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Abstract
Folds over inductive datatypes are well understood and widely
used. In their plain form, they are quite restricted; but many dis-
parate generalisations have been proposed that enjoy similar cal-
culational benefits. There have also been attempts to unify the var-
ious generalisations: two prominent such unifications are the ‘re-
cursion schemes from comonads’ of Uustalu, Vene and Pardo, and
our own ‘adjoint folds’. Until now, these two unified schemes have
appeared incompatible. We show that this appearance is illusory:
in fact, adjoint folds subsume recursion schemes from comonads.
The proof of this claim involves standard constructions in category
theory that are nevertheless not well known in functional program-
ming: Eilenberg-Moore categories and bialgebras.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.2 [Program-
ming Languages]: Language Classifications—applicative (func-
tional) languages; F.3.2 [Logics and Meanings of Programs]: Se-
mantics of Programming Languages—algebraic approaches to se-
mantics

General Terms Languages; Theory; Verification

Keywords recursion schemes; adjunctions; comonads; bialge-
bras; distributive laws

1. Introduction
It has long been understood that explicit recursion is the ‘goto’ of
pure functional programming [22], and should be considered harm-
ful to program comprehension and analysis. Instead, structured re-
cursion operators such as catamorphisms (folds) [10, 19] ought to
be used wherever possible: they make termination manifest, and
enjoy many useful calculational properties which would otherwise
have to be established afresh for each new application.

However, catamorphisms are relatively restricted. There are
many other structured patterns of recursion, equally harmless and
worth capturing, that do not quite fit the scheme. Variations that
have been proposed in the past include folds with parameters and
accumulating folds [25], which may depend on constant or varying
additional arguments; mutumorphisms [8], which are pairs of mu-
tually recursive functions; zygomorphisms [18], which consist of a
main recursive function and an auxiliary one on which it depends;
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paramorphisms [21], in which the body of structural recursion has
access to immediate subterms as well as to their images under the
recursion; histomorphisms [26], in which the body has access to the
recursive images of all subterms, not just the immediate ones; and
so-called generalised folds [4], which use polymorphic recursion
to handle nested datatypes.

The many divergent generalisations of catamorphisms can be
bewildering to the uninitiated, and there have been attempts to unify
them. One approach is the identification of recursion schemes from
comonads [30] (which we call ‘rsfcs’ for short). Comonads capture
the general idea of ‘evaluation in context’ [27], and rsfcs make
contextual information available to the body of the recursion. This
pattern subsumes zygomorphisms and histomorphisms.

A more recent attempt [11] uses adjunctions as the common
thread. Adjoint folds arise by inserting a left adjoint functor into
the recursive characterisation, thereby adapting the form of the
recursion; they subsume accumulating folds, mutumorphisms (and
hence zygomorphisms), and generalised folds.

Given that adjoint folds and rsfcs cover some of the same exam-
ples, it seems reasonable to suspect a deeper relationship between
them. That suspicion is strengthened by the observation that every
adjunction induces a comonad, and every comonad can be factored
into adjoint functors. And indeed, the suspicion turns out to be well
founded. In this paper, we show that rsfcs are subsumed by adjoint
folds. Moreover, although the converse does not hold, we identify
those adjoint folds that correspond to rsfcs.

Technically speaking, our contributions are as follows:

• We provide a fresh account of adjoint folds, making essential
use of liftings and conjugates. Very briefly, adjoint folds are
parametrised by an adjunction L a R and a distributive law
σ : L◦D→̇C◦L that connects data structure to control structure.

• We show that that rsfcs [30] are subsumed by adjoint folds.
• We state precisely the relationship to the (type) fusion rule

of categorical fixed-point calculus [1]. In essence, type fusion
allows us to fuse an application of a left adjoint with an initial
algebra to form another initial algebra, L (µC)∼= µD, under the
stronger assumption that σ is an isomorphism.

• We prove that adjoint folds can be framed as rsfcs, if a distribu-
tive isomorphism σ exists.

We dissect most of the proofs into two parts: first, we establish a
bijection between certain arrows and homomorphisms; second, we
instantiate the bijections to initial or free algebras.

The unified approach to recursion schemes is based on adjoint
folds and unfolds, so no new theory is needed. This is good news
indeed! The message of this paper is that the existing theory is
more general than we anticipated. The unification is more than
merely an intellectual curiosity: it promises concrete returns, too—
for example, through general techniques for combining different
recursion schemes (most functions actually use a combination of
recursion schemes).
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Because of space limitations, we focus on algebras and induc-
tive types; but everything dualises elegantly to a theory of adjoint
unfolds [11] that subsumes patterns such as apomorphisms [31] and
futumorphisms [26]; we return to this point in Section 9.

The paper is organised as follows: Section 2 presents a smörgås-
bord of Haskell examples, which are picked up later; Section 3
summarises some of the theoretical background; Section 4 walks
through a basic example of our unifying theory of adjoint folds,
which is set out in Section 5; Section 6 shows that all rsfcs are
adjoint folds, and Section 7 identifies those adjoint folds that are
rsfcs; and finally, Section 8 discusses related work, and Section 9
concludes and points out directions for future work.

2. A Zoo of Morphisms
In this section we exhibit a number of specimens from the zoo of
morphisms, which will serve to illustrate the theory that follows.
We use Haskell as a lingua franca for codifying our categorical
constructions as programs. However, throughout the paper we are
careful to distinguish between inductive and coinductive types,
which Haskell conflates.

Catamorphism The most basic recursion scheme is the catamor-
phism, known more colloquially as fold. A catamorphism decom-
poses an inductively defined structure, replacing each of the con-
structors with a provided argument. An example of this pattern is
to compute the depth of a binary tree.

data Tree = Empty | Node Tree N Tree
depth :: Tree→N
depth (Empty) = 0
depth (Node l a r) = 1+(depth l ‘max‘ depth r)

Folds with parameters Folds with constant parameters take an
additional argument, on which results may depend. List concatena-
tion is a canonical example:

cat :: ([a ], [a])→ [a]
cat ([ ], ys) = ys
cat (x : xs,ys) = x : cat (xs,ys) .

Here, the second component of the pair is the parameter; cat is not
just a fold because the pair argument is not of an an inductive type.

In folds with accumulating parameters, the additional argument
may vary in recursive calls. Haskell’s foldl is an example. More
interesting examples are provided by downwards accumulations on
trees [9]; for example, replacing every element with its depth (if the
accumulator is initialised to 0):

depths :: (Tree,N)→ Tree
depths (Empty, n) = Empty
depths (Node l a r,n) = Node (depths (l,n+1)) n (depths (r,n+1)) .

This is a rather simple example; in general, the accumulating pa-
rameter will vary in different ways in different branches.

Paramorphism The paramorphism models primitive recursion:
the body has access not only to the results of recursive calls, but
also to the substructures on which these calls are made. An example
of a paramorphism is counting the words in a string:

wc :: [Char ]→ Int
wc [ ] = 0
wc (c : cs)
| ¬ (isSpace c) ∧ (null cs ∨ isSpace (head cs)) = wc cs+1
| otherwise = wc cs .

Note that in the clause for non-empty lists, the result depends not
only on a recursive call wc cs on the substructure, but also on the
substructure cs itself.

Zygomorphism A variation is the zygomorphism, where the re-
cursion is aided by an auxiliary function:

perfect :: Tree→ B
perfect Empty = True
perfect (Node l a r) = perfect l ∧ perfect r ∧ (depth l depth r) .

The function perfect is not a simple fold, since it relies on an
auxiliary traversal of the tree structure using depth.

Mutumorphism A mutumorphism generalises the idea of a zygo-
morphism, allowing the recursive functions to rely mutually on one
another. For example, consider the odd and even functions:

odd :: N→ B even :: N→ B
odd 0 = False even 0 = True
odd (n+1) = even n even (n+1) = odd n .

Here, the functions work as a pair in tandem as they recurse through
the structure of natural numbers.

Nested datatypes Functions over nested datatypes such as perfect
trees or random-access lists have to deal with the polymorphic re-
cursion. For example, consider summing a perfect tree of numbers:

data Perfect a = Zero a | Succ (Perfect (a,a))
instance Functor Perfect where

fmap f (Zero a) = Zero (f a)
fmap f (Succ p) = Succ (fmap (λ (x,y)→ (f x, f y)) p)

total :: Perfect N→N
total (Zero n) = n
total (Succ p) = total (fmap (λ (a,b)→ a+b) p) .

This is not a straightforward fold, because the recursive call of total
is not applied directly to a subterm—indeed, it cannot be so applied,
because the subterm p of Succ p has type Perfect (N,N) rather than
Perfect N.

