of θ given x.

For that we simulate data from a multivariate normal with full rank covari-

ance matrix, i.e.,

a ∼ N (1, 1)

b ∼ N (2, 1)

µ = (a, b) ∈ R2

log(σa) ∼ N (log(3), 1)

log(σb) ∼ N (log(2.5), 1)

ρ ∼ N (0.7, 1)

Σ =
(

σ2
a ρσaσb

ρσaσb σ2
b

)
xi ∼ N (µ,Σ) for i = 1, ..., n.

Figure 3.3 shows n = 500 data points from the above data generating process.

Remark 3.2.3. For this data set, we had to extend the RAABBVI package

as available on GitHub1 to support the multivariate Gaussian distribution as a

variational distribution family. The available implementation is limited to the

mean-field approximation.
1https://github.com/Manushi22/viabel
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Figure 3.4: Example output of data generating process in Section 3.2.4 using D = 8.

3.2.4 Hierarchical regression

Finally, we investigate data for a hierarchical model that was previously used by

Yao et al. [2018] to study the quality of variational inference algorithms, i.e.,

we sample from

µ ∼ N (2, 1)

log(τ) ∼ N (0, 1)

θk ∼ N (µ, τ) for k = 1, ..., D

log(σk) ∼ N (0, 1)

yk ∼ N (θk, σk) for k = 1, ..., D.

Figure 3.4 shows a sample of the data set for D = 8. This model is referred to

as hierarchical because the unknown parameter θ = (θ1, ..., θD) depends on the

shared parameters µ and τ . Note y does not depend on µ and τ given θ and

therefore the the posterior is given by

p(µ, τ,θ | y) = Cp(y | µ, τ,θ)p(µ, τ,θ)

= Cp(y | θ)p(θ | µ, τ)p(µ, τ),
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for some unknown normalizing constant C ∈ R.

Remark 3.2.4. This data generating process / model is commonly used for the

8schools data set [Rubin, 1981]. In this data set, each of 8 schools reported a

treatment effect yi and standard deviation σi. Since there is no prior believe that

the treatments were more or less effective in any of the schools, it is commonly

modeled as a hierarchical model with shared parameter µ and τ .

3.3 Experiments

Using the data generating processes / models described in Section 3.2, we conduct

multiple experiments to answer the following research questions:

1. How well do ∆ELBO-ADVI and RAABBVI recover the true posterior as

given by MCMC?

2. Is RAABBVI always better than ADVI or does it only depend on the stopping

criteria (i.e., ∆ELBO)?

3.3.1 Accuracy metrics

To answer each of the above research questions, it is important to define a set

of metrics to determine the accuracy of the posterior approximation. For this

research, we evaluate four different metrics: (1) Error in mean (2) Error in standard

deviation (3) Kolmogrov-Smirnov Test [Massey, 1951], and (4) Wasserstein distance

[Ramdas et al., 2015].

Given a probability distribution p(θ), we use the notation µ(θ) := Ep(θ) and

σ2(θ) = V arp(θ). Furthermore, µ̂ and σ̂ denote the sample mean, resp. sample

standard deviation based on the samples θ1, ..., θn from p(θ). Using this notation,

Table 3.1 provides a formal definition of the metrics previously introduced. Note

that for most models, θ is D-dimensional. To account for this, each metrics defined

in Table 3.1 aggregates the univariate metrics across the D dimension either by

averaging or taking the minimum. This has the benefit that it allows us to quantify

the quality of an approximation with a single number.
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Table 3.1: Accuracy metrics to compare algorithms.

Metrics Description Formula

µ-MAE(θ) Mean absolute error
of the mean µ of p(θ |
x)

1
D

(∑D
j=1 |µ(θj) − µ̂(θj)|

)

σ-MAE(θ) Mean absolute error
of the standard devi-
ation of p(θ | x)

1
D

(∑D
j=1 |σ(θj) − σ̂(θj)|

)

KS(θ) Minimum p-value of
each univariate Kol-
mogorov–Smirnov
Test for θj

Let θ̃j ∼ p1(θ) and
θ̂j ∼ p2(θ), calculate

min
j=1,...,D

{KS p-value of{θ̃j} and {θ̂j}}

W1(θ) Average univariate
Wasserstein-1
distance across
each dimension of θ
for two distributions
p1 and p2

see Ramdas et al. [2015]

3.3.2 Experiment 1: How well do ∆ELBO-ADVI and RAAB-
BVI recover the true posterior?

In this section, we evaluate the performance of ∆ELBO-ADVI and RAABBVI by

comparing the estimated posterior distribution against MCMC.

