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ABSTRACT
A generic function is a function that can be instantiated on
many data types to obtain data type specific functionality.
Examples of generic functions are the functions that can be
derived in Haskell, such as show , read , and ‘ ’. The recent
years have seen a number of proposals that support the defi-
nition of generic functions. Some of the proposals define new
languages, some define extensions to existing languages. As
a common characteristic none of the proposals can be made
to work within Haskell 98: they all require something extra,
either a more sophisticated type system or an additional
language construct. The purpose of this pearl is to show
that one can, in fact, program generically within Haskell 98
obviating to some extent the need for fancy type systems
or separate tools. Haskell’s type classes are at the heart of
this approach: they ensure that generic functions can be
defined succinctly and, in particular, that they can be used
painlessly.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms
Languages
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1. INTRODUCTION
A type system is like a suit of armour: it shields against

the modern dangers of illegal instructions and memory vio-
lations, but it also restricts flexibility. The lack of flexibility
is particularly vexing when it comes to implementing funda-
mental operations such as showing a value or comparing two
values. In a statically typed language such as Haskell 98 [11]
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it is simply not possible to define an equality test that works
for all types. Polymorphism does not help: equality is not
a polymorphic function since it must inspect its arguments.
Static typing dictates that equality becomes a family of func-
tions containing a tailor-made instance of equality for each
type of interest. Rather annoyingly, all these instances have
to be programmed.

More than a decade ago the designers of Haskell noticed
and partially addressed this problem. By attaching a so-
called deriving form to a data type declaration the program-
mer can instruct the compiler to generate an instance of
equality for the new type.1 In fact, the deriving mechanism
is not restricted to equality: parsers, pretty printers and
several other functions are derivable, as well. These func-
tions have to become known as data-generic or polytypic
functions, functions that work for a whole family of types.
Unfortunately, Haskell’s deriving mechanism is closed: the
programmer cannot introduce new generic functions.

The recent years have seen a number of proposals [9, 7, 2]
that support exactly this, the definition of generic functions.
Some of the proposals define new languages, some define ex-
tensions to existing languages. As a common characteristic
none of the proposals can be made to work within Haskell 98:
they all require something extra, either a more sophisticated
type system or an additional language construct.

The purpose of this pearl is to show that one can, in fact,
program generically within Haskell 98 obviating to some ex-
tent the need for fancy type systems or separate tools. The
proposed approach is extremely light-weight; each imple-
mentation of generics—we will introduce two major ones
and a few variations—consists roughly of two dozen lines of
Haskell code. The reader is cordially invited to play with
the material. The source code can be found at

http://www.ralf-hinze.de/masses.tar.bz2

We have also included several exercises to support digestion
of the material and to stimulate further experiments.

2. GENERIC FUNCTIONS ON TYPES
This section discusses the first implementation of generics.

Sections 2.1 and 2.2 introduce the approach from a user’s
perspective, Section 2.3 details the implementation, and Sec-

1Actually, in Haskell 1.0 the compiler would always gener-
ate an instance of equality. A deriving form was used to
restrict the instances generated to those mentioned in the
form. To avoid the generation of instances altogether, the
programmer had to supply an empty deriving clause.



tion 2.4 takes a look at various extensions, some obvious and
some perhaps less so.

2.1 Defining a generic function
Let us tackle a concrete problem. Suppose we want to

encode elements of various data types as bit strings imple-
menting a simple form of data compression. For simplicity,
we represent a bit string by a list of bits.

type Bin = [Bit ]

data Bit = 0 | 1 deriving (Show)

bits :: (Enum α)⇒ Int → α→ Bin

We assume a function bits that encodes an element of an
enumeration type using the specified number of bits. We
seek to generalize bits to a function showBin that works
for arbitrary types. Here is a simple interactive session that
illustrates the use of showBin (note that characters consume
7 bits and integers 16 bits).