Histomorphism Histomorphisms capture tabulation, as used in
dynamic programming. For example, consider the unbounded
knapsack problem: given an integer capacity c, and as many copies
as needed of each of a collection of items (wi,vi) with posi-
tive integer weight wi and value vi, compute the maximum value
that will fit in the knapsack. Thus, given capacity 15 and items
[(12,4),(1,2),(2,2),(1,1),(4,10)], the maximum value possible
is 36, using three copies each of the second and fifth items.

The naive recursive solution takes exponential time (we sup-
pose here that the maximum value of the empty list of candidate
solutions is zero):

knapsack :: [(N,R)]→N→ R
knapsack wvs c

= maximum [v+ knapsack wvs (c−w) | (w,v)← wvs,w 6 c] .

However, by tabulating the results for each capacity in 0 . .c, one
can compute the answer in pseudo-polynomial time:

knapsack wvs c = table !! c where
table = [ks i | i← [0 . .c]]
ks i = maximum [v+ table !! (i−w) | (w,v)← wvs,w 6 i ] .

Lazy evaluation works out the data dependencies automatically;
but each element of the table depends only on elements with lower
indices, so even without lazy evaluation it suffices to fill the table
in index order.

Now, the general question is whether the recursion equations
above have unique solutions? The answer is yes for all of them.
However, up to now the proofs involved two seemingly incompat-
ible techniques: most of the examples can be identified as adjoint
folds; some of them (in particular knapsack) are subsumed by re-
cursion schemes from comonads. Before we show how to unify the
two approaches, we first need to introduce a bit of theory.
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3. Background
This paper assumes a basic knowledge of category theory, in that
the reader should be familiar with the notions of functors, natural
transformations, and product and functor categories. In this section
we fix the notation and establish categorical concepts that will
be used in the remainder of the paper. For the most part this
material is standard and can safely be glossed over on an initial
reading. An exception is perhaps the material on functor squares
and conjugates, which will need particular attention.

3.1 Functor Squares
A functor square consists of four functors and a natural transfor-
mation between them (to read off the type of λ , it might help to tilt
your head 45◦ to the left when looking at this diagram):

C C ′

D D ′
⇒λ→F

→H

→ F′

→

K

λ : F◦H→̇K◦F′ .

For brevity, we call λ a distributive law, even though the name is
traditionally used for the special case in which opposite functors
are comonads or monads. Functor squares can be horizontally (and
also vertically, not shown below) composed:

C C ′ C ′′

D D ′ D ′′
⇒λ→F ⇒λ ′

→H

→F′

→H′

→ F′′

→

K

→

K′

=

C C ′′

D D ′′
⇒λ−λ ′→F

→H◦H′

→ F′′

→

K◦K′

,

where the horizontal composition λ −λ ′ of the distributive laws λ

and λ ′ is given by a combination of horizontal (◦) and vertical (·)
composition of natural transformations (◦ binds tighter than ·):

λ −λ
′ = K◦λ

′ · λ ◦H′ .

This composition is associative, with idF : F ◦ Id →̇ Id ◦ F as its
neutral element.

3.2 Algebras and Coalgebras
Algebras and coalgebras form the basis for the categorical descrip-
tion of structured recursion schemes.

Given an endofunctor F : C → C , an F-algebra is a pair (a,A),
where a : F A→ A is an arrow and A : C is an object, which are
known as the action and carrier of the algebra. (We deviate a little
from the standard notation (A,a), in order to have a syntax that dis-
tinguishes algebras from coalgebras.) Since the action determines
its carrier, it is often used by itself to refer to the F-algebra. An
F-homomorphism between algebras (a,A) and (b,B) is an arrow
h : A→ B : C such that h · a = b · F h.

F A F B

A B

→a
→F h

→ b

→
h

Clearly, F-homomorphisms compose and have an identity, so it
follows that F-algebras and F-homomorphisms form a category,
which we call F-Alg(C ). The initial object of this category, if it
exists, is given by (in,µF) and called the initial F-algebra. The ini-
tiality implies that to each F-algebra, (a,A), there exists a unique
F-homomorphism, a : (in,µF)→ (a,A), called a fold. The alge-
bra in is, in fact, an isomorphism, so µF is a fixed-point of F (the
least fixed-point), a fact known as Lambek’s lemma.

Example 3.1. The semantics of the inductive datatype Tree is given
by the initial algebra µTree, where the so-called base functor

data Tree tree = Empty | Node tree N tree

abstracts away from the recursive occurrences of Tree. The Haskell
rendering of the isomorphism in, the action of the initial algebra,

in ::Tree Tree→ Tree
in (Empty) = Empty
in (Node l a r) = Node l a r

amounts to a simple renaming of constructors.

Dually, given an endofunctor G : C →C , a G-coalgebra is a pair
(C,c), where C : C is the carrier and c : C→ G C is the action of
the coalgebra. A G-homomorphism between coalgebras (C,c) and
(D,d) is an arrow h : C→D : C that satisfies G h · c = d · h. Just as
before, a category G-Coalg(C ) can be formed from G-coalgebras
and G-homomorphisms. The final object of this category, if it ex-
ists, is given by (νG,out) and called the final G-coalgebra.

The category F-Alg(C ) has more structure than C . The forget-
ful or underlying functor UF : F-Alg(C )→ C forgets about the
additional structure: UF (a,A) = A and UF h = h. An analogous
functor can be defined for coalgebras: UG : G-Coalg(C )→ C .

Liftings and coliftings A functor H̄ : F-Alg(C ) → G-Alg(D)
is called a lifting of H : C → D iff H ◦UF = UG ◦ H̄. Given a
distributive law λ :H◦F←̇G◦H, we can define a lifting as follows:

Hλ (a,A) = (H a · λ A,H A) , (3.1a)

Hλ h = H h . (3.1b)

For liftings, the action on the carrier and on homomorphisms is
fixed; the action on the algebra is determined by the distributive
law. Liftings of the identity functor, that is, H = Id and λ = α :
F ←̇G, are often written as α-Alg(C ) : F-Alg(C )→ G-Alg(C ).
Liftings compose in an attractive way: Hλ ◦H′λ ′ = (H◦H′)λ−λ ′ .

Since we use the action of an algebra to refer to the algebra
itself, we often abbreviate H a · λ A by Hλ a.

Dually, H : F-Coalg(C ) → G-Coalg(D) is a colifting of H :
C →D iff UG ◦H=H◦UF. Given λ : H◦F→̇G◦H we can define
a colifting as follows:

Hλ (C,c) = (H C,λ C · H c) , (3.2a)
Hλ h = H h . (3.2b)

3.3 Adjunctions
Adjunctions were introduced by Kan [14] and are so pervasive in
the study of category theory that Mac Lane [17, p.vii] noted “Ad-
joint functors arise everywhere.” Our work supports this view: ad-
junctions provide a unified framework for program transformation.

Given categories C ,D , we say that functors L : C ← D and
R : C →D form an adjunction, written L a R : C ⇀ D or

C D→⊥
R

→L
,

iff there is a bijection between the sets of arrows

b−c : C (L A,B)∼= D(A,R B) : d−e ,

that is natural both in A and B. We say that L is a left adjoint for R,
and R a right adjoint for L; the isomorphism b−c is called the left
adjunct, and its inverse d−e the right adjunct. The arrows bfc and
dge are also called the transposes of f and g.

That the adjuncts b−c and d−e are mutually inverse can be
captured using an equivalence:

f = dge ⇐⇒ bfc= g , (3.3)
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for all f : L A→ B : C and g : A→R B : D . The naturality properties
of the adjuncts can be expressed as fusion laws.

R k · bfc · h = bk · f · L hc (3.4a)
k · dge · L h = dR k · g · he (3.4b)

These equations imply that the adjuncts are uniquely defined by
their actions on the identity: R k · bidc = bkc and dide · L h = dhe.
An alternative definition of adjunctions is based on the two natural
transformations ε= dide and η= bidc, which are called the counit
ε : L ◦R →̇ Id and the unit η : Id →̇R ◦ L of the adjunction. The
equivalence (3.3) can also be framed in terms of the units:

f = ε B · L g ⇐⇒ R f · η A = g . (3.5)

Adjunctions satisfy a wealth of properties. An important prop-
erty is that adjoint functors are uniquely defined up to isomorphism:
if L1 a R1 and L2 a R2, then

L2 ∼= L1 ⇐⇒ R1 ∼= R2 . (3.6)

This equivalence can be used as a reasoning principle: often one
isomorphism is trivial and can be used to establish the other.

