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Abstract. A parallel prefix circuit takes n inputs x1, x2, . . . , xn and
produces the n outputs x1, x1 ◦ x2, . . . , x1 ◦ x2 ◦ · · · ◦ xn, where ‘◦’ is an
arbitrary associative binary operation. Parallel prefix circuits and their
counterparts in software, parallel prefix computations or scans, have nu-
merous applications ranging from fast integer addition over parallel sort-
ing to convex hull problems. A parallel prefix circuit can be implemented
in a variety of ways taking into account constraints on size, depth, or fan-
out. Traditionally, implementations are either defined graphically or by
enumerating the underlying graph. Both approaches have their pros and
cons. A figure if well drawn conveys the possibly recursive structure of
the scan but it is not amenable to formal manipulation. A description
in form of a graph while rigorous obscures the structure of a scan and
is equally hard to manipulate. In this paper we show that parallel pre-
fix circuits enjoy a very pleasant algebra. Using only two basic building
blocks and four combinators all standard designs can be described suc-
cinctly and rigorously. The rules of the algebra allow us to prove the
circuits correct and to derive circuit designs in a systematic manner.

lord darlington. . . . [Sees a fan lying on the table.] And what
a wonderful fan! May I look at it?
lady windermere. Do. Pretty, isn’t it! It’s got my name on it,
and everything. I have only just seen it myself. It’s my husband’s
birthday present to me. You know to-day is my birthday?

— Oscar Wilde, Lady Windermere’s Fan

1 Introduction

A parallel prefix computation determines the sums of all prefixes of a given se-
quence of elements. The term sum has to be understood in a broad sense: parallel
prefix computations are not confined to addition, any associative operation can
be used. Functional programmers know parallel prefix computations as scans,
a term which originates from the language APL [1]. We will use both terms
synonymously.

Parallel prefix computations have numerous applications; the most well-
known is probably the carry-lookahead adder [2], a parallel prefix circuit. Other
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applications include the maximum segment sum problem, parallel sorting, solv-
ing recurrences, and convex hull problems, see [3].

A parallel prefix computation seems to be inherently sequential. However, it
can be made to run in logarithmic time on a parallel architecture or in hardware.
In fact, scans can be implemented in a variety of ways taking into account
constraints on measures such as size, depth, or fan-out.

A particular implementation can be modelled as a directed acyclic oriented
graph and this is what most papers on the subject actually do. The structure is
a graph as opposed to a tree because subcomputations can be shared. Actually,
it is an ordered graph, that is, the inputs of a node are ordered, because the
underlying binary operation is not necessarily commutative. Here is an example
graph.
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The edges are directed downwards; a node of in-degree two, an operation node,
represents the sum of its two inputs; a node of in-degree one and out-degree
greater than one, a duplication node, distributes its input to its outputs.

Different implementations can be compared with respect to several different
measures: the size is the number of operation nodes, the depth is the maximum
number of operation nodes on any path, and the fan-out is the maximal out-
degree of an operation node. In the example above the size is 74, the depth
is 5, and the fan-out is 17. If implemented in hardware, the size and the fan-out
determine the required chip area, the depth influences the speed. Other factors
include regularity of layout and interconnection.

It is not too hard—but perhaps slightly boring—to convince oneself that the
above circuit is correct: given n = 32 inputs x1, x2, . . . , xn it produces the n
outputs x1, x1 ◦ x2, . . . , x1 ◦ x2 ◦ · · · ◦ xn, where ‘◦’ is the underlying binary
operation. The ‘picture as proof’ technique works reasonably well for a parallel
prefix circuit of a small fixed width. However, an implementation usually defines
a family of circuits, one for each number of inputs. In this case, the graphical
approach is not an option, especially, when it comes to proving correctness. Some
papers define a family of graphs by numbering the nodes and enumerating the
edges, see, for instance, [4]. While this certainly counts as a rigorous definition
it is way too concrete: an explicit graph representation obscures the structure of
the design and is hard to manipulate formally.

In this paper we show that parallel prefix circuits enjoy a pleasant algebra.
Using only two basic building blocks and four combinators all standard designs
can be described succinctly and rigorously. The rules of the algebra allow us to
prove the circuits correct and to derive new designs in a systematic manner.

The rest of the paper is structured as follows. Section 2 motivates the basic
combinators and their associated laws. Section 3 introduces two scan combi-
nators: horizontal and vertical composition of scans. Using these combinators
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various recursive constructions can be defined and proven correct, see Section 4.
Section 5 discusses more sophisticated designs: minimum depth circuits that have
the minimal number of operation nodes. Section 6 then considers size-optimal
circuits with bounded fan-out. Finally, Section 7 reviews related work and Sec-
tion 8 concludes.

2 Basic combinators

This section defines the algebra of scans. Throughout the paper we employ the
programming language Haskell [5] as the meta language. In particular, Haskell’s
class system is put to good use: classes allow us to define algebras and instances
allow us to define associated models.

2.1 Monoids

The binary operation underlying a scan must be associative. Without loss of gen-
erality we assume that it also has a neutral element so that we have a monoidal
structure.

class Monoid α where
ε :: α
(◦) :: α→ α→ α

Each instance of Monoid must satisfy the following laws.