Main〉 showBin 3
[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
Main〉 showBin [3, 5]
[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

Main〉 showBin "Lisa"

[1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1,
1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0 ]

A string of length n, for instance, is encoded in 8 ∗ n + 1
bits.

Implementing showBin so that it works for arbitrary data
types seems like a hard nut to crack. Fortunately, generic
programming comes to the rescue. The good news is that it
suffices to define showBin for primitive types and for three
elementary types: the one-element type, the binary sum,
and the binary product.

data Unit = Unit

data Plus α β = Inl α | Inr β

data Pair α β = Pair{outl :: α, outr :: β}
Why these types? Well, Haskell’s construct for defining new
types, the data declaration, introduces a type that is iso-
morphic to a sum of products. Thus, if we know how to
compress sums and products, we can compress elements of
an arbitrary data type. More generally, we can handle a
type σ if we can handle some representation type τ that
is isomorphic to σ. The details of the representation type
are largely irrelevant. When programming a generic func-
tion it suffices to know the two mappings that witness the
isomorphism.

data Iso α β = Iso{fromData :: β → α, toData :: α→ β}
Turning to the implementation of showBin, we first have

to provide the signature of the generic function. Rather
unusually, we specify the type using a newtype declaration.

newtype ShowBin α = ShowBin{appShowBin :: α→ Bin }
An element of ShowBin σ is an instance of showBin that
encodes values of type σ as bit strings. We know that
showBin itself cannot be a genuine polymorphic function
of type α → Bin. Data compression does not work for
arbitrary types, but only for types that are representable.
Representable means that the type can be represented by

a certain value. For the moment, it suffices to know that
a type representation is simply an overloaded value called
rep. The generic compression function is then given by the
following simple, yet slightly mysterious definition.

showBin :: (Rep α)⇒ α→ Bin
showBin = appShowBin rep

Loosely speaking, we apply the generic function to the type
representation rep. Of course, this is not the whole story.
The code above defines only a convenient shortcut. The
actual definition of showBin is provided by an instance dec-
laration, but you should read it instead as just a generic
definition.

instance Generic ShowBin where
unit = ShowBin (λx → [ ])
plus = ShowBin (λx → case x of Inl l → 0 : showBin l

Inr r → 1 : showBin r)
pair = ShowBin (λx → showBin (outl x )

++ showBin (outr x ))
datatype iso

= ShowBin (λx → showBin (fromData iso x ))
char = ShowBin (λx → bits 7 x )
int = ShowBin (λx → bits 16 x )

The class Generic has six member functions corresponding
to the elementary types, Unit , Plus, and Pair , and to a small
selection of primitive types, Char and Int . The member
function datatype, which slightly breaks ranks, deals with
arbitrary data types. Each method binding defines the in-
stance of the generic function for the corresponding type.
Let us consider each case in turn. To encode the single
element of the type Unit no bits are required (read: the in-
stance of showBin for the Unit type is λx → [ ]). To encode
an element of a sum type, we emit one bit for the construc-
tor followed by the encoding of its argument. The encoding
of a pair is given by the concatenation of the component’s
encodings. To encode an element of an arbitrary data type,
we first convert the element into a sum of products, which is
then encoded. Finally, characters and integers are encoded
using the function bits.

That’s it, at least, as far as the generic function is con-
cerned. Before we can actually compress data to strings of
bits, we first have to turn the types of the to-be-compressed
values into representable types, which is what we will do
next.

Exercise 1. Implement a generic version of Haskell’s com-
parison function compare :: (Rep α) ⇒ α → α → Ordering .
Follow the scheme above: first turn the signature into a
newtype declaration, then define compare, and finally pro-
vide an instance of Generic. 2

Exercise 2. Implement a function readBin :: (Rep α) ⇒
Bin → α that decodes a bit string that was encoded by
showBin. 2

2.2 Defining a new type
A generic function such as showBin can only be instanti-

ated to a representable type. By default, only the elemen-
tary types, Unit , Plus, and Pair , and the primitive types
Char and Int are representable. So, whenever we define a
new data type and we intend to use a generic function on
that type, we have to do a little bit of extra work. As an
example, consider the data type of binary leaf trees.