Figure 3.5 shows the estimated posterior distributions for MCMC, ∆ELBO-

ADVI with δ = 0.01 and RAABBVI trained on the data sets described Section 3.2.

Visual inspection of Figure 3.5 shows that ADVI using the ∆ELBO stopping criteria

does not recover the true posterior distribution successfully (comparison against

MCMC). In fact, ∆ELBO-ADVI not only struggles to recover the variance of the

posterior, but it is also struggling to provide accurate estimates for the mean. This

problem is most prominent for the Multivariate Gaussian data sets, where the

∆ELBO-ADVI estimates are far off from the true posterior.
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Figure 3.5: Comparison of estimated posterior distribution of each model parameter
using δ = 0.01 for ∆ELBO-ADVI.

In order to formalize the above observation, we run a simulation study for each

data set. For each data set, we simulate nsim = 10 copies. For each copy of the

data set, we train a ∆ELBO-ADVI model and a RAABBVI model and evaluate

the accuracy metrics shown in Table 3.1. For the simulation, we increased the

complexity of the simulated data sets in comparision to Figure 3.5. Table 3.2 shows

the chosen parameters for each data set in the simulation studies.

Table 3.2: Parameters for each data set in the simulation studies.

Data set Parameter(s)
Linear regression N = 1000, D = 100, σ = 2
Poisson regression N = 250, D = 5
Hierarchical regression D = 20
Multivariate Gaussian N = 20

Note that the metrics in Table 3.1 can only be calculated if the true posterior is

known. As the true posterior is not known in general (see Remark 3.2.2), we also
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fit an MCMC model and use its theoretical guarantees (see Section 2.2) to assume

that the MCMC samples are sufficiently close to the true posterior.

For the MCMC models, we use the NUTS-MCMC sampler [Homan and Gelman,

2014] with 10’000 warm up samples and 10’000 regular samples as well as 4

independent chains. Each MCMC model is automatically verified for convergence

using the R̂ diagnostics [Gelman et al., 2013, Dhaka et al., 2020, Vehtari et al., 2021a].

The results for the linear regression data set are shown in Table 3.3. To get

more detailed insights, we split θ = {β, σ}, where β captures the coefficients of

the mean function and σ the noise variance. The splitting is also important due to

the fact that the scales of the βi and σ are different. Averaging across both may

skew the resulting metrics. Therefore, Table 3.3 depicts the accuracy metrics for

the posterior distribution for β and σ, individually. We observe that RAABBVI

outperforms ∆ELBO-AVDI for both β and σ across all metrics defined in Table 3.1.

The results for the other data sets defined in Section 3.2 are consistent with the

insights direct from the linear regression data set and are shown in Appendix A.

Table 3.3: Performance for linear regression n = 1000 and D = 100

Model µ-MAE(β) µ-MAE(σ) σ-MAE(β) σ-MAE(σ) W (β) W (σ) KS(β) KS(σ)
∆ELBO-ADVI 0.77 0.67 0.04 0.06 0.72 0.74 <1e-5 0.05
RAABBVI 0.22 0.14 0.02 0.02 0.02 0.02 0.29 0.40
Best performing model in bold

Figure 3.5 and Table 3.3 confirm that ∆ELBO-ADVI may result in poor estimates

even if there is no model error or for relatively simple data for which the exact

posterior distribution lies in the variational distribution family assumed for ADVI

(e.g., linear regression data set).

This support our initial hypothesis that one cannot rely on the relative improve-

ment in ELBO only when using ADVI. Hence, it is important to provide additional

guidance to practitioners when using VI algorithms for posterior approximation. In

contrast, the RAABBVI algorithm successfully managed to provide significantly

better approximations as promised by the authors.
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Next, we proceed to better understand the drivers for the poor performance

of ∆ELBO-ADVI.

3.3.3 Experiment 2: Is RAABBVI always better than ∆ELBO-
ADVI or does it only depend on the stopping criteria?

In this section, we investigate if ADVI achieves better performance when running

the gradient descent algorithm as described in Section 2.3.1 for a longer period, i.e.,

not using ∆ELBO as a stopping criteria. We aim to verify if the poor performance

of ∆ELBO-ADVI in Section 3.3.2 can be partially attributed to early stopping.

As in Section 3.3.2, we use the performance metrics µ-MAE and σ-MAE to asses

the quality of different models. As previously, the true posterior is unknow, however

we assume that MCMC samples can be used to calculate the performance metrics.