Left adjoints preserve initial objects, L 0 ∼= 0. Dually, right
adjoints preserve final objects, R 1 ∼= 1. In general, left adjoints
preserve colimits (LAPC) and right adjoints preserve limits (RAPL).

Example 3.2. Coproducts and products arise as left and right
adjoints (+) a ∆ a (×) of the diagonal functor ∆ : C → C ×C
defined by ∆ A = (A,A) and ∆ f = (f, f).

C C ×C→⊥
∆

→(+)

C ×C C→⊥
(×)

→∆

The bijections express that pairs of arrows with the same source (re-
spectively, target) are in one-to-one correspondence with arrows to
a product (respectively, from a coproduct). In the case of products,
the left adjunct b(f1, f2)c= f1 M f2 is known as the ‘split’ combina-
tor, and the counit ε= (outl,outr) arises from the projections.

Example 3.3. Perhaps the best-known example of an adjunction is
currying: a function of two arguments can be treated as a function
of the first argument whose values are functions of the second.

C C→⊥
(−)P

→−×P

The right adjoint of pairing with P is the exponential from P.

Example 3.4. For a signature expressed as a functor F, the terms
involving variables of type A constitute the free algebra FreeF A
on A. The functor FreeF : C → F-Alg(C ) arises as the left adjoint
of the forgetful functor UF. Dually, cofree G-coalgebras arise as the
right adjoint of UG.

F-Alg(C ) C→⊥
UF

→FreeF
C G-Coalg(C )→⊥

CofreeG

→UG

The first bijection expresses that the compositional evaluation of
a term is uniquely determined by the action on variables. Initial
algebras and final coalgebras arise as special cases (LAPC and
RAPL): (in,µF) ∼= FreeF 0 (closed terms as open terms where the
variables are drawn from 0) and (νG,out)∼= CofreeG 1.

Adjunctions can be lifted to functor categories: L a R implies
both L◦− aR◦− and−◦R a−◦L. The latter adjunctions capture
the following bijections between natural transformations:

C X (L◦F,G)∼= DX (F,R◦G) , (3.7a)

X C (F◦R,G)∼= X D (F,G◦L) . (3.7b)

Conjugates Next we introduce a concept that will be at the heart
of our framework. Just as natural transformations relate functors,
conjugates relate adjoint pairs of functors. Given the adjunctions
L a R : C ⇀ D and L′ a R′ : C ′ ⇀ D ′, and functors H : C → C ′

and K : D → D ′, the distributive laws σ : L′ ◦ K →̇ H ◦ L and
τ : K ◦ R →̇ R′ ◦H are conjugates, written σ a τ, if one of the
following conditions holds

bH f · σ Ac′ = τ B · K bfc , (3.8a)

H dge · σ A = dτ B · K ge′ , (3.8b)

for all f : L A→ B : C and g : A→ R B : D . The equivalence of
the two conditions is a consequence of (3.7). In fact, each natural
transformation uniquely determines the other:

σ A = dτ (L A) · K (η A)e′ , (3.9a)

τ B = bH (ε B) · σ (R B)c′ . (3.9b)

We obtain two distributive laws for the price of one; this fact will
be used a lot. The following diagrams record the types.

D ′ D

C ′ C

⇒σ→L′

→K

→ L

→

H

a
C C ′

D D ′

→R

→H

→ R′

→
K

⇒
τ

(As an aside, the data—the functors H and K and the laws σ
and τ—are also called an adjoint square, a pair of functor squares,
from L a R to L′ a R′. Above, we have taken the first steps towards
defining the double category of adjoint squares [24].)

Example 3.5. A lifting H̄ provides an important example of a con-
jugate between categories of algebras where the second transfor-
mation τ : H◦UF = UG ◦ H̄ is manifestly the identity.

4. Warm-up: An Easy Instance of Adjoint Folds
Before we introduce the unified framework, it is instructive to
walk through a specific instance. In Section 2 we have discussed
that functions defined by mutual recursion, mutumorphisms, are
not simple folds. They are, however, in one-to-one correspondence
with folds. Mutumorphisms are captured by the following scheme:

x1 · in = b1 ·D (x1 M x2) and x2 · in = b2 ·D (x1 M x2) .

The split combinator makes the results of both recursive calls
available to the ‘algebras’ bi :D (B1×B2)→Bi. Think of xi :µD→
Bi as unknowns; we aim to show that they are uniquely determined
by the two equations. We proceed in two steps:

First, we abstract away from the initial algebra (in,µD), gener-
alising to an arbitrary D-algebra (a,A), and turn the two equations
into a form we can work with. Product categories provide a natural
setting, simply because we have two equations. (Recall that split M
is the left adjunct of ∆ a (×), see Example 3.2.)

x1 · a = b1 ·D (x1 M x2) and x2 · a = b2 ·D (x1 M x2)
⇐⇒ { product category C ×C }

(x1,x2) · (a,a) = (b1,b2) · (D (x1 M x2),D (x1 M x2))
⇐⇒ { definition of ∆ and definition of b−c }

(x1,x2) · ∆ a = (b1,b2) · ∆ (D b(x1,x2)c)
⇐⇒ { set x :=(x1,x2) and b :=(b1,b2) }

x · ∆ a = b · ∆ (D bxc)

We obtain a single equation, where the algebra a is wrapped in a
left adjoint. From here, a short calculation demonstrates that the
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transpose of x is a homomorphism:

x · ∆ a = b · ∆ (D bxc) : ∆ (D A)→ B
⇐⇒ { b−c and d−e are isomorphisms (3.3) }

bx · ∆ ac= bb · ∆ (D bxc)c
⇐⇒ { b−c is natural (3.4a) }

bxc · a = bbc ·D bxc : D A→ (×) B .

Thus, bxc is a D-homomorphism, and so x is the transpose of a D-
homomorphism. Furthermore, b is the transpose of a D-algebra—
this is an important observation. Let us record the correspondence
(note that B is an object of C ×C , that is, a pair of objects in C ,
and recall that bxc= x1 M x2).

∆ (D A) ∆ (D ((×) B))

∆ A B

→∆ a

→
∆ (D bxc)

→ b

→x

⇐⇒

D A D ((×) B)

A (×) B

→a

→
D bxc

→ bbc

→
bxc

Second, we instantiate (a,A) to the initial algebra (in,µD). The
solution of the original pair of equations is then given by

x1 M x2 = b1 Mb2 ,

which is Fokkinga’s mutu-CHARN law [7].
Several special cases are worth singling out. If x2 does not de-

pend on x1, we obtain zygomorphisms (ie b2 :=b · D outr and con-
sequently x2 := b ). Further, when h2 is the identity, the zygo-
morphism specialises to a paramorphism (ie b2 := in · D outr and
consequently x2 := in = id). Pushing this to the extreme, if we
have two independent homomorphisms (ie b1 := b1 · D outl and
b2 := b2 · D outr and consequently x1 = b1 and x2 = b2 ), we
derive the banana-split law [3], an important program optimisation
that replaces a double tree traversal by a single one.

b1 M b2 = b1 ·D outlMb2 ·D outr (4.1)

The law can also be justified in a different way: b1 M b2 is the
unique homomorphism to a product algebra:

(b1,B1)× (b2,B2) = (b1 ·D outlMb2 ·D outr,B1×B2) .

We shall see later that this is not just a lucky coincidence.

5. A Unified Framework for Recursion Schemes
This section introduces the promised unifying theory for recursion
schemes. As noted in the introduction, the unifying concept, called
generalised iteration in [20] and adjoint fold in [11], is not new.
(So no new theory is needed, which is good.) What is novel is
the presentation, which makes essential use of conjugate pairs of
distributive laws and liftings, rendering the proofs concise and ele-
gant. However, since the concepts from category theory are perhaps
somewhat remote from the daily practice of the programmer in the
cubicle, we first take a short detour, which hopefully helps to con-
nect the abstract concepts to concrete programs.

5.1 Detour: Mendler-style Folds
Mendler-style folds [23, 28] arise from taking a logical (specifi-
cally, second-order simply-typed lambda calculus) rather than an
algebraic approach to inductive datatypes. As such, they provide a
smooth transition path from explicit recursion to the use of recur-
sion schemes. To illustrate, the semantics of depth is roughly the
fixed-point of the so-called base function depth

depth depth (Empty) = 0
depth depth (Node l a r) = 1+(depth l ‘max‘ depth r) ,

which abstracts away from the recursive calls. There is an addi-
tional twist: we have replaced the Tree constructors by the corre-

sponding Tree constructors, which results in a rank-1 type:

depth ::∀tree . (tree→N)→ (Tree tree→N) .