ε ◦ x = x
x ◦ ε = x
x ◦ (y ◦ z ) = (x ◦ y) ◦ z

For example, the parallel prefix circuit that computes carries in a carry-
lookahead adder is based on the following monoid.

data KPG = K | P | G
instance Monoid KPG where
ε = P
K ◦ f = K
P ◦ f = f
G ◦ f = G

The elements of the type KPG represent carry propagation functions: K kills a
carry (λc → 0), P propagates a carry (λc → c), and G generates a carry (λc →
1). The operation ‘◦’ implements function composition, which is associative and
has the identity, P , as its neutral element.
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2.2 The algebra of fans and scans

Reconsidering the example graph of the introduction we note that a parallel
prefix circuit can be seen as a composition of fans. Here are fans of different
widths in isolation.
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A fan adds its first input—counting from left to right—to each of its remaining
inputs. It consists of a duplication node and n − 1 operation nodes. A scan is
constructed by arranging fans horizontally and vertically. As an example, the
following scan consists of three fans: a 3-fan placed below two 2-fans.
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Placing two circuits side by side is called parallel or horizontal composition,
denoted ‘×’.

•
•
•
• ×

•
•
•
• =

•
•
•
•
•
•
•
• and

•
• ×

•
•
•
•
•
• =

•
•
•
•
•
•
•
•

Placing two circuits on top of each other is called serial or vertical composition,
denoted ‘#’. We require that the two circuits have the same width.
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Horizontal and vertical composition, however, are not sufficient as combining
forms as the following circuit demonstrates (which occurs as a subcircuit in the
introductory example).
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At first sight, it seems that a more general fan combinator is needed. The fans
in the middle part are not contiguous: the first input is only propagated to
each second remaining input, the other inputs are wired through. However, a
moment’s reflection reveals that the middle part is really the previous circuit
stretched by a factor of two. This observation motivates the introduction of a
stretch combinator: generalizing from a single stretch factor, the combinator ‘�−’
takes a list of widths and stretches a given circuit accordingly.

[2, 2, 2, 2] �−
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The inputs of the resulting circuit are grouped according to the given widths. In
the example above, we have four groups, each of width 2. The last input of each
group is connected to the argument circuit; the other inputs are wired through.

To summarize, the example parallel prefix circuit is denoted by the following
algebraic expression (fani represents a fan of width i and id i represents the
identity circuit of width i).

fan2 × fan2 × fan2 × fan2 #
[2, 2, 2, 2] �− (fan2 × fan2 # id1 × fan3) #
id1 × fan2 × fan2 × fan2 × id1
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The following class declaration defines the algebra of fans and scans. Note
that the class Circuit abstracts over a type constructor γ which in turn is param-
eterized by the underlying monoid. The type variable γ serves as a placeholder
for the carrier of the algebra.

type Width = Nat
type Width+ = Nat+

class Circuit γ where
fan :: (Monoid α)⇒Width → γ α

id :: Width → γ α
(#) :: γ α→ γ α→ γ α
(×) :: γ α→ γ α→ γ α

(�−) :: [Width+ ]→ γ α→ γ α
(−�) :: γ α→ [Width+ ]→ γ α

| · | :: γ α→Width

The above class declaration makes explicit that only fans rely on the underlying
monoidal structure; the remaining combinators can be seen as glue. The class
additionally introduces a second stretch combinator ‘−�’ which is similar to ‘�−’
except that it connects the first input of each group to its argument circuit. The
following pictures illustrate the difference between the two combinators.

[2, 3, 1] �− fan3 =
•
•
•
•
•
•
•
•
•
•
•
• fan3 −� [2, 3, 1] =
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We shall see that ‘�−’ is useful for combining scans, while ‘−�’ is a natural choice
for combining fans. The list argument of the stretch combinators must contain
positive widths (Nat+ is the type of naturals excluding zero).

The width of a circuit, say f , is denoted |f |. Being able to query the width
of a circuit is important as some combinators are subject to width constraints:
f # g is only defined if |f | = |g |, f −� x and x �− f require that |f | = #x where
#x denotes the length of the list x . In particular, f −� [ ] is only valid if |f | = 0.
We lift the width combinator to lists of circuits abbreviating [|f | | f ← fs ] by
|fs|.
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To save parentheses we agree that ‘−�’ and ‘�−’ bind more tightly than ‘×’,
which in turn takes precedence over ‘#’.

infixr 1 #
infixr 2 ×
infix 4 �−,−�

The fixity declarations furthermore ensure that the combinators bind less tightly
than Haskell’s list concatenation ‘++’. As an example, f × g −� x ++ y # h
abbreviates (f × (g −� (x ++ y))) # h.

The following derived combinators will prove useful in the sequel.

par :: (Circuit γ)⇒ [γ α ]→ γ α
par = foldr (×) id0

seq :: (Circuit γ)⇒Width → [γ α ]→ γ α
seqn = foldr (#) idn

The combinator par generalizes ‘×’ and places a list of circuits side by side.
Likewise, seq generalizes ‘#’ and places a list of circuits above each other.

infix 4 �,≺
(�) :: (Circuit γ)⇒ [γ α ]→ γ α→ γ α
fs � f = par fs # |fs| �− f
(≺) :: (Circuit γ)⇒ γ α→ [γ α ]→ γ α
f ≺ fs = f −� |fs| # par fs

The combinators ‘�’ and ‘≺’ are convenient variants of ‘�−’ and ‘−�’: the expres-
sion f ≺ [f1, . . . , fn ] connects the i -th output of f to the first input of fi while
[f1, . . . , fn ] � f connects the last output of fi to the i -th input of f . Thus, ‘�’ is
similar to the composition of an n-ary function with n argument functions.