data Tree α = Leaf α | Fork (Tree α) (Tree α)



We have to show that this type is representable. To this end
we exhibit an isomorphic type built from representable type
constructors. We call this type the structure type of Tree.

instance (Rep α)⇒ Rep (Tree α) where
rep = datatype (Iso fromTree toTree)

The main work goes into defining two mappings, fromTree
and toTree, which certify that Tree α and its structure type
Plus α (Pair (Tree α) (Tree α)) are indeed isomorphic.2

fromTree :: Tree α→ Plus α (Pair (Tree α) (Tree α))
fromTree (Leaf x ) = Inl x
fromTree (Fork l r) = Inr (Pair l r)

toTree :: Plus α (Pair (Tree α) (Tree α))→ Tree α
toTree (Inl x ) = Leaf x
toTree (Inr (Pair l r)) = Fork l r

Perhaps surprisingly, the structure type may contain the
original type. This is valid and, in fact, the standard ap-
proach for recursive types since the original type becomes
representable by virtue of the instance declaration. Oh,
wonders of recursion!

As a second example, here is the encoding of Haskell’s list
data type.

instance (Rep α)⇒ Rep [α ] where
rep = datatype (Iso fromList toList)

fromList :: [α ]→ Plus Unit (Pair α [α ])
fromList [ ] = Inl Unit
fromList (x : xs) = Inr (Pair x xs)

toList :: Plus Unit (Pair α [α ])→ [α ]
toList (Inl Unit) = [ ]
toList (Inr (Pair x xs)) = x : xs

The Unit type is used for encoding constructors with no
arguments. If a data type has more than two alternatives,
or if a constructor has more than two arguments, we have to
nest the binary type constructors Plus and Pair accordingly.
Actually, we are more flexible than this: we can map the
new type to any other type as long as the target type is an
instance of Rep.

Exercise 3. Turn the following types into instances of Rep.

data Shrub α β = Tip α | Node (Shrub α β) β (Shrub α β)

data Rose α = Branch α [Rose α ] 2

2.3 Implementation
The implementation of light-weight generics is surpris-

ingly concise: apart from declaring the two classes, Generic
and Rep, we only provide a handful of instance declarations.
To begin with, the class Generic accommodates the different
instances of a generic function.

class Generic g where
unit :: g Unit
plus :: (Rep α,Rep β)⇒ g (Plus α β)
pair :: (Rep α,Rep β)⇒ g (Pair α β)
datatype :: (Rep α)⇒ Iso α β → g β
char :: g Char
int :: g Int

2Strictly speaking, the type Tree α and its structure type
Plus α (Pair (Tree α) (Tree α)) are not isomorphic in
Haskell since Plus is a lifted sum. We simply ignore this
complication here.

The class abstracts over the type constructor g , the type of
a generic function. This is why unit has type g Unit . In
the case of Plus and Pair the corresponding method has
an additional context that constrains the type arguments of
Plus and Pair to representable types. This context is neces-
sary so that a generic function can recurse on the component
types. In fact, the context allows us to call any generic func-
tion, so that we can easily define mutually recursive generic
functions. We will see an example of this in the next section.

Now, what does it mean for a type to be representable?
For our purposes, this simply means that we can instantiate
a generic function to that type. So an intriguing choice is to
identify type representations with generic functions.

class Rep α where
rep :: (Generic g)⇒ g α

Note that the type variable g is implicitly universally quan-
tified: the type representation must work for all instances of
g . This is quite a strong requirement. How can we possibly
define an instance of g? The answer is simple, yet mind-
boggling: we have to use the methods of class Generic. Re-
call that unit has type (Generic g)⇒ g Unit . Thus, we can
turn Unit into an instance of Rep.