Instead of using a stopping criteria, we continuously train the models and

evaluate their performance at pre-specified run time intervals. Figures 3.6 to 3.12

show µ-MAE and σ-MAE for run times t = 20, ..., 212.

Note that for RAABBVI, we do not evaluate its performance at different time

intervals since determining the optimal runtime is a crucial part of the algorithm

(see the Inefficiency Index in Section 2.3.2). Instead, we show a constant red

line that starts at the run time when RAABBVI has converged. After that

time the algorithm stops training and therefore its performance is not further

improved, i.e., remains constant.

Similar to Section 3.3.2, we run multiple simulations for each data set and

use the same parameter configuration as described in Table 3.2. The blue lines

in Figures 3.6 to 3.12 denote the average performance and the light blue shaded

areas the 95% confidence intervals.

We observe that ADVI is able to match the performance of RAABBVI if the

algorithms runs for sufficiently many iterations. This suggests that the ∆ELBO rule

leads to early stopping before ADVI has found a good fit. Also, on our simulated data

sets, we observe that for most data sets (i.e., Poisson, Hierarchical and Multivariate

Gaussian) ADVI has outperformed RAABBVI with respect to recovering the mean
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Figure 3.6: Linear regression (1/2): Quality of posterior approximation of β as a
function of the number of iterations k.

(µ-MAE). However the difference in performance is very marginal. Further, it is

worth noting that at the run time when RAABBVI converged (start of red lines),

also ADVI has converged to a high quality fit.

Based on this experiment, we draw the following conclusions:

1. ADVI is capable of approximating the posterior distribution with similar

precision as RAABBVI if there was a better stopping criteria than the ∆ELBO

rule.

2. The stopping criteria of RAABBVI based on the Inefficiency Index (see

Definition 2.3.2) provides a good stopping rule to ensure that the RAABBVI

model achieves high accuracy.

3. For some data sets, ADVI already achieves the optimal performance much

earlier than RAABBVI. This raises the question if exist better criteria for

ADVI to achieve good performance without being as computationally intensive

as RAABBVI.

Based on these concludes, we continue in the next chapter to investigate an

alternative workflow that allows to detect convergence for ADVI by practitioners.
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Figure 3.7: Linear regression (2/2): Quality of posterior approximation of σ0 as a
function of the number of iterations k.
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Figure 3.8: Poisson regression: Quality of posterior approximation of β as a function of
the number of iterations k.
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Figure 3.9: Hierarchical regression (1/2): Quality of posterior approximation of µ as a
function of the number of iterations k.
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Figure 3.10: Hierarchical regression (2/2): Quality of posterior approximation of log(τ)
as a function of the number of iterations k.
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Figure 3.11: Multivariate Gaussian (1/2): Quality of posterior approximation of µ1 as
a function of the number of iterations k.
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Figure 3.12: Multivariate Gaussian (2/2): Quality of posterior approximation of µ2 as
a function of the number of iterations k.
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4.1 Introduction

In Section 3.3.3, we showed that ADVI is able to approximate the posterior

distribution equally well as RAABBVI if sufficiently many iterations are used

for training. However, Section 3.3.2 shows that the widely used ∆ELBO criteria

does not provide a good stopping criteria for the number of iterations.

In this chatper, we investigate multiple alternative quality metrics that can be

used to asses the convergence of the ADVI algorithm. We ground the choice of these

rules in existing literature on variational inference, MCMC sampling, and probability

theory. First, we define and introduce the theory of the alternative stopping criteria

in Sections 4.2.1 to 4.2.3. In Section 4.3, we present the results of a variety of

35
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experiments using the data sets defined in Section 3.2 across all quality metrics.

Based on the findings in Section 4.3, we derive a novel Variational Inference

workflow in Section 4.4 that helps practitioners to assess the quality of their model

when using Variational Inference.

4.2 Quality Metrics for Variational Inference

4.2.1 Pareto Smoothed Importance Sampling (PSIS)

The PSIS coefficient k was proposed by Yao et al. [2018] as a measure to diagnose

if a variational approximation provides a good fit to the true posterior. Formally,

the coefficient k is given by

k := inf
k′ > 0 : Eq

(
p(θ|x)
q(θ)

) 1
k′

< ∞

, (4.1)

i.e., if the variational approximation q(θ) recovers the posterior p(θ | x), then the

expectation should be finite even if k′ converges to 0. Consequently, a small value of k

means that high order moments exists and therefore indicates a good approximation.

Empirical studies by Vehtari et al. [2021b] suggest that for k < 0.7, one can

conclude that the variational approximation q is close enough to the true density.