The polymorphic type guarantees that the original recursion equa-
tion, depth · in = depth depth has a unique solution. (Because of
the occurrence of in, we said ‘roughly the fixed-point’.)

Translated into category theory, Mendler-style folds are solu-
tions in an unknown x : µD→ B to recursion equations of the form

x · in = Ψ (µD) x ,

where the base function Ψ is a natural transformation of type
C (−,B)→̇C (D−,B). Very briefly, the Yoneda lemma [17] shows
that the space of base functions such as Ψ is isomorphic to the
space of D-algebras. Thus, Mendler-style folds are in one-to-one
correspondence with standard folds of the form

x · in = b ·D x .

Conversely, a standard fold is a Mendler-style fold, as the right-
hand side as a function in x satisfies the naturality requirement.

5.2 Detour: Mendler-style Adjoint Folds
We have noted in Section 2 that many functions do not quite fit the
pattern of simple folds: depths, for instance, uses an accumulating
parameter. However, to provide a precise semantics we can take
a similar approach as in the previous section. We define a base
function that additionally replaces the Tree constructors on the left-
hand side (and only those) by the corresponding Tree constructors.

depths ::∀tree . ((tree,N)→ Tree)→ ((Tree tree,N)→ Tree)
depths depths (Empty, n) = Empty
depths depths (Node l a r,n)

= Node (depths (l,n+1)) n (depths (r,n+1))

The type of the base function is similar to what we had before,
except that tree and Tree tree are wrapped in a left adjoint: (−,N)
or, categorically speaking, −×N. Nonetheless, one can show that
depths · (in×N) = depths depths has a unique solution.

This motivates the following generalisation of Mendler-style
folds. Given an adjunction L a R, an Mendler-style adjoint fold
x : L (µD)→ B is the unique solution to the recursion equation

x · L in = Ψ (µD) x , (5.1)

where the base function Ψ is now a natural transformation of type
C (L−,B)→̇C (L (D−),B).

The main difficulty in translating the examples of Section 2 into
adjoint folds is to identify the left adjoint. For some examples this is
obvious, eg for depths we use the curry adjunction −×N a (−)N;
for others it is less obvious, eg for total the left adjoint is type
application (applying a functor to a constant object), which has a
right adjoint under some mild conditions [11].

5.3 Adjoint Folds
Standard folds are restricted to the case that the control structure
of a function ever follows the structure of its input data. Mendler-
style adjoint folds loosen this tight coupling. The control structure
is given implicitly through the adjunction, but it can also be made
explicit by introducing a ‘control functor’.

Definition 5.1 (Adjoint recursion equation). Given an adjunction
L a R : C ⇀ D , functors C : C → C and D : D → D , and a
distributive law σ : L ◦D →̇C ◦L, an adjoint recursion equation in
the unknown x : L (µD)→ B has the form

x · L in = b · C x · σ (µD) , (5.2)

where b : C B→ B.
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The functor C is called control functor because it governs the
recursive call structure. The diagram below displays the functors
involved (D as in data functor, C as in control functor).

C D→⊥
R→

C

→ L

→

D (5.3)

The distributive law σ : L ◦D →̇ C ◦ L serves as an impedance
matcher relating data and control functors.

Adjoint folds arise as unique solutions of adjoint recursion
equations—we postpone the proof of uniqueness until Section 5.4.
As in the vanilla case, Mendler-style adjoint folds (5.1) and adjoint
folds (5.2) are interchangeable. Every adjoint fold is a Mendler-
style one, as the right-hand side of (5.2) as a function in x satisfies
the naturality requirement. The other direction is more interesting:

Given a base function Ψ : C (L−,B)→̇C (L (D−),B), we have
to construct a control functor C, a distributive law σ : L◦D→̇C◦L
and a C-algebra b :CB→B. The first two pieces of data are induced
by the adjunction: a canonical choice for the control structure is
C = L ◦D ◦R—we simply go round in a loop (5.3). Using this
definition, the type of σ expands to L ◦D →̇ L ◦D ◦R ◦ L, which
suggests defining σ = L ◦D ◦ η. Finally, the C-algebra is derived
from the base function: b = Ψ (R B) (ε B) : L (D (R B))→ B. For
the proof of Ψ X x = b ·C x · σ X we refer to the original paper [11].

Recursive Haskell programs are easily framed as Mendler-style
adjoint folds (5.1). Adjoint folds (5.2) are, however, preferable for
the theoretical development as they avoid sophistications such as
natural transformations between hom-functors.

5.4 Transposed Homomorphisms
To show that (5.2) has a unique solution, we proceed in two steps,
following the pattern set out in Section 4.

First, we abstract away from the initial algebra (in,µD), gen-
eralising to an arbitrary D-algebra (a,A), and establish a bijection
between arrows x : L A→ B satisfying

x · L a = b · C x · σ A , (5.4)

and D-algebra homomorphisms. The central step in the calculation
below is the penultimate one, which replaces the distributive law
σ : L ◦D →̇C ◦ L by its conjugate τ : D ◦R →̇R ◦C, effectively
shifting the recursive call to the right.

x · L a = b · C x · σ A : L (D A)→ B
⇐⇒ { b−c and d−e are isomorphisms (3.3) }

bx · L ac= bb · C x · σ Ac
⇐⇒ { b−c is natural (3.4a) }

bxc · a = R b · bC x · σ Ac
⇐⇒ { σ a τ conjugates (3.8a) }

bxc · a = R b · τ B ·D bxc
⇐⇒ { definition of lifting (3.1a) }

bxc · a = Rτ b ·D bxc : D A→ R B

Voilà: the transpose bxc : (a,A)→ Rτ (b,B) is a D-homomorphism
between a and a lifting of b. To fix some terminology, we call x a
transposed homomorphism, or traho for short.

L (D A) C (L A) C B

L A B

→L a

→σ A →C x

→ b

→x

⇐⇒
D A D (R B)

A R B

→a

→
D bxc

→ Rτ b

→
bxc

(5.5)

Second, if we instantiate (a,A) to the initial algebra (in,µD),
we obtain the following

Theorem 5.2 (Adjoint folds). The adjoint recursion equation (5.2)
has the unique solution x = d Rτ b e, where τ : D ◦R →̇R ◦C is
the conjugate of σ. The arrow x is called an adjoint fold.

Proof. This is an immediate consequence of initiality.

x · L in = b · C x · σ (µD)
⇐⇒ { see above }

bxc · in = Rτ b ·D bxc
⇐⇒ { (in,µD) initial }

bxc= Rτ b
⇐⇒ { b−c and d−e are isomorphisms (3.3) }

x = d Rτ b e

So an adjoint fold is a traho from the initial algebra. Using
the bijection (5.5) we can easily generalise from initial to free
algebras. Then bxc can be seen as evaluating a first-order term, and
is uniquely determined by an evaluation function for variables.

There is an interesting observation to be made. Adjoint folds
arise out of a situation that is not symmetric. The distributive law τ
allows us to lift the right adjoint R to categories of algebras:

C-Alg(C ) D-Alg(D)

C D

→Rτ

→UC → UD

→⊥
R→

C

→ L

→

D

σ : L◦D→̇C◦L a τ : D◦R→̇R◦C .

(5.6)

Alas, we cannot lift the left adjoint L with the data at hand: a lifting
of L requires a distributive law of type C ◦ L →̇ L ◦D. The asym-
metry can be traced back to the definition of algebras. Consider the
type of an action, a : D A→ A; the base functor D only appears to
the left of the arrow, in a contravariant position. Symmetry can be
restored if σ is an isomorphism, an important special case, which
we explore in the Section 5.5. But first, let us look at an example.

Example 5.3. Mutumorphisms are an instance of adjoint folds
where the control functor is the canonical one and σ= ∆◦D◦η.

D2 D→⊥
(×)→

∆◦D◦(×)

→ ∆

→

D

The conjugate of σ is τ= η◦D◦ (×) (3.9b) and thus

(×)τ (b1,b2) = b1 Mb2 .

Note that the lifted product functor is just the left adjunct.

When we discussed adjoint folds (Section 5.3), we introduced
the canonical control functor C = L ◦D ◦R. For this case the de-
velopment above can be simplified. The functor C comes equipped
with a canonical pair of distributive laws:

σ= L◦D◦η : L◦D→̇C◦L a τ= η◦D◦R : D◦R→̇R◦C .