In Haskell, we can model circuits as list processing functions of type [α ]→ [α ]
where α is the underlying monoid. Serial composition is then simply forward
function composition; parallel composition satisfies (f × g) (x ++ y) = f x ++ g y
where ‘++’ denotes list concatenation and |f | = #x , |g | = #y . Figure 1 displays
the complete instance declaration, which can be seen as the standard model of
Circuit . Put differently, the intended semantics of the combinators is given by the
list processing functions in Figure 1. Some remarks are in order. The expression
Σx denotes the sum of the elements of the list x . The function group that is
used in the definition of ‘−�’ and ’�−’ takes a list of lengths and partitions its
second argument accordingly. The expression [e | a ← x | b ← y ] is a parallel
list comprehension and abbreviates [e | (a, b)← zip x y ].

The algebraic laws each instance of the class Circuit has to satisfy are listed in
Figure 2. The reader is invited to convince themself that the instance of Figure 1
is indeed a model in that sense. The list is not complete though: Figure 2 includes
only the structural laws, rules that do not involve fans. The properties of fans
will be discussed in separate paragraph below. Most of the laws except, perhaps,
those concerned with ‘−�’ and ‘�−’ are straightforward: ‘#’ is associative with
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data Trans α = Trans{width :: Width, apply :: [α ]→ [α ]}

instance Circuit Trans where
fann = Trans n (λu → case u of

[ ]→ [ ]
a : as → a : [a ◦ b | b ← as ])

idn = Trans n (λu → u)

f # g = Trans |f | (λu → apply g (apply f u))

f × g = Trans (|f |+ |g |) (λu → let (y , z ) = splitAt |f | u
in apply f y ++ apply g z )

x �− f = Trans (Σx ) (λu → let ys = group x u
as = apply f [ last y | y ← ys ]

in concat [init y ++ [a ] | y ← ys | a ← as ])

f −� x = Trans (Σx ) (λu → let ys = group x u
as = apply f [head y | y ← ys ]

in concat [[a ] ++ tail y | y ← ys | a ← as ])

|f | = width f

group :: [Int ]→ [α ]→ [[α ]]
group [ ] as = [ ]
group (i : x ) as = bs : group x cs

where (bs, cs) = splitAt i as

Fig. 1. The standard model of the scan algebra

id |f | # f = f
f # id |f | = f

f # (g # h) = (f # g) # h

id0 × f = f
f × id0 = f

f × (g × h) = (f × g)× h
idm × idn = idm+n

(f × g) # (f ′ × g ′) = (f # f ′)× (g # g ′)

|idn | = n
|f # g | = |f | = |g |
|f × g | = |f |+ |g |
|fann | = n
|f −� x | = Σx
|x �− f | = Σx

id#x −� x = idΣx

f −� replicate |f | 1 = f
(f # g) −� x = (f −� x ) # (g −� x )

(f × g) −� (x ++ y) = (f −� x )× (g −� y)
(f −� x ) −� y = f −� [Σz | z ← group x y ]

id i−1 × (f −� y ++ [k ]) = ([i ] ++ y �− f )× idk−1

Fig. 2. The structural laws of the scan algebra
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idn as its neutral element; ‘×’ is associative with id0 as its neutral element;
‘×’ preserves identity and vertical composition. Most of the laws are subject to
width constraints: (f × g) # (f ′ × g ′) = (f # f ′) × (g # g ′), for instance, is only
valid if |f | = |f ′| and |g | = |g ′|. Use of these laws in subsequent proofs will be
signalled by the hint composition.

Figure 2 only lists the laws for ‘−�’; its companion combinator ‘�−’ satisfies
analogous properties. The equations show that ‘−�’ preserves identity and com-
position (replicate n a constructs a list containing exactly n copies of a). The
second but last law in the right column demonstrates that nested occurrences of
stretch combinators can be flattened. The last equation, termed flip law, shows
that ‘−�’ can be defined in terms of ‘�−’ and vice versa. Recall that ‘�−’ connects
last inputs and ‘−�’ connects first inputs. So strictly, only one stretch combinator
is necessary. It is, however, convenient to have both at our disposal. Use of these
laws will be signalled by the hint stretching.

As a warm-up in scan calculations, let us derive two simple consequences,
which we need later on.

f −� x ++ [j + k ] = (f −� x ++ [j ])× idk (1)
(f × id#y−1) −� x ++ y = f −� x ++ [Σy ] (2)

The rules allow us to push the identity, idn , in and out of a stretch. To prove
(1) we argue

f −� x ++ [j + k ]
= { flip law }

([1] ++ x �− f )× id j+k−1

= { composition }
([1] ++ x �− f )× id j−1 × idk

= { flip law }
(f −� x ++ [j ])× idk

Property (2) is equally easy to show.

(f × id#y−1) −� x ++ y
= { stretching }

(f −� x ++ [head y ])× (id#y−1 −� tail y)
= { stretching }

(f −� x ++ [head y ])× idΣ(tail y)

= { derived stretch law (1) }
f −� x ++ [Σy ]

Let us now turn to the axioms involving fans. Fans of width less than two
are equal to the identities.

fan0 = id0

fan1 = id1
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As an aside, this implies that the identity combinator, idn , can be defined as a
horizontal composition of fans.

idn = fan1 × · · · × fan1︸ ︷︷ ︸
n times

The first non-trivial fan law, equation (3) below, allows the designer of scans to
trade depth for fan-out. Here is an instance of the law.
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The circuit on the left has a depth of 2 and a fan-out of 5 while the circuit on the
right has depth 1 and fan-out 8. The first fan law generalizes from the example.

fan1+n ≺ [fanm ≺ fs ] ++ gs = fanm+n ≺ fs ++ gs (3)