This can be formulated as a stopping criteria for which we estimate k in each

iteration an stop if k < 0.7.

Hence it remains to derive an estimator for k. For that, note that k is invariant

under multiplications of q or p by a constant. Therefore, we can replace p(θ | x)

with the known joint distribution p(θ,x) in Equation (4.1).

Furthermore, let F n be the distribution of the maximum of iid distributed

random variables, i.e.,

F n(x) = P (max{X1, ..., Xn} < x) = P (X1 < x, ..., Xn < x) = P (X1 < x)n.

Based on this, we introduce the maximum domain of attraction (MDA) of a

distribution F .
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Definition 4.2.1 (Maximum Domain of Attraction (MDA)). A probability dis-

tribution F lays in the MDA of a non-degenerate distribution G, if there exists

sequences an and bn such that

lim
n→∞

F n(anx+ bn) = G(x)

for all x.

Furthermore, for a random variable X, let Fu be the excess distribution over

a threshold u, i.e.,

Fu(x) = P (X − u < x | X > u).

and we denote by GPDk,β the generalized Pareto distribution (GPD) given by

GPDk,β =
1 − (1 + kx/β)−1/k, k ̸= 0

1 − e−x/β, k = 0.

then the following proposition holds:

Proposition 4.2.1. There exists a function β(u) such that

lim
u→xF

sup
0≤x<xF −u

|Fu(x) −GPDk,β(u)(x)| = 0

if and only if F ∈ MDA(Hk), where MDA denotes the Maximum Domain of

Attraction of a Generalized Extreme Value distribution Hk.

Remark 4.2.1. Note that by the Fisher-Tippet-Gnedenko theorem [Embrechts

et al., 1997], it holds that if a distribution function F belongs to the maximum

domain of attraction (MDA) of any non-degenerate probability distribution, then it

belongs to the MDA of a generalized extreme value distribution. Hence, the condition

F ∈ MDA(Hk) is applicable to many common distribution, see Example 4.2.1 and

Example 4.2.2.

Example 4.2.1 (MDA of Gaussian distribution). The Gaussian distribution lays

in the MDA of the standard Pareto distribution with normalizing sequences

bn =
√

2 log n− log log n− log(2π) and an = 1
bn

.

See Example 1.1.7 in de Haan and Ferreira [2010] for a proof of the above statement.
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Example 4.2.2 (Poisson distribution and the MDA). In contrast to the Gaussian

distribution, for the Poisson distribution, there are no sequences an and bn such that

Definition 4.2.1 holds and therefore Proposition 4.2.1 is not applicable [Leadbetter

et al., 1983].

Next, Lemma 4.2.1 details how Proposition 4.2.1 can be used to estimate

Equation (4.1).

Lemma 4.2.1 (Moments of GPD). A Generalized Pareto distribution GPDk,β has

1/k finite moments.

The proof for Lemma 4.2.1 can be found in Vehtari et al. [2021b]. We can use

Proposition 4.2.1 and Lemma 4.2.1 to derive an estimator for Equation (4.1)

by approximating

p(θ,x)
q(θ)

∣∣∣∣p(θ,x)
q(θ) > M ∼ GPDk,β,

for a sufficiently large M > 0. Algorithm 3 summarizes the computational steps

required to estimate k when training a variational inference model.

Algorithm 3 Pareto Smoothed Importance Sampling
Require: A Bayesian model p(θ,x) = p(θ)p(x | θ) as well as variational

approximation qλk
(θ), and number of tail samples M .

1: At iteration t, sample S observations from θ1, ..., θS ∼ qλt(θ).
2: Calculate the probability ratios rs = p(θs,x)/qλt(θ) for s = 1, ..., S.
3: Fit a generalized Pareto distribution to the largest M samples of rs.
4: Return the estimated shape parameter k̂ of the GPD

In terms of computational complexity, Algorithm 3 has multiple components:

1. Sampling from qλt(θ): This depends on the variational distribution family.

For example, for an D-dimensional multivariate Gaussian the cost is driven

by the inversion of the covariance matrix Σ which has a one-off complexity of

O(D3).
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2. Fitting of the GDP distribution can be achieved using the maximum likelihood

estimator (MLE). Unfortunately, there does not exist a closed-form expression

for the shape parameter k and hence gradient optimization methods have be

used.

Based on these observations, it may be very costly to estimate k for each

gradient step when minimizing the ELBO. This can be mitigated by only evaluating

k every m-th iterations.