The proof of uniqueness then boils down to a two-stepper (this is
the proof of Section 4, more abstractly):

x · L a = b · L (D bxc) : L (D A)→ B
⇐⇒ { b−c and d−e are isomorphisms (3.3) }

bx · L ac= bb · L (D bxc)c
⇐⇒ { b−c is natural (3.4a) }

bxc · a = bbc ·D bxc : D A→ R B .
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This is indeed an instance of the previous development: some easy
calculations show that Rτ b = bbc and L (D bxc) = C x · σ A.

L (D A) L (D (R B))

L A B

→L a

→
L (D bxc)

→ b

→x

⇐⇒
D A D (R B)

A R B

→a

→
D bxc

→ bbc

→
bxc

(5.7)
Now, if (a,A) is initial, then x = d bbc e. We further explore the
canonical control functor in Section 5.6.

5.5 Type Fusion
Let us now assume that the distributive law σ is an isomorphism.
Then we can continue the first calculation of Section 5.4 ‘in the
opposite direction’. We start with (5.4) and reason

x · L a = b · C x · σ A : L (D A)→ B
⇐⇒ { σ is an isomorphism }

x · L a · σ◦ A = b · C x
⇐⇒ { definition of lifting (3.1a) }

x · Lσ
◦

a = b · C x : C (L A)→ B .

Overall, we have established the following one-to-one correspon-
dence between algebra homomorphisms.

C (L A) C B

L A B

→Lσ◦ a

→C x

→ b

→x

σ iso⇐⇒
D A D (R B)

A R B

→a

→
D bxc

→ Rτ b

→
bxc

In other words, jointly with L we have lifted the entire adjunction
L a R to an adjunction Lσ

◦ a Rτ between categories of algebras.

C-Alg(C )(Lσ
◦
(a,A),(b,B))∼=D-Alg(D)((a,A),Rτ (b,B))

We arrive at a situation that is perfectly symmetric. Trahos appear
at some intermediate stage, at the point where we apply the assump-
tion that the distributive law σ is an isomorphism.

We can now complete (5.6) with the missing left adjoints.

C-Alg(C ) D-Alg(D)

C D

→⊥
Rτ

→ UCa

→
∼=

→Lσ◦

→ UDa

→⊥
R→

C

→

FreeC

→ L

→

D

→

FreeD

σ : L◦D∼= C◦L a τ : D◦R→̇R◦C

(5.8)

Overall, we have four (!) adjunctions, which form a commuting
square of adjunctions. The proof of this fact makes use of the
hgih-level reasoning principle (3.6). If we instantiate (3.6) to the
compositions of left and right adjoints (note that left adjoints are
composed in the opposite order) we obtain:

FreeC ◦L∼= Lσ
◦
◦FreeD ⇐⇒ UD ◦Rτ ∼= R◦UC .

Since Rτ is a lifting, the isomorphism on the right is valid—
indeed, it is even an equality. Consequently, the compositions of
left adjoints are isomorphic, as well. We record the following

Theorem 5.4. Let L a R : C ⇀ D be an adjunction, and let
C : C → C and D : D →D be functors.

L◦D∼= C◦L =⇒ L◦D∗ ∼= C∗ ◦L

Proof. Plugging in the definitions, F∗ = UF ◦FreeF, we conclude

L◦UD ◦FreeD = UC ◦Lσ
◦
◦FreeD ∼= UC ◦FreeC ◦L .

As a corollary (using µF∼= F∗ 0 and L 0∼= 0) we obtain the fu-
sion rule of Backhouse et al. [1]’s categorical fixed-point calculus.

Corollary 5.5 (Type fusion).

L◦D∼= C◦L =⇒ L (µD)∼= µC

Example 5.6. The diagonal functor ∆ satisfies a simple property:
∆◦D=D2 ◦∆. Since ∆ is a left adjoint, Corollary 5.5 implies

∆ (µD)∼= µD2 .

The initial algebra of D2, a functor over a product category, consists
of two copies of µD—we will later need this simple fact. The
conjugate of the distributive law id : ∆◦D=D2 ◦∆ is τ=D outlM
D outr (3.9b) and thus

(×)τ (b1,b2) = b1 ·D outlMb2 ·D outr .

Instantiating Diagram (5.8) we can see the global picture.

D-Alg(D)2 ∼=D2-Alg(D2) D-Alg(D)

D2 D

→⊥
(×)τ

→UD2

→∆id

→ U
D

→⊥
(×)→

D2

→ ∆

→

D

Since D2-Alg(D2)∼=D-Alg(D)2, we obtain that (×)τ modulo the
isomorphism is the product functor for D-Alg(D), which gives us
the entire infrastructure for products: outl, outr and M. (This also
provides us with another proof of the banana-split law (4.1))

We have now encountered two control functors associated with
the adjunction ∆ a (×): the canonical one ∆ ◦D ◦ (×) and the
‘perfect’ control functor D2. The next section relates the two.

5.6 Comparing Control Functors
Adjoint folds involve several pieces of data: an adjunction, an al-
gebra, and a control functor equipped with a conjugate pair of dis-
tributive laws. The latter is perhaps the most mysterious, especially
if we try to link the Haskell programs in Section 2 directly to the re-
cursion scheme of adjoint folds (5.2). Mendler-style folds provide
a stepping stone, suggesting that there is a canonical choice for the
control functor: C= L◦D◦R with

σ= L◦D◦η : L◦D→̇C◦L a τ= η◦D◦R : D◦R→̇R◦C .

We now justify the adjective ‘canonical’ for this choice: we show
that every other control functor can be reduced to the canonical one.
Assume that we have another control functor C′ with

σ′ : L◦D→̇C′ ◦L a τ′ : D◦R→̇R◦C′ .
Using bijection (3.7b), the distributive law σ′ gives rise to a natural
transformation γ : L ◦D ◦R →̇C′ = C →̇C′, namely γ = C ◦ε ·
σ′ ◦R. This natural transformation in turn induces the lifting γ-
Alg(C ), which maps C′-algebras to C-algebras. Since it is a lifting
of the identity functor, γ-Alg(C ) is faithful. Moreover, we have the
following commutative diagrams of functors.

C-Alg(C ) D-Alg(D)

C′-Alg(C ) D-Alg(D)

→Rτ

→γ-Alg(C )

→
Rτ′

(5.9)
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We first note that γ relates σ a τ and σ′ a τ′ in the following way
(the proofs are routine but uninstructive).

σ′ = γ◦L · σ (5.10a)

τ′ = R◦γ · τ (5.10b)

For the proof of (5.9) it suffices to concentrate on the algebras:

Rτ (γ-Alg(C ) a) = R (a · γ A) · τ A = R a · τ′ A = Rτ′ a .

Furthermore, every traho can be translated into a traho that uses the
canonical control functor:

x · L a = b · C′ x · σ′ A
⇐⇒ { (5.10a) }

x · L a = b · C′ x · γ (L A) · σ A
⇐⇒ { γ is natural and x : L A→ B }

x · L a = b · γ B · C x · σ A
⇐⇒ { definition of lifting (3.1b) }

x · L a = γ-Alg(C ) b · C x · σ A .

Example 5.7. In Section 4 we noted that the banana-split law (4.1)
arises as an extreme case of mutumorphisms. Mutumorphisms are
based on the canonical control functor C = ∆ ◦D ◦ (×); banana-
split employs the control functor D2. The lifting γ-Alg(C 2) : D2-
Alg(C 2)→ C-Alg(C 2) induced by γ= (D outl,D outr) : C→ D2

serves as the adaptor, translating D2- into C-algebras.

6. Recursion Schemes from Comonads
Recursion schemes from comonads [30], rsfcs for short, form a
general recursion principle that makes use of a comonad N to
provide ‘contextual information’ to the algebra. Like adjoint folds,
it is ‘doubly generic’: it is parametric in the datatype µF, and in
the comonad N. As a particularly nice example, histomorphisms,
the Squiggol rendering of course-of-values recursion, employ the
cofree comonad, which makes available the results of recursive
calls on all subterms. (An even better choice is the cofree recursive
comonad [29].) To this end it makes use of a coalgebra fan : µF→
N (µF) that embeds a subterm in a context. For the cofree comonad,
fan maps a term to the cotree of all subterms. The coalgebra can be
defined generically in terms of a distributive law λ : F◦N→̇N◦F,
which is subject to certain conditions (6.6), detailed below.

Definition 6.1 (Comonadic recursion equation). Given a functor F,
a comonad (N,ε,δ), and a distributive law λ : F ◦N →̇N ◦ F, a
comonadic recursion equation in the unknown f : µF→ B has the
form

f · in = b · F (N f · fan) , (6.1)
where fan = N in · λ (µF) : µF→ N (µF) and b : F (N B)→ B.