Interestingly, this rule is still structural as it does not rely on any properties of
the underlying operator. Only the very last law, equation (4) below, employs
the associativity of ‘◦’. Before we discuss the rule let us first take a look at some
examples.
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Both circuits have the same depth but the circuit on the right has fewer operation
nodes. The left circuit consists of a big fan below a layer of smaller fans. The
big fan adds its first input to each of the intermediate values; the same effect is
achieved on the right by broadcasting the first input to each of the smaller fans.
Here is the smallest instance of this optimization.
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The left circuit, id1× fan2 # fan3 = id2 ≺ [id1, fan2 ] # fan3, maps the inputs x1,
x2, x3 to the outputs x1, x1 ◦ x2, x1 ◦ (x2 ◦ x3), while the right circuit, fan2× id1 #
id1 × fan2 = fan2 ≺ [fan1, fan2 ], maps x1, x2, x3 to x1, x1 ◦ x2, (x1 ◦ x2) ◦ x3.
Clearly, the outputs are equal if and only if ‘◦’ is associative. However, the first
circuit consists of three operation nodes while the second requires only two. The
second fan law captures this optimization.

id1+#x ≺ [id i ] ++ [fanj | j ← y ] # fani+Σx

= fan1+#x ≺ [fani ] ++ [fanj | j ← y ] (4)

The size of the circuit of the right-hand side is always at most the size of the
circuit on the left-hand side. Unless all the ‘small’ circuits are trivial, the depth
of both circuits is the same. Thus, the second fan law is the central rule when it
comes to optimizing scans.
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In the sequel we will also need the following derived law, which is essentially
a binary version of the second fan law.

idm × fann+1 # fanm+n+1 = fan1+m × idn # idm × fann+1 (5)

We argue as follows.

idm × fann+1 # fanm+n+1

= { second fan law }
fan2 ≺ [fanm , fann+1 ]

= { stretching }
fan2 ≺ [fanm ≺ replicate m id1, fann+1 ]

= { first fan law }
fan1+m ≺ replicate m id1 ++ [fann+1 ]

= { definition of ‘≺’ }
fan1+m −� replicate m 1 ++ [n + 1] # par (replicate m id1 ++ [fann+1 ])

= { derived stretch law (1) }
(fan1+m −� replicate m 1 ++ [1])× idn # par (replicate m id1 ++ [fann+1 ])

= { stretching }
fan1+m × idn # par (replicate m id1 ++ [fann+1 ])

= { composition }
fan1+m × idn # idm × fann+1

3 Serial and parallel scan combinators

The combinators we have seen so far are the basic building blocks of scans. The
blocks can be composed in a multitude of ways, the resulting circuits not nec-
essarily implementing parallel prefix circuits. By contrast, the combining forms
introduced in this section take scans to scans, they are scan combinators.

Before we proceed, we should first make precise what we mean by ‘scan’ in
our framework. Scans are, like fans, parameterized by the width of the circuit.
We specify

scan0 = id0

scann+1 = succ scann

where succ is given by

succ :: (Circuit γ,Monoid α)⇒ γ α→ γ α
succ f = id1 × f # fan |f |+1

Whenever we introduce a new implementation of scans in the sequel, we will
show using the laws of the algebra that the family of circuits is equal to scann .
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The first scan combinator implements the serial or vertical composition of
scans: the last output of the first circuit is fed into the first input of the second
circuit.

infixr 3 )
()) :: (Circuit γ)⇒ γ α→ γ α→ γ α
f ) g = f × id |g|−1 # id |f |−1 × g

Because of the overlap the width of the resulting circuit is one less than the sum
of the widths of the two arguments: |f ) g | = |f |+ |g | − 1. The depth does not
necessarily increase, as the following example illustrates.
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The rightmost operation node of the first circuit is placed upon the uppermost
leftmost duplication node of the second circuit.

Serial composition of scans is associative with id1 as its neutral element.

id1 ) f = f
f ) id1 = f
f ) (g ) h) = (f ) g) ) h

The first two laws are straightforward to show; the proof of associativity is quite
instructive: it reveals that f ) (g ) h) and (f ) g) ) h are even structurally
equivalent, that is, they can be rewritten into each other using only structural
rules.

f ) (g ) h)
= { definition of ‘)’ }

f × id |g|+|h|−1 # id |f |−1 × (g ) h)
= { definition of ‘)’ }

f × id |g|+|h|−1 # id |f |−1 × (g × id |h|−1 # id |g|−1 × h)
= { composition }

f × id |g|+|h|−1 # id |f |−1 × g × id |h|−1 # id |f |+|g|−2 × h
= { composition }

(f × id |g|−1 # id |f |−1 × g)× id |h|−1 # id |f |+|g|−2 × h
= { definition of ‘)’ }

(f ) g)× id |h|−1 # id |f |+|g|−2 × h
= { definition of ‘)’ }

(f ) g) ) h

Serial composition interacts nicely with stretching. Let #x = |f | − 1 and #y =
|g |, then

(f ) g) −� x ++ y = (f −� x ++ [1]) ) (g −� y) (6)
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The proof builds upon the derived stretch laws.