4.2.2 Gelman-Rubin R̂

One limitation of criteria such as ELBO or PSIS is that they do not considered if

the optimization has converged in each dimension of θ ∈ Rm. A similar problem

exists for MCMC sampling, where practitioners needs to diagnose if the sampled

chain have reached stationarity.

The MCMC literature commonly uses the Gelman-Rubin criteria R̂ as a general

purpose tool to assess the convergence properties of the Markov chain samples.

The main idea of R̂ is to compare the between-chain variance and the within-

chain variance with each other.

Definition 4.2.2 (Gelman-Rubin R̂). Given LMarkov chains with samples θl
1, ..., θ

l
N

after the warm-up period from an unknown random variable θ, let θ̂l and θ̂ be the

posterior mean across all chains and within each chain l, i.e.,

θ̂l = 1
N

N∑
i=1

θl
i and θ̂ = 1

L

L∑
i=1

θ̂l.

Similarly, let σ2
l , B and W be the l-th chain variance, the Between-chain variance,

and the Within-chain variance, i.e.,

σ2
l = 1

N − 1

N∑
i=1

(θl
i − θ̂l)2, B = 1

L− 1

L∑
l=1

(θ̂l − θ̂)2 and W = 1
L

L∑
m=1

σ2
l

Then

σ̂2 = N − 1
N

W + L+ 1
LN

B
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is and unbiased estimator for variance of θ [Brooks and Gelman, 1998]. Therefore,

the coefficient

R =
√
σ̂2

σ2 ,

should be close to 1, by definition, in case of convergence. As σ2 is unknown, we

use W as an (under)estimate for σ2 and define the (over)estimate for R by

R̂ =
√
σ̂2

W
,

R̂ can be interpreted as follows: If it is large, further simulations will increase W

since the current simulated sequence has not yet explored the full distribution of θ. If

it is close to 1, we can conclude that the L chains of length N are close the true target.

Next, we will apply this idea to our stochatic optimization of the variational

distribution defined in Equation (2.3). As discussed in Section 2.3.2, the parameter

estimates λk for each iteration k = 1, ..., K for the variational distribution qλk

form a homogeneous Markov Chain converging to a stationary distribution µ under

suitable convergence criteria.

In contrast to Definition 4.2.2, our setting does not provide multiple chains

of λl
k. To circumvent this problem, for each iteration i and given windows size

W we define the two chains

Chain 1 = {λi−2W , ..., λi−W −1}

Chain 2 = {λi−W , ..., λi}

and calculate R̂ for Chains 1 and 2.

Note that in general λk ∈ Rm, but the estimates in Definition 4.2.2 only focus on

the univariate case. We propose to extend the univariate case to the multivariate case

by calculating R̂i for each dimension i and then average across all dimensions, i.e.,

R̂MV = 1
m

m∑
i=1

R̂i.
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Remark 4.2.2 (Alternative multivariate extensions). Note that Brooks and Gelman

[1998] also propose alterantive extensions of R̂ to the multivariate settings that

estimate the full covariance structure of λ. Additional research may extend the

above proposed approach which might lead to further improvements.

Remark 4.2.3 (Optimal threshold). In order to use R̂MV as a stopping criteria,

one needs to define a threshold that suggests that a good fit has been found. By

Definition 4.2.2 this should should be close to 1. Following the MCMC literature on

R̂ [Dhaka et al., 2020, Vehtari et al., 2021a], we have chosen 1.1 for our simulation

experiments.

Algorithm 4 provides a summarised description of the previously described ap-

proach.

Algorithm 4 Gelman-Rubin R̂ as a stopping criteria
Require: Windows size W and parameters λk of the variational distribution qλk

for k = i− 2W, ...., i
1: At iteration i define the two chains

Chain 1 = {λi−2W , ..., λi−W −1}
Chain 2 = {λi−W , ..., λi}

2: Calculate R̂ for each dimension of λi ∈ Rm, i.e., the ratio of the between chain
variance to the in-chain variance

3: Stop if the average of R̂MV across all m dimensions is below 1.1.

4.2.3 Wasserstein-2 bound

Finally, we investigate a third criteria. This criteria is based on the Wasserstein

distance [Ramdas et al., 2015] that measures the distance between two probability

distributions. Similar to the KL-divergence, it holds that the Wasserstein distance is

zero if and only if the two distribution are equal. It, therefore, provides an intuitive

choice to assess the quality of a variational approximation to the true posterior

distribution. Furthermore, the Wasserstein-2 distance provides useful bounds for

the difference in mean and standard deviations as summarized in Proposition 4.2.2.
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Proposition 4.2.2. For any probability distribution π, let µπ its mean, Σπ its

covariance matrix, and σπ,i = Σ1/2
π,ii the i-th component marginal standard deviation.