instance Rep Unit where
rep = unit

instance (Rep α,Rep β)⇒ Rep (Plus α β) where
rep = plus

instance (Rep α,Rep β)⇒ Rep (Pair α β) where
rep = pair

instance Rep Char where
rep = char

instance Rep Int where
rep = int

Strange as the instance declarations may seem, each has a
logical explanation. A type is representable if we can instan-
tiate a generic function to that type. But the class Generic
just contains the instances of generic functions. Thus, each
method of Generic with the notable exception of datatype
gives rise to an instance declaration. We have seen in Sec-
tion 2.2 that the method datatype is used to make an arbi-
trary type an instance of Rep. The procedure described in
Section 2.2 is, in fact, dictated by the type of datatype: we
have to provide an isomorphic data type which in turn is
representable.

The type of rep, namely, (Rep α,Generic g) ⇒ g α is
quite remarkable. In a sense, rep can be seen as the mother
of all generic functions. This de-mystifies the definition of
showBin in Section 2.1: the application appShowBin rep
implicitly instantiates rep’s type to (Rep α) ⇒ ShowBin α,
which the field selector appShowBin subsequently turns to
(Rep α) ⇒ α → Bin. Note that the classes Generic and
Rep are mutually recursive: each class lists the other one in
a method context.

2.4 Extensions

2.4.1 Additional type cases
The class Generic can be seen as implementing a case

analysis on types. Each method corresponds to a case branch.
Types not listed as class methods are handled completely
generically. However, this is not always what is wanted. As
an example, recall that the encoding of a list of length n



takes n + 1 bits plus the space for the encoding of the ele-
ments. A better method is to first encode the length of the
list and then to concatenate the encodings of the elements.
In order to treat the list type as a separate case, we have to
add a new method to the class Generic.

class Generic g where
. . .
list :: (Rep α)⇒ g [α ]
list = datatype (Iso fromList toList)

instance (Rep α)⇒ Rep [α ] where
rep = list

So, the bad news is that we have to change a class defini-
tion (which suggests that Generic is not a good candidate for
inclusion into a library). The good news is that by supplying
a default definition for list this change does not affect any
of the instance declarations: all the generic functions work
exactly as before. The new ShowBin instance overrides the
default definition.

instance Generic ShowBin where
. . .
list = ShowBin (λx → bits 16 (length x )

++ concatMap showBin x )

The technique relies on Haskell’s concept of default class
methods: only if the instance does not provide a binding for
the list method, then the default class method is used.

Exercise 4. Adopt readBin to the new encoding of lists. 2

2.4.2 A default type case
Using the same technique we can also implement a default

or catch-all type case.

class Generic g where
. . .
default :: (Rep α)⇒ g α
unit = default
plus = default
pair = default
char = default
int = default

Now, the generic programmer can either define unit , plus,
pair , char , int or simply default (in addition to datatype).3

A default type case is useful for saying ‘treat all the type
cases not explicitly listed in the following way’. We will see
an example application in Section 2.4.4.

2.4.3 Accessing constructor names
So far, the structure type captures solely the structure of

a data type, hence its name. However, in Haskell there is
more to a data type than this: a data constructor has a
unique name, an arity, possibly a fixity, and possibly named
fields. We are free to add all this information to the structure
type. There are, in fact, several ways to accomplish this: we
discuss one alternative in the sequel, Exercise 5 sketches a
second one.

3Unfortunately, if we specify all the type cases except
default , we get a compiler warning saying that there is no
explicit method nor default method for default .

To record the properties of a data constructor we use the
data type Constr (we confine ourselves to name and arity).

type Name = String

type Arity = Int

data Constr α = Constr{name :: Name,
arity :: Arity ,
arg :: α}

As an example, here is a suitable redefinition of fromTree
and toTree.

type Tree ′ α = Plus (Constr α)
(Constr (Pair (Tree α) (Tree α)))

fromTree :: Tree α→ Tree ′ α
fromTree (Leaf x ) = Inl (Constr "Leaf" 1 x )
fromTree (Fork l r) = Inr (Constr "Fork" 2 (Pair l r))

toTree :: Tree ′ α→ Tree α
toTree (Inl (Constr n a x )) = Leaf x
toTree (Inr (Constr n a (Pair l r))) = Fork l r

Note that, for reasons of efficiency, toTree simply discards
the additional Constr wrapper. So strictly, the two func-
tions do not define an isomorphism. This is not a problem,
however, as long as we do not cheat with the constructor
names.