(f ) g) −� x ++ y
= { definition of ‘)’ }

(f × id |g|−1 # id |f |−1 × g) −� x ++ y
= { stretching }

(f × id |g|−1) −� x ++ y # (id |f |−1 × g) −� x ++ y
= { derived stretch laws (1) and (2) }

(f −� x ++ [1])× idΣy−1 # (id |f |−1 × g) −� x ++ y
= { stretching }

(f −� x ++ [1])× idΣy−1 # idΣx × (g −� y)
= { definition of ‘)’ }

(f −� x ++ [1]) ) (g −� y)

The second scan combinator is the parallel or horizontal composition of scans:
both circuits are placed side by side, an additional fan adds the last output of
the left circuit to each output of the right circuit.

infixl 3 8
(8) :: (Circuit γ,Monoid α)⇒ γ α→ γ α→ γ α
f 8 g = f × g # id |f |−1 × fan |g|+1

The widths sum up: |f 8 g | = |f | + |g |. Because of the additional fan the depth
increases by one. Here is an example application of ‘8’.

•
•
•

•
•
•

•
•
•

8
•
•
•

•
•
•

•
•
•

=

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

Before we turn to the algebraic properties of ‘8’, let us first note that the parallel
composition of scans is really a serial composition in disguise.

f 8 g = f ) succ g

The proof is straightforward.

f 8 g
= { definition of ‘8’ }

f × g # id |f |−1 × fan |g|+1

= { composition }
f × id |g| # id |f | × g # id |f |−1 × fan |g|+1

= { composition }
f × id |g| # id |f |−1 × (id1 × g # fan |g|+1)

= { definition of ‘)’ }
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f ) (id1 × g # fan |g|+1)
= { definition of succ }

f ) succ g

Parallel composition is associative, as well, and has id0 as its right unit. It does
not possess a left unit though as id0 8 f is undefined (the first argument must
have a positive width).

f 8 id0 = f
f 8 (g 8 h) = (f 8 g) 8 h

As opposed to serial composition, the circuits f 8 (g 8 h) and (f 8 g) 8 h are not
structurally equivalent: the latter circuit has fewer operation nodes. The proof
rests upon the above characterization of parallel composition.

f 8 (g 8 h)
= { characterization of ‘8’ }

f ) succ (g ) succ h)
= { see below }

f ) succ g ) succ h
= { characterization of ‘8’ }

(f 8 g) 8 h

The second step is justified by the following calculations.

succ (f ) succ g)
= { definition of succ and ‘)’ }

id1 × f × id |g| # id |f |+1 × g # id |f | × fan |g|+1 # fan |f |+|g|+1

= { derived fan law (5) }
id1 × f × id |g| # id |f |+1 × g # fan |f |+1 × id |g| # id |f | × fan |g|+1

= { composition }
id1 × f × id |g| # fan |f |+1 × id |g| # id |f |+1 × g # id |f | × fan |g|+1

= { definition of succ and ‘)’ }
succ f ) succ g

Since the proof relies on the second fan law, succ f ) succ g has fewer nodes
than succ (f ) succ g).

Let us finally record the fact that succ, ‘)’ and ‘8’ are scan combinators.

succ scann = scann+1

scanm+1 ) scann = scanm+n

scanm 8 scann = scanm+n

The first law holds by definition. The third equation implies the second and the
third equation can be shown by a straightforward induction over m.
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4 Simple scans

It is high time to look at some implementations of parallel prefix circuits. We
have already encountered one of the most straightforward implementations, a
simple nest of fans, which serves as the specification.

scan0 = id0

scann+1 = succ scann

Here is an example circuit of width 8.
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

The circuit scann is, in fact, the worst possible implementation as it has maxi-
mum depth and the maximal number of operation nodes, namely, n ∗ (n − 1) / 2
among all scans of the same width. Since succ f = id1 ) succ f = id1 8 f , we can
alternatively define scann as a parallel composition of trivial circuits.

scann+1 = id1 8 scann

Now, if we bracket the parallel composition differently, we obtain the serial
scan, whose correctness is immediate.

ser0 = id0

ser1 = id1

sern+1 = sern 8 id1

The graphical representation illustrates why sern is called serial scan.
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The serial scan has maximum depth, but the least number of operation nodes,
namely, n − 1 among all scans of the same width. In a sequential language sern

is the implementation of choice; it corresponds, for instance, to Haskell’s scanl
operation. Using f 8 id1 = f ) succ id1 = f ) fan2 we can rewrite the definition
of sern to emphasize its serial nature.

sern+1 = sern ) fan2
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Now, if we balance the parallel composition more evenly, we obtain parallel
prefix circuits of minimum depth.

recn

| n 6 1 = idn

| otherwise = recdn/2e 8 recbn/2c

Here is a minimum-depth circuit of width 32.
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Note that the tree of operation nodes that computes the last output is fully
balanced, which explains why the depth is minimal. If the width is not a power of
two, then recn constructs a slightly skewed tree, known as a Braun tree [6]. Since
‘8’ is associative, we can, of course, realize arbitrary tree shapes; other choices
include left-complete trees or quasi left-complete trees [7]. For your amusement,
here is a Fibonacci-tree of width 34
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defined in the obvious way.

fib0 = id0

fib1 = id1

fibn+2 = fibn+1 8 fibn

5 Depth-optimal scans

5.1 Brent-Kung circuits

The recn family of circuits implements a simple divide-and-conquer scheme. A
different recursive decomposition was devised by Brent and Kung [8]. As an
example, here is a Brent-Kung circuit of width 32.
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The inputs are ‘paired’ using a layer of 2-fans. Every second output is then fed
into a Brent-Kung circuit of half the width; the other inputs are wired through. A
final layer of 2-fans, shifted by one position, distributes the results of the nested
Brent-Kung circuit to the wired-through signals. Every recursive step halves the
number of inputs and increases the depth by two. Consequently, Brent-Kung
circuits have logarithmic but not minimum depth. On the other hand, they use
fewer operation nodes than the recn circuits and furthermore they have only a
fan-out of 2!