The composition N f · fan creates a context that makes the results
of ‘recursive calls’ available to the algebra b, which is a context-
sensitive algebra—an (F ◦N)-algebra, rather than merely an F-
algebra. Uustalu et al. [30] showed the following

Theorem 6.2 (Rsfcs). The comonadic recursion equation (6.1) has
the unique solution f = ε B · N b · λ (N B) · F (δ B) .

A couple of remarks are in order. The recursion scheme involves
both algebras and coalgebras, and combines them in an interesting
way. We noted above that fan is a coalgebra, but it is actually a
bit more: it is a coalgebra for the comonad N. Furthermore, the
algebra in and the coalgebra fan go hand-in-hand. They are related
by the distributive law λ and form what is known as a λ -bialgebra,
a combination of an algebra and a coalgebra with a common carrier.

We postpone our proof of Theorem 6.2 to Section 6.3, after we
have provided the necessary background in the following sections,
which can be skipped by those already familiar with the material.

6.1 Background: Eilenberg-Moore Categories
Comonads and monads Functional programmers have embraced
monads, and to a lesser extent, comonads, to capture effectful and
context-sensitive computations. A comonad is a functor N : C →C
equipped with natural transformations ε : N→̇ Id (counit), that ex-
tracts a value from a context, and δ : N→̇N◦N (comultiplication),
that duplicates a context, such that the following laws hold:

ε◦N · δ = N , (6.2a)
N◦ε · δ = N , (6.2b)
δ◦N · δ = N◦δ · δ . (6.2c)

The first two properties, the counit laws, state that duplicating
a context and then discarding a duplicate is the same as doing
nothing. The third property, the coassociative law, equates the two
ways of duplicating a context twice. Monads (M,η,µ) are dual to
comonads, with transformations η : Id→̇M (unit) and µ : M◦M→̇
M (multiplication) that obey dual properties.

Huber [13] discovered that an adjunction (ε,L a R,η) induces
a comonad (L ◦R,ε,L ◦ η ◦R) and a monad (R ◦ L,η,R ◦ ε ◦ L).
For example, the adjunction FreeF a UF induces the so-called free
monad F∗ = UF ◦ FreeF, the carrier of the free F-algebra, repre-
senting first-order terms with variables. (The comonad that arises is
less interesting.) Dually, the adjunction UG a CofreeG induces the
cofree comonad G∞ = UG ◦CofreeG. This can be seen as the type
of generalised streams of observations—‘generalised’ because the
‘tail’ is a G-structure of ‘streams’ rather than just a single one; we
obtain streams for G= Id. (Now the monad is less interesting.)

Coalgebras for a comonad A coalgebra for a comonad N is an
N-coalgebra (C,c) that respects ε and δ:

ε C · c = idC , (6.3a)
δ C · c = N c · c . (6.3b)

If we first create a context and then focus, we obtain the original
value. Creating a nested context is the same as first creating a con-
text and then duplicating it. For example, the so-called cofree coal-
gebra (N C,δ C) is respectful, which follows directly from (6.2b)
and (6.2c). The second law (6.3b) also enjoys an alternative read-
ing: c is a homomorphism of type (C,c)→ (N C,δ C). This obser-
vation is at the heart of the Eilenberg-Moore construction, which
we discuss below. Coalgebras that respect ε and δ, and coalge-
bra homomorphisms between them, form a category, known as the
(co)-Eilenberg-Moore category and denoted CN. Eilenberg-Moore
categories generalise categories of coalgebras: G-Coalg(C ) ∼= CN
where N= G∞ is the cofree comonad.

Eilenberg-Moore construction As noted above, every adjunction
generates a comonad. The converse is also true: every comonad N
induces an adjunction that generates N—in fact, in two canonical
ways. One construction was discovered by Kleisli [15], the other by
Eilenberg and Moore [6]. We shall need the latter, which constructs
a right adjoint to the forgetful functor UN : CN→ C .

C CN→⊥
CofreeN

→UN

The functor CofreeN maps an object to the cofree coalgebra for N:

CofreeN B = (N B,δ B) , (6.4a)
CofreeN f = N f . (6.4b)

The counit ε :UN◦CofreeN→̇ Id of the adjunction UN aCofreeN is
the counit of N; the unit η : Id→̇CofreeN ◦UN defined η (C,c) = c
extracts the action of a coalgebra, which is an N-coalgebra homo-
morphism of type (C,c)→ (N C,δ C) (6.3b). The bijection framed
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in terms of the units reads:

f = ε B · UN h ⇐⇒ CofreeN f · η (C,c) = h ,

for all f : UN (C,c)→ B and h : (C,c)→CofreeN B. The adjunction
UN a CofreeN indeed generates the comonad N: we have UN ◦
CofreeN = N and δ = UN ◦η ◦CofreeN. Since UN is faithful, we
can simplify the bijection slightly:

f = ε B · h ⇐⇒ N f · c = h , (6.5)

for all f : C→ B and homomorphisms h : (C,c)→ (N B,δ B). Have
we seen an arrow of the form N f · c before?

6.2 Background: Bialgebras
A bialgebra combines an algebra and a coalgebra with a common
carrier. Bialgebras come in many flavours; we need the variant that
combines F-algebras and coalgebras for a comonad N. The two
functors have to interact coherently, described by a distributive law.

Distributive laws A distributive law λ : F◦N→̇N◦F of an endo-
functor F over a comonad N is a natural transformation satisfying
the two coherence conditions:

ε◦F · λ = F◦ε , (6.6a)
δ◦F · λ = N◦λ · λ ◦N · F◦δ . (6.6b)

We can use λ to colift F to the category CN. The coherence condi-
tions guarantee that Fλ : CN → CN preserves respect for ε and δ.
Dually, λ induces the lifting Nλ : F-Alg(C )→ F-Alg(C ). Now, the
coherence conditions ensure that Nλ is a comonad with ε̄ (a,A) =
ε A and δ̄ (a,A) = δ A. In particular, the lifted transformations
ε̄ : Nλ →̇ Id and δ̄ : Nλ →̇Nλ ◦Nλ are F-algebra homomorphisms.

Bialgebras Let λ : F ◦N →̇N ◦ F be a distributive law for the
endofunctor F over the comonad N. A λ -bialgebra (a,X,c) consists
of an F-algebra (a,X) and a coalgebra (X,c) for the comonad N
such that the pentagonal law holds:

c · a = N a · λ X · F c . (6.7)

Loosely speaking, the law allows us to swap the algebra a and the
coalgebra c. A λ -bialgebra homomorphism is both an F-algebra
and an N-coalgebra homomorphism. λ -bialgebras and their homo-
morphisms form a category, denoted λ -Bialg(C ).

The pentagonal law (6.7) also has two asymmetric renderings,
which relate it to liftings and coliftings.

F X F (N X)

X N X

→a

→F c

→ Nλ a

→c

F X

F (N X)

X

N (F X)

N X

→a
→F c

→ λ X

→c →

N a

X F X

N X N (F X)

→c

→a

→ Fλ c

→

N a

(6.8)
The diagram on the left shows that c : (a,X)→ Nλ (a,X) is an F-
algebra homomorphism. Dually, the diagram on the right identifies
a : Fλ (X,c) → (X,c) as an N-coalgebra homomorphism. Thus,
we can interpret the bialgebra (a,X,c) both as an algebra over a
coalgebra (a,(X,c)), or as a coalgebra over an algebra ((a,X),c).
Formally, we have the following isomorphisms of categories:

Fλ -Alg(CN)∼= λ -Bialg(C )∼= (F-Alg(C ))Nλ . (6.9)

The alternative interpretations are useful to determine initial and
final objects in λ -Bialg(C ). To determine the initial object, we use
the ‘coalgebra over algebra’ view, as categories of G-coalgebras
have a trivial initial object: (0,0→G 0), where 0 is the initial object

in the underlying category and 0→G 0 the unique arrow from it.
Consequently, (in,µF, fan) with fan = Nλ in is indeed initial.

6.3 Recursion Schemes from Comonads are Adjoint Folds
We now return to the proof of Theorem 6.2 using our new vocabu-
lary to derive the unique solution. Somewhat surprisingly, as an im-
mediate consequence of this proof, it turns out that rsfcs are an in-
stance of adjoint folds, when previously, the two frameworks were
thought of as being orthogonal [11]. Of course, the derivation is
not strictly necessary, but it helps to relate the present development
to prior work [30], and it hopefully helps to understand why rsfcs
are an instance of adjoint folds. The development will follow the
pattern we have already established.