It remains to introduce a new type case for constructors
and to add Constr to the league of representable types.

class Generic g where
. . .
constr :: (Rep α)⇒ g (Constr α)
constr = datatype (Iso arg wrap)

where wrap a = Constr "" (−1) a

instance (Rep α)⇒ Rep (Constr α) where
rep = constr

Note that arg , which is used in the default method for
constr , is a field selector of the data type Constr .

Figure 1 displays a simple pretty printer, based on Wadler’s
prettier printing library [13], that puts the additional infor-
mation to good use. The plus case discards the constructors
Inl and Inr as they are not needed for showing a value. The
constr case signals the start of a constructed value. If the
constructor is nullary, its string representation is emitted.
Otherwise, the constructor name is printed followed by a
space followed by the representation of its arguments. The
pair case applies if a constructor has more than one compo-
nent. In this case the components are separated by a space.
Finally, list takes care of printing lists using standard list
syntax: comma-separated elements between square brack-
ets.

The approach above works well for pretty printing but,
unfortunately, fails for parsing. The problem is that the
constructor names are attached to a value. Consequently,
this information is not available when parsing a string. The
important point is that parsing produces (not consumes) a
value, and yet it requires access to the constructor name.
An alternative approach, discussed in the exercise below,
is to attach the information to the type (well, to the type
representation).



newtype Pretty α = Pretty{appPretty :: α→ Doc}
pretty :: (Rep α)⇒ α→ Doc
pretty = appPretty rep

instance Generic Pretty where
unit = Pretty (λx → empty)
plus = Pretty (λx → case x of

Inl l → pretty l
Inr r → pretty r)

pair = Pretty (λx → pretty (outl x ) 〈〉 line
〈〉 pretty (outr x ))

datatype iso
= Pretty (λx → pretty (fromData iso x ))

char = Pretty (λx → prettyChar x )
int = Pretty (λx → prettyInt x )
list = Pretty (λx → prettyl pretty x )
constr = Pretty (λx → let s = text (name x ) in

if arity x 0 then
s

else
group (nest 1 (

text "(" 〈〉 s 〈〉 line
〈〉 pretty (arg x ) 〈〉 text ")")))

prettyl :: (α→ Doc)→ ([α ]→ Doc)
prettyl p [ ] = text "[]"
prettyl p (a : as) = group (nest 1 (text "[" 〈〉 p a 〈〉 rest as))

where rest [ ] = text "]"
rest (x : xs) = text "," 〈〉 line 〈〉 p x 〈〉 rest xs

Figure 1: A generic prettier printer

Exercise 5. Augment the datatype method by an additional
argument

datatype :: (Rep α)⇒ DataDescr → Iso α β → g β

that records information about the data type and its con-
structors. Re-implement the pretty printer using this mod-
ification instead of the constr case. 2

Exercise 6. Use the extension of the previous exercise and
a parser library of your choice to implement a generic parser
analogous to Haskell’s read method. 2

2.4.4 Mutual recursion
In Haskell, the Show class takes care of pretty printing.

The class is very carefully crafted so that strings, which
are lists of characters, are shown in double quotes, rather
than between square brackets. It is instructive to re-program
this behaviour as the new code requires all three extensions
introduced above.