Turning to the algebraic description, we note that the first layer of 2-fans
can be generalized to a layer of scans of arbitrary, not necessarily equal widths.

(3) :: (Circuit γ,Monoid α)⇒ [γ α ]→ γ α→ γ α
[ ] 3 g = g
(f : fs)3 g = (f : fs) � g # id |f |−1 × par gs

where gs = [fan |f | | f ← fs ] ++ [id1 ]

Each scan, except the first one, is complemented by a fan in the final layer,
shifted one position to the left. The operator ‘3’ is also a scan combinator; it
takes a list of scans and a scan to a resulting scan.

[scani | i ← x ]3 scan#x = scanΣx (7)

The Brent-Kung circuit is given by the following definition.

bkn

| n 6 1 = idn

| otherwise = (replicate bn/2c fan2 ++ [id1 | odd n ])3 bkdn/2e

The nested scan has width dn/2e: if the number of inputs is odd, then the nested
scan additionally takes the last input. As an aside to non-Haskell experts, the
idiom [e | b ] is a trivial list comprehension that evaluates to [ ] if b is False and
to [e ] if b is True. Furthermore note, that bkn is a so-called restricted parallel
prefix circuit, whose last output has minimum depth.
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The Brent-Kung decomposition is based on the binary number system. Since
the operator ‘3’ works for arbitrary scans, it is not hard to generalize the de-
composition to an arbitrary base.

gbk b n
| n 6 b = sern

| r 0 = (replicate d serb)3 gbk b d
| otherwise = (replicate d serb ++ [ser r ])3 gbk b (d + 1)
where (d , r) = divMod n b

The definition of gbk uses serial scans as ‘base’ circuits. This is, of course, an
arbitrary choice; any scan will do. Here is a base-3 circuit of width 27.
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This circuit has size 46 and depth 8, while its binary cousin has size 47 and
depth 10.

Let us turn to the proof that ‘3’ is a scan combinator. Property (7) can be
proven by induction over the length of x . We confine ourselves to showing the
induction step. Let k = #ss = #fs, i = |s|, j = |head ss|, n = j + Σ|fs| and
finally fs = [fan |s| | s ← tail ss ] ++ [fan1 ], then

s : ss 3 scank+1

= { definition of ‘3’ }
s : ss � scank+1 # id i−1 × par (fanj : fs)

= { property of scan }
s : ss � (id1 8 scank ) # id i−1 × par (fanj : fs)

= { definition of ‘8’ }
s : ss � (id1 × scank # fank+1) # id i−1 × par (fanj : fs)

= { stretching }
s : ss � (id1 × scank # fank+1) # id i−1 × (idk+1 ≺ fanj : fs)

= { shift law (8), see below }
s : ss � (id1 × scank ) # id i−1 × (fank+1 ≺ fanj : fs)

= { fan law }
s : ss � (id1 × scank ) # id i−1 × (idk+1 ≺ id j : fs # fann)

= { stretching }
s : ss � (id1 × scank ) # id i−1 × (par (id j : fs) # fann)
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= { composition }
s × (ss � scank ) # id i−1 × (par (id j : fs) # fann)

= { composition }
s × (ss � scank ) # id i−1 × par (id j : fs) # id i−1 × fann

= { composition }
s × (ss � scank # par (id j−1 : fs)) # id i−1 × fann

= { definition of ‘8’ }
s 8 (ss � scank # par (id j−1 : fs))

= { definition of par }
s 8 (ss � scank # id j−1 × par fs)

= { definition of ‘3’ }
s 8 (ss 3 scank )

The shift law, used in the fourth step, is a combination of the flip law and the
laws for stretching.

(fs � (l # m))× f # g × (r ≺ gs) = (fs � l)× f # g × ((m # r) ≺ gs) (8)

We reason as follows.

(fs � (l # m))× f # g × (r ≺ gs)
= { composition }

par fs × f # (|fs| �− (l # m))× id |f | # id |g| × (r −� |gs|) # g × par gs
= { flip law }

par fs × f # id |g| × ((l # m) −� |gs|) # id |g| × (r −� |gs|) # g × par gs
= { stretching }

par fs × f # id |g| × (l −� |gs|) # id |g| × ((m # r) −� |gs|) # g × par gs
= { flip law }

par fs × f # (|fs| �− l)× id |f | # id |g| × ((m # r) −� |gs|) # g × par gs
= { composition }

(fs � l)× f # g × ((m # r) ≺ gs)

5.2 Ladner-Fischer circuits

Can we combine the good properties of rec and bk —rec has minimum depth,
while bk gets away with fewer operation nodes? Yes, we can! Reconsider the
circuit rec32 in Section 4 and note that the left part does not occupy the bottom
level. The idea, which is due to Ladner and Fischer [9], is to use the Brent-Kung
decomposition for the left part—recall that it increases the depth by two—and
the ‘usual’ decomposition for the right part. The following combinator captures
one step of the Brent-Kung scheme.

double :: (Circuit γ,Monoid α)⇒ (Width → γ α)→ (Width → γ α)
double s n = (replicate bn/2c fan2 ++ [id1 | odd n ])3 s dn/2e
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Using double we can define a depth-optimal parallel prefix circuit that has the
minimal number of operation nodes among all minimum-depth circuits [10].

opt n
| n 6 1 = idn

| otherwise = double opt dn/2e 8 opt bn/2c
The following example circuit of width 32 illustrates that all layers are nicely
exploited.
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The size of the circuit is 74. By contrast, rec32 consists of 80 operation nodes.
The double combinator allows the scan designer to trade depth for size. The

Ladner-Fischer circuit, defined below, generalizes opt introducing the notion of
extra depth: the first argument of lf specifies the extra depth that the designer
is willing to accept in return for a smaller size.

lf k 0 = id0

lf k 1 = id1

lf 0 n = lf 1 dn/2e 8 lf 0 bn/2c
lf (k + 1) n = double (lf k) n

It is not hard to see that lf 0 specializes to opt and lf ∞ specializes to bk . In a
sense, Ladner-Fischer mediates between the two recursive decompositions.