Then for two probability distribution π and π̂ with W2(π̂, π) ≤ ε, it holds that

∥µπ̂ − µπ∥ ≤ ε, max
i

|σπ̂,i − σπ,i| ≤ ε,

and ∥Σπ̂ − Σπ∥ < 2ε(ε+
√

min{∥Σπ̂∥, ∥Σπ∥}.

In other words, we can use Proposition 4.2.2 to bound the maximum error for

important statistics of a variational approximation of the posterior distribution

if we are able to bound the Wasserstein-2 distance. A proof of Proposition 4.2.2

can be found in Huggins et al. [2020].

Unfortunately, the exact Wasserstein-2 distance between a variational approxi-

mation q and the true posterior p(θ | x) cannot be calculated without knowing the

true posterior. However, Huggins et al. [2020] provide bounds for the Wasserstein

distance that we can build on to derive an upper bound.

Proposition 4.2.3. If π is absolutely continuous with respect to π̂, and if π̂ is

p-exponentially integrable, then

Wp(π̂, π) ≤ Cp(π̂)
(
KL(π|π̂)

1
p + [KL(π|π̂)/2]

1
2p

)
(4.2)

with

Cp(π̂) = 2 inf
θ0,ε

(1
ε

[3
2 + log

∫
exp (ε∥θ − θ0∥p

2) dπ̂(θ)
]) 1

p

< ∞

Proposition 4.2.4. Let π be absolute continuous with respect to η, then

KL(π | π̂) ≤ H(π̂) := 2 (CUBO2(π̂) − ELBO(η))

This allow us to bound the intractable KL divergence terms in Proposition 4.2.3

using a known distribution η. Further more combining Proposition 4.2.5 and

Proposition 4.2.4 provides a bound for Wp(π̂, π) that can be estimates without

access to π. This makes it accessible for our use case, i.e., π̂ may denote the

variational approximation and π the unknown true posterior p(θ | x).
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Unfortunately, the bound in Equation (4.2) consists of the multiplication of two

expressions that both need to be estimated from samples of π̂ and η. This can lead

to vary noise estimate. In addition, the constant Cp(π̂) itself is prone to very high

variance as it contains the expectation of the exponential of π̂.

Fortunately, we can extend the results from Huggins et al. [2020] by assuming

that π̂ is Multivariate Gaussian. This allows us to explicitly calculate a bound for

the constant Cp(π̂) for p = 2. Furthermore, the Multivariate Gaussian assumption

holds for the ADVI algorithm.

Proposition 4.2.5. If θ ∼ π̂ = N (µ,Σ), with eigenvalues λ1, ..., λp for Σ, θ0 = µ

and ε < min(1/(2λi)), then

log
∫

exp
(
ε∥θ − θ0∥2

2

)
dπ̂ =

∑
i

log
(
(1 − 2λiε)−0.5

)
and hence

C2(π̂) ≤ 2
(

1
ε

[
3
2 +

∑
i

log
(
(1 − 2λiε)−0.5

)]) 1
2

.

Proof. Let π̂(θ) ∼ N (θ|µ,Σ), choose θ0 = µ, then X = θ − θ0 ∼ N (0,Σ) and

log
∫

exp
(
ε∥θ − θ0∥2

2

)
dπ̂ = logE(ε exp(∥X∥2

2)).

Because Σ is positive-semidefinitve, there exists an orthogonal matrix P such that

Σ = PDP T with D = diag(λ1, ..., λp) and therefore it holds that

∥X∥2
2 = ∥P∥∥Y ∥2

2∥P∥T with Y ∼ N (0, D)

= ∥Y ∥2
2 (due to orthogonality of P)

=
p∑

k=1
Y 2

i with independent Yi ∼ N (0, λi)

=
p∑

k=1
λiZ

2
i , with i.i.d. Zi ∼ N (0, 1)

=
p∑

k=1
λiKi with i.i.d. Ki ∼ χ2(1).

Since E(exp(ελiKi) = (1 − 2ελi)−1/2, it follows that and hence,

E(exp(ε∥X∥2
1)) =

p∏
k=1

E(exp(ελiKi)) =
p∏

k=1
(1 − 2ελi)−1/2.
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Proposition 4.2.5 allow us to calculate the constant C2(π̂) without the need

for sampling from π̂ and relying on noisy Monte Carlo estimates. This has both

computational and accuracy benefits.