Basically, we have to implement a nested case analysis on
types. The outer type case checks whether we have a list
type; the inner type case checks whether the type argument
of the list type constructor is Char . In our setting, a nested
type case can be encoded using a pair of mutually recursive
generic functions. The first realizes the outer type case.

instance Generic Pretty where
. . .
list = Pretty (λx → prettyList x )

The instance declaration is the same as before, except that

the list method dispatches to the second function which cor-
responds to the inner type case.

newtype PrettyList α
= PrettyList{appPrettyList :: [α ]→ Doc}

prettyList :: (Rep α)⇒ [α ]→ Doc
prettyList = appPrettyList rep

instance Generic PrettyList where
char = PrettyList (λx → prettyString x )
datatype iso = PrettyList (λx → prettyl prettyd x )

where prettyd = pretty · fromData iso
list = default
default = PrettyList (λx → prettyl pretty x )

The PrettyList instance makes use of a default type case
which implements the original behaviour (comma-separated
elements between square brackets). The datatype method
is similar to default except that the list elements are first
converted to the structure type. Note that the list method
must be explicitly set to default because it has the ‘wrong’
default class method (datatype (Iso fromList toList) instead
of default). Finally, the char method takes care of printing
strings in double quotes.

3. GENERIC FUNCTIONS ON TYPE
CONSTRUCTORS

Let us now turn to the second implementation of gener-
ics, which will increase flexibility at the cost of automation.
Note that we re-use the class and method names even though
the types of the class methods are slightly different.

3.1 Defining a generic function
The generic functions introduced in the last section ab-

stract over a type. For instance, showBin generalizes func-
tions of type

Char → Bin, String → Bin, [[Int ] ]→ Bin

to a single generic function of type

(Rep α)⇒ α→ Bin

A generic function may also abstract over a type constructor.
Take, as an example, a function that counts the number of
elements contained in a data structure. Such a function
generalizes functions of type

[α ]→ Int , Tree α→ Int , [Rose α ]→ Int

to a single generic function of type

(FRep ϕ)⇒ ϕ α→ Int

The class context makes explicit that counting elements does
not work for arbitrary type constructors, but only for rep-
resentable ones.

When type constructors come into play, typings often be-
come ambiguous. Imagine applying a generic size function
to a data structure of type [Rose Int ]. Shall we count the
number of rose trees in the list, or the number of integers
in the list of rose trees? Because of this inherent ambiguity,
the second implementation of generics will be more explicit
about types and type representations. The following imple-



mentation of a generic counter illustrates the point.

newtype Count α = Count{appCount :: α→ Int }
instance Generic Count where

unit = Count (λx → 0)
plus a b = Count (λx → case x of

Inl l → appCount a l
Inr r → appCount b r)

pair a b = Count (λx → appCount a (outl x )
+ appCount b (outr x ))

datatype iso a
= Count (λx → appCount a (fromData iso x ))

char = Count (λx → 0)
int = Count (λx → 0)

The new version of the class Generic has the same mem-
ber functions as before, but with slightly different typings:
the cases corresponding to type constructors, plus, pair and
datatype, now take explicit type arguments, a and b, which
are passed to the recursive calls. Of course, we do not pass
types as arguments, but rather type representations.

Though the class is a bit different, we are still able to
define all the generic functions we have seen before. In par-
ticular, we can apply appCount to rep to obtain a generic
function of type (Rep α) ⇒ α → Int . However, the re-
sult is not interesting at all: the function always returns 0
(provided its argument is fully defined). Instead, we ap-
ply appCount to frep, the generic representation of a type
constructor.

size :: (FRep ϕ)⇒ ϕ α→ Int
size = appCount (frep (Count (λx → 1)))

Since frep represents a type constructor, it takes an addi-
tional argument, which specifies the action of size on the
base type α: the function λx → 1 makes precise that each
element of type α counts as 1. Interestingly, this is not the
only option. If we pass the identity to frep, then we get a
generic sum function.

sum :: (FRep ϕ)⇒ ϕ Int → Int
sum = appCount (frep (Count (λx → x )))

Two generic functions for the price of one!
When size and sum are applied to some value, Haskell’s

type inferencer determines the particular instance of the
type constructor ϕ. We have noted before that there are,
in general, several possible alternatives for ϕ. If we are not
happy with Haskell’s choice, we can always specify the type
explicitly.