First, we abstract away from the initial object (in,µF, fan), gen-
eralising to an arbitrary λ -bialgebra (a,A,c). The goal is to estab-
lish a bijection between arrows f : A→B satisfying f · a= b ·F (N f ·
c) and λ -bialgebra homomorphisms h : (a,A,c)→ (b],N B,δ B),
where b] is a to-be-determined F-algebra. Now, we already know
that arrows of type f : A → B and N-coalgebra homomorphisms
h : (A,c)→ (N B,δ B) are in one-to-one correspondence (6.5). So
we identify N f · c as the transpose of f and simplify f’s equation
to f · a = b · F h. It remains to show that h is an F-algebra homo-
morphism of type (a,A)→ (b],N B).

F A F (N B)

A B

→F h

→a → b

→
f

⇐⇒
F A F (N B)

A N B

→F h

→a → b]

→
h

(6.10)

The strategy for the proof is clear: we have to transmogrify f
into N f · c. Thus, we apply N to both sides of f · a = b · F h and
then ‘swap’ a and c using the pentagonal law (6.7).

f · a = b · F h
=⇒ { N functor }

N f · N a = N b · N (F h)
=⇒ { Leibniz }

N f · N a · Fλ c = N b · N (F h) · Fλ c
⇐⇒ { a : Fλ (A,c)→ (A,c) (6.7) }

N f · c · a = N b · N (F h) · Fλ c
⇐⇒ { Fλ h : Fλ (A,c)→ Fλ (N B,δ B) and Fλ h = F h }

h · a = N b · Fλ (δ B) · F h

The proof makes essential use of the fact that a and h are N-
coalgebra homomorphisms, and that Fλ preserves coalgebra homo-
morphisms. Along the way, we have derived a formula for b]:

b] = N b · Fλ (δ B) = N b · λ (N B) · F (δ B) . (6.11)

We have to show that (b],N B,δ B) is a λ -bialgebra. Since
Fλ (N B,δ B) is a coalgebra for the comonad N, we can con-
clude using (6.5) that b] is a coalgebra homomorphism of type
Fλ (N B,δ B)→ (N B,δ B), which establishes the desired result.
Furthermore b = ε B · b], which allows us to complete the proof.

h · a = b] · F h
=⇒ { Leibniz }

ε B · h · a = ε B · b] · F h
⇐⇒ { f = ε B · h and b = ε B · b] }

f · a = b · F h

We have discovered an important fact: b and b] are also related
by the Eilenberg-Moore adjunction UN a CofreeN! Using the no-
tation for adjuncts, the right-hand side of (6.10) reads bfc · a =
bbc · F bfc. This looks suspiciously like the right-hand side of (5.7),
which relates trahos (adjoint folds) and homomorphisms. However,
the original equation for f does not seem to fit into the picture. This
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is because it omits the forgetful functor UN. If we make it explicit,
we obtain the the following bijection, which is indeed an instance
of (5.7).

UN (Fλ (A,c)) UN (Fλ (CofreeN B))

UN (A,c) B

→UN a

→
UN (Fλ bfc)

→ b

→
f

⇐⇒

Fλ (A,c) Fλ (CofreeN B)

(A,c) CofreeN B

→a

→
Fλ bfc

→ bbc

→
bfc

If we simplify the composition of functors using UN ◦Fλ = F◦UN
and UN ◦ Fλ ◦ CofreeN = F ◦UN ◦ CofreeN = F ◦N, we obtain
the original equivalence (6.10). The somewhat pedantic diagrams
above explicate all the information implicit in (6.10). For example,
we can read off that a is an N-coalgebra homomorphism.

The second step should be routine by now. If we instantiate
(a,A,c) to the initial λ -bialgebra (in,µF, fan), we obtain that the
unique solution of the original equation (6.1) is f = d bbc e or,
expressed using the vocabulary of [30], f = ε B · b] . We record

Theorem 6.3. A recursion scheme from the comonad N and the
distributive law λ : F◦N→̇N◦F can be framed as an adjoint fold
based on the Eilenberg-Moore adjunction UN a CofreeN, using the
canonical control functor UN ◦Fλ ◦CofreeN = F◦N.

C CN→⊥
CofreeN→

F◦N
→UN

→

Fλ

Let us conclude the section by investigating an alternative con-
trol functor: since UN◦Fλ =F◦UN, the functor F itself can be used
as the control! For this case the distributive law σ is an isomorph-
ism, even an identity, so we can invoke the machinery of Section 5.5
and lift the adjunction UN a CofreeN to an adjunction between cat-
egories of algebras. The conjugate of σ = id is just λ , we have
UN ◦ τ = λ . (The coherence condition (6.6b) shows that λ is an
N-coalgebra homomorphism of type Fλ ◦CofreeN →̇CofreeN ◦F.)

F-Alg(C ) Fλ -Alg(CN)

C CN

→⊥
CofreeτN

→ UFa

→
∼=

→Uid
N

→ UF
λa

→⊥
CofreeN→

F

→

FreeF

→ UN

→

Fλ

→

FreeFλ

In the upper right corner we find the category of λ -bialgebras (6.9).
This shows that the underlying functor λ -Bialg(C )→ F-Alg(C ),
which forgets about the algebra part, has a right adjoint. Since
right adjoints preserve final objects, we immediately obtain that
CofreeτN (F 1→ 1,1) is the final bialgebra.

7. When is an Adjoint Fold an Rsfc?
We have seen that all rsfcs are adjoint folds; and indeed, pre-
vious work has shown that the two share some connection—
zygomorphisms have been modelled both by using rsfcs [30] and
as adjoint folds [11]. But what about the reverse direction: when is
an adjoint fold also modelled by using an rsfc? In this section we
show that an adjoint fold based on the canonical control functor can

be captured as an rsfc, if additionally a distributive isomorphism
exists.

An adjoint fold is based on an adjunction L a R, and an rsfc on
a comonad. Thus, using Huber’s result, an obvious choice for the
comonad is N = L ◦R. However, we also need to manufacture a
distributive law λ : F ◦N →̇N ◦F. Now, one can show that a con-
jugate pair σ a τ of distributive laws, where σ is an isomorphism,
induces a distributive law for an endofunctor over comonad [32].
Consequently, we assume the following data (we rename F to C to
bring the subsequent development in line with Section 5.5):

σ : L◦D∼= C◦L a τ : D◦R→̇R◦C .

These are the same assumptions as for the type fusion rule, Corol-
lary 5.5. We shall see shortly that this is not a mere coincidence.

Under these assumptions we aim to show that the following two
diagrams are equivalent. On the left we have the diagram for adjoint
folds based on the canonical control functor (5.7); on the right we
have the diagram for recursion schemes from comonads (6.1).

L (D (µD)) L (D (R B))

L (µD) B

→L in

→
L (D bxc)

→ b

→x

⇐⇒
C (µC) C (N B)

µC B

→
C (N f·fan)

→in → b′b·σ◦ (R B)

→
f

The functions x and f are related by the isomorphism L (µD)∼= µC,
provided by Corollary 5.5. The main task is to relate the upper
arrows. To this end we derive a simple formula for fan, which uses
the assumption that N= L◦R is a composition of adjoint functors.

But first, we have to set up the infrastructure. From the data
above we can generate two distributive laws [32]:

α = τ−σ◦ = R◦σ◦ · τ◦L : D◦M→̇M◦D , (7.1a)
γ = σ◦−τ = L◦τ · σ◦ ◦R : C◦N→̇N◦C . (7.1b)

The distributive law γ satisfies the two requirements for λ (6.6)
(note that Nγ = Lσ

◦ ◦Rτ); the distributive law α of an endofunctor
over a monad enjoys analogous conditions:

α ·D ◦ η = η◦D , (7.2a)
α ·D ◦ µ = µ◦D · M◦α · α◦M . (7.2b)

Next we construct an initial γ-bialgebra. Since L (µD) ∼= µC,
we know that (Lσ

◦
in,L (µD)) is initial in C-Alg(C ). To determine

a formula for fan, the corresponding coalgebra part, we have to
delve a bit deeper into the theory. The Eilenberg-Moore adjunction
UN aCofreeN has an important property: it is the largest adjunction
that generates N, in the sense that for every adjunction L a R there
is a unique adjoint square from L a R to UN a CofreeN, see the
diagram on the left below. (Since the distributive laws of the adjoint
square are identities, it is actually a so-called map of adjunctions.)

C C

D CN

→ Ra → CofreeNa

→
E

→

L

→

UN

D-Alg(D) Cγ-Alg(CN)

D CN

→Eθ

→UD → UCγ

→
E

The so-called comparison functor E : D → CN is defined

E A = (L A,L (η A)) , (7.3a)
E f = L f . (7.3b)

Since the distributive laws of the adjoint square are identities, we
have UN ◦E= Id◦L and E◦R= CofreeN ◦ Id.