Finally, combining Proposition 4.2.3, Proposition 4.2.4, and Proposition 4.2.5

provides a bound for the Wasserstein-2 distance between the variational distribution

q and the unknown posterior p(θ | x).

Similarly to the ∆ELBO criteria, we can continuously calculate the upper bound

given in Proposition 4.2.3 during model training. We stop the training algorithm

if the relative improvements of the bound is smaller than a threshold δ. For our

simulation results, we choose δ = 0.01 as it is also the default for the ELBO criteria.

Remark 4.2.4 (Absolute continuity of p(θ | x) with respect to q). Proposition 4.2.3

assumes that π is absolutely continuous with respect to π̂. By definition, for two

probability measures π̂ and π with sample space Ω and σ-algebra F , it holds that

π is absolutely continous with respect to π̂ if for any A ∈ F with π(A) = 0, then

π̂(A) = 0.

In case of the ADVI algorithm, this holds by design since supp(qλ(θ)) ⊆

supp(p(θ | x)) (see Section 2.3.1). Therefore, we can conclude that p(θ | x)

is absolutely continuous with respect to q.

Remark 4.2.5 (Choice of η). For Proposition 4.2.4 we have to choose η such that

p(θ | x) is absolutely continuous with respect to η. Due to Remark 4.2.4, we can

choose π̂ = η.

4.3 Performance comparison across all criteria

In this section, we compare the performance of the alternative quality criteria

introduced in Sections 4.2.1 to 4.2.3 on the data sets introduced in Section 3.2.

Similarly to the ∆ELBO rule, we use these criteria as stopping rules to automatically

detect convergence of the ADVI algorithm. For comparison, we also report the

performance of the ∆ELBO criteria as well as RAABBVI as an alternative algorithm.
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In terms of accuracy metrics, we report the µ-MAE as well as σ-MAE as defined

in Table 3.1. Similar to previous estimates, we assume that the true posterior

is sufficiently well approximated by an MCMC model using the NUTS sampler.

To improve robustness of the results, we simulate nsim = 10 copies of each data

sets and train the models newly on each simulation. The accuracy metrics are

then averaged across the simulations.

Table 4.1 shows the performance of different models in approximating the average

of the posterior distribution of each parameter, i.e., µ-MAE. In addition, Table 4.2

shows the performance of approximating the variance of the posterior, i.e., σ-MAE.

Table 4.1: µ-MAE for each data set.

ADVI

Data set Parameters ∆ELBO PSIS R̂MV W2 RAABBVI
Linear regression β 1.49 0.36 0.06 0.94 0.17

σ 6.99 1.44 0.09 8.39 0.12
Poisson regression β 0.62 1.01 0.03 0.46 0.01

Hierarchical regression µ 1.25 0.15 0.18 0.98 0.25
log(τ) 0.59 0.36 0.23 0.51 0.51

Multivariate Gaussian µ1 1.0 0.23 0.22 0.11 0.24
µ2 1.9 0.2 0.19 2.95 0.20

From Table 4.1, we note that for the majority of data sets and parameter

R̂MV -ADVI performed best in recovering the average of the posterior. The method

consistently outperforms ∆ELBO-ADVI. Furthermore, R̂MV -ADVI even outper-

forms RAABBVI on all data sets except the Poisson regression. Having said that

the accuracy of R̂MV -ADVI for the Poisson regression data set is only marginally

behind RAABBVI.

PSIS-ADVI offers an improvement against ∆ELBO except for the Poisson

regression. This observation is not surprising when taking Example 4.2.2 into

account. Example 4.2.2 shows that the Poisson distribution does not fulfill the

assumptions that are required for Proposition 4.2.1 which builds the basis for the

estimator for the PSIS coefficient k (see Equation (4.1)).
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Finally, we note that W2-ADVI offers some improvements in comparison to

∆ELBO but it is not competitive against R̂MV . Our simulations have shown that the

our upper bound of the Wasserstein-2 distance is not always very tight. Therefore,

it might not always be a good measure to assess convergence.

Table 4.2 shows the performance of the various models in terms of approximating

the variance of the posterior distribution. Similar to the mean, we observe that

R̂MV -ADVI performs best. In the linear regression data set is even significantly

outperforms RAABBVI in approximating the variance of the regression coefficients

with an error of 0.01 vs 0.15.

Table 4.2: σ-MAE for each data set.