Main〉 let xss = [[i ∗ j | j ← [i . . 9]] | i ← [0 . . 9]]
Main〉 size xss
10
Main〉 let a = Count (λx → 1)
Main〉 appCount (list (list a)) xss
55
Main〉 appCount (list a) xss
10
Main〉 appCount a xss
1

By default, size calculates the size of the outer list, not
the total number of elements. For the latter behaviour, we
must pass an explicit type representation to appCount . This
is something which is not possible with the first implemen-
tation of generics.

Exercise 7. Generalize size and sum so that they work for
arbitrary numeric types.

size :: (FRep ϕ,Num η)⇒ ϕ α→ η
sum :: (FRep ϕ,Num η)⇒ ϕ η → η 2

Exercise 8. The function reducer whose signature is given
below generalizes Haskell’s foldr function (reducer swaps the
second and the third argument).

newtype Reducer β α
= Reducer{appReducer :: α→ β → β}

instance Generic (Reducer β) where
. . .

reducer :: (FRep ϕ)⇒ (α→ β → β)→ (ϕ α→ β → β)
reducer f = appReducer (frep (Reducer f ))

Fill in the missing details. Use reducer to define a function
that flattens a data structure into a list of elements. Define
sum in terms of reducer . 2

3.2 Introducing a new type
As before, we have to do a bit of extra work when we define

a new data type. The main difference to Section 2.2 is that
we must explicitly define the structure type: the method
datatype now expects the structure type as its second argu-
ment. At first sight, providing this information seems to be
a lot less elegant, but it turns out to be fairly advantageous.

Reconsider the data type Tree. Since it is a type construc-
tor rather than a type, we first define a ‘type constructor
representation’.

tree :: (Generic g)⇒ g α→ g (Tree α)
tree a = datatype (Iso fromTree toTree)

(a ⊕ tree a ⊗ tree a)

The operators ‘⊕’ and ‘⊗’ are convenient shortcuts for plus
and pair .

infixr 3 ⊗
infixr 2 ⊕
a ⊕ b = plus a b
a ⊗ b = pair a b

The type constructor Tree can be seen as a function that
takes types to types. Likewise, tree is a function that takes
type representations to type representations. The structure
type a⊕ tree a⊗ tree a makes explicit, that Tree is a binary
sum, that the first constructor takes a single argument of
type α, and that the second constructor takes two arguments
of type Tree α. Using tree we can now provide suitable
instances of Rep and FRep.

instance (Rep α)⇒ Rep (Tree α) where
rep = tree rep

instance FRep Tree where
frep = tree

The last declaration shows that tree is just the Tree instance
of frep.



3.3 Implementation
The implementation of Generic and Rep reflects the change

from implicit to explicit type arguments: the implicit argu-
ments in the form of a context ‘(Rep α)⇒’ are replaced by
explicit arguments of the form ‘g α→’.

class Generic g where
unit :: g Unit
plus :: g α→ g β → g (Plus α β)
pair :: g α→ g β → g (Pair α β)
datatype :: Iso α β → g α→ g β
char :: g Char
int :: g Int

class Rep α where
rep :: (Generic g)⇒ g α

instance Rep Unit where
rep = unit

instance (Rep α,Rep β)⇒ Rep (Plus α β) where
rep = rep ⊕ rep

instance (Rep α,Rep β)⇒ Rep (Pair α β) where
rep = rep ⊗ rep

instance Rep Char where
rep = char

instance Rep Int where
rep = int

Furthermore, we introduce a class that accommodates the
mother of all ‘type constructor representations’.

class FRep ϕ where
frep :: (Generic g)⇒ g α→ g (ϕ α)

Exercise 9. The first implementation of generics used im-
plicit, the second explicit type arguments. Does it make
sense to combine both?

class Generic g where
unit :: g Unit
plus :: (Rep α,Rep β)⇒ g α→ g β → g (Plus α β)
. . . 2

Exercise 10. Some generic functions require abstraction
over two type parameters.