6 Size-optimal scans

6.1 Lin-Hsiao circuits

The ‘3’ combinator constructs a slightly asymmetric circuit: not every scan
has a corresponding fan. Circuits with a more symmetric design were recently
introduced by Lin and Hsiao [4]. As an example, here is one of their circuits of
width 25, called wl6.

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•



20 R. Hinze

Every scan in the upper part is complemented by a corresponding fan in the
lower part. The two parts are joined by a ‘ ’-like shape (turned 90◦ degrees
clockwise) that connects the first input to the last output. The ‘ ’ combinator
is easy to derive.

scann+1

= { property of scan }
id1 8 scann

= { definition of ‘8’ }
id1 × scann # fann+1

= { stretching }
[id1, scann ] � id2 # fann+1

= { fan laws }
[id1, scann ] � id2 # fan2 ≺ [fann , id1 ]

Thus, we define

( ) :: (Circuit γ,Monoid α)⇒ γ α→ γ α→ γ α
f g = [id1, f ] � id2 # fan2 ≺ [g , id1 ]

We have |f g | = |f |+ 1 = |g |+ 1. The derivation above implies that scann

fann = scann+1. The ‘ ’ combinator constructs a so-called zig-zag circuit whose
height difference is one. The height difference is the length of the path from the
first input to the last output. The low height difference of one renders zig-zag
circuits attractive for serial composition. This is utilized in [4] to construct size-
optimal circuits. A size-optimal circuit has the minimal number of operation
nodes among all circuits of a fixed given depth.

Perhaps surprisingly, a serial composition of two zig-zag circuits can again
be written as a zig-zag circuit.

(l1 u1) ) (l2 u2) = ([ l1, l2 ] � scan2) (fan2 ≺ [u1, u2 ]) (9)

To justify this we argue (i1 = |l1| = |u1| and i2 = |l2| = |u2|)
(l1 u1) ) (l2 u2)

= { definition of ‘)’ }
(l1 u1)× id i2 # id i1 × (l2 u2)

= { definition of ‘ ’ }
(id1 × l1 # fan2 ≺ [u1, id1 ])× id i2 # id i1 × (id1 × l2 # fan2 ≺ [u2, id1 ])

= { composition }
id1 × l1 × l2 # (fan2 −� [i1, 1])× id i2 # id i1 × (fan2 ≺ [i2, 1]) # u1 × u2 × id1

= { derived stretch law (6) }
id1 × l1 × l2 # (fan2 ) fan2) −� [i1, i2, 1] # u1 × u2 × id1

= { fan2 ) fan2 = scan3 = id1 8 scan2 = id1 × scan2 # fan3 }
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id1 × l1 × l2 # (id1 × scan2 # fan3) −� [i1, i2, 1] # u1 × u2 × id1

= { stretching }
id1 × l1 × l2 # [1, i1, i2 ] �− (id1 × scan2) # fan3 −� [i1, i2, 1] # u1 × u2 × id1

= { composition }
[id1, l1, l2 ] � (id1 × scan2) # fan3 ≺ [u1, u2, id1 ]

= { composition and fan law }
id1 × ([ l1, l2 ] � scan2) # fan2 ≺ [fan2 ≺ [u1, u2 ], id1 ]

= { definition of ‘ ’ }
([ l1, l2 ] � scan2) (fan2 ≺ [u1, u2 ])

The property can even be generalized to an n-fold composition.

(l1 u1) ) · · · ) (ln un) = ([ l1, . . . , ln ] � scann) (fann ≺ [u1, . . . , un ])

The proof of this property proceeds by a simple induction. We only show the
induction step.

(l1 u1) ) · · · ) (ln un) ) (ln+1 un+1)
= { ex hypothesi }

(([ l1, . . . , ln ] � scann) (fann ≺ [u1, . . . , un ])) ) (ln+1 un+1)
= { see above }

([[ l1, . . . , ln ] � scann , ln+1 ] � scan2) (fan2 ≺ [fann ≺ [u1, . . . , un ], un+1 ])
= { scan law (10), see below }

([ l1, . . . , ln , ln+1 ] � scann+1) (fan2 ≺ [fann ≺ [u1, . . . , un ], un+1 ])
= { fan law }

([ l1, . . . , ln , ln+1 ] � scann+1) (fann+1 ≺ [u1, . . . , un , un+1 ])

The scan law used in the third step is analogous to the first fan law.