Note that the carrier of E A is L A, which suggests that the
coalgebra part of the initial γ-bialgebra is perhaps just L (η (µD)).
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Then it remains to verify that Lσ
◦

in and L (η (µD)) satisfy the
pentagonal law. We prove, in fact, a slightly more general result:
we show that (Lσ

◦
a,L A,L (η A)) is a γ-bialgebra, by lifting the

comparison functor E to categories of algebras, see diagram on the
right above. To this end, we need a distributive law θ : E ◦D ←̇
Cγ ◦ E. We claim that σ◦ itself fits the bill: UN ◦ θ = σ◦. (Note
that UN ◦E◦D←̇UN ◦Cγ ◦E= L◦D←̇C◦L). In other words, we
have to show that σ◦ is a natural N-coalgebra homomorphism of
type E◦D←̇Cγ ◦E. Plugging in the definitions, we reason

L◦η◦D · σ◦
= { α respects η (7.2a) }

L◦α · L◦D◦η · σ◦
= { σ◦ is natural }

L◦α · σ◦ ◦M · C◦L◦η
= { σ◦−α= σ◦−τ−σ◦ = γ−σ◦ }

N◦σ◦ · γ◦L · C◦L◦η .

We have derived the following attractive definition of fan:

fan = L (η (µD)) , (7.4)

which is in most cases a much more efficient implementation than
N in · λ (µF) .

We are now ready to show that adjoint folds are recursion
schemes from comonads, provided that a distributive isomorphism
σ : L◦D∼= C◦L exists. Here is the diagram for rsfcs with applica-
tions of the isomorphism σ made explicit.

L (D (µD)) C (L (µD)) C (N B) L (D (R B))

L (µD) L (µD) B B

→
σ (µD)

→L in

→
C (N x·fan)

→Lσ◦ in → b·σ◦ (R B)

→
σ◦ (R B)

→ b

→x

Thus, it remains to show that L bxc= N x · fan.

L bxc
= { b−c expressed in terms of η; (3.4a) with k, f,h := x, id, id }

L (R x · η (µD))
= { L functor and definition of fan (7.4) }

N x · fan

We record the result in the following

Theorem 7.1. An adjoint fold based on the adjunction L a R and
the canonical control functor can be framed as a recursion scheme
for the comonad N = L ◦R if there is a control functor C and a
conjugate pair of distributive laws with σ an isomorphism:

σ : L◦D∼= C◦L a τ : D◦R→̇R◦C .

The distributive law λ : C◦N→̇N◦C is given by σ◦−τ.

Example 7.2. Mutumorphisms are an instance of rsfcs using σ =
id : ∆ ◦D = D2 ◦∆, see Example 5.6. Since the isomorphism is an
identity, we can transform the diagram for adjoints folds almost
directly into a corresponding diagram for rsfcs (A :=µD).

∆ (D A) ∆ (D ((×) B))

∆ A B

→∆ in

→
∆ (D bxc)

→ b

→x

⇐⇒
D2 (∆ A)) D2 (∆ ((×) B))

∆ A B

→∆ in

→
D2 (∆ bxc)

→ b

→x

In the upper right corner we discover the comonad N = ∆ ◦ (×),
which works over a product category. As fan = ∆ (idM id), we have
∆ bxc= ∆ ((×) x · (idM id)) =N x · fan. If we identify ∆ (µD) and
µD2 so that ∆ in = in, the diagram for rsfcs emerges.

We have seen in the previous section that an rsfc (based on a
comonad N and a distributive law λ : F◦N→̇N◦F) can be framed

as an adjoint fold, which in turn is based on the Eilenberg-Moore
adjunction UN a CofreeN. Now, what happens if we go round in a
circle, instantiating the development above to D = Fλ , C = F, and
id : UN ◦Fλ = F◦UN? Recall that UN ◦τ= λ ; consequently,

γ = σ◦−τ = UN ◦τ · id◦ ◦CofreeN = λ .

Hence, we obtain back the original rsfc!
We have seen that mutumorphisms based on ∆ a (×) can be

modelled by using an rsfc. Of course, this does not work for every
adjunction. As an example, consider the curry adjunction. One
would need a control functor C such that:

σ : (−×P)◦D∼= C◦ (−×P) .

Such a control functor is not guaranteed to exist for all datatypes.

8. Related Work
Adjoint folds Mendler-style adjoint folds first appeared in a pa-
per by Bird and Paterson [4], where they were used to show that
generalised folds are uniquely defined. (Somewhat ironically, ad-
joint folds were only used in the proofs, not as a general recursion
principle.) The algebraic variant of adjoint folds that we have em-
ployed throughout was introduced by Matthes and Uustalu [20] un-
der the name generalised iteration. The first author of the present
paper explored the design space of adjoint folds [11], identifying
the adjunctions underlying various recursion schemes. The paper
also shows how to combine recursion schemes by combining the
underlying adjunctions. Alas, we wrote “However, we cannot rea-
sonably expect that adjoint (un)folds subsume all existing species
of morphisms. For instance, a largely orthogonal extension of stan-
dard folds are recursion schemes from comonads.”

Recursion schemes from comonads Recursion schemes from
comonads are due to Uustalu et al. [30]. Simultaneously and inde-
pendently, Bartels [2] introduced the dual construction under name
λ -coiteration. Technically, his work is closest to ours in the use
of λ -bialgebras, although our proofs differ considerably in that
we make use of the Eilenberg-Moore construction. Bartels also
discussed variations of the scheme that do not rely on a monad
structure. These and further variations were used in a recent ICFP
paper [12] to prove the unique fixed-point principle correct.

Categorical fixed-point calculus The roots of the initial algebra
approach to the semantics of datatypes can be traced back to the
work of Lambek [16] on fixed points in categories. Lambek sug-
gests that lattice theory provides a fruitful source of inspiration for
results in category theory. These ideas were picked up by Back-
house et al. [1], where a number of lattice-theoretic fixed-point
rules were generalised to categories, type fusion being one of them.

Category theory Most of the category theory utilised in this pa-
per is fairly standard—[17] is a good reference—except perhaps
the material on distributive laws and conjugates. An extensive ac-
count of the relationship between adjunctions and monads is pro-
vided by Vidal and Tur [32]. Roughly speaking, they show that the
Eilenberg-Moore construction is a right biadjoint to the Huber con-
struction.

9. Conclusion
As one might expect, everything dualises elegantly. There is in-
sufficient space to tell the full story here; but the essential fact is
that adjoint unfolds subsume anamorphisms, apomorphisms, gen-
eralised unfolds, λ -coiteration, futumorphisms, and other dual pat-
terns that have not yet been formally christened. Table 1 provides
an overview of the various morphisms and their duals, and shows
how they are captured in the framework of adjoint (un)folds.
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(a) catamorphism [10, 19] Id a Id depth (b) anamorphism [10, 19] Id a Id
mutumorphism [8] ∆ a (×) even/odd (mutumorphism) (+) a ∆

special case: zygomorphism [18] perfect —
special case: paramorphism [21] wc apomorphism [31]
fold with a parameter [25] −×P a (−)P cat, depths —
generalised fold [4] (−◦P) a RanP total (generalised unfold) LanP a (−◦P)
recursion scheme from a comonad [30] UN a CofreeN λ -coiteration [2] FreeM a UM

special case: histomorphism [26] knapsack special case: futumorphism [26]

Table 1. Adjoint folds (a) and unfolds (b); LanP and RanP are left and right Kan extensions, FreeM aUM is the Eilenberg-Moore adjunction

This paper shows again the importance of adjunctions. They
have played a pivotal role in the categorical analysis of logic; we
believe that will prove just as important in the theory of program-
ming. The unification of recursion schemes we have presented is
mathematically satisfying: in the economy of expression it provides
(for example, for reasoning about products in F-Alg(C )), and espe-
cially in the simple reassurance it provides through things just fit-
ting together in the right way. But it is more than merely an intellec-
tual curiosity: the additional structure we have uncovered promises
concrete returns, too—for example, through general techniques for
combining different recursion schemes, by composing the corre-
sponding adjunctions. In practice, most functions do indeed use
a combination of recursion schemes (in particular, functions over
parametric datatypes).

In future work, we intend to explore the calculational proper-
ties of adjoint folds; our earlier paper [11] lists several laws, and
it would be interesting to know whether the laws for recursion
schemes from comonads of Uustalu et al. [30] are instances of
these. Another interesting direction is to explore the use of recur-
sive coalgebras [5] (or corecursive algebras) in λ -bialgebras.
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