class Generic g where
unit :: g Unit Unit
plus :: g α1 α2 → g β1 β2 → g (Plus α1 β1) (Plus α2 β2)
. . .

class Rep α where
rep :: (Generic g)⇒ g α α

Implement a generic mapping function using this interface
(generalizing Haskell’s fmap). 2

3.4 Extensions

3.4.1 Accessing constructor names
Passing type representations explicitly pays off when it

comes to adding information about constructors. In Sec-
tion 2.4.3 we had to introduce a new type Constr to record
the name and the arity of the constructor. Now, we can
simply add the information to the type representation.

class Generic g where
. . .
constr :: Name → Arity → g α→ g α

Since the additional type case constr name arity has type
g α→ g α, the representation of values is not affected. This
is a huge advantage as it means that this extension works
both for pretty printing and parsing.

In particular, it suffices to adapt the definition of tree and
colleagues; the implementation of the mappings fromTree
and toTree is not affected.

tree :: (Generic g)⇒ g α→ g (Tree α)
tree a = datatype (Iso fromTree toTree) (

constr "Leaf" 1 a
⊕ constr "Fork" 2 (tree a ⊗ tree a))

The new definition of tree is a true transliteration of the
data type declaration.

3.4.2 Mutual recursion
Being explicit about type representations is a bit of a pain

when it comes to programming mutually recursive generic
functions. With the first implementation mutual recursion
was easy: the method context ‘(Rep α)⇒’ allowed us to call
any generic function. Now, we are less flexible: the explicit
g α argument corresponds to the immediate recursive call.
So, to implement mutual recursion we have to tuple the
functions involved.

newtype Pretty α = Pretty{appPretty :: α→ Doc,
appPrettyList :: [α ]→ Doc}

The following exercise asks you to re-implement the prettier
printer using this record type.

Exercise 11. Re-implement the generic prettier printer of
Section 2.4.4 using tupling. Try, in particular, to simulate
default type cases. 2

4. STOCK TAKING
We have presented two implementations of generics. The

first one in Section 2 is slightly easier to use (mutually re-
cursive definitions are straightforward) but more restricted
(generic functions on type constructors are not supported).
The second one in Section 3 is very flexible (supports generic
functions on both types and type constructors) but slightly
more difficult to use (mutual recursion requires tupling).

The two approaches only differ in the way type represen-
tations are passed around: the first implementation passes
them implicitly via Rep α contexts, the second passes them
explicitly as arguments of type g α. Being explicit has one
further advantage besides greater expressiveness: we can
change the representation of types without changing the rep-
resentation of the underlying values. This is jolly useful for
adding information about data constructors.

The class-based implementation of generics is surprisingly
expressive: we can define all the generic functions presented,
for instance, in [4]. It has, however, also its limitations.
Using the class Generic we can only define functions that
abstract over one type parameter. In order to implement
functions that abstract over two type arguments such as
map, we need an additional type class (see Exercise 10). In
fact, we need one separate class for each arity. This has
the unfortunate consequence that there isn’t a single type
representation, which is awkward for implementing dynamic
values. Furthermore, we cannot define generic functions that
involve generic types [8], types that are defined by induction
on the structure of types.



5. WHERE TO GO FROM HERE
Got interested in generic programming? There is quite

a wealth of material on the subject. For a start, we rec-
ommend studying the tutorials [1, 7, 6]. Further reading
includes [9, 3].

The particular implementation described in this pearl is
inspired by Weirich’s paper [14]. Weirich gives an implemen-
tation in Haskell augmented by rank-2 types. The essence
of this pearl is that Haskell’s class system can be used to
avoid higher-order ranks.

If you are willing to go beyond Haskell 98, then there is a
lot more to discover. Using rank-2 types we can implement
higher-order generic functions. This extension is vital for
implementing generic traversals [12, 5, 10]. Using existential
types we can combine generic functions with dynamic values
[2, 5]. Dynamic type checking is indispensable for programs
that interact with the environment.
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