ADVI

Data set Parameters ∆ELBO PSIS R̂MV W2 RAABBVI
Linear regression β 0.05 0.06 0.01 0.16 0.15

σ0 1.02 0.23 0.06 1.32 0.23
Poisson regression β 0.04 0.05 0.01 0.03 0.01

Hierarchical regression µ 0.11 0.12 0.09 0.06 0.02
log(τ) 0.31 0.27 0.26 0.26 0.25

Multivariate Gaussian µ1 0.05 0.01 0.01 0.16 0.02
µ2 0.06 0.01 0.01 0.12 0.01

4.4 Variational Inference Workflow

Our results in Chapter 3 show the importance of having a robust workflow when

applying variational inference in practice. Even when applying VI to simple data

sets without model specification error, commonly used methods may lead to poor

estimates. Especially ∆ELBO-ADVI which is the default for Stan and therefore

widely used has to be be treated with caution.

However, we can confirm that the newly proposed RAABBVI algorithm [We-

landawe et al., 2022] does offer significant help for practitioners as it is more robust

due to the integrated convergence checks. Having said that we did not observe



4. Variational Inference Workflow 47

that RAABBVI offers significantly better fits than ADVI alternatives. In fact using

R̂MV -ADVI even outperformed RAABBVI on many data sets.

At the same time, using RAABBVI comes with a risk for practitioners. First,

it builds on variety of assumptions that cannot be easily verified or understood

by practitioners that are purely interested in VI as a tool rather than its theory.

Second, RAABBVI is currently not supported in common probabilistic programming

frameworks such as pyro or Stan. Both risks limit the ability of a practitioner to

debug RAABBVI if something goes wrong or extend it if the existing implementation

does not support a certain set up (see Section 2.3.2).

Instead of using an end-to-end back-box model with complex integrated conver-

gence checking (such as RAABBVI), we advocate the usage of a robust workflow

when applying Variational Inference. For VI, such a workflow includes the evaluation

of quality and convergence metrics after model inference. This can also be seen

as an extension of the Bayesian workflow proposed by Gelman et al. [2020] for VI.

This approach will also be familiar to practitioners that have used MCMC is the

past. For MCMC, most available implementations offer standardized metrics for

diagnostics after sampling. It is an overdue extension to start offering similar

diagnostics also for VI.

In terms of diagnostics criteria, Section 4.2 provides a good resource of criteria

to be used. From our findings in Section 4.3, we saw that there does not exist

one single best metric and therefore we encourage to evaluate a broad selection

when using VI. The python code assosciated with the thesis provides off-the-

shelve implementations of all criteria discussed in Section 4.2 in the probabilistic

programming framework numpyro.

Also, we note that the quality metrics in Section 4.2 are not limited to ADVI.

They can be adapted to other VI algorithms if needed. Furthermore, all metrics

are computationally cheap and may even be implemented as online metrics that

are updated during model training.
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5
Discussion

The focus of this thesis lays on helping practitioners that develop Bayesian models

and consider VI an alternative to MCMC for Bayesian inference. Building on

their needs, we have chosen the data sets in Section 3.2 and conducted simu-

lations in Chapter 3.

However, more often Bayesian inference is also being applied to problems at

even larger scale, e.g., Bayesian deep learning [Vasconcelos et al., 2022, Notin

et al.]. In those examples, the dimensions m of the parameter λ of the variational

distribution qλ may be significantly larger than in our experiments. Additional

research is required to understand the behaviour of the criteria introduced in

Section 4.2 in this setting.

Furthermore, we have focused our evaluation on simulated data. This choice has

been made deliberately as it allows us to evaluate the performance of various methods

in more details. However, additional research is required to study the setting of

model mis-specifications. This is linked Challenges (1) and (2) as mentioned in

Section 1.1. In practice, it is typically not possible to perfectly specify the likelihood

p(x | θ) and therefore model mis-specification may be involved.
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A
Appendix

Table A.1: Performance for Poisson regression.

Model µ-MAE(β) σ-MAE(β) W (π̂, π) KS-Test
∆ELBO 0.79 0.01 0.71 <1e-5
RAABBVI 0.11 0.02 0.04 0.005

Table A.2: Performance for Hierarchical Regression.

Model µ-MAE(µ) µ-MAE(log(σ)) σ-MAE(µ) σ-MAE(log(σ)) W (µ) W (log(σ)) KS(µ) KS(log(σ))

∆ELBO 0.48 0.67 0.25 0.08 0.49 1.54 0.3 0.0

RAABBVI 0.43 0.14 0.21 0.05 0.42 0.17 0.4 0.9
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