[fs � scanm ] ++ gs � scan1+n = fs ++ gs � scanm+n (10)

The proof is left as an exercise to the reader.
To summarize, ‘ ’ combines a tree of scans with a corresponding tree of

fans to a scan. The combinator allows us to shape a scan after an arbitrary tree
structure. This makes it easy, for instance, to take constraints on the fan-out into
account—the fan-out corresponds directly to the degree of a tree. As an example,
let us define the Lin-Hsiao circuit wl shown above. The following Haskell data
declaration introduces a suitable tree type and its associated fold operation.

data Tree α = Leaf α | Node [Tree α ]
fold :: (α→ β)→ ([β ]→ β)→ (Tree α→ β)
fold leaf node (Leaf a) = leaf a
fold leaf node (Node ts) = node [fold leaf node t | t ← ts ]
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The scan tree and the fan tree of a zig-zag circuit can be implemented as two
simple folds.

zig-zag :: (Circuit γ,Monoid α)⇒ Tree Width → γ α
zig-zag t = fold ser s-node t fold fan f-node t
s-node ts = ts � ser#ts

f-node ts = fan#ts ≺ ts

The ‘base’ circuit of the s-node can be any scan. The same is true of the f-node—
recall that the first fan law allows us to rewrite a single fan as a nest of fans.

Now, the tree underlying the wl circuit is given by the following definition
(note that the argument does not correspond to the width).

wl-tree5 = Node [Leaf 4,Leaf 4,Leaf 4]
wl-treen+1 = Node [wl-treen ,wl-treen ]

The circuit is then simply defined as the composition of zig-zag and wl-tree.

wln = zig-zag wl-treen

Lin and Hsiao show that a slightly optimized version of wln—using the first fan
law the two 2-fans in the center are merged into a 3-fan— is size-optimal [4].

6.2 Brent-Kung, revisited

Interestingly, the Brent-Kung circuit can be seen as a zig-zag circuit in disguise,
or rather, as a serial composition of zig-zag circuits. Reconsider the example
graph given in Section 5.1 and note that the right part has the characteristic
shape of a zig-zag circuit: the tree in the upper part is mirrored in the lower
part, in fact, they can be mapped onto each other through a 180◦ rotation (this
is because binary fans and binary scans are equal).

The tree shape underlying a Brent-Kung circuit is that of a Braun tree.

braunn

| n 6 2 = Leaf n
| otherwise = Node [braundn/2e, braunbn/2c ]

Here is the alternative definition of Brent-Kung as a serial composition of zig-zag
circuits.

bk ′n
| n 6 2 = sern

| otherwise = bk ′d+r ) zig-zag braund

where (d , r) = divMod n 2

The graphical representation reveals that this variant is more condensed: every
fan is placed at the topmost possible position.
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7 Related work

Parallel prefix computations are nearly as old as the history of computers. One
of the first implementations of fast integer addition using carry-lookahead was
described by Weinberger and Smith [11]. However, the operation of the circuit
seemed to rely on the particularities of carry propagation. It was only 20 years
later that Ladner and Fischer formulated the abstract problem of prefix com-
putation and showed that carry computation is an instance of this class [9]. In
fact, they showed the more general result that any finite-state transducer can be
simulated in logarithmic time using a parallel prefix circuit.

As an aside, the idea underlying this proof is particularly appealing to func-
tional programmers as it relies on currying. Let φ :: (X ,A)→ A be an arbitrary
binary operation not necessarily associative. To compute the value of

φ (x1, φ (x2, . . . φ (xn , a) . . .))

and all of the intermediate results we rewrite the expression into a form suitable
for a prefix computation

(curry φ x1 · curry φ x2 · · · · · curry φ xn) a

The underlying binary operation is then simply function composition. An im-
plementation in hardware additionally requires that the elements of A→ A can
be finitely represented (see Section 2.1).

Fich later proved that the Ladner-Fischer family of scans is depth-optimal
[10]. Furthermore, he improved the design for an extra depth of one. Since then
various other families have been proposed taking into account restrictions on
depth and, in particular, on fan-out. Lin and Hsiao, for instance, describe a
family of size-optimal scans with a fan-out of 4 and a small depth. One main
ingredient is the circuit wl introduced in Section 6.1. The construction is given
as an algorithm that transforms an explicit graph representing wln into a graph
representing wln+1. The transformation essentially implements the rule

(l1 u1) ) (l2 u2) = ([ l1, l2 ] � scan2) (fan2 ≺ [u1, u2 ])

However, since the graph representation is too concrete, the algorithm is hard
to understand and even harder to prove correct.
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There are a few papers that deal with the derivation of parallel prefix cir-
cuits. Misra [12] calculates the Brent-Kung circuit via the data structure of pow-
erlists.1 Since powerlists capture the recursive decomposition of Brent-Kung, the
approach while elegant is not easily applicable to other implementations of scans.
In a recent pearl, O’Donnell and Rünger [13] derive the recursive implementation
using the digital circuit description language Hydra. The resulting specification
contains all the necessary information to simulate or fabricate a circuit.

The parallel prefix computation also serves as a building block of parallel
programming. We have already noted in the introduction that many algorithms
can be conveniently expressed in terms of scans [3]. Besides encouraging well-
structured programming this coarse-grained approach to parallelism allows for
various program optimizations. Gorlach and Lengauer [14], for instance, show
that a composition of two scans can be transformed into a single scan. The scan
function itself is an instance of a so-called list homomorphism. For this class of
functions, parallel programs can be derived in a systematic manner [15]. Apply-
ing the approach of [15] to scan yields the optimal hypercube algorithm. This
algorithm can be seen as a clocked circuit. Consequently, there is no direct corre-
spondence to any of the algorithms given here, which are purely combinatorial.

8 Conclusion

This paper shows that parallel prefix circuits enjoy a surprisingly rich algebra.
The algebraic approach has several benefits: it allows us to specify scans in a
readable and concise way, to prove them correct, and to derive new designs. In
the process of preparing the paper the algebra of scans has undergone several
redesigns. We hope that the final version presented here will stand the test of
time